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Abstract The use of efficient embedded control systems in
the transportation industry and particularly in turbocharged
Diesel engines requires the programming of elaborated non-
linear control and filtering methods. To this end, in this paper
nonlinear control for turbocharged Diesel engines is devel-
oped with the use of Differential flatness theory and adaptive
fuzzy control. It is shown that the dynamic model of the
turbocharged Diesel engine is differentially flat and admits
dynamic feedback linearization. It is also shown that the
dynamicmodel can bewritten in the linear Brunovsky canon-
ical form for which a state feedback controller can be easily
designed. To compensate for modeling errors and external
disturbances an adaptive fuzzy control scheme is imple-
mented making use of the transformed dynamical system of
the diesel engine that is obtained through the application of
differential flatness theory. The control algorithm aims at sat-
isfying the H∞ tracking performance criterion, which means
that the influence of the modeling errors and the external dis-
turbances on the tracking error is attenuated to an arbitrary
desirable level. After transforming the MIMO diesel engine
system into the canonical form, the resulting control inputs
are shown to contain nonlinear elements which depend on
the system’s parameters. The nonlinear terms which appear
in the control inputs are approximated with the use of neuro-
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fuzzy networks. Moreover, since only the system’s output
is measurable the complete state vector has to be recon-
structed with the use of a state observer. It is shown that a
suitable learning law can be defined for the aforementioned
neuro-fuzzy approximators so as to preserve the closed-loop
system stability. With the use of Lyapunov stability analysis
it is proven that the proposed observer-based adaptive fuzzy
control scheme results in H∞ tracking performance.

Keywords Turbocharged diesel engines · Nonlinear
control · Differential flatness theory · Dynamic feedback
linearization · Adaptive fuzzy control · Observer-based
control · MIMO dynamical systems · Lyapunov stability

Introduction

The development of embedded control for the transportation
systems industry comes against problems of increased dif-
ficulty arising from the highly nonlinear dynamics of the
considered systems and from the technical difficulties in
measuring specific elements of the systems’ state vector
[1–6]. Previous approaches to the control of turbocharged
diesel engines and exhaust gas recirculation systems com-
prise PID and Lyapunov methods. One can also find results
on neural and fuzzy control both for compression ignition
(CI) and spark ignition (SI) engines [7–12]. In particular, con-
trol of turbocharged diesel engines is a complicated problem
because the nonlinear model of the engine cannot be sub-
jected to static feedback linearization [13–16]. Therefore,
one has to apply dynamic feedback linearization by extend-
ing the state vector of the system so as to include also as new
state variables the derivatives of the initial control inputs.
In comparison to systems which can be brought to a linear
form through static feedback linearization, control of sys-
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tems subjected to dynamic feedback linearization requires
substantially different design stages [17]. By defining an
extended state vector (which is an approach also known as
dynamic extension), it is possible to show that the model
of the turbocharged diesel engine is a differentially flat one.
Moreover, by expressing all state variables and the control
inputs of themodel one can arrive at an equivalent description
of the system in the linear canonical (Brunovsky) form.

In this paper the nonlinear control problem of the tur-
bocharged diesel engines is solvedwith the use of differential
flatness theory and of adaptive fuzzy control. Differential
flatness theory is currently one of the main directions in
the development of nonlinear control systems [18–26]. It is
shown that the dynamic model of the turbocharged Diesel
engine is differentially flat and admits dynamic feedback lin-
earization. It is also shown that the dynamic model can be
written in the linear Brunovsky canonical form for which a
state feedback controller can be easily designed.Moreover, to
cope with modeling uncertainties and external disturbances
the paper proposes the implement adaptive fuzzy controlwith
the use of the transformed diesel engine’s dynamical model
that was obtained through the application of differential flat-
ness theory.

Actually, the paper proposes a solution to the problem
of observer-based adaptive fuzzy control for diesel engines
and in general for MIMO nonlinear dynamical systems that
admit dynamic feedback linearization. The design of the
adaptive fuzzy controller considers that only the system’s
output is measured and that the system’s model is unknown.
The control algorithm aims at satisfying the H∞ tracking
performance criterion, which means that the influence of the
modeling errors and the external disturbances on the track-
ing error is attenuated to an arbitrary desirable level. After
transforming the MIMO system into the canonical form, the
resulting control inputs are shown to contain nonlinear ele-
ments which depend on the system’s parameters. Since the
parameters of the system are unknown, then the nonlinear
terms which appear in the control inputs have to be approxi-
matedwith the use of neuro-fuzzy networks.Moreover, since
only the system’s output is measurable the complete state
vector has to be reconstructedwith the use of a state observer.
In the current paper it is shown that a suitable learning law
can be defined for the aforementioned neuro-fuzzy approx-
imators so as to preserve the closed-loop system stability.
Lyapunov stability analysis proves also that the proposed
observer-based adaptive fuzzy control scheme results in H∞
tracking performance, in accordance to the results of [27–31].

For the design of the observer-based adaptive fuzzy con-
troller one has to solve two Riccati equations, where the
first one is associated with the controller and the second one
is associated with the observer. Parameters that affect the
closed-loop robustness are: (i) the feedback gain vector K ,
(ii) the observer’s gain vector Ko, (iii) the positive definite

matrices P1 and P2 which stem from the solution of the two
algebraic Riccati equations and which weigh the above men-
tioned observer and controller terms. The proposed control
architecture guarantees that, the output of the closed-loop
system will asymptotically track the desired trajectory and
that H∞ performance will be achieved. The efficiency of the
proposed control method is tested through simulation exper-
iments.

The structure of the paper is as follows: in “Dynamic
Model of the Turbocharged Diesel Engine” section the
dynamicmodel of the turbochargeddiesel engine is analyzed.
In “Nonlinear Control of the Diesel Engine using Lie Alge-
bra” section it is shown how linearization and state feedback
control for the diesel engine can be performed with the use
of Lie algebra. In “Nonlinear Control of the Diesel Engine
Using Differential Flatness Theory” section it is shown that
the dynamic model of the turbocharged diesel engine is a dif-
ferentially flat one, and that linearization and state feedback
control can be applied with the use of differential flatness
theory. In “Application of Flatness-Based Adaptive Fuzzy
Control to the MIMO Diesel Engine Model” section the
stages of differential flatness theory-based adaptive fuzzy
control for the model of the diesel engine are explained.
In “Lyapunov Stability Analysis” section Lyapunov stability
analysis is provided for the adaptive fuzzy control loop that
is implemented on the dynamical model of the turbocharged
diesel engine. In “Simulation Tests” section simulation tests
are carried out to evaluate the performance of the diesel
engine control loop. Finally, in “Conclusions” section con-
cluding remarks are stated.

Dynamic Model of the Turbocharged Diesel Engine

The basic parameters of the Diesel engine are: (i) Gas pres-
sure in the intakemanifold p1, (ii) Gas pressure in the exhaust
manifold p2, (iii) Turbine power Pt , (iv) Compressor power
Pc. Additional variables of importance are Wc which is the
compressor mass flow rate, T1 the intake manifold tempera-
ture, T2 is the exhaustmanifold temperature,Wt is the turbine
mass flow rate andWEGR is the exhaust gas recirculationflow
rate (Fig. 1).

The basic relations of the diesel engine’s dynamics are:

ṗ1 = K1(Wc + u1 − Ke p1) + Ṫ1
T1

p1

ṗ2 = K2(Ke p1 − u1 − u2) + Ṫ2
T2

p2 (1)

Ṗc = 1

τ
(ηm Pt − Pc)

The control inputs to this model are the exhaust gas recir-
culation (EGR) flow rate u1 = WEGR and the compressor
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Fig. 1 Diagram of the turbocharged Diesel engine

mass flow rate u2 = Wt . Moreover, it holds that

Wc = Pc
Kc

pμ
1 − 1

(2)

Pt = Kt

(
1 − p−μ

2

)
u2 (3)

The model is simplified by setting Ṫ1 = 0 and Ṫ2 = 0. In
such a case the associated state-space equations are given by

ṗ1 = K1(Wc + u1 − Ke p1)

ṗ2 = K2(Ke p1 − u1 − u2) (4)

Ṗc = 1

τ
(ηm Pt − Pc)

Moreover, it holds that

Wc = Pc
Kc

pμ
1 − 1

(5)

Pt = Kt (1 − p2
μ)u2 (6)

The description of the diesel engine in state-space form is
given by

ẋ = f (x) + ga(x)u1 + gb(x)u2 (7)

where

f (x) =
⎛
⎜⎝
K1Kc

Pc
pμ
1

− K1Ke p1

K2Ke p1
− Pc

τ

⎞
⎟⎠

ga(x) =
⎛
⎝

K1

−K2

0

⎞
⎠ gb(x) =

⎛
⎝

0
−K2

Ko(1 − p2−μ)

⎞
⎠ (8)

With respect to the control, the variables of the output are: (i)
the input manifold pressure p1 and (ii) the compressor mass
flow rate Wc,

y =
(
p1
Wc

)
=

(
p1

Pc
Kc

pμ
1 −1

)
(9)

Nonlinear Control of the Diesel Engine Using Lie
Algebra

A Low Order Feedback Control Scheme

The previous definition of the system’s outputs given in Eq.
(9) is used. The linearization of the Diesel engine dynamics
is based on the following relations

z11 = h1(x)

z12 = L f h1(x)

ż11 = L f h1(x) + Lga h1(x)u1 + Lgbh1(x)u2

z21 = h2(x)

z22 = L f h2(x)

ż21 = L f h2(x) + Lga h2(x)u1 + Lgbh2(x)u2

(10)

It holds that

z11(x) = p1

L f h1(x) = ∂h1
∂x1

f1 + ∂h1
∂x2

f2 + ∂h1
∂x3

f3⇒
L f h1(x) = 1 f1 + 0 f2 + 0 f3⇒L f h1(x)

= K1Kc
Pc

pμ
1 − 1

− K1Kc p1 (11)

Moreover, it holds that

Lga h1(x) = ∂h1
∂x1

ga1 + ∂h1
∂x2

ga2 + ∂h1
∂x3

ga3⇒
Lga h1(x) = 1ga1 + 0ga2 + 0ga3 ⇒ Lgh1(x) = K1 (12)

while it also holds that

Lgbh1(x) = ∂h1
∂x1

gb1 + ∂h1
∂x2

gb2 + ∂h1
∂x3

gb3⇒
Lgbh1(x) = 1gb1 + 0gb2 + 0gb3 ⇒ Lgh1(x) = 0 (13)

Equivalently it holds

L f h2(x) = ∂h2
∂x1

f1 + ∂h2
∂x2

f2 + ∂h2
∂x3

f3⇒

L f h2(x) = pc
−Kcμpμ−1

1

π
μ
1 − 12

(
K1Kc

Pc
pμ
1 − 1 − K1Ke p1

)
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+ Kc

π
μ
1 − 1

(
− Pc

τ

)
(14)

Moreover, it holds

Lga h2(x) = ∂h2
∂x1

ga1 + ∂h2
∂x2

ga2 + ∂h2
∂x3

ga3⇒

Lga h2(x) = pc
−Kcμpμ−1

1

π
μ
1 − 12

ga1 + 0ga2

+ Kc

pμ
1 − 1

ga3 = 0⇒

Lga h2(x) = Pc
−Kcμpμ−1

1

pμ
1 − 12

K1 (15)

Equivalently, one obtains

Lgbh2(x) = ∂h2
∂x1

gb1 + ∂h2
∂x2

gb2 + ∂h2
∂x3

gb3⇒

Lgbh2(x) = Pc
−Kcμpμ−1

1

pμ
1 − 12

gb1 + 0gb2 + Kc

pμ
1 − 1

gb3⇒

Lgbh2(x) = Kc

pμ
1 − 1

Ko(1 − p−μ
2 ) (16)

From the relations

ż11 = L f h1(x) + Lga h1(x)u1 + Lgbh2(x)u2

ż21 = L f h2(x) + Lga h2(x)u1 + Lgbh2(x)u2 (17)

which is also written as

(
ż11
ż21

)

=
⎛
⎝

K1Kc
Pc

pμ
1 −1

− K1KcP1

pc
−Kcμpμ−1

1

π
μ
1 −1

2

(
K1Kc

Pc
pμ
1 −1−K1Ke p1

)
+ Kc

π
μ
1 −1

(
− Pc

τ

)
⎞
⎠

+
⎛
⎝

K1 0

Pc
−Kcμpμ−1

1

pμ
1 −1

2 K1
Kc

pμ
1 −1

Ko(1 − p−μ
2 )

⎞
⎠

(
u1
u2

)
(18)

Therefore, one arrives at a relation of the form

˙̃z1 = f̃a + M̃aũ (19)

The new control inputs can be defined as

v1 = L f h1(x) + Lga h1(x)u1 + Lgbh2(x)u2

v2 = L f h2(x) + Lga h2(x)u1 + Lgbh2(x)u2 (20)

one has the dynamics

ż11 = v1

ż21 = v2 (21)

In such a case the feedback control law results into

v1 = ż11,d − K 1
p(z

1
1 − z11,d)

v2 = ż21,d − K 2
p(z

2
1 − z21,d) (22)

results in asymptotic elimination of the tracking error. There-
fore, in that case the tracking error dynamics becomes

ė1 + K 1
pe1 = 0⇒ limt→∞e1(t) = 0, K 1

p > 0

ė2 + K 2
pe2 = 0⇒ limt→∞e2(t) = 0, K 2

p > 0 (23)

The previous results are confirmed through the computation
of time derivatives and the use of differential flatness theory:

y1 = p1 ⇒ ẏ1 = ṗ1⇒ẏ1 = k1kc
pc

pμ
1 − 1 − k1ke p1

+ k1u1

(24)

Similarly it holds

y2 = pc
kc

pμ
1 − 1

⇒ ẏ2 = ∂ y2
∂x1

ẋ1 + ∂ y2
∂x2

ẋ2 + ∂ y2
∂x3

ẋ3⇒

ẏ2 = pc
−Kcμpμ−1

1

(pμ
1 ) − 12

ẋ1 + 0ẋ2 + Kc

pμ
1 − 1

ẋ3⇒

ẏ2 = pc
−Kcμpμ−1

1

(pμ
1 ) − 12

[(
K1Kc

Pc
pμ
1 − 1

− K1Ke p1

)

+K1u1

]
+ Kc

pμ
1 − 1

[
− Pc

τ
+ Ko(1 − p−μ

2 )u2

]
⇒

ẏ2 = pc
−Kcμpμ−1

1

(pμ
1 ) − 12

(
K1Kc

Pc
pμ
1 − 1

− K1Ke p1

)

+ Kc

pμ
1 − 1

(
− Pc

τ

)
+ pc

−Kcμpμ−1
1

(pμ
1 ) − 12

K1u1

+ Kc

pμ
1 − 1

Ko(1 − p−μ
2 )u2 (25)

Therefore, one arrives again at a dynamics of the following
form:

(
ẏ1
ẏ2

)

=
⎛
⎝

K1Kc
Pc

pμ
1 −1

− K1Kc p1

pc
−Kcμpμ−1

1

(pμ
1 −1)

2

(
K1Kc

Pc
pμ
1 −1

− K1Kc p1
)

+ Kc

pμ−1
1

(
− Pc

τ

)
⎞
⎠

+
⎛
⎝

K1 0

pc
−Kcμpμ−1

1

(pμ
1 −1)

2 (K1)
Kc

pμ
1 −1

Ko(1 − p−μ
2 )

⎞
⎠

(
u1
u2

)
(26)
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which finally gives

˙̃y = f̃a + M̃au (27)

A Dynamic Extension-Based Feedback Control Scheme

In the following, dynamic feedback linearization is per-
formed which means that the control inputs that appear in
the linearized form of the system are not only functions of
the initial control inputs u1, u2 but they also contain terms
which are based on the derivatives u̇1, u̇2. Thus, one has
v1 = f1(u1, u̇1) and v2 = f2(u2, u̇2). Equivalently, this
means that the control inputs u1, u2 which are finally applied
to the real system depend on v1, v2 through an integration
relation, that is v1 = f1(u1, u̇1) and v2 = f2(u2, u̇2).

The dynamical system of the diesel engine is written in
an extended form using the variables v1 = u̇1 = ż, v2 = u2
which means u1 = ∫

v1dt , u2 = v2. Thus, using Eq. (7)
and Eq. (8) and by substituting u1 = z1 and ż = v1 as
intermediate state variable it holds

ṗ1 = K1KcPc pμ
1 − 1 − K1Ke p1 + K1z

ṗ2 = K2Ke p1 − K2z − K2v2

Ṗc = − Pc
τ

+ Ko(1 − p2
−μ)

ż = v1 (28)

therefore, bydefining the state vector x = [x1, x2, x3, x4]T =
[p1, p2, Pc, z]T the state-space description of the diesel
engine model becomes

ẋ1 = K1Kc
x3

xμ
1 − 1

− K1Kex1 + K1x4

ẋ2 = K2Kex1 − K2x4 − K2v2

ẋ3 = − x3
τ

+ Ko(1 − x2
−μ)

ẋ4 = v1 (29)

Consequently, in matrix form one has

⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

K1Kc
x3

xμ
1 −1

− K1Kex1 + K1x4

K2Kex1 − K2x4
− x3

τ
+ Ko(1 − xμ

2 )

0

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ v1 +

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ v2 (30)

The system’s outputs are chosen to be

y1 = x1 = p1

y2 = Pc
Kc

pμ
1 − 1

⇒ y2 = x3
Kc

xμ
1 − 1

(31)

Linearization of the system is performed using the following
relations-state variables

z11 = h1(x)

z12 = L f h1(x)

ż12 = L2
f h1(x) + Lga L f h1(x)u1 + Lgb L f h1(x)u2 (32)

and equivalently

z21 = h2(x)

z22 = L f h2(x)

ż22 = L2
f h2(x) + Lga L f h2(x)u1 + Lgb L f h2(x)u2 (33)

It holds that

z11 = h1(x)⇒ z11 = x1 (34)

z12 = L f h1(x)⇒ z12 = ∂h1
∂x1

f1

+∂h1
∂x2

f2 + ∂h1
∂x3

f3 + ∂h1
∂x4

f4⇒
z12 = 1· f1 + 0· f2 + 0· f3 + 0· f4 ⇒ z12 = f1 ⇒
z12 = K1K3

x3
x p
1 − 1

− K1Kex1 + K1x4 (35)

Moreover, it holds that

L2
f h1(x) = L f z

1
2 ⇒ L2

f h1(x)

= ∂z12
∂x1

f1 + ∂z12
∂x1

f2 + ∂z12
∂x3

f3⇒

L2
f h1(x) =

(
K1K3

−x3μxμ−1
1

xμ
1 − 1

− K1Ke

)
f1

+ 0 f2 +
(

K1K3

xμ
1 − 1

)
f3 + K1 f4⇒

L2
f h1(x) =

(
K1K3

−x3μxμ−1
1

xμ
1 − 1

− K1Ke

) (
K1K3

x3
xμ
1 − 1

− K1Kex1 + K1x4

)
+

(
K1K3

xμ
1 − 1

) (
− x3

τ

+ Ko(1 − x−μ
2 )

)
(36)

Equivalently, one computes

Lga L f h1(x) = Lga z
1
2 ⇒ Lga L f h1(x) = ∂z12

∂x1
ga1 + ∂z12

∂x2
ga2

+ ∂z12
∂x3

ga3 + ∂z12
∂x4

ga4⇒
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Lga L f h1(x) =
(
K1K3

−x3μxμ−1
1

xμ
1 − 1

− K1Ke

)
ga1

+ 0ga2 +
(

K1K3

xμ
1 − 1

)
ga3 + K1ga4⇒

Lga L f h1(x) = K1 (37)

and in a similar manner one obtains

Lgb L f h1(x) = Lgb z
1
2 ⇒ Lgb L f h1(x) = ∂z12

∂x1
gb1

+ ∂z12
∂x2

gb2 + ∂z12
∂x3

gb3 + ∂z12
∂x4

gb4⇒

Lgb L f h1(x) =
(
K1K3

−x3μxμ−1
1

xμ
1 − 1

− K1Ke

)
gb1 + 0gb2

+
(

K1K3

xμ
1 − 1

)
gb3 + K1gb4⇒

Lgb L f h1(x) = 0 (38)

Following an equivalent procedure one computes

z22 = L f h2(x) = x3
−Kcμxμ−1

1

xμ
1 − 12

(
K1Kc

x3
xμ
1 − 1

− K1Kcx1

+K1x4

)
+ Kc

xμ
1 − 1

(
− x3

τ
+ Ko(1 − x−mu

2 )
)

(39)

In a similar manner one gets

L2
f h2(x) = ∂z22

∂x1
f1 + ∂z22

∂x2
f2 + ∂z22

∂x3
f3 + ∂z22

∂x4
f4⇒

L2
f h2(x)

=
{
x3

(−Kcμμ − 1xμ−2
1 )(xμ

1 −1)2−(−Kcμxμ−1
1 )2(xμ

1 − 1)μxμ−1
1

xμ
1 − 14

×
(

K1Kcx3
xμ
1 − 1 − K1Kc + K1x4

)

+ x3
−Kcμxμ−1

1

xμ
1 − 1

(
K1Kc−x3μxμ−1

1

(xμ
1 − 1)2

− K1Kc

)

+ −Kcμxμ−1
1

xμ
1 − 12

(
− x3

τ
+ Ko(1 − x−μ

2 )
)}

×
(
K1Kc

x3
xμ
1 − 1

− K1Kex1 + K1x4

)

+ Kc

xμ
1 − 1

Koμx−μ−1
2 (K2Kex1 − K2x4)

+
{
x3

−Kcμxμ−1
1

xμ
1 − 12

K1Kc

xμ
1 − 1

+ Kc

xμ
1 − 1

(− 1

τ
)

}

×
(
− x3

τ
+ Ko(1 − x−μ

2 )
)

+
{
x3

−Kcμxμ−1
1

xμ
1 − 12

K1

}
0 (40)

Equivalently, one computes

Lga L f h2(x) = ∂z22
∂x1

ga1 + ∂z22
∂x2

ga2 + ∂z22
∂x3

ga3 + ∂z22
∂x4

ga4⇒

Lga L f h2(x) = ∂z22
∂x4

1⇒ Lga L f h2(x) = x3
−Kcμxμ−1

1

(xμ
1 − 12)

K1

(41)

and similarly

Lgb L f h2(x) = ∂z22
∂x1

gb1 + ∂z22
∂x2

gb2 + ∂z22
∂x3

gb3 + ∂z22
∂x4

gb4⇒

Lgb L f h2(x) = ∂z22
∂x2

1⇒ Lgb L f h2(x) = Kc

xμ
1 − 1

Koμx−μ−1
2

(42)

Consequently, after the change of coordinates one has the
following description

ż11 = z12
ż12 = L2

f h1(x) + Lga L f h1(x)v1 + Lgb L f h1(x)v2

ż21 = z22
ż22 = L2

f h2(x) + Lga L f h2(x)v1 + Lgb L f h2(x)v2 (43)

Consequently, the system of the diesel engine is written in the
following form. This also takes the followingmatrix descrip-
tion

(
z̈1
z̈2

)
=

(
L2

f h1(x)
L2

f h2(x)

)
+

(
Lga L f h1(x) Lgb L f h1(x)
Lga L f h2(x) Lgb L f h2(x)

)(
v1
v2

)

(44)

that is

¨̃z = f̃a + M̃av (45)

Moreover, by defining the new control inputs one has

v1in = L2
f h1(x) + Lga L f h1(x)v1 + Lgb L f h1(x)v2

v2in = L2
f h2(x) + Lgb L f h2(x)v1 + Lgb L f h2(x)v2 (46)

one has ż11 = z12, ż
1
2 = v1in , ż

2
1 = z22 and ż22 = v2in , the sys-

tem’s dynamics is written in the canonical Brunovsky form.
Moreover, the states-space description of the motor becomes

⎛
⎜⎜⎜⎜⎝

ż11
ż12
ż21
ż22

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

z11
z21
z21
z22

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎝

0 0
1 0
0 0
0 1

⎞
⎟⎟⎠

(
v1in

v2in

)
(47)
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The selection of the state feedback control law,which assures
zeroing of the tracking error is

v1in = z̈11,d − K 1
d (ż

1
1 − ż11,d) − K 1

p(z
1
1 − z11,d)

v2in = z̈21,d − K 2
d (ż21 − ż21,d) − K 2

p(z
2
1 − z21,d) (48)

Since

ṽin = f̃a + M̃a ṽ ⇒ ṽ = M̃−1
a (ṽin − f̃a) (49)

Moreover, because it holds

ṽ =
(

v1
v2

)
=

(
u̇1
u2

)
(50)

to compute the control input u1 which is actually applied to
the diesel motor an integration with respect to time has to be
carried out for the auxiliary control input.

Nonlinear Control of the Diesel Engine Using Dif-
ferential Flatness Theory

The results about dynamic state feedback system lineariza-
tion can be confirmed with the computation of time deriva-
tives and differential flatness theory. The following differen-
tially flat system outputs are considered

y1 = p1 = x1

y2 = Pc
Kc

pμ
1 − 1

⇒ y2 = x3
Kc

xμ
1 − 1

(51)

The dynamics of the extended system is

⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

K1Kc
x3

xμ
1 −1

− K1Kex1 + K1x4

K2Kex1 − K2x4−x3
τ

+ Ko(1 − xμ
2 )

0

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ v1 +

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ v2 (52)

It holds that y1 = x1 therefore

x1 = q1(y, ẏ)

y2 = x3
Kc

xμ
1 − 1

⇒ x3 = y2(x
μ
1 − 1)

Kc
⇒ x3

= y2(y
μ
1 − 1)

Kc
⇒x3 (53)

therefore x3 = q3(y, ẏ) and thus variable x3 is a function of
the flat output and its derivatives. From the first row of the
state-space equations one has

ẋ1 = K1Kc
x3

xμ
1 − 1

− K1Kex1 + K1x4⇒

x4 =
ẋ1 − K1Ke

x3
xμ
1 −1

+ K1Kex1

K1
⇒

x4 = q4(y, ẏ) (54)

From the 4th row of the states-space equations one has

ẋ4 = v1 ⇒ v1 = q5(y, ẏ) (55)

where v1 is a function of the flat output and its derivatives.
From the 3rd row of the states-space equations one has

ẋ3 = − x3
τ

+ Ko(1 − x−μ
2 )⇒

x−μ
2 = − ẋ3 + x3

τ

Ko
⇒ x2 =

(
−ẋ3 + x3

τ

Ko

μ
)

(56)

From the second row of the state-space equations one obtains

ẋ2 = K2Kex1 − K2x4 + v2⇒
v2 = ẋ2 − K2Kex1 + K2x4⇒
v2 = q6(y, ẏ) (57)

Therefore, all state variables of the system and the control
inputs can be written as functions of the flat output and its
derivatives. Therefore, the system of the diesel engine is dif-
ferentially flat. This system can be subjected to dynamic
feedback linearization. By considering the flat outputs

y1 = x1

y2 = x3
Kc

xμ
1 − 1

(58)

and by differentiating with respect to time one obtains the
linearized model of the system

y1 = x1

ẏ1 = ẋ1 ⇒ ẏ1 = K1Kc
x3

xμ
1 − 1

−K1Kcx1 + K1x4 (59)

and equivalently

ÿ1 =
(
K1Kc

−x3μxμ−1
1

xμ
1 − 12

− K1Kc

)
ẋ1 + 0ẋ2

+
(
K1Kc

1

xμ
1 − 1

)
ẋ3 + K1 ẋ4 (60)
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or

ÿ1 =
(
K1Kc

−x3μxμ−1
1

xμ
1 − 12

− K1Kc

) (
K1Kc

x3
xμ
1 − 1

−K1Kex1 + K1x4

)
+

(
K1Kc

1

xμ
1 − 1

)

×
(
− x3

τ
+ Ko(1 − x−μ

2 )
)

+ K1v1 (61)

Equivalently, one has

y2 = x3
Kc

xμ
1 − 1

ẏ2 = x3Kcμxμ−1
1

xμ
1 − 12

ẋ1 + Kc

xμ
1 − 1

ẋ3⇒

ẏ2 = x3Kcμxμ−1
1

xμ
1 − 12

ẋ1 + Kc

xμ
1 − 1

ẋ3⇒

ẏ2 = x3Kcμxμ−1
1

xμ
1 − 12

(
K1Kc

x3
xμ
1 − 1

− K1Kex1 + K1x4

)

+ Kc

xμ
1 − 1

(
− x3

τ
+ Ko(1 − x−μ

2 )
)

(62)

and equivalently it holds

ÿ2 = ∂ ẏ2
∂x1

ẋ1 + ∂ ẏ2
∂x2

ẋ2 + ∂ ẏ2
∂x3

ẋ3 + ∂ ẏ2
∂x4

ẋ4⇒ (63)

or

ÿ2

=
{
x3Kcμ(μ − 1)xμ−2

1 (xμ
1 − 1)2 − x3Kcμxμ−1

1 2(xμ
1 − 1)μxμ−1

1

(xμ
1 − 1)4

×
(
K1Kc

x3
xμ
1 − 1

− K1Kex1 + K1x4

)

+ −Kcμxμ−1
1

(xμ
1 − 1)2

(
− x3

τ
+ Ko(1 − xμ

2 )
)}

ẋ1

+ Kc

xμ
1 − 1

(Koμxμ−1
2 )ẋ2

+
{
Kcμxμ−1

1

(xμ
1 − 1)2

(
K1Kc

x3
xμ
1 − 1

)
− K1Kex1

+ K1x4 + Kc

xμ
1 − 1

(
− 1

τ

)}
ẋ3

+ x3Kcμxμ−1
1

xμ
1 − 12

K1 ẋ4 (64)

Therefore, it holds

ÿ2

=
{
x3Kcμ(μ − 1)xμ−2

1 (xμ
1 − 1)2 − x3Kcμxμ−1

1 2(xμ
1 − 1)μxμ−1

1

(xμ
1 − 1)4

×
(
K1Kc

x3
xμ
1 − 1

− K1Kex1 + K1x4

)

+ −Kcμxμ−1
1

(xμ
1 − 1)2

(
− x3

τ
+ Ko(1 − xμ

2 )
)} (

K1Kc
x3

xμ
1 − 1

− K1Kex1 + K1x4

)
+ Kc

xμ
1 − 1

(Koμxμ−1
2 )(K2Kex1

− K2x4 + v2) +
{
Kcμxμ−1

1

(xμ
1 − 1)2

(
K1Kc

x3
xμ
1 − 1

)
− K1Kex1

+ K1x4 + Kc

xμ
1 − 1

(
− 1

τ

)} (
− x3

τ
+ Ko(1 − x−μ

2 )
)

+ x3Kcμxμ−1
1

xμ
1 − 12

K1}v1 (65)

Consequently, in complete analogy to the relations computed
with the use of Lie algebra it holds

ÿ2 = L2
f h2(x) + Lga L f h2v1 + Lgb L f h2v2 (66)

where

L2
f h2(x)

=
{
x3Kcμ(μ − 1)xμ−2

1 (xμ
1 − 1)2 − x3Kcμxμ−1

1 2(xμ
1 − 1)μxμ−1

1

(xμ
1 − 1)4

×
(
K1Kc

x3
xμ
1 − 1

− K1Kex1 + K1x4

)

+ −Kcμxμ−1
1

(xμ
1 − 1)2

(
− x3

τ
+ Ko(1 − xμ

2 )

)} (
K1Kc

x3
xμ
1 − 1

− K1Kex1 + K1x4

)
+ Kc

xμ
1 − 1

(Koμxμ−1
2 )(K2Kex1

− K2x4) +
{
Kcμxμ−1

1

(xμ
1 − 1)2

(
K1Kc

x3
xμ
1 − 1

)
− K1Kex1

+ K1x4 + Kc

xμ
1 − 1

(
− 1

τ

)}(
− x3

τ
+ Ko(1 − x−μ

2 )
)

(67)

and also

Lga L f h2(x) = x3Kcμxμ−1
1

(xμ
1 − 1)2

K1 (68)

Lgb L f h2(x) = Kc

xμ
1 − 1

(Koμxμ−1
2 ) (69)

Therefore, one is led again in a description of the system in
the following form

ÿ1 = L2
f h1(x) + Lga L f h1(x)u1 + Lgb L f h1(x)u2

ÿ2 = L2
f h2(x) + Lga L f h2(x)u1 + Lgb L f h2(x)u2 (70)

Again, by defining the new control inputs one has

v1in = L2
f h1(x) + Lga L f h1(x)v1 + Lgb L f h1(x)v2

v2in = L2
f h2(x) + Lgb L f h2(x)v1 + Lgb L f h2(x)v2 (71)
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one has ż11 = z12, ż
1
2 = v1in , ż

2
1 = z22 and ż22 = v2in , the

system’s dynamics is written in the canonical Brunovsky
form. Moreover, the state-space description of the motor
becomes

⎛
⎜⎜⎜⎜⎝

ż11
ż12
ż21
ż22

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

z11
z21
z21
z22

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎝

0 0
1 0
0 0
0 1

⎞
⎟⎟⎠

(
v1in

v2in

)
(72)

The design of a feedback controller for the above state-space
model is as analyzed in the case of linearization with the use
of Differential Geometry (computation of Lie derivatives).
The selection of the state feedback control law,which assures
zeroing of the tracking error is

v1in = z̈11,d − K 1
d (ż

1
1 − ż11,d) − K 1

p(z
1
1 − z11,d)

v2in = z̈21,d − K 2
d (ż21 − ż21,d) − K 2

p(z
2
1 − z21,d) (73)

Since

ṽNN = f̃a + M̃a ṽ ⇒ ṽ = M̃−1
a (ṽin − f̃a) (74)

Moreover, because it holds

ṽ =
(

v1
v2

)
=

(
u̇1
u2

)
(75)

to compute the control input u1 which is actually applied to
the diesel motor an integration with respect to time has to be
carried out for the auxiliary control input.

Flatness-Based Adaptive Fuzzy Control for MIMO
Nonlinear Systems

Transformation of MIMO Nonlinear Systems into the
Brunovsky Form

It is assumed now that after defining the flat outputs of the
initial MIMO nonlinear system, and after expressing the
system state variables and control inputs as functions of
the flat output and of the associated derivatives, the sys-
tem can be transformed in the Brunovsky canonical form
[32]:

ẋ1 = x2

ẋ2 = x3

· · ·
ẋr1−1 = xr1

ẋr1 = f1(x) +
p∑

j=1

g1 j (x)u j + d1

ẋr1+1 = xr1+2

ẋr1+2 = xr1+3

· · ·
ẋ p−1 = xp

ẋ p = f p(x) +
p∑

j=1

gp j (x)u j + dp

y1 = x1

y2 = xr1−1

· · ·
yp = xn−rp+1

(76)

where x = [x1, . . . , xn]T is the state vector of the trans-
formed system (according to the differential flatness for-
mulation), u = [u1, . . . , u p]T is the set of control inputs,
y = [y1, . . . , yp]T is the output vector, fi are the drift
functions and gi, j , i, j = 1, 2, . . . , p are smooth func-
tions corresponding to the control input gains, while d j is
a variable associated to external disturbances. In holds that
r1 + r2 + · · · + rp = n. Having written the initial nonlinear
system into the canonical (Brunovsky) form it holds

y(ri )
i = fi (x) +

p∑
j=1

gi j (x)u j + d j (77)

Equivalently, in vector form, one has the following descrip-
tion for the system dynamics

y(r) = f (x) + g(x)u + d (78)

where the following vectors and matrices are be defined

y(r) = [y(r1)
1 , . . . , y

(rp)
p ]

f (x) = [ f1(x), . . . , f p(x)]T
g(x) = [g1(x), . . . , gp(x)]

with gi (x) = [g1i (x), . . . , gpi (x)]T
A = diag[A1, . . . , Ap], B = diag[B1, . . . , Bp]

CT = diag[C1, . . . ,Cp], d = [d1, . . . , dp]T (79)
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where matrix A has the MIMO canonical form, i.e. with ele-
ments

Ai =

⎛
⎜⎜⎜⎜⎜⎝

0 1 · · · 0
0 0 · · · 0
...

... · · · ...

0 0 · · · 1
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

ri × ri

BT
i = (

0 0 · · · 0 1
)
1× ri

Ci = (
1 0 · · · 0 0

)
1× ri

(80)

Thus, Eq. (77) can be written in state-space form

ẋ = Ax + B[ f (x) + g(x)u + d̃]
y = CT x (81)

which can be also written in the equivalent form:

ẋ = Ax + Bv + Bd̃

y = CT x (82)

where v = f (x) + g(x)u. The reference setpoints for the
system’s outputs y1, . . . , yp are denoted as y1m, . . . , ypm ,
thus for the associated tracking errors it holds

e1 = y1 − y1m

e2 = y2 − y2m

· · ·
ep = yp − ypm (83)

The error vector of the outputs of the transformed MIMO
system is denoted as

E1 = [e1, . . . , ep]T
ym = [y1m, . . . , ypm]T

· · ·
y(r)
m = [y(r)

1m , . . . , y(r)
pm]T (84)

where y(r)
im denotes the r -th order derivative of the i-th refer-

ence output of the MIMO dynamical system. Thus, one can
also define the following vectors: (i) a vector containing the
state variables of the system and the associated derivatives,
(ii) a vector containing the reference outputs of the system
and the associated derivatives

x =
[
x1, . . . , x

r1−1
1 , . . . , xp, · · · , x

rp−1
p

]T
(85)

Ym =
[
y1m, . . . , yr1−1

1m , . . . , ypm, . . . , y
rp−1
pm

]T
(86)

while in a similar manner one can define a vector containing
the tracking error of the system’s outputs and the associated
derivatives

e = Ym − x = [e1, . . . , er1−1
1 , . . . , ep, . . . , e

rp−1
p ]T (87)

It is assumed thatmatrix g(x) is a nonsingular one, i.e. g−1(x)
exists and is bounded for all x∈Ux , whereUx⊂Rn is a com-
pact set. In any case, the problem of singularities in matrix
g(x) can be handled by appropriately modifying the state
feedback-based control input.
The objective of the adaptive fuzzy controller, denoted as
u = u(x, e|θ) is: all the signals involved in the controller’s
design are bounded and it holds that limt ⇒∞e = 0, (ii)
the H∞ tracking performance criterion is succeeded for a
prescribed attenuation level.
In the presence of non-gaussian disturbances wd , successful
trackingof the reference signal is denotedby the H∞ criterion
[26,31]:

∫ T

0
eT Qedt ≤ ρ2

∫ T

0
wd

Twddt (88)

where ρ is the attenuation level and corresponds to the max-
imum singular value of the transfer function G(s) of the
linearized model associated to Eqs. (81) and (82).

Control Law

The control signal of the MIMO nonlinear system which has
been transformed into the Brunovsky form as described by
Eq. (82) contains the unknown nonlinear functions f (x) and
g(x). In case that the complete state vector x is measurable
these unknown functions can be approximated by

f̂ (x |θ f ) = � f (x)θ f

ĝ(x |θg) = �g(x)θg (89)

where

� f (x) =
(
ξ1f (x), ξ

2
f (x), . . . ξ

n
f (x)

)T
(90)

with ξ if (x), ı = 1, . . . , n being the vector of kernel functions
(e.g. normalized fuzzy Gaussian membership functions),
where

ξ if (x) =
(
φ
i,1
f (x), φi,2

f (x), . . . , φi,N
f (x)

)
(91)
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thus giving

� f (x) =

⎛
⎜⎜⎜⎝

φ
1,1
f (x) φ

1,2
f (x) · · · φ

1,N
f (x)

φ
2,1
f (x) φ

2,2
f (x) · · · φ

2,N
f (x)

· · · · · · · · · · · ·
φ
n,1
f (x) φ

n,2
f (x) · · · φ

n,N
f (x)

⎞
⎟⎟⎟⎠ (92)

while the weights vector is defined as

θ f
T =

(
θ1f , θ

2
f , . . . , θ

N
f

)
(93)

j = 1, . . . , N is the number of basis functions that is used to
approximate the components of function f which are denoted
as i = 1, . . . , n. Thus, one obtains the relation of Eq. (89),
i.e. f̂ (x |θ f ) = � f (x)θ f .
In a similar manner, for the approximation of function g one
has

�g(x) = (
ξ1g (x), ξ2g (x), . . . , ξ N

g (x)
)T

(94)

with ξ ig(x), ı = 1, . . . , N being the vector of kernel functions
(e.g. normalized fuzzy Gaussian membership functions),
where

ξ ig(x) =
(
φ
i,1
g (x), φi,2

g (x), . . . , φi,N
g (x)

)
(95)

thus giving

�g(x) =

⎛
⎜⎜⎜⎝

φ
1,1
g (x) φ

1,2
g (x) · · · φ

1,N
g (x)

φ
2,1
g (x) φ

2,2
g (x) · · · φ

2,N
g (x)

· · · · · · · · · · · ·
φ
n,1
g (x) φ

n,2
g (x) · · · φ

n,N
g (x)

⎞
⎟⎟⎟⎠ (96)

while the weights vector is defined as

θg = (
θ1g , θ2g , . . . , θ

p
g
)

(97)

where the components of matrix θg are defined as

θ
j
g =

(
θ
j
g1 , θ

j
g2 , . . . , θ

j
gN

)T
(98)

j = 1, . . . , p is the number of basis functions that is used to
approximate the components of function gwhich are denoted
as i = 1, . . . , n. Thus one obtains about matrix θg∈RN × p

θg =

⎛
⎜⎜⎝

θ1g1 θ2g1 · · · θ
p
g1

θ1g2 θ2g2 · · · θ
p
g2

· · · · · · · · · · · ·
θ1gN θ2gN · · · θ

p
gN

⎞
⎟⎟⎠ (99)

It holds that

g =

⎛
⎜⎜⎝

g1
g2
· · ·
gn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

g11 g21 · · · gp
1

g12 g22 · · · gp
2

· · · · · · · · · · · ·
g1n g2n · · · gp

n

⎞
⎟⎟⎠ (100)

Using the above, one finally has the relation of Eq. (89), i.e.
ĝ(x |θg) = �g(x)θg . If the state variables of the system are
available for measurement then a state-feedback control law
can be formulated as

u = ĝ−1(x |θg)[− f̂ (x |θ f ) + y(r)
m − KT e + uc] (101)

where f̂ (x |θ f ) and ĝ(x |θg) are neurofuzzymodels to approx-
imate f (x) and g(x), respectively. uc is a supervisory control
term, e.g. H∞ control term that is used to compensate for the
effects of modelling inaccuracies and external disturbances.
Moreover, KT is the feedback gain matrix that assures that
the characteristic polynomial of matrix A − BKT will be a
Hurwitz one.

Estimation of the State Vector

The control of the system described by Eq. (78) becomes
more complicatedwhen the state vector x is not directlymea-
surable and has to be reconstructed through a state observer.
The following definitions are used

• error of the state vector e = x − xm
• error of the estimated state vector ê = x̂ − xm
• observation error ẽ = e − ê = (x − xm) − (x̂ − xm)

When an observer is used to reconstruct the state vector, the
control law of Eq. (101) is written as

u = ĝ−1(x̂ |θg)[− f̂ (x̂ |θ f ) + y(r)
m − KT ê + uc] (102)

Applying Eq. (102) to the nonlinear system described by Eq.
(78), results into

y(r) = f (x) + g(x)ĝ−1(x̂)[− f̂ (x̂) + y(r)
m

−KT ê + uc] + d⇒
y(r) = f (x) + [g(x) − ĝ(x̂) + ĝ(x̂)]ĝ−1(x̂)[− f̂ (x̂)

+y(r)
m − KT ê + uc] + d⇒

y(r) = [ f (x) − f̂ (x̂)] + [g(x) − ĝ(x̂)]u
+y(r)

m − KT ê + uc + d (103)

It holds e = x − xm ⇒ y(r) = e(r) + y(r)
m . Substituting y(r)

in the above equation gives
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e(r) + y(r)
m = y(r)

m − KT ê + uc + [ f (x) − f̂ (x̂)]
+ [g(x) − ĝ(x̂)]u + d (104)

and equivalently

ė = Ae − BKT ê + Buc + B{[ f (x) − f̂ (x̂)]
+ [g(x) − ĝ(x̂)]u + d̃} (105)

e1 = CT e (106)

where e = [e1, e2, . . . , ep]T with ei = [ei , ėi , ëi , . . . ,
eri−1
i ]T , i = 1, 2, . . . , p and equivalently ê = [ê1, ê2, . . . ,
ê p]T with êi = [êi , ˆ̇ei , ˆ̈ei , . . . , êri−1

i ]T , i = 1, 2, . . . , p.
Matrices A,B and C have been defined in Eq. (80).
A state observer is designed according to Eqs. (105) and
(106) and is given by [28]:

˙̂e = Aê − BKT ê + Ko

[
e1 − CT ê

]
(107)

ê1 = CT ê (108)

The feedback gainmatrix is denoted as K∈Rn × p. The obser-
vation gain matrix is denoted as Ko∈Rn × p and its elements
are selected so as to assure the asymptotic elimination of the
observation error.

Application of Flatness-Based Adaptive Fuzzy Con-
trol to the MIMO Diesel Engine Model

Differential Flatness of the Diesel Engine

It holds that

ẍ1 = f1(x) + g1(x)u

ẍ3 = f2(x) + g2(x)u (109)

It holds that

ẋ1 = x2

ẋ2 = f1(x) + g1(x)u

ẋ3 = x4

ẋ4 = f2(x) + g2(x)u (110)

Moreover, from Eq. (110) it holds

(
ẍ1
ẍ3

)
=

(
f1(x)
f2(x)

)
+

(
g1(x)
g2(x)

)
u i.e.

u =
(
g1(x)
g2(x)

)−1 {(
ẍ1
ẍ3

)
−

(
f1(x)
f2(x)

)}
(111)

Therefore, the considered robotic system is a differentially
flat one. Next, taking into account also the effects of additive
disturbances the dynamic model becomes

ẍ1 = f1(x, t) + g1(x, t)u + d1

ẍ3 = f2(x, t) + g2(x, t)u + d2 (112)(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

(
g1(x, t)
g2(x, t)

)
u +

(
d1
d2

)
(113)

The following control input is defined

u =
(
ĝ1(x, t)
ĝ2(x, t)

)−1
{(

ẍd1
ẍd3

)
−

(
f̂1(x, t)
f̂2(x, t)

)

−
(
KT
1

KT
2

)
e +

(
uc1
uc2

)}
(114)

where [uc1 uc2 ]T is a robust control term that is used for
the compensation of the model’s uncertainties as well as of
the external disturbances and KT

i = [ki1, ki2, . . . , kin−1, k
i
n].

Substituting Eq. (114) into Eq. (113) the closed-loop tracking
error dynamics is obtained

(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

(
g1(x, t)
g2(x, t)

) (
ĝ1(x, t)
ĝ2(x, t)

)−1

×
{(

ẍd1
ẍd3

)
−

(
f̂1(x, t)
f̂2(x, t)

)
−

(
KT
1

KT
2

)
e

+
(
uc1
uc2

)}
+

(
d1
d2

)
(115)

Eq. (115) can now be written as

(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

{(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)

+
(
ĝ1(x, t)
ĝ2(x, t)

)}(
ĝ1(x, t)
ĝ2(x, t)

)−1

·
{(

ẍd1
ẍd3

)

−
(
f̂1(x, t)
f̂2(x, t)

)
−

(
KT
1

KT
2

)
e +

(
uc1
uc2

)}
+

(
d1
d2

)

(116)

and using Eq. (114) this results into

(
ë1
ë3

)
=

(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u

−
(
KT
1

KT
2

)
e +

(
uc1
uc2

)
+

(
d1
d2

)
(117)

The following description for the approximation error is
defined

w =
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u

(118)

123



Intell Ind Syst (2016) 2:349–370 361

Moreover, the following matrices are defined

A =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0 0
1 0
0 0
0 1

⎞
⎟⎟⎠

KT =
(
K 1
1 K 1

2 K 1
3 K 1

4
K 2
1 K 2

2 K 2
3 K 2

4

)
(119)

Using matrices A, B, KT , Eq. (117) is written in the follow-
ing form

ė = (
A − BKT )

e + Buc + B

{(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u + d̃

}
(120)

When the estimated state vector x̂ is used in the feedback
control loop, equivalently to Eq. (105) one has

ė = Ae − BKT ê + Buc + B

{(
f1(x, t) − f̂1(x̂, t)
f2(x, t) − f̂2(x̂, t)

)
+

+
(
g1(x, t) − ĝ1(x̂, t)
g2(x, t) − ĝ2(x̂, t)

)
u + d̃

}
(121)

and considering that the approximation error w is now
denoted as

w =
(
f1(x, t) − f̂1(x̂, t)
f2(x, t) − f̂2(x̂, t)

)
+

(
g1(x, t) − ĝ1(x̂, t)
g2(x, t) − ĝ2(x̂, t)

)
u

(122)

Eq. (121) can be also written as

ė = Ae − BKT ê + Buc + Bw + Bd̃ (123)

The associated state observer will be described again by Eq.
(107) and Eq. (108).

Dynamics of the Observation Error

The observation error is defined as ẽ = e − ê = x − x̂ .
Substructing Eq. (107) from Eq. (105) as well as Eq. (108)
from Eq. (106) one gets

ė − ˙̂e = A(e − ê) + Buc + B{[ f (x, t) − f̂ (x̂, t)]
+ [g(x, t) − ĝ(x̂, t)]u + d̃} − KoC

T (e − ê)

e1 − ê1 = CT (e − ê)

or equivalently

˙̃e = Aẽ + Buc + B{[ f (x, t) − f̂ (x̂, t)]
+ [g(x, t) − ĝ(x̂, t)]u + d̃} − KoC

T ẽ

ẽ1 = CT ẽ

which can be written as

˙̃e = (
A − KoC

T )
ẽ + Buc + B{[ f (x, t) − f̂ (x̂, t)]

+ [g(x, t) − ĝ(x̂, t)]u + d̃} (124)

ẽ1 = CT ẽ (125)

or equivalently, it can be written as

˙̃e = (
A − KoC

T )
ẽ + Buc + Bw + d̃} (126)

ẽ1 = CT ẽ (127)

Approximation of Functions f (x, t) and g(x, t)

Next, the following approximators of the unknown system
dynamics are defined

f̂ (x̂) =
(
f̂1(x̂ |θ f ) x̂∈R4×1 f̂1(x̂ |θ f ) ∈ R1×1

f̂2(x̂ |θ f ) x̂∈R4×1 f̂2(x̂ |θ f ) ∈ R1×1

)
(128)

with kernel functions

φ
i, j
f (x̂) =

∏n
j=1μ

i
A j

(x̂ j )
∑N

i=1
∏n

j=1μ
i
A j

(x̂ j )
(129)

where l = 1, 2, x̂ is the estimate of the state vector and
μAi

j
(x̂) is the i-thmembership function of the antecedent (IF)

part of the l-th fuzzy rule. Similarly, the following approx-
imators of the unknown system dynamics are defined (Fig.
2)

ĝ(x̂) =
(
ĝ1(x̂ |θg) x̂∈R4×1 ĝ1(x̂ |θg) ∈ R1×2

ĝ2(x̂ |θg) x̂∈R4×1 ĝ2(x̂ |θg) ∈ R1×2

)
(130)

Thevalues of theweights that result in optimal approximation
are

θ∗
f = arg minθ f ∈Mθ f

[supx̂∈Ux̂
( f (x) − f̂ (x̂ |θ f ))]

θ∗
g = arg minθg∈Mθg

[supx̂∈Ux̂
(g(x) − ĝ(x̂ |θg))] (131)

where the variation ranges for the weights are defined as

Mθ f = {θ f ∈Rh : ||θ f ||≤mθ f }
Mθg = {θg∈Rh : ||θg||≤mθg } (132)
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Fig. 2 Neurofuzzy approximator used for estimating the unknown sys-
tem dynamics

The value of the approximation error defined in Eq. (118)
that corresponds to the optimal values of the weights vectors
θ∗
f and θ∗

g one has

w =
(
f (x, t) − f̂ (x̂ |θ∗

f )
)

+ (
g(x, t) − ĝ(x̂ |θ∗

g )
)
u (133)

which is next written as

w =
(
f (x, t) − f̂ (x̂ |θ f ) + f̂ (x̂ |θ f ) − f̂ (x̂ |θ∗

f )
)

+ (
g(x, t) − ĝ(x̂ |θg) + ĝ(x̂ |θg) − ĝ(x̂ |θ∗

g )
)
u (134)

which can be also written in the following form

w = (
wa + wb

)
(135)

where

wa = {[ f (x, t) − f̂ (x̂ |θ f )] + [g(x, t) − ĝ(x̂ |θg)]}u
(136)

wb = {[ f̂ (x̂ |θ f ) − f̂ (x̂ |θ∗
f )] + [ĝ(x̂, θg) − ĝ(x̂ |θ∗

g )]}u
(137)

Moreover, the following weights error vectors are defined

θ̃ f = θ f − θ∗
f

θ̃g = θg − θ∗
g (138)

Lyapunov Stability Analysis

Design of the Lyapunov Function

The adaptation law of the neurofuzzy approximators weights
θ f and θg as well as the equation of the supervisory control
term uc are derived from the requirement the first derivative
of the Lyapunov function to be a negative one

V = 1

2
êT P1ê + 1

2
ẽT P2ẽ + 1

2γ1
θ̃Tf θ̃ f + 1

2γ2
tr [θ̃Tg θ̃g]

(139)

The selection of the Lyapunov function is based on the fol-
lowing principle of indirect adaptive control ê : limt→∞ x̂(t)
= xd(t) and ẽ : limt→∞ x̂(t)= x(t). This yields limt→∞ x(t)
= xd(t). Substituting Eqs. (107), (108) and Eqs. (124), (125)
into Eq. (139) and differentiating results into

V̇ = 1

2
˙̂eT P1ê + 1

2
êT P1 ˙̂e + 1

2
˙̃eT P2ẽ + 1

2
ẽT P2 ˙̃e

+ 1

γ1

˙̃
θTf θ̃ f + 1

γ2
tr

[
˙̃
θ
T

g θ̃g

]
⇒ (140)

V̇ = 1

2

{(
A − BKT )

ê + KoC
T ẽ

}T
P1ê

+ 1

2
êT P1

{(
A − BKT )

ê + KoC
T ẽ

}

+ 1

2

{(
A − KoC

T )
ẽ + Buc + Bd̃ + Bw

}T
P2ẽ

+ 1

2
ẽT P2

{(
A − KoC

T )
ẽ + Buc + Bd̃ + Bw

}

+ 1

γ1

˙̃
θTf θ̃ f + 1

γ2
tr

[
˙̃
θ
T

g θ̃g

]
⇒ (141)

V̇ = 1

2

{
êT

(
A − BKT )T + ẽT CK T

o

}
P1ê

+ 1

2
êT P1

{(
A − BKT )

ê + KoC
T ẽ

}

+ 1

2

{
ẽT

(
A−KoC

T )T +uTc B
T +wT BT + d̃T BT

}
P2ẽ

+ 1

2
ẽT P2

{(
A − KoC

T )
ẽ + Buc + Bw + Bd̃

}

+ 1

γ1

˙̃
θTf θ̃ f + 1

γ2
tr

[
˙̃
θ
T

g θ̃g

]
⇒ (142)

V̇ = 1

2
êT

(
A − BKT )T

P1ê + 1

2
ẽT CK T

o P1ê

+ 1

2
êT P1

(
A − BKT )

ê + 1

2
êT P1KoC

T ẽ

+ 1

2
ẽT

(
A−KoC

T )T
P2ẽ + 1

2
(uTc + wT + d̃T )BT P2ẽ

+ 1

2
ẽT P2

(
A − KoC

T )
ẽ + 1

2
ẽT P2B(uc + w + d̃)

+ 1

γ1

˙̃
θTf θ̃ f + 1

γ2
tr

[
˙̃
θ
T

g θ̃g

]
(143)

Assumption 1 For given positive definite matrices Q1 and
Q2 there exist positive definite matrices P1 and P2, which
are the solution of the following Riccati equations [28]

(
A − BKT )T

P1 + P1
(
A − BKT ) + Q1 = 0 (144)

(
A − KoC

T )T
P2 + P2

(
A − KoC

T )

− P2B

(
2

r
− 1

ρ2

)
BT P2 + Q2 = 0 (145)
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The conditions given in Eqs. (144) to (145) are related to the
requirement that the systems described by Eqs. (107), (108)
and Eqs. (124), (125) are strictly positive real. Substituting
Eqs. (144) to (145) into V̇ yields

V̇ = 1

2
êT

{(
A − BKT )T

P1 + P1
(
A − BKT )}

ê

+ ẽT CK T
o P1ê + 1

2
ẽT

{(
A − KoC

T )T
P2

+ P2
(
A − KoC

T )}
ẽ + ẽT P2B(uc + w + d̃)

+ 1

γ1

˙̃
θTf θ̃ f + 1

γ2
tr

[
˙̃
θ
T

g θ̃g

]
(146)

i.e.

V̇ = −1

2
êT Q1ê + ẽT CK T

o P1ê

− 1

2
ẽT

{
Q2 − P2B

(
2

r
− 1

ρ2

)
BT P2

}
ẽ

+ ẽT P2B(uc + w + d̃) + 1

γ1

˙̃
θTf θ̃ f + 1

γ2
tr

[
˙̃
θ
T

g θ̃g

]

(147)

The supervisory control uc is decomposed in two terms, ua
and ub.

• The control term ua is given by

ua = −1

r
ẽT P2B + �ua (148)

where assuming that the measurable elements of vector
ẽ are {ẽ1, ẽ3, . . . , ẽk}, the term �ua is such that

− 1

r
ẽT P2B + �ua

= −1

r

⎛
⎜⎜⎝

p11ẽ1 + p13ẽ3 + · · · + p1k ẽk
p13ẽ1 + p33ẽ3 + · · · + p3k ẽk

· · · · · · · · ·
p1k ẽ1 + p3k ẽ3 + · · · + pkk ẽk

⎞
⎟⎟⎠ (149)

• The control term ub is given by

ub = −[(P2B)T (P2B)]−1(P2B)TCKT
o P1ê (150)

– ua is an H∞ control used for the compensation of the
approximation error w and the additive disturbance
d̃ . Its first component − 1

r ẽ
T P2B has been chosen

so as to compensate for the term 1
r ẽ

T P2BBT P2ẽ,
which appears in Eq. (147). By including also the
second component �ua , one has that ua is com-
puted based on the feedback only the measurable

variables {ẽ1, ẽ3, . . . , ẽk}, out of the complete vec-
tor ẽ = [ẽ1, ẽ2, . . . , ẽn]. Eq. (148) is finally rewritten
as ua = − 1

r ẽ
T P2B + �ua .

– ub is a control used for the compensation of the obser-
vation error (the control term ub has been chosen so as
to satisfy the condition ẽT P2Bub = −ẽT CK T

o P1ê.

The control scheme is depicted in Fig. 3

Substituting Eqs. (148) and (150) in V̇ and assuming that
Eqs. (144) and (145) hold, one gets

V̇ = −1

2
êT Q1ê + ẽT CK T

o P1ê − 1

2
ẽT Q2ẽ

+ 1

r
ẽT P2BB

T P2ẽ − 1

2ρ2 ẽ
T P2BB

T P2ẽ

+ ẽT P2Bua + ẽT P2Bub + ẽT P2B(w + d̃)

+ 1

γ1

˙̃
θTf θ̃ f + 1

γ2
tr

[
˙̃
θ
T

g θ̃g

]
(151)

or equivalently,

V̇ = −1

2
êT Q1ê − 1

2
ẽT Q2ẽ − 1

2ρ2 ẽ
T P2BB

T P2ẽ

+ ẽT P2B(w + d̃ + �ua) + 1

γ1

˙̃
θTf θ̃ f

+ 1

γ2
tr

[
˙̃
θ
T

g θ̃g

]
(152)

It holds that ˙̃
θ f = θ̇ f − θ̇∗

f = θ̇ f and
˙̃
θg = θ̇g − θ̇∗

g = θ̇g .
The following weight adaptation laws are considered:

θ̇ f = −γ1�(x̂)T BT P2ẽ

θ̇g = −γ2�(x̂)T BT P2ẽu
T (153)

where assuming N fuzzy rules and associated kernel func-
tions the matrices dimensions are θ f ∈RN×1, θg∈RN×2,
�(x)∈R2× N , B∈R4×2, P∈R4×4 and ẽ∈R4×1.
The update of θ f is a gradient type algorithm. The update
of θg is also a gradient type algorithm, where uc implicitly
tunes the adaptation gain γ2 [33,34]. Substituting Eq. (153)
in V̇ gives

V̇ = −1

2
êT Q1ê − 1

2
ẽT Q2ẽ − 1

2ρ2 ẽ
T P2BB

T P2ẽ

+ BT P2ẽ(w + d + �ua)

+ 1

γ1
(−γ1)ẽ

T P2B�(x̂)(θ f − θ∗
f )

+ 1

γ2
(−γ2)tr

[
uẽT P2B�(x̂)(θg − θ∗

g )
]

(154)
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Fig. 3 The proposed H∞
control scheme

or

V̇ = −1

2
êT Q1ê − 1

2
ẽT Q2ẽ − 1

2ρ2 ẽ
T P2BB

T P2ẽ

+ BT P2ẽ(w + d̃ + �ua)

+ 1

γ1
(−γ1)ẽ

T P2B�(x̂)(θ f − θ∗
f )

+ 1

γ2
(−γ2)tr

[
uẽT P2B(ĝ(x̂ |θg) − ĝ(x̂ |θ∗

g )
]

(155)

Taking into account that u ∈ R2×1 and ẽT PB(ĝ(x |θg) −
ĝ(x |θ∗

g )) ∈ R1×2 it holds

V̇ = −1

2
êT Q1ê − 1

2
ẽT Q2ẽ − 1

2ρ2 ẽ
T P2BB

T P2ẽ

+ BT P2ẽ(w + d̃ + �ua)

+ 1

γ1
(−γ1)ẽ

T P2B�(x̂)(θ f − θ∗
f )

+ 1

γ2
(−γ2)tr

[
ẽT P2B(ĝ(x̂ |θg) − ĝ(x̂ |θ∗

g ))u
]

(156)

Since ẽT P2B(ĝ(x̂ |θg) − ĝ(x̂ |θ∗
g ))u∈R1×1 it holds

tr(ẽT P2B(ĝ(x |θg) − ĝ(x |θ∗
g )u)

= ẽT P2B(ĝ(x |θg) − ĝ(x |θ∗
g ))u (157)

Therefore, one finally obtains

V̇ = −1

2
êT Q1ê − 1

2
ẽT Q2ẽ − 1

2ρ2 ẽ
T P2BB

T P2ẽ

+ BT P2ẽ(w + d̃ + �ua)

+ 1

γ1
(−γ1)ẽ

T P2B�(x̂)(θ f − θ∗
f )

+ 1

γ2
(−γ2)ẽ

T P2B(ĝ(x̂ |θg) − ĝ(x̂ |θ∗
g ))u (158)

Next, the following approximation error is defined

wα = [ f̂ (x̂ |θ∗
f ) − f̂ (x̂ |θ f )] + [ĝ(x̂ |θ∗

g ) − ĝ(x̂ |θg)]u (159)

Thus, one obtains

V̇ = −1

2
êT Q1ê − 1

2
ẽT Q2ẽ − 1

2ρ2 ẽ
T P2BB

T P2ẽ

+ BT P2ẽ(w + d̃) + ẽT P2Bwα (160)

Denoting the aggregate approximation error anddisturbances
vector as

w1 = w + d̃ + wα + �ua (161)
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the derivative of the Lyapunov function becomes

V̇ = −1

2
êT Q1ê − 1

2
ẽT Q2ẽ

− 1

2ρ2 ẽ
T P2BB

T P2ẽ + ẽT P2Bw1 (162)

which in turn is written as

V̇ = −1

2
êT Q1ê − 1

2
ẽT Q2ẽ − 1

2ρ2 ẽ
T P2BB

T P2ẽ

+ 1

2
ẽT PBw1 + 1

2
wT
1 B

T P2ẽ (163)

Lemma The following inequality holds

1

2
ẽT P2Bw1 + 1

2
wT
1 B

T P2ẽ − 1

2ρ2 ẽ
T P2BB

T P2ẽ

≤ 1

2
ρ2wT

1 w1 (164)

Proof The binomial (ρa− 1
ρ
b)2 ≥ 0 is considered. Expand-

ing the left part of the above inequality one gets

ρ2a2 + 1

ρ2 b
2 − 2ab ≥ 0 ⇒

1

2
ρ2a2 + 1

2ρ2 b
2 − ab ≥ 0 ⇒

ab − 1

2ρ2 b
2 ≤ 1

2
ρ2a2 ⇒

1

2
ab + 1

2
ab − 1

2ρ2 b
2 ≤ 1

2
ρ2a2 (165)

The following substitutions are carried out: a = w1 and
b = ẽT P2B and the previous relation becomes

1

2
wT
1 B

T P2ẽ + 1

2
ẽT P2Bw1 − 1

2ρ2 ẽ
T P2BB

T P2ẽ

≤ 1

2
ρ2wT

1 w1 (166)

The above relation is used in V̇ , and the right part of the
associated inequality is enforced

V̇≤ − 1

2
êT Q1ê − 1

2
ẽT Q2ẽ + 1

2
ρ2wT

1 w1 (167)

Thus, Eq. (167) can be written as

V̇ ≤ −1

2
ET QE + 1

2
ρ2wT

1 w1 (168)

where

E =
(
ê
ẽ

)
, Q =

(
Q1 0
0 Q2

)
= diag[Q1, Q2] (169)

Hence, the H∞ performance criterion is derived. For ρ suf-
ficiently small Eq. (167) will be true and the H∞ tracking
criterion will be satisfied. In that case, the integration of V̇
from 0 to T gives

∫ T

0
V̇ (t)dt ≤ −1

2

∫ T

0
||E ||2dt + 1

2
ρ2

∫ T

0
||w1||2dt ⇒

2V (T ) − 2V (0) ≤ −
∫ T

0
||E ||2Qdt + ρ2

∫ T

0
||w1||2dt ⇒

2V (T ) +
∫ T

0
||E ||2Qdt ≤ 2V (0) + ρ2

∫ T

0
||w1||2dt (170)

It is assumed that there exists a positive constant Mw > 0
such that

∫ ∞
0 ||w1||2dt ≤ Mw. Therefore for the integral∫ T

0 ||E ||2Qdt one gets
∫ ∞

0
||E ||2Qdt ≤ 2V (0) + ρ2Mw (171)

Thus, the integral
∫ ∞
0 ||E ||2Qdt is bounded and according to

Barbalat’s Lemma

limt→∞ E(t) = 0 ⇒
limt→∞ ê(t) = 0
limt→∞ ẽ(t) = 0

(172)

Therefore limt→∞ e(t) = 0.

The Role of Riccati Equation Coefficients in H∞
Control Robustness

The linear system of Eqs. (124) and (125) is considered again

˙̃e = (
A − KoC

T )
ẽ + Buc + B{[ f (x, t)

− f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u + d̃}
e1 = CT ẽ

The aim of H∞ control is to eliminate the impact of the mod-
elling errors w = [ f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u
and the external disturbances d̃ which are not white noise
signals. This implies the minimization of the quadratic cost
function [35–37]:

J (t) = 1

2

∫ T

0
ẽT (t)ẽ(t) + ruTc (t)uc(t)

−ρ2(w + d̃)T (w + d̃)dt, r, ρ > 0 (173)

The weight r determines howmuch the control signal should
be penalized and the weight ρ determines how much the
disturbances influence should be rewarded in the sense of a
mini-max differential game. The control input uc has been
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defined as the sum of the terms described in Eqs. (148) and
(150).
The parameter ρ in Eq. (173), is an indication of the closed-
loop system robustness. If the values ofρ > 0 are excessively
decreased with respect to r , then the solution of the Riccati
equation is no longer a positive definitematrix. Consequently
there is a lower bound ρmin of ρ for which the H∞ control
problem has a solution. The acceptable values of ρ lie in the
interval [ρmin,∞). If ρmin is found and used in the design
of the H∞ controller, then the closed-loop system will have
increased robustness. Unlike this, if a value ρ > ρmin is used,
then an admissible stabilizing H∞ controller will be derived
but it will be a suboptimal one. The Hamiltonian matrix

H =
(
A − KoCT −( 2r − 1

ρ2 )BB
T

−Q −(A − KoCT )T

)
(174)

provides a criterion for the existence of a solution of the
Riccati equation Eq. (145). A necessary condition for the
solution of the algebraic Riccati equation to be a positive
semi-definite symmetric matrix is that H has no imaginary
eigenvalues [37].

Simulation Tests

The performance of the proposed observer-based adaptive
fuzzy MIMO controller was tested in the MIMO nonlinear

model of the turbocharged Diesel engine (Fig. 1). The differ-
entially flatmodel of theDiesel Engine and its transformation
to the Brunovksy form has been analyzed in “Nonlinear Con-
trol of the Diesel Engine Using Differential Flatness Theory”
section.

The state feedback gainwas K∈R2×4. The basis functions
used in the estimation of fi (x̂, t), i = 1, 2 and gi j (x̂, t), i =
1, 2, j = 1, 2 were μA j (x̂) = e(

x̂−c j
σ

)2 , j = 1, . . . , 2. Since

there are four inputs x̂1, ˙̂x1 and x̂3, ˙̂x3 and each one of them
consists of 3 fuzzy sets, for the approximation of functions
fi (x̂, t) i = 1, 3, there will be 81 fuzzy rules of the form:

Rl : IF x̂1 is Al
1 AND ˙̂x1 is Al

2

AND x̂3 is Al
3 AND ˙̂x3 is Al

4 THEN f̂ li is bl (175)

The aggregate output of the neuro-fuzzy approximator (rule-

base) is f̂i (x̂, t) =
∑81

l=1 f̂
l
i

∏4
i=1μ

l
Ai

(x̂i )∑81
l=1

∏4
i=1μ

l
Ai

(x̂i )
.

The estimation of the control input gain functions ĝi j (x̂, t)
i = 1, 2 was derived in a similar way. The overall simulation
time was ts = 40sec. The sampling period was taken to be
0.01 sec. In the beginning of the training of the neuro-fuzzy
approximators their weights were initialized to zero. More-
over, the elements of the diesel engine’s state vectorwere also
initialized to zero. The positive definite matrices P1∈R4×4

and P2∈R4×4 stem from the solution of the algebraic Riccati
equations Eqs. (144) and (145), for Q1 and Q2 also positive
definite.
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Fig. 4 a Tracking of a reference set-point 1 by the state variables zi , i = 1, . . . , 4 of the transformed Diesel engine model. b Tracking of a
reference set-point 1 by the state variables xi , i = 1, . . . , 3 of the initial nonlinear Diesel engine model
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Fig. 5 a Tracking of a reference set-point 2 by the state variables zi , i = 1, . . . , 4 of the transformed Diesel engine model. b Tracking of a
reference set-point 2 by the state variables xi , i = 1, . . . , 3 of the initial nonlinear Diesel engine model
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Fig. 6 a Tracking of a reference set-point 3 by the state variables zi , i = 1, . . . , 4 of the transformed Diesel engine model. b Tracking of a
reference set-point 3 by the state variables xi , i = 1, . . . , 3 of the initial nonlinear Diesel engine model

The approximations f̂ and ĝwere used in the derivation of
the control law, given by Eq. (102). To show the disturbance
rejection capability of the proposed adaptive fuzzy controller,
at the beginning of the second half of the simulation time

additive sinusoidal disturbances of amplitude A = 0.5 and
period T = 10sec were applied to the diesel engine model.

The performance of the differential flatness theory-based
adaptive fuzzy control loop was tested in the case of track-
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Fig. 7 a Tracking of a reference set-point 4 by the state variables zi , i = 1, . . . , 4 of the transformed Diesel engine model. b Tracking of a
reference set-point 4 by the state variables xi , i = 1, . . . , 3 of the initial nonlinear Diesel engine model

0 10 20 30 40
0

2

4

6

8

10

t (sec)

s
ta

te
 v

a
ri
a
b
le

 z
1

0 10 20 30 40
−20

0

20

40

60

t (sec)

s
ta

te
 v

a
ri
a
b
le

 z
2

0 10 20 30 40
0

2

4

6

8

t (sec)

s
ta

te
 v

a
ri
a
b
le

 z
3

0 10 20 30 40
−50

0

50

100

150

t (sec)

s
ta

te
 v

a
ri
a
b
le

 z
4

0 5 10 15 20 25 30 35 40
0

5

10

time

s
ta

te
 v

a
ri
a
b
le

 p
1

0 5 10 15 20 25 30 35 40
−10

0

10

time

s
ta

te
 v

a
ri
a
b
le

 p
2

0 5 10 15 20 25 30 35 40
0

5

time

s
ta

te
 v

a
ri
a
b
le

 P
c

(b)(a)

Fig. 8 a Tracking of a reference set-point 5 by the state variables zi , i = 1, . . . , 4 of the transformed Diesel engine model. b Tracking of a
reference set-point 5 by the state variables xi , i = 1, . . . , 3 of the initial nonlinear Diesel engine model

ing of different reference setpoints. The obtained results are
depicted in Figs. 4, 5, 6, 7, and 8. It can be observed that the
proposed adaptive fuzzy control scheme succeeded fast and
accurate tracking of all these setpoints.

The root mean square error (RMSE) of the examined con-
trol loop is also calculated (assuming the same parameters
of the controller) in the case of tracking of the previous set-
points 1 to 5. The results are summarized in Table 1. It can be
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Table 1 RMSE of Diesel engine’s state variables

Parameter p1 p2 Pc

RMSEa 0.0001 0.0004 0.0002

RMSEb 0.0202 0.0204 0.0055

RMSEc 0.0079 0.0411 0.0087

RMSEd 0.0001 0.0009 0.0005

RMSEe 0.0001 0.0215 0.0128

seen that the transient characteristics of the control scheme
are also quite satisfactory.

Conclusions

The paper has examined the use of differential flatness the-
ory as the basis of adaptive fuzzy control of turbocharged
diesel engines. The development of embedded control for
diesel engines exhibits particular difficulties, such as the
engine’s nonlinear dynamics, uncertainties and disturbances
affecting the engine’s model and the difficulty in measuring
specific elements of the engine’s state vector. In particular, the
engine’s model does not admit static feedback linearization
and this increases the degree of difficulty of this nonlinear
control problem. To handle this, it has been proposed to apply
dynamic feedback linearization which is based on extending
the state-space description of the engine with the inclusion
of additional state variables representing the derivatives of
the control inputs.

It has been shown that the extended state-space model of
the turbocharged diesel engine satisfies differential flatness
properties and can be finally transformed into the MIMO
canonical (Brunovsky) form. The latter description facili-
tates the design of a state feedback controller that assures
that the elements of the state vector of the engine will con-
verge asymptotically to the desirable setpoints. For the case
that there is no prior knowledge about the diesel engine
dynamics adaptive fuzzy control can be implemented. After
applying the transform that was based on differential flat-
ness theory the MIMO system was written into the canonical
form. The resulting control inputs were shown to contain
nonlinear elements which depend on the system’s parame-
ters. Since the parameters of the system were unknown, then
the nonlinear terms which appear in the control inputs had
to be approximated with the use of neuro-fuzzy networks.
Moreover, since only the system’s output is measurable the
complete state vector had to be reconstructed with the use
of a state observer. It has been shown that a suitable learn-
ing law can be defined for the aforementioned neuro-fuzzy
approximators so as to preserve the closed-loop system sta-
bility. With the use of Lyapunov stability analysis it has also

been proven that the proposed observer-based adaptive fuzzy
control scheme results in H∞ tracking performance.For the
design of the observer-based adaptive fuzzy controller one
had to solve two Riccati equations, where the first one was
associated with the controller and the second one was asso-
ciated with the observer.

The presented case study on observer-based adaptive
fuzzy control system shows that it is possible to apply indirect
adaptive fuzzy control also to systems that admit dynamic
feedback linearization. This is particularly important for the
design of MIMO controllers, capable of efficiently compen-
sating for modeling uncertainties and external disturbances
in such a class of nonlinear dynamical systems. Unlike other
adaptive fuzzy control schemes which are based on several
assumptions about the structure of the nonlinear system as
well as about the uncertainty characterizing the system’s
model, the proposed adaptive fuzzy control scheme based
on differential flatness theory offers an exact solution to the
design of fuzzy controllers for unknown dynamical systems.
Besides, it enables control ofMIMOnonlinear systemswith-
out the need to measure all state vector elements. The only
assumption needed for the design of the controller and for
succeeding H∞ tracking performance for the control loop is
that there exists a solution for two Riccati equations associ-
ated with the linearized error dynamics of the differentially
flat model. This assumption is quite reasonable for several
nonlinear systems, thus providing a systematic approach to
the design of reliable controllers for such systems.
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