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Abstract In the present work, faults in induction motors
(IM) have been diagnosed by multiclass support vector
machine (SVM) algorithms based on time domain vibration
signals. The main focus is to classify mechanical faults of
induction motors, i.e. the bearing fault, unbalanced rotor,
bowed rotor and rotor misalignment at different rotational
speeds and diverse loading conditions. In thiswork, an induc-
tion motor test setup was used to generate vibration signals
of seededmechanical faults. For the effective fault diagnosis,
one-versus-onemulticlass SVMapproachwith theGaussian-
radial basis function (RBF) kernel has been used. For the
fault classification, firstly optimum statistical features from
higher statisticalmoments have been selected.Also the selec-
tion of SVM kernel parameters, numbers of feature datasets
and optimum ratio of training-to-testing data have been per-
formed. The SVM classifier is trained and tested at the same
rotational speeds as themeasured data as well as innovatively
tested at intermediate rotational speeds for which measured
data was not available. It is observed that classification accu-
racy gradually increases with the increase of the rotational
speed and with the increase of the load on the IM.
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Introduction

Inductionmotors or squirrel-cagemotors are nowadays com-
monly used prime movers in a wide field of light and heavy
duty rotating machine applications in all types of industry.
This is due to their simple construction, handiness, reliabil-
ity, low maintenance requirements, low cost, adaptability to
wide variety of operation conditions and availability of power
converters using adequate control approach.However, induc-
tion motors are prone to many types of faults in industry that
causes a complete motor failure, which in turn may cause
huge production losses in terms of the production cost, pro-
duction time, wastage of raw material and also chances of
human injuries. Induction motors usually falls out of ser-
vice not just due to the age or operating hours but due to the
unusual mechanical load, power supply deviation, improper
or inadequate lubrications, more heat and ineffectual seal-
ing. Hence, the early detection of faults in induction motors
is very important in order to prevent the complete failure of
motor and unexpected huge production losses in industry [1].

In recent years, many condition based monitoring (CBM)
techniques have been employed for early detection of faults
in IM, i.e. machine current signature analysis (MCSA),
vibration, air gap torque, acoustic noisemeasurement, instan-
taneous angular speed and temperature measurement [2]. In
order to find themost effectiveCBMtechniques for the detec-
tion of various faults in IM, Timusk et al. [3] compared the
vibration CBM with the MCSA for the detection of broken
rotor bar (BRB) and bearing faults for different load con-
ditions and speeds, and finally concluded that the vibration
based CBM was the most effective technique for the bear-
ing fault detection while the MCSA was the best for the
BRB detection. Kral et al. [4] suggested that the vibration
based CBM technique was reliable technique for the detec-
tion of bearing and other mechanical faults in the IM. Many
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researchers have been suggested to use vibration signal for
condition monitoring and fault diagnosis of mechanical as
well as electrical faults in IM, due to its easy measurability,
high accuracy and effectiveness in signal analysis that repre-
sent the actual machine condition, among others. Condition
monitoring of machines can be performed through signal
analysis in time, frequency and time–frequency domain [5].

Various artificial intelligence techniques have been suc-
cessfully used for the fault taxonomy in IM, such as artificial
neural network (ANN), fuzzy logic, principal component
analysis (PCA) and linear discriminant analysis (LDA), clas-
sification and regression tree (CART), and immune genetic
system [6,7]. A relatively new AI method, SVM is also used
as an artificial intelligence technique for the fault detection of
IM [5,8]. In order to compare theseAImethods for fault diag-
nosis, Samanta [9] performed the gear fault detection using
ANN and SVM with genetic algorithm, and concluded that
the SVM can perform well in comparison with ANN even
with smaller number of samples and also training time is less
in case of the SVM. Silva and Pederiva [10] performed the
induction motor fault detection using artificial intelligence
techniques, like SVM, fuzzy logic and ANN, and concluded
that the SVM has a good generalization, among others.

Nowadays, SVM has gained popularity for fault diagno-
sis over other methods, due to its generalization capabilities
and computational cost. The SVM has been extended to
multiclass-classification from binary classification and also
various kernels have been developed to handle nonlinear
problem through the SVM. In order to compare multiclass
SVM techniques, Hsu and Lin [11] and Hsu et al. [12] pre-
sented a comparison among different methods of multiclass
SVM through different kernels, and concluded that one-
versus-one method is most effective for the classification,
among one-versus-one (OVO), one-versus-all (OVA) and
direct-acyclic graph SVM (DAGS). RBF kernels produced
better result among other kernel such as, linear, polynomial
and sigmoid.

For effective fault classification through the SVM, data
preparation, i.e. feature extraction and selection, is a critical
step. Feature extraction methods such as principal compo-
nent analysis (PCA) and independent component analysis
(ICA) and feature selection techniques such as the genetic
algorithm (GA) and decision tree have been introduced in
the literature. In order to evaluate the work related to fault
diagnosis using SVM, Tiwari and Bordoloi [13] performed
multi-fault classification of gears based on the SVM.Genetic
algorithm, grid-search method and artificial bee colony algo-
rithm were used for optimizing SVM parameters. Li et al.
[14] performed fault diagnosis of rolling element bearings by
the SVM. Improved ant colony optimization (IACO) algo-
rithm was used for optimization of the SVM parameter.
Baccarini et al. [8] presented a practical industrial application
of the SVM for mechanical faults diagnostic of IMs based

on frequency-domain signals. However, bearing faults which
is one of critical faults in IM were not included. Nguyen
and Lee [5] presented a technique for diagnosing mechani-
cal faults in IMs based on the vibration by using the SVM.
The genetic algorithm (GA) was used to select the useful
statistical features and SVM parameters. However the study
was mainly focused on selection of useful features and para-
meters. Widodo et al. [15] presented a combination of the
independent component analysis (ICA), the principal com-
ponent analysis (PCA) and the SVM for the fault diagnosis
of IMs based on the vibration signature and MCSA. They
showed that the combination of ICA and SVM could serve as
an encouraging alternative and also demonstrated the appli-
cation of non-linear feature extraction and SVMs could serve
as an alternative. Morales et al. [16] introduced the data
fusion by using the multi-class SVM to detect mechanical
faults in IMs using the vibration and line-current signatures.

Chattopadhyay and Konar [17] presented feature extrac-
tions using wavelet transforms, i.e. continuous wavelet
transform (CWT) and discrete wavelet transform (DWT),
and feature selections using the greedy-search technique for
the multi-class fault detection of IM using the RBF neural
networks, multilayer perception (MLP) neural networks and
SVM classifiers. Uddin et al. [18] and Shahriar et al. [19]
presented the fault diagnosis of IMs using the texture feature
extraction and the multiclass SVM. In this work, they con-
verted time-domain vibration signals to 2-D gray images by
transforming the amplitude of the signal into the intensity of
pixels in an image. However, robustness of texture feature
extraction was not justified in high noisy industrial environ-
ment; also it had high computational cost. From literatures, it
is apparent that very few researches have beenworked for the
fault diagnosis of IM, especially of all possible mechanical
faults together, by using multi-class SVM algorithms based
on vibration signatures. For the fault diagnosis of induction
motor, hardly any researcher has examined the SVM perfor-
mance at various operating conditions of induction motor,
i.e. a wide range of speed as well as torque load. For cases
when vibration data is available at discrete speeds hardly any
attempt has been made for the fault classification at inter-
mediate speeds. Moreover, the holistic optimal selection of
diverse SVM parameters has been hardly attempted. Look-
ing at the reported ability of SVM attempting these issues
would be a real beneficial and useful for industries towards
automation of condition based monitoring systems.

The present work deals with the mechanical multi-fault
classification of induction motors based on time domain
vibration signals by using multiclass SVM algorithms.
Firstly, parametric studies have been performed for the selec-
tion of optimum statistical features, the optimum Gaussian
RBF kernel parameter (gamma), training–testing data ratio
and the number of feature datasets.After selecting these para-
meters, the SVM capability to classify mechanical faults
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in IMs has been presented based on the one-versus-one
approach. The aim of this research is to examine the SVM
fault prediction capability for various operating conditions
of IMs, i.e. a wide range of rotational speeds and different
loadings on the IM. Firstly, the SVM capability has been
examined when classifier is tested at same rotational speed
as training for all operating conditions. Then after modify-
ing the SVM algorithm, again the SVM capability has been
examined when the classifier innovatively tested at an inter-
mediate rotational speed for which classifier was not trained.

Support Vector Machine Algorithms

SVMs are popular learning machines based on statistical
learning theory that analyze data and recognizes patterns. The
basic SVM is based on the binary classification but recently it
has been extended to themulticlass classification for handling
the real world situation. The binary and multiclass SVMs are
described below in brief.

Binary SVMs

The base of SVM has been developed by Vapnik (1995)
and is earning popularity due to many provocative features
and encouraging empirical performances. The basic SVM is
based on the binary classification, which construct a hyper-
plane or a set of hyperplanes in a high or infinite dimensional
space, which could be used for the further classification.
Figure 1 depicts the optimal separating hyper-planes, it is
called good separation if the hyper-planes have a largest dis-
tance to the closest training data point of any class. Figure
2 shows the SVM classification problem solution by maxi-
mizing the margin between two classes. Hence, for a higher
margin, the generalization error will be very less. However,
if a set of training data are fed to the SVM each specified
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Fig. 2 The separation of positive and negative examples by an optimal
separation hyperplane

as one of two different classes, the SVM algorithm builds a
classification model that predicts if the new data falls into
one class or to other class [20,21].

The SVM is based on the principle of structural risk mini-
mization (SRM), which has been proved to be superior to the
empirical risk minimization (ERM), used by the ANN. The
ERM minimizes the error on training sets while the SRM
minimizes an upper bound on the expected risk. And that is
why the SVM has better generalization ability than others,
which is the main motive of the statistical learning. And also
the kernel function has been introducedwith the SVM to deal
with the non-linear classification problem [22,23].

For an optimal separating hyperplane, consider a problem
to separate the sets of training vectors of two different classes,

p = {(x1, y1), (x2, y2), . . . , (xn, yn)} ,

x ∈ Rm, y ∈ (−1, 1) (1)

with a hyperplane,

(w, x) + b = 0 (2)

Hence, the hyperplane that optimally separates the data, is
one that minimizes the following function

Min {τ(w, b)} = 1

2
w2 Subject to , yi {wTφ(xi ) + b} ≥ 1

(3)

This problem is very difficult to solve directly because the
constraints are quite complex. Hence, Lagrangian duality
theory is used for simplifying this problem. This approach
leads to solving the following dual problem

Max{D(α)} =
m∑

i=1

αi − 1

2

m∑

i, j=1

{yiαi y jα jφ(xi )
Tφ(x j )}

(4)
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with,

m∑

i=1

yiαi = 0 and αi ≥ 0, i = 1, 2, . . . ,m. (5)

This dual Problem is computationally easier because its
constraints are much simpler. The solution α∗ of the dual
optimization problem [i.e., Eq. (5)] recovers the direction
w∗ of the optimal hyperplane.

w∗ =
m∑

i=1

α∗
i yiφ(xi ) (6)

It becomes simple one dimensional problem for determin-
ing the bias b∗. The linear discriminate function can then be
written as

ŷ(x) = w∗T x + b∗ =
m∑

i=1

{yiα∗
i φ(xi )

Tφ(x)} + b∗ (7)

This above problem can solve a linear case but in other cases
where the linear boundary is not enough to separate two
different classes in input spaces properly, i.e. the nonlinear
classification, then the SVM mapping is required to map the
N -dimensional input vector into a higher dimensional fea-
ture space. The linear optimization problem and the linear
discriminant function only associate patterns x through the
dot products computation in the feature space. And it can
compute the dot product directly then there is no need to
compute the features function, φ(x). Rather than choosing,
φ(x), Boser et al. [24] introduced to directly select a kernel
function k(x, x ′) that substitute a dot product φ(x)Tφ(x ′) in
some undefined high dimensional space. Then the basic form
of SVM will be

ŷ(x) =
m∑

i=1

{yiαi K (x, xi )} + b (8)

The above formulation of SVM is based on the binary
classification, and it can handle the multiclass case by simply
combining it. In next subsection, themulticlass SVMmethod
will be discussed briefly.

Multiclass SVM

The basic SVM based on the binary classification deals with
only two classes, i.e. the positive and negative classes but
in reality more than two class are found. In present, there
are two types of approaches available for solving the multi-
class SVM, the first constitutes and combines many binary
classifiers, however; the second directly considers all data in
a single larger optimization problem. It is computationally

less expensive to solve a binary classification problem than
a multiclass problem with same numbers of data. Hence, for
handling such multiclass problem, methods like one-versus-
one (OVO), one-versus-all (OVA) and direct-acyclic graph
SVM (DAGS) have been introduced. These methods dis-
integrate the multiclass problem into several binary classes
[11]. The OVA approach constitutes k-SVM models, where
k is the number of classes, the OVO approach constitutes
k(k − 1)/2 -SVM models and each one trains data from two
different classes. Whereas, by the DAGS approach, the train-
ing method is same as the OVO by constituting k(k − 1)/2
SVM models but in testing it uses a rooted binary DAG,
which has k(k − 1)/2 internal nodes and k leaves. Hsu and
Lin [12] concluded that OVO is an effective method for prac-
tical use among others. In this work, LIBSVM [25] software
has been used to themulticlass fault classification of IMusing
the OVO approach.

Experimental Setup and Experimentation

In the present study, the actual set-up for the IM fault diag-
nosis consists of the Machine Fault SimulatorTM (MFS),
tri-axial accelerometer, constant DC power source, data
acquisition system (National InstrumentTM) and a signal
monitor as shown in Fig. 3. However, the MFS was used
to perform the experiment that consisted of a 3-φ induc-
tion motor (4-pole, 1.6kVA, 4.2A, 0–240V output voltage,
1–400Hz frequency range, max RPM—10,000, with lubri-
cated ball bearing, controller-Delta VFD-S, number of rotor
bars—34, number of stator slots—24), shaft, coupling, pul-
ley with V-type belt, gear box assembly (single stage bevel
gear), permanent magnet clutches and brakes (torque con-
troller) and one photovoltaic sensor with reflecting tape on
the shaft as shown in Fig. 4. The tri-axial accelerometer (sen-
sitivity: 100.3mV/g-x axis, 100.7mV/g−y axis, 101.4mV/g
−z axis) was mounted on the top of IM at the end opposite to
cooling fan, for measuring the linear acceleration in all three
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Fig. 3 Experiment setup with MFS
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Fig. 4 A schematic line diagram of the experiment setup (1 Test IM,
2 Tri-axial accelerometer, 3 Coupling, 4 Bearings, 5 Shaft, 6 Gear box,
7 Torque controller, 8 Pulley, 9 Belt, 10 DAQ, 11 Signal monitor and
12 base plate)

ND BF

URF BRF RMF

Fig. 5 Five Induction motors with individual faulty conditions (ND no
defect, BF: bearing fault, URF unbalance rotor fault, BRF bowed rotor
fault and RMF rotor misalignment fault)

orthogonal directions in time domain. A permanent mag-
net clutches and brakes (range from 0 to 0.565 N-m) were
used to vary the load on IM. The photovoltaic sensor, which
requires DC power source, was mounted near the coupling
to measure the rotational shaft speed. In the present study,
five types of faulty IM namely (1) the Bearing Fault (BF), (2)
the Rotor Misalignment Fault (RMF), (3) the Bowed Rotor
Fault (BRF), (4) the Unbalanced Rotor Fault (URF) and (5) a
Healthy Motor (HM or no defect) were considered as shown
in Fig. 5.

Vibration measurements were monitored on a Bruel
and KjaerTM FFT analyzer and measurement simulation
were processed on PulseTM Lab Shop of version 7.0.1.298.
Datasets were collected for the range of 10–40Hz in the
interval of 5Hz for each fault condition. For a dataset, 2000
samples were collected in time domain at the rate of 20,000
samples/s. In the similar manner, total of 300 datasets were
collected for linear vibrations (in x-horizontal, y-axial, and z-
vertical directions). Also measurements were taken for three
different load conditions (0, 0.113 and 0.565 N-m) from the
no-torque to the high-torque applied to the IM.

Extraction of Statistical Features

In the present study, total eight useful statistical features
were generated using higher statistical moments from the
raw vibration signal (one axial and two radial directions
of the motor) in time domain for the effective fault iden-
tification of the IM. In this work, the probability density
function, p(x), has been used for the vibration wave-
form to extract the features. i.e., the total probability is
the 0th moment (i.e., one), the mean is the first moment,
the variance (square of standard deviation) the second
moment, the skewness is the third moment, the kurto-
sis is the fourth moment, the hyper-skewness is the fifth
moment and the hyper-flatness is the sixth moment of sta-
tistics.

For the vibration data, consider the mean μ1 = x̄i and
the variance σ 2 (σ - the standard deviation), kth moments of
about mean μk [26,27], as

μ1 = x̄ = 1

N

N∑

i=1

xki (9)

μ2 = σ 2 = 1

N

N∑

i=1

(xi − μ1)
2 (10)

μk = 1

N

N∑

i=1

(xi − μ1)
k (11)

Higher statistical moments up to k = 8 have been used as
statistical features for the present study, which are calculated
from2000 data points in a dataset.Higher statisticalmoments
of acquired signals for BRF in x-direction at 40Hz rotating
speed are shown in Fig. 6. Total 300 datasets were collected
from test rigs for three direction linear vibrations, so total
3×8×300 feature points were available for each of IM fault
cases.

Experimental Results and Discussions

The multi-fault classification of IM faults (mainly mechan-
ical fault conditions like the BF, URF, BRF, RMF and ND)
have been considered based on the multiclass SVM. Hence,
the study consists of the data generation and acquisition,
signal processing, feature extraction, selection of effective
features, selection of RBF kernel parameter, selection of the
optimum ratio of training and testing data, selection of opti-
mum number of datasets and finally the fault diagnosis using
the multiclass SVM.

For the effective performance of fault classification using
the SVM, first feature points were divided into the train-
ing data and the final testing data for the SVM in various
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Fig. 6 Typical higher statistical features of acquired signals for the BRF at 40Hz rotating speed (in x−direction)

ratios. Then one-versus-one multiclass SVM approach and
Gaussian-RBF kernel (which is one of the very popular and
claimed to be very effective kernel) were used to classify
the different faulty conditions effectively in all exercises of
selection of best parameters and also in final fault diagnosis.
The training of SVM was performed at particular discrete
rotational speeds followed by the testing of the SVM at the
same rotational speeds as the training. Then the testing is also
performed at the intermediate rotational speeds that of mea-
surements. And finally results of fault diagnosis are obtained
in the form of generalization accuracy, i.e. prediction levels
of the testing data as

Generalization accuracy

=
(
number of correctly predicted data

total number of testing data

)
× 100 (12)

Figure 7 shows the flowchart, which summarizes the fault
diagnosis of IM using the SVM technique.

3-ϕ Induction motor

Vibration signals in
time domain

Parametric studies and final
data sets selection

Training
data

Testing
data

Feature vectors-Higher
statistical moments

SVM Model

Final
diagnosis

Fig. 7 A flow chart of the IM fault diagnosis
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Selection of Optimum Statistical Features for Fault
Diagnosis of IMs

The effect of different statistical features on the general-
ization accuracy has been examined and selected the best
statistical features for further fault classification. Initially,
eight higher statistical moments are extracted from raw time
domain vibration signals in x , y, and z-directions for the
highest torque condition. The overall generalization accura-
cies are compared among all eight higher statisticalmoments,
six higher statistical moments, and three statistical moments
(standard deviation-σ , skewness-χ , and kurtosis-κ) as shown
in Fig. 8. For this exercise, the training and testing data
are selected arbitrarily in the ratio of 4:1 and number of
datasets as 300. Later the optimum value of these parameters
will also be checked, i.e. the optimum ratio of training and
testing datasets. Result shows that three statistical features
(σ, χ, and κ) gives the highest generalization accuracy at all
rotational speeds as compare to eight and six higher statisti-
cal moments, and are shown in Table 1. Correspondingly, the
best fixed γ value used for analysis is also presented. Hence,
now these three statistical features will be used as optimum
features for further exercise of the fault diagnosis.
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Fig. 9 A parametric study on the selection of optimum value of γ at
10Hz rotational speed

Selection of the Optimum RBF Kernel Parameter
(Gamma-γ ) for the Fault Diagnosis of IMs

The effect of different γ values on the generalization accu-
racy has been examined and selected the best value of γ for all
further fault classifications. For this exercise optimum three
statistical features (σ, χ, and κ) have been chosen and arbi-
trarily selected the training and testing data in the ratio of
4:1, total number of datasets as 300 and rotational speeds of
10 and 40Hz for the highest torque. The generalization accu-
racy by using the SVM for 10 and 40Hz speeds are shown
in Figs. 9 and 10, respectively. The maximum generalization
accuracy is obtained at the γ value of 0.3 for the higher as
well as lower speeds. So now γ = 0.3 has been used as the
optimum value for further fault diagnosis exercises.

Selection of the Optimum Training and Testing Data
Percentage for the Fault Diagnosis of IMs

The effect of different training and testing data percent-
age have been examined on the generalization accuracy and
selected the best percentage of training and testing data for
further fault classifications. For this exercise, optimum three

Table 1 Selection of optimum statistical features

S. no. Training–testing speeds (HZ) Maximum overall generalization accuracy/respective γ

Statistical features (μ1−μ8) Statistical features (μ1−μ6) Statistical features
(σ, χ, and κ)

1 40 95.55/3 × 10−18 98.30/3 × 10−13 100/3 × 10−1

2 35 84.75/3 × 10−16 89.15/3 × 10−11 96.61/3 × 10−1

3 30 85.42/3 × 10−16 88.47/3 × 10−11 96.61/3 × 10−1

4 25 84.75/3 × 10−15 89.49 /3 × 10−10 99.32/3 × 10−1

5 20 87.42/3 × 10−13 93.22/3 × 10−9 96.61/3 × 10−1

6 15 83.72/3 × 10−11 87.79/3 × 10−8 94.91/3 × 10−1

7 10 83.38/3 × 10−8 86.77/3 × 10−6 93.55/3 × 10−1

Bold values represent the best generalization accuracy of considered cases
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Fig. 11 A parametric study on the selection of optimum training and
testing data percentage at 10Hz speed
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Fig. 12 A parametric study on the selection of optimum training and
testing data percentage at 40Hz speed

statistical features (σ, χ and κ), the optimum γ = 0.3, arbi-
trarily selected number of datasets as 300 and rotational
speeds of 10 and 40Hz for the highest torque have been
chosen. The generalization accuracy by using the SVM for
10 and 40Hz speeds are shown in Figs. 11 and 12, respec-
tively. Themaximumgeneralization accuracy appeared at the
ratio of 80–20% of training and testing data, respectively, for
the higher as well as lower speeds. Often accuracy increases

with training percentages, however Fig. 11 shows that accu-
racy decreases somewhat when training percentage increases
from80 to 85%.Hence, now80–20%of the training and test-
ing data, respectively, will be used as an optimum percentage
for further fault diagnosis exercises.

Selection of the Optimum Number of Feature Datasets
for the Fault Diagnosis of IMs

This particular exercise has been done to select minimum
number of feature datasets for the perfect classification
through SVM. It is known that accuracy increases with fea-
ture datasets. However, it cannot consider large number of
datasets arbitrarily because it can cause computational bur-
den. For this exercise, optimum three statistical features
(σ, χ and κ), the optimum γ value of 0.3 and the optimum
training–testing data percentage of 80–20% have been cho-
sen, and checked for different number of feature datasets at
10 and 40Hz rotational speeds for the highest torque. The
generalization accuracy by using the SVM for 10 and 40Hz
speeds are shown in Figs. 13 and 14, respectively. The max-
imum generalization accuracy appears at the value of 300
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Fig. 13 A parametric study of the selection of optimum number of
feature datasets at 10Hz speed
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Fig. 14 A parametric study of the selection of optimum number of
feature datasets at 40Hz speed

123



Intell Ind Syst (2016) 2:269–281 277

Table 2 Classification of IM
faults with the training and the
testing at same rotational speed
condition

Training speed (Hz) Testing speed
(Hz)

Generalization accuracy, %

ND BF URF BRF RMF Overall
accuracy

a. For lowest torque

10 10 79.66 100 94.92 81.36 66.10 84.40

15 15 88.14 100 100 84.75 93.22 93.22

20 20 96.61 100 98.31 96.61 100 98.30

25 25 93.22 100 83.05 93.22 98.31 93.55

30 30 94.92 100 79.66 91.53 96.61 92.54

35 35 94.92 100 94.92 100 94.92 96.94

40 40 93.22 100 94.92 98.31 98.31 96.94

b. For medium torque

10 10 86.44 100 93.22 81.36 86.44 89.83

15 15 77.92 100 96.61 89.83 93.22 91.52

20 20 94.92 100 100 96.61 100 98.30

25 25 98.31 100 100 98.31 100 99.32

30 30 98.31 100 67.80 98.31 100 92.88

35 35 94.92 100 96.61 94.92 100 97.28

40 40 100 100 94.92 100 100 98.98

c. For highest torque

10 10 98.31 98.31 96.61 89.83 84.75 98.31

15 15 86.44 100 98.31 96.61 93.22 94.91

20 20 86.44 100 98.31 98.31 100 96.61

25 25 100 100 98.31 98.31 100 99.32

30 30 93.22 100 94.92 96.61 98.31 96.61

35 35 94.92 100 89.83 98.31 100 96.61

40 40 100 100 100 100 100 100

Bold values represent the best individual and overall generalization accuracy in considered cases

feature datasets for the higher as well as lower speeds that
means minimum 300 datasets are required for perfect SVM
classification. Hence, now 300 feature datasets will be used
as an optimum percentage for further fault diagnosis exer-
cises.

Fault Diagnosis with the Testing at the Same Rotational
Speeds as the Training

In this case, the SVM classifier is trained and tested with
the optimum number of time domain statistical features at
the same rotational speed. Rotational speeds selected are
10–40Hz in a step of 5Hz. To demonstrate the proposed
fault diagnosis of IMs based on the multiclass SVM, the fol-
lowing parameters have been used: three optimum statistical
features (σ, χ and κ), the optimum γ value as 0.3, the opti-
mum training–testing data percentage as 80–20%, and the
optimum number of feature datasets as 300. By using these
optimal parameters a SVM model based on one-versus-one
approach andGaussianRBFkernel is build and trainedwhich
will be used for the final fault diagnosis of IMs. The num-

ber of experiment and data generation have been performed
by varying the load on induction motor, i.e. (1) the lowest
torque or no load—0N-m, (2) the medium torque or light
load—0.113N-m and (3) the highest torque or full load—
0.565N-m. Finally the multiclass fault diagnosis of IMs has
been performed by using optimal parameters found in para-
metric studies and the final results of the fault classification
are obtained in the percentage of generalization accuracy.
Table 2 shows that the mechanical fault classification of IMs
for different rotational speed at the lowest, medium and high-
est torques.

Fault Classification Ability

The result shows that, the generalization accuracy (in%), i.e.
the percentage of successfully predicted data, by using the
SVM for three values of torques. The maximum value of
overall (average) generalization accuracy came 98.30% at
20Hz, 99.32% at 25Hz and 100% at 40Hz rotational speed,
and the minimum accuracy came 84.40% at 10Hz, 89.83%
at 10Hz and 93.55% at 10Hz for the lowest, medium and
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Table 3 Classification of IM faults with the training and the testing at the interpolation speed condition (range 10Hz)

Training speed (Hz) Testing speed (Hz) Generalization accuracy, %

ND BF URF BRF RMF Overall accuracy

a. For lowest torque

10, 20 15 62.71 100 86.44 74.58 59.32 76.61

15, 25 20 83.05 100 94.92 96.61 100 94.91

20, 30 25 45.76 100 96.61 72.88 100 83.05

25, 35 30 91.53 100 79.66 98.31 76.27 89.15

30, 40 35 83.05 100 89.83 94.92 96.61 92.88

b. For medium torque

10, 20 15 61.02 100 84.75 76.27 74.58 79.32

15, 25 20 62.71 100 100 100 96.61 91.86

20, 30 25 100 100 94.92 100 100 98.98

25, 35 30 96.61 100 55.93 100 100 90.5

30, 40 35 84.75 88.14 98.31 96.61 100 93.55

c. For highest torque

10, 20 15 86.44 64.41 100 76.27 83.05 82.03

15, 25 20 71.19 100 100 98.31 94.92 92.88

20, 30 25 98.31 100 93.22 100 100 98.3

25, 35 30 96.61 100 91.53 91.53 96.61 95.25

30, 40 35 81.36 100 94.92 100 98.31 94.91

Bold values represent the best individual and overall generalization accuracy in considered cases

highest torques, respectively. That shows the average gen-
eralization accuracy and the rotational speed with respect
to the maximum value of overall generalization accuracy
increases with the torque applied on IMs. This is because the
whole system (experiment setup) became more stiff (hence
signal–to–noise ratio enhanced) with respect to the increase
in the torque. And with the increase in the rotational speed
the fault dynamics becomes predominant leading again to a
better signal–to–noise ratio.

The individual generalization accuracy for each fault con-
dition (i.e. BF, URF, BRF, RMF and ND) is also shown in
Table 2. For the lowest torque, the worst individual gener-
alization accuracy obtained for RMF of 66.10% at lowest
speed of 10Hz and the highest accuracy obtained of 100%
for BF at all speeds, for URF at 15Hz, for BRF at 35Hz
and for RMF at 20 Hz. For the medium torque value, it
came the worst accuracy for URF of 67.80% at 30Hz speed
and the highest accuracy of 100% for BF at all speeds, for
RMF at all speeds except 10 and 15Hz, for URF at 20 and
25Hz, and for ND and RMF at 40Hz. For the highest value
of torque, it came the worst accuracy for RMF of 84.75%
at 10Hz and the highest accuracy of 100% for BF at all
speeds except 10Hz, for RMF at 20, 25, 35 and 40Hz,
for ND at 25 and 40Hz, and for URF and BRF at 40Hz.
Hence, the result shows the individual generalization accu-
racy for each fault condition increases with the rotational
speed as well as loading (torque) for the reason mentioned
above.

It also to be noted that for the individual fault classifi-
cation the individual generalization accuracy in minimum-
maximum range comes nearly 98.30–100% for IM with
bearing fault (BF), 79.66–100% for ND, 67.80–100% for
URF, 81–100% for BRF and 66.10–100% for RMF at all
rotational speeds and for all torques. That means BF can be
perfectly classified for any load at any speed by the SVM
based on time domain vibration signals. While for other
mechanical fault conditions the SVM is predicting nearly
perfect at higher speeds and mainly at higher torques.

Fault Diagnosis at an Intermediate Rotational Speed for
Which the SVM was not Trained

In this case, the SVM classifier is trained at two rotational
speeds and tested at an intermediate rotational speed for
which the classifier was not trained. Table 3 shows the value
of training speed ranges and intermediate testing rotational
speeds. Here the speed range, 10 Hz is considered, because
beyond this range it would be too wide hence generaliza-
tion accuracy becomes low. To demonstrate the proposed
fault diagnosis of IMs based on the multiclass SVM, the
following parameters have been used: three optimum statis-
tical features (σ, χ and κ), the optimum training–testing data
percentage as 80–20%, and the optimum number of feature
datasets as 300. For this case, the optimum value of γ is
0.03 unlike the previous case, i.e. training and testing at the
same rotational speed. By using these optimal parameters a
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SVM model based on the one-versus-one approach and the
Gaussian RBF kernel is build and trained which is used for
the final fault diagnosis of IMs.

Fault classification ability

Result shows that the generalization accuracy, by using the
SVM for three values of torque, at the intermediate rotational
speed ranges of 10Hz. The maximum value of overall (aver-
age) generalization accuracy came 94.91% at 20Hz, 99.98%
at 25Hz and 98.3% at 20Hz interpolated rotational speed,
and minimum came 76.61% at 15Hz, 79.32% at 15Hz and
82.03% at 15Hz for the lowest, medium and highest torques,
respectively. That shows the average generalization accu-
racy and the interpolated rotational speed with respect to the
maximum value of overall generalization accuracy increases
somewhat with the torque applied on IMs.

The individual generalization accuracy for each faulty
condition (i.e. BF, URF, BRF, RMF and ND) is also shown in
Table 3. For the lowest torque, the worst individual general-
ization accuracy obtained for ND of 45.76% at interpolated
speed of 25Hz and the highest accuracy obtained of 100% for
BF at all interpolated speeds, for RMF at 20 and 25Hz. For
the medium torque value it came worst accuracy for URF of
55.93% at 30Hz interpolated speed and highest accuracy of
100% for BF at all interpolated speeds except 35Hz, for ND
at 25Hz, for URF at 20Hz, for BRF at 20, 25 and 30Hz, and
for RMF at all speeds except 15 and 20Hz. For the highest
value of torque it came worst accuracy for BF of 64.41% at
15Hz and the highest accuracy of 100% for BF at all speeds
except 15Hz, for RMF at 25Hz, BRF at 25 and 35Hz, and
for URF at 15 and 20Hz. Hence, here also the result shows
the individual generalization accuracy for each fault condi-
tion increases with the rotational speed as well as loading
(torque). Also it is observed that the BF can be perfectly
classified for any load at any interpolated speeds similar like
same rotational speed conditions.

For the classification of response data in time domain for
the linear system model, the SVM and ANN algorithms use
a similar concept of the pattern recognition. However, for the
non-linear system, they use different classificationmethodol-
ogy. To deal with the non-linearity, the ANN utilizes various
activation functions and multilayer connections. However,
the SVM employs a kernel function to deal with the non-
linearity bymapping the non-linear data in a low dimensional
space to a high dimensional space. TheANN are based on the
empirical risk minimization (ERM) as it minimizes the error
on training data only. On the other hand, the SVM are based
on structural risk minimization (SRM) because it minimizes
the upper bound on expected risk. The SRM is superior to
the ERM in terms of generalization ability.

For the estimation of induction motor parameters such as
rotor current and speed, and the stator voltage and current,

the Kalman filter algorithm have also been widely used. By
using extended Kalman filter algorithm, the estimation of
states and parameters can be performed simultaneously of
the non-linear system. This algorithm requires terminal and
rotor speed measurement. This algorithm mainly used for
parameters and state estimation, however, finally for the fault
diagnosis of induction motor the ANN and recently the SVM
algorithm is more popular.

For the diagnosis of induction motor faults, condition
monitoring techniques have been developed based on fre-
quency domain analysis such as the FFT, power spectrum,
bispectrum and high resolution spectral analysis. The spec-
trum analysis of vibration signals have been used to distin-
guish the mechanical faults. The first harmonic of vibration
force may arise in the spectrum for a number of faulty states
such as the rotor unbalance, bowed shaft and rotor misalign-
ment. The bowed andmisaligned rotor can be separated from
unbalanced rotor if a large vibration component occurs at sec-
ond harmonics. Note that this component does not occur for
the unbalanced rotor. By identifying the pre-dominant vibra-
tion plane, i.e. radial or axial and the relative phase between
two ends of shaft, the bowed rotor can be separated from
the parallel as well as angular misaligned rotor. The bearing
fault can be identified in the vibration spectrum by carefully
observing various fault frequencies. Thomson andOrpin [28]
used spectrum analysis of the current and vibration signals
for the fault diagnosis of induction motors. The extensive
analyses of behavior of sidebands associates with different
faults were analyzed. For consistent fault diagnosis, tracking
of the accurate narrow-bands and sidebands in a spectrum is
essential and it depends on the frequency resolution.

The frequency information can be extracted using FFT but
it is not possible to mark at what instances these frequency
components occur. For non-stationary signals (i.e., spectral
content vary with the time), wavelets such as continuous
wavelet transform, Hilbert–Hung transform and Wigner–
Ville distribution, are preferred [29]. The windowed Fourier
transform (WFT), a robust and simple time–frequency
method has also been widely used for induction motor fault
diagnosis. Nowadays the wavelet transform is used for fault
diagnosis in conjunction with the SVM.

The competence of these time, frequency and time–
frequency methods can be characterized by their capability
to diagnose the faulty conditions in motors. To distinguish
faulty conditions from normal state, based on the spectral
analysis, it is required to have adequate knowledge and
expertise. Moreover, it requires manual inspection of signal
characteristics. The FFT contains a large number of spectral
content, i.e. harmonics and sub-harmonics of fundamental
components, however by using expert systems such as the
SVM (or ANN), undesirable harmonic information can be
filtered out and the suitable one for effective fault diagnosis
may be used. Connectionist networks such as SVM used for
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the fault classification purposes can be fed by a data base
which contains the machine history in terms of trends of
well-stated failure components. A good fault classifier will
be capable of recognizing these failure components correctly,
to classify appropriate failure modes. Moreover, if a suitable
normalization is performed on input feature sets, then the
trained SVM can be applied to a family of similar induction
motors.

Conclusions

In the present work, the multiclass classification of mechan-
ical faults in IMs based on time domain vibration signature
by using the one-versus-one multiclass approach of the SVM
has been applied. Initially eight higher statistical moments
were extracted as features from timedomain vibration signals
and finally found that only three optimum statistical fea-
tures (σ, χ and κ) are effective. Also the optimum γ value,
optimum training-testing data ratio and optimum number of
feature datasets are chosen through parametric studies. Then,
the SVM capability to classify mechanical faults in IMs has
been presented when training and testing of SVM is done at
the same rotational speed as measured data, and innovatively
when theSVMis tested at an intermediate rotational speed for
which classifier was not trained. The prediction accuracy of
classifying faults show near perfect prediction performance
when prediction attempt at the same rotational speed as mea-
sured data condition.And it shows relatively better prediction
performance when prediction attempt also at the interpolated
rotational speed condition. It also shows that the average gen-
eralization accuracy increases with the rotational speeds as
well as the torque applied on IMs, It is also observed that
the individual generalization accuracy for each fault condi-
tion increases with rotational speeds as well as loadings. A
perfect prediction has been found for the BF for any load
at any speed considered, while for other mechanical fault
conditions the SVM is predicting nearly perfect at higher
speeds and mainly for higher torques. The present method-
ology could be applied for the training and testing of SVM
based on frequency and time–frequency domain data also.
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