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Abstract Aprobabilistic battery designmethod is discussed
in the paper, with reference to lithium-ion batteries, based
upon battery lifetime and related economical aspects. The
method takes into account the dependence of battery lifetime
on different parameters, such as design maximum specific
power and operating environment. The methods relies on a
large set of experimental measurements, in particular accel-
erated life tests. In addition, the randomness of the above
parameters in real operating conditions is considered in the
paper. Based on available experimental data, the lifetime
probability distribution of these batteries has been estimated
by means of a Weibull model. More specifically, after a
thorough statistical data analysis, a probabilistic method for
battery design is proposed which ensures the minimization
of a suitable cost function which has the expected lifetime as
a basic input. The method allows to guarantee the required
robustness design against the random variations in specific
power experienced by a lithium ion battery designed for a
small electric bus (public transport service).
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1 Introduction

Recently, an emphasized interest for lithium ion (Li-Io) bat-
teries has been registered due to their high potentialities not
only as electrical sources for electric vehicles, but also as
storage systems in smart grid environment and naturally as
support technology for communication systems [1–5].More-
over, many studies showed that well-established statistical
methods, e.g. the log-linear model [6], describe satisfactorily
the relationship between the battery lifetime and the design
parameters [7–10].

With regards to battery design, many approaches have
beenproposed in the relevant literature [1–5,7–10].However,
due to the large number of factors involved, many difficulties
persist to solve the problem of the battery size optimization
over a prefixed time horizon of interest. Battery lifetime, or
cycle life (CL, as measured by the charge–discharge cycles)
depends on many parameters, such as design maximum spe-
cific power, operating environment, depth-of-discharge, etc.
[11]. By taking into account, in real operating conditions,
the randomness of the above parameters, accuratemethods to
analyze these dependences are needed, since these uncertain-
ties may cause significant variations in cycle-life estimation,
so that large differences are observed between the expected
and experienced battery CL, as exhaustively shown in a num-
ber of experimental works [12–14]. Probabilistic approaches
have been applied to model the uncertainty of the wind speed
or solar radiation in the optimization size problem for stand-
alone power generation systems [15,16].

A number of studies, based on stochastic method for esti-
mating the probability distributions of the battery lifetime,
have been recently devoted to find reliable solutions to such
a problem. In [17] an advanced battery model, with a proper
stochastic input, was developed for deducing the battery
lifetime, adopting a probabilistic approach, based upon an
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Fig. 1 Tecnobus Gulliver U520

extension of the (deterministic) Rakhmatov and Virudhula
battery model [18,19]. Extensive numerical experiments of
the battery model and laboratory tests have shown that the
best fitting reliabilitymodel of a generic battery is the Inverse
Gaussian model. Indeed, the Inverse Gaussian model was
proposed to describe the hitting time of a prefixed barrier by
a wide class of stochastic processes having the properties of
drift processes. The probabilistic approach allows to oppor-
tunely handle the stochastic nature of the various parameters
involved, both for system operation control or forecasting
purpose.

In [20] the proposed probabilisticmethod has been applied
to the design of lead-acid battery modules. By deriving the
time-to-failure probabilistic density function from a statisti-
cal analysis of experimental data, the method allow to define
battery module parameters that ensure, with a high degree of
probability, that the CL is higher than a prefixed value. In the
specific, the method takes opportunely into account the ran-
dom variations in specific power experienced by a traction
battery in a real-life test of an electric bus (Tecnobus Gul-
liver U520, Fig. 1), equipped with an automotive on-board
device collecting GPS data and vehicle parameters. The real-
life data set offers a view of the battery stress variation in a
typical public transport use.

In this paper the above method has been applied in order
to correctly size a Li-Io battery for the same bus, by mini-
mizing the mean “net present value” (NPV) of an opportune
cost function. The proposed approach combines experimen-
tal data and a Monte Carlo procedure, taking into account
the replacement cost over a quite extended time interval. The
battery lifetime input data come from a number of experi-
mental campaigns performed by researchers at ENEA, the
Italian National Agency for New Technologies, Energy and
Sustainable Economic Development. Such tests were held at

the Battery Lab of “ENEA Casaccia” in Rome [21,22], on a
couple of Li-Io battery packs [23].

2 Battery Testing

Several tests have been made to measure the cycle-life of Li-
Io batteries, for the same cell type subjected to very different
Crates, an index of the allowable design maximum specific
power.

In the following, test results related to battery ageing are
reported.

2.1 Life-Cycle Test

Life cycles tests on two complete lithium battery systems,
using the same elementary cell, have been performed in the
course of two different projects. The battery systems have
been discharged by means of typical profiles in urban and
suburban context and charged by means of typical charge
profiles.

The first storage system (Type A) relates to a battery
electric vehicle (BEV), the second one (Type B) to a
hybrid-electric vehicle (HEV). The cells are of the same
manufacturer, same capacity and same cathode chemistry,
nickel-cobalt-manganese (NMC) in both cases. Each cell has
3.7 V as nominal voltage.

Type A is composed by 78 lithium cells series connected
in series [18], Type B (Fig. 2), is composed by 84 cells. Main
characteristics of the storage systems are reported in Table 1.

During the tests [20], the following quantities were mea-
sured on both battery packs:

• time and date;
• test time;
• battery voltage;
• cell voltage, identification of the cell with minimum/
maximum voltage;

Fig. 2 Type B battery system under test
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Table 1 Main characteristics of the test equipments

Characteristics Unit Type A Type B

Nominal capacity Ah 40 40

Nominal energy kWh 11.5 12.4

Nominal voltage V 288.6 310.8

Maximum
voltage

V 327.6 352.8

Minimum
voltage

V 249.0 268.8

Maximum C-rate
in continuous
discharge @
+20 ◦C

5 5

Maximum C-rate
in pulse
discharge @
+20 ◦C

10 10

Weight (without
case, cables and
accessories)

kg 89 –

Weight (with
case, cables and
accessories)

kg – 124

• battery current;
• capacity;
• energy;
• test temperature;
• cell temperature.

The above quantities were measured and registered with an
acquisition time from 1 to 60 s, depending on the different
steps of the test. The frequency value was conveniently cho-
sen for each step to record all the significant changes and, at
the same time, save the length of the data files.

The cyclers work with the following tolerances respect to
the values set in each step of charge or discharge:

• current: ±1% during charge and discharge at constant
current, ±2% during charge and discharge at variable
current,

• voltage: ±1% during charge at constant voltage,
• power: ±1% during charge and discharge at constant
power, ±2% during charge and discharge at variable
power,

• energy: ±2% during dynamic cycles at variable power.

The instruments have a precision more than 1% of the read-
ing value for voltage and current, and±1 ◦C for temperature.
During the experiments the temperature was set and main-
tained at +23 ◦C by means of a climatic chamber.

The test procedure for Type A consists of: discharge of the
battery system by a typical profile in the urban and suburban

Table 2 Test procedure for type a battery

Macro-cycle
composition

Characteristic

Procedure �SOC (%) Comment

Step n. 1 n. 10 ECE-15 100→020 Discharge

Step n. 2 Charge @ 2C 020→100 Simulation of fast
charge at public
station

Step n. 3 n. 10 ECE-15 100→020 Discharge

Step n. 4 Standard charge 020→100 Simulation of
traditional charge
at home (14A)

Step n. 5 n. 13 ECE-15 100→000 Discharge

Step n. 6 Standard charge 000→100 Simulation of
traditional charge
at home (14A)

Step n. 7 n. 13 ECE-15 100→000 Discharge

Step n. 8 Standard charge 000→100 Simulation of
traditional charge
at home (14A)

Fig. 3 ECE-15 power profile

context, and then recharge by a series of traditional charges
and fast charges, as reported in Table 2.

ECE-15 is a power profile, derived by the NEDC (New
European Driving Cycle), and defined in test procedures for
high voltage hybrid electric vehicle traction batteries1; it is
shown in Fig. 3. The throughput capacity for every cycle is
288Ah.

For Type B, the cycle consists of a profile at high C-rate,
as described in Table 3; this profile, at the same time, realizes
an accelerated life test.

1 ”Specification of Test Procedures for High Voltage Hybrid Electric
Vehicle Traction Batteries”, EUCAR report under European Commis-
sion Contract “ASTOR” 2005 (confidential).
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Table 3 Accelerated life- cycle test

Profile
composition

Characteristic

Procedure Step time (s) �SOC (%)

Step n. 1 Discharge @ 3C 18 80.0→78.5

Step n. 2 Discharge @ 1.5C 36 78.5→77.0

Step n. 3 Rest 20 77.0→77.0

Step n. 4 Discharge @ 3C 18 77.0→75.5

Step n. 5 Discharge @ 1.5C 36 75.5→74.0

Step n. 6 Rest 19 74.0→74.0

Step n. 7 Charge @ 1C 27 74.0→74.8

Step n. 8 Charge @ C/2 54 74.8→75.5

Step n. 9 Charge @ C/3 180 75.5→77.0

Step n. 10 Rest 20 77.0→77.0

Step n. 11 Charge @ 1C 27 77.0→77.8

Step n. 12 Charge @ C/2 54 77.8→78.5

Step n. 13 Charge @ C/3 180 78.5→80.0

Step n. 14 Rest 19 80.0→80.0

2.2 Test Results

The capacity values measured in the parametric checks after
a certain number of repetitions of the profile versus the total
number of repetitions can be used to build a diagram, showing
the performances variations of the battery system with time.
The reduction of the performances is represented by the slope
of the curve in the diagram.

The results for both battery packs are exposed in a
synthetic and a-dimensional form, where total Ah through-
put/Ah is shown on the x-axis and loss of capacity on the
y-axis (Fig. 4). The advantage in usingAh throughput, which
represent the charge delivered by the battery during cycling,
is it makes it is possible to confront the capacity fading for
different C-rates [24].

Since during the life-cycle test the batteries did not reach
the defined end-of-life (EOL) condition (which we assume
that for an electric vehicle it corresponds to a 20% capac-
ity loss [25]), an extrapolation was made by considering the
slope of each line.

For Type A, a total of 140,000Ah throughput at EOL
was estimated, corresponding to a cycle-life of about 1750
charging/discharging phases (about 6 years, considering 300
days/year); cycle-life is obtained considering that a charg-
ing/discharging cycle corresponds to 80Ah (the battery
capacity is 40Ah) and battery specific power correspond to
the ratio P/M, where P is the maximum power (the maximum
requested to this battery throughout the test) andM the mass.
In the following, we’ll define “peak-power” as the maximum
power requested to the battery throughout its use.

For Type B, the estimated value for the Ah throughput at
EOL was 36,000Ah.

Fig. 4 Experimental results for type A and type B battery packs

2.3 From the Life-Cycle Test to a Power Law
Relationship

As it is well known, batteries differently stressed show
improvements with decrease of required peak-power; the
trade-off between test maximum design specific power and
cycle life can be expressed by a functional relationship of
exponential form, as noted by A.F. Burke in his paper [7,10].
This is compatible with the functional behavior of the effect
beingmodelled, highly non linear andof the “threshold type”.

To build such a relationship “lifetime vs. specific power”
we consider the values obtained in the previous paragraph,
by discharging type A battery packs at 0,6C rate and type
B at 3C rate, namely: 75W/kg; 140,000Ah and 366W/kg:
36,000Ah.

In order to describe the capacity fade behavior for all C-
rates, we use an equation proposed byWang et al. [24], which
represent a general empirical behavior for the capacity fade:

Qloss = β × exp
[−α × Crate

]
A h0,55 (1)

Here Qloss is the percentage capacity loss for Ah =
Ah_throughput and α is a function of the temperature T.
In our case, T was maintained at +23 ◦C by means of the
climatic chamber . The EOL condition is represented by the
relation Qloss = 20%.We make the hypothesis that β is con-
stant, so that α and β can be obtained from the experimental
points.

Therefore we could apply the relationship (1) to obtain
battery lifetime (Qloss = 20%) for C-rate = 10 C (400
A), corresponding to 1480 W as maximum power (1 cell,
3.7V/40Ah). The obtained results were Ah = 700, corre-
sponding to 17.5 cycles.

To verify that our hypothesis on β is consistent, we apply
an alternative method to obtain the maximum deliverable
power, bymeans of the “maximum power transfer theorem”;
the theorem states that, to obtain themaximum external power
from a source with a finite internal resistance, the resistance
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Fig. 5 Simplified circuit

Fig. 6 Cycle-life as a function of power/mass ratio

of the load RL must equal the resistance of the source RS as
viewed from its output terminals (Fig. 5).

The expression of maximum power is as following:

Pmax = Vs 2̂/(4 × RS) (1)

In this condition, our hypothesis is that cycle life is mini-
mal.

To apply the theorem we need to know the internal resis-
tance RS of the cell. From the experimental data we obtain:

Ri90s,dch = 2, 33 m�.

Since the nominal voltage is V = 3.7 V, from Eq. (1) the
maximum power is 1469 W, which is consistent with the
result obtained previously. Given that the weight of the cell
is 1.1 kg, the maximum specific power is 1335 W/kg.

The resulting “cycle-life vs. specific power” diagrams is
shown in Fig. 6.

Various model fitted well the experimental data, such as
the log-linear model [6]:

N0 = −a log

(
P

M

)
+ b (2)

with a and b positive constants. The equation gives the
expected total number of cycles N0 as function of battery
specific power, P/M.

The cycle-life (2) can be easily expressed in terms of year
as:

L0 = N0/365n (3)

where n is the number of charge/discharge cycles per day.
In order to take into account the unavoidable degrada-

tion terms due to the ageing effects which cannot be wholly
observed in data available to us, a correction of the interpo-
lation model is necessary.

The following relationship, which extends (2) and (3), is
proposed for predicting the “nominal” lifetime L0 (i.e. the
life duration, expressed in years, of the battery) as a function
of the peak power P and mass M, for a given number n of
cycles performed by of the battery in a day:

L̃0 = −a log P
M + b

365n

(
Mξ

E

)k

(4)

a, b and k are constants whose values have been estimated
after the experimental data as: a =1491; b=10609; k =1.1.

The ratio
(

Mξ
E

)k
takes into account the possible battery over-

sizing, in terms of the energy E required in a typical urban
duty cycle, between two consecutive recharge.ξ is the spe-
cific energy, so that M ξ is the energy content of the battery.(

Mξ
E

)k
is thus a coefficient that takes into account also

the reduction of the battery capacity as a function of the
discharge intensity. Eq. (4) is the starting point in the process
of optimization of the battery size. The above model was
found to fit well the lifetime data which were available after
the above described experimental campaigns.

In order to find the value of M that minimize a suitable
cost function, an adequate preliminary statistical analysis of
the data must be performed so that the probability density
functions of the maximum power and the energy requested
in a real world battery use can be deduced. Then, by tak-
ing into account the replacement problem, a cost function is
identified.

The procedure is illustrated in the next paragraph.

3 A New Battery Design Methology

The nonlinearity of the problem does not allow to derive a
closed form of the optimum size, but the probabilistic pro-
cedure proposed is very feasible to implement and could be
employed in a quite general way.

As previously mentioned, the rationale behind the design
procedure is the knowledge of data measurements which are
the milestone of the procedure explained in the following,
i.e. the so-called “Lauria method” [9].

As outlined in the introduction, the data for the real-world
battery use came from an experimental campaign called
QUIBUS, done in the Italian research centre of “ENEA
Casaccia” on an electrical bus equipped with an automotive
on-board device collecting GPS data and vehicle parameters
[20].
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This acquisition,made during an on-demand transport ser-
vice, has allowed to characterize the behavior of the electrical
bus, Tecnobus Gulliver U520 with a storage module of 72V
and 585Ah of capacity. The acquisition system allows to
collect the vehicle instantaneous parameters and to trans-
mit them to a server through a GSM/UMTS channel; also,
through a GPS receiver, the geographical data are available.

A series of information needed for our subsequent analysis
have been acquired:

– Vehicle parameters acquired on a time base of two
measurements every time second such as the travelled
distance, the instantaneous speed of the vehicle and a set
of electrical quantities regarding the actual status of the
battery, as the instantaneous ingoing/outgoingmotor cur-
rent, the instantaneous battery voltage and an estimate of
its residual capacity

– Geographical definitions acquired on a time base of one
measurement every time second such as instantaneous
longitude, latitude and altitude, acquired through a GPS
receiver connected to the main hardware.

All data were organized in a database for a total of 23 days
of data acquisitions.

In order to take into account the various degradation
effects related to the entire battery lifetime that obviously
cannot be observed during the limited time of experimental
tests, we need to generalize Eq. (4). For this purpose, the
following model for the expected lifetime L0 is proposed, as
it was found very reasonable and well fitting the bus data:

L = α L̃0e−β L̃0 (5)

The coefficients α and β in the present paper have been esti-
mated from the available data as equal to 0.92 and 0.014
respectively.

Another issue to be dealt with is related to the stochas-
tic nature of the load current. At this aim a probabilistic
framework has to be tailored. On the basis of the measure-
ment data, the Weibull distribution appears to be suitable to
describe both the peak power and the energy requested dur-
ing a single battery cycle [26,27]. The following expression
shows the cumulative probability distribution (cdf), defined
as: F(x) = P(X ≤ x), of the Weibull distribution suitable
for the peak power:

F(x) = 1 − e− ( x

θ

)γ

(6)

In (6), x is the generic peak power value, θ and γ are positive
parameters: γ is the shape parameter, θ is the scale parameter
of the distribution.

The Weibull distribution is widely used, being a versatile
model since, by changing the shape, allows the model-
ing of many different life distributions which occur in real
practice. As far as the requested energy is concerned, the
Weibull distribution with three parameters has been proven
the best one in fitting the numerical data. This kind of distrib-
ution is different from (6) only for the presence of a location
parameters, λ; so, the following expression represents the cdf
of the Weibull distribution suitable for the energy:

F(y) = 1 − e
−

(y−λ

θ ′
)γ ′

(y > λ) (7)

In (7), y is the generic energy value, θ ′ and γ ′ are positive
parameters with the same meaning of θ and γ of (5), λ is the
location parameters.

The criterion design is to find the battery mass value that
minimizes themeanvalue of the investment net present value,
taking into account the final cost of the battery system sub-
jected to substitution. In reference to the vehicle mission and
to the total number of battery changes, a Monte Carlo proce-
dure has been implemented for peak power P and energy E
in order to determine the mean value of the net present value.
It is important to consider that the battery lifetime, L, is a
stochastic variable.

It is easy to argue that the Monte Carlo procedure [28]
is indispensable since a closed form for the probability den-
sity function of the battery cost is practically impossible to
determine.

Through Monte Carlo simulation, 10,000 samples have
been generated for both the peak power and the energy.

For each value of P and E, we have a correspondent value
for L which is evaluated by means of (4) and (5).

The mean value of the net present value [29] is a function
of the total mass of the battery and it is provided by the
following relationship:

E [N PV ] = E

[

kM M
(1 + r)L

(1 + r)L − 1

]

(8)

where kM is the specific cost of the system, which in our
case is 65e/kg (considering the datasheet information for
the battery under consideration: 500e/kWh for 130Wh/kg),
and r is the interest rate, which will be assumed as equal to
r = 0.07 in the numerical application.

In the next section, the proposed approach is explained
with respect to the experimental data. The following appli-
cation was repeated with a range of different values of the
typical parameters constituting the input data for the proce-
dure (e.g. with many different values of the interest rate), and
in all cases similar conclusions were obtained.
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Fig. 7 The peak power histogram

4 A Numerical Application

As already mentioned, the peak power and the requested
energy are optimally described by an appropriate Weibull
distribution. From the measured data, we obtain the follow-
ing:

– the parameters of the peak power distribution described
by the cdf of (6) are θ =18409 and γ =29.85.

– the parameters of the energy demand cdf of (7) are
θ ′ =2.72, γ ′ =1.93 and λ=0.6.

These parameters refer to a single operatingmicrocycle of the
bus. A single cycle is formed by thirteen microcycles. Two
operating cycles are foreseen in each day, i.e. n=2. The para-
meters a, b, k of Eq. (4) were estimated as already reported
in section 2 as a = −1491; b = 10, 609, k = 1.1. The other
interest parameter in (4) is ξ =0.13 kWh/kg.

In the numerical application, the peak power and the
requested energy are supposed to be statistically indepen-
dent. This hypothesis is supported by the statistic evaluation
of the available data. In any case, even if the stochastic quanti-
ties are correlatedwith each other, the probabilistic procedure
could be implemented in a feasible way. Monte Carlo proce-
dure has been performed by generating 10,000 samples for
the peak power (Fig. 7).

The curve of the expected net present value versus the
battery mass is reported in Fig. 7.

As expected, such a function exhibits a minimum, as
apparent from Fig. 8. The abscissa of such a minimum repre-
sents the optimal value of battery mass, and was numerically
computed as equal to 415 kg.

The corresponding histogram of the lifetime L is shown in
Fig. 9, which – as in [8] – is optimally fitted by a Lognormal
distribution.
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Fig. 8 Total cost versus battery mass
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Fig. 9 Lifetime distribution

Let us consider the specifications and technical data for
the Tecnobus Gulliver U520 reported in Table 4.

To cross-check the obtained results, the cost function used
in Eq. (8), namely:

kM M
(1 + r)L

(1 + r)L − 1
(9)

was evaluated also using a purely engineering model,
described in the following.

From this data, it is possible to represent vehicle dynamics
and calculate the maximum power and the energy consump-
tion on a typical cycle for the bus, e.g. the urban part of the
homologation cycle NEDC (Fig. 10), limiting the speed to
the maximum speed of our bus. We’ll call this cycle “ECE
32”.

We considered a mean occupation for the bus of 2 pas-
sengers, with a mean weight of 70 kg, which coincides with
the mean occupation of the bus during the experimental cam-
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Table 4 Technical data

Curb weight without
batteries (kg)

Rolling resistance
(N/t)

Frontal area (mq) Aerodynamic
resistance (Cx)

Transmission
efficiency

Maximum speed
(km/h)

3900 100 7 0.5 90% 32

Fig. 10 NEDC

paigns, and a battery pack composed by a number ofmodules
ranging from 14 to 30.

The results for the calculation are reported in Table 5,
where the specific power is related to the battery weight.

We then evaluate the cycle-life by means of Eq. (4) and
we calculate the lifetime using Eq. (5), on the basis of a daily
mean distance covered of 120 km.

To determine the total cost of the batteries during the bus
lifetime we make use of the net present value in Eq. (8).

Although the two methods give different values for the
battery cost, the curves obtained in the two cases have a very
similar trend, as it can be seen in Fig. 11.

5 Conclusions

In this paper a new method is illustrated for the optimal
design of battery. The method takes properly into account
the statistical features of lifetime and other random variables
characterizing the operating conditions, in order to obtain an
efficient estimation of the above lifetime distribution. The
core of the method is represented by the proper combination
of the statistical analysis of the accelerated test and a prob-
abilistic approach for deriving the optimal size of a battery.

Fig. 11 Trends for the net present value obtained by simulation (see
Fig. 9) and from the engineering model (see Table 6)

The procedure consists in the minimization of a suitable cost
function, Eq. (9), based upon the battery expected lifetime. It
is not possible to provide a closed solution of the minimiza-
tion problem, due to its mathematical complexity. Hence,
Monte Carlo procedure has been performed, thus allowing
to obtain the statistical features of the interest variables. The
obtained numerical results are very close to the expected
ones, on the basis of the numerous experiments performed in
the Research Centre of Casaccia. This methodology can be
applied to the characterization of battery lifetime taking into
account in a proper way the various uncertainties involved in
the design. It is also deemed that such kind of study could be
a useful tool for a deeper understanding of the key aspects in
the processing cost of lithium ion batteries, a problem that
raised a big interest in the most recent literature [30].

It is, finally, remarked thatwhile optimal design is awidely
adopted methodology in view of techno-economic analysis
of renewable power sources since a few years [31], life cycle
aspects are being investigated with a certain degree of accu-
racy in this respect only recently [32,33].

Table 5 Numerical results for a ECE 32 cycle

No. battery
modules

Energy consumption
(Wh)

M: battery weight
(kg)

Bus weight (kg) Total bus weight
(2 passenger) (kg)

Pmax on a ECE 32
cycle

P (Pmax /M)

14 18,620 266 4166 4306 34,744 130.62

18 23,940 342 4242 4382 35,437 103.62

22 29,260 418 4318 4458 36,134 86.44

26 34,580 494 4394 4534 36,835 74.56

30 39,900 570 4470 4610 37,587 65.94
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Table 6 Numerical results for batteries costs

No. battery
modules

14 18 22 26 30

Battery weight
(kg)

266 342 418 494 570

Specific Energy
(Wh/kg)

130 130 130 130 130

Energy content
(Wh)

34580 44460 54340 64220 74100

Specific energy
consumption
(Wh/km)

495 504 513 521 530

Range in km 70 88 106 123 140

Cycle life (deep
discharge)

1689 1872 2003 2121 2205

Daily Covered
distance (km)

120 120 120 120 120

Bus lifetime
(years)

10 10 10 10 10

Bus lifetime (km) 438000 438000 438000 438000 438000

No. Battery swap 5.78 3.99 3.08 2.50 2.12

Lifetime L
(years)

2.84 3.90 4.93 5.96 6.90

Batteries cost
(Euro)

115953 111359 110667 110932 113061

The authors also remark that a complete procedure for
the design optimization dealt with in the paper requires the
solution of a parameter identification issue for the battery
modeling. The proposed optimal design of battery, by a new
method which takes properly into account the statistical fea-
tures of the battery parameters, is just a first step towards a
deeper series of studies using nonlinear programming tech-
niques, such as nonlinear least squares or nonlinear Kalman
Filtering.Moreover, the use the Particle filtermethod isworth
being developed for probabilistic modelling of batteries: the
method has the advantage that it is a nonparametric one and
consequently it is not bound on prior knowledge about prob-
ability distributions describing the battery’s model.

The choice of a parametric method instead of a non para-
metric one in the present paper has been substantially based
upon the sufficiency of the available data. As well known
from the statistical theory, in this case better estimates can
be provided.
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