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Abstract Controller design for autonomous 4-wheeled
groundvehicles is performedwith differential flatness theory.
Using a 3-DOF nonlinear model of the vehicle’s dynamics
and through the application of differential flatness theory
an equivalent model in linear canonical (Brunovksy) form
is obtained. For the latter model a state feedback controller
is developed that enables accurate tracking of velocity set-
points. Moreover, it is shown that with the use of Kalman
Filtering it is possible to dynamically estimate the distur-
bances due to unknown forces and torques exerted on the
vehicle. The processing of velocity measurements (provided
by a small number of on-board sensors) through a Kalman
Filter which has been redesigned in the form of a disturbance
observer results in accurate identification of external distur-
bances affecting the vehicle’s dynamic model. By including
in the vehicle’s controller an additional term that com-
pensates for the estimated disturbance forces, the vehicle’s
motion characteristics remain unchanged. Numerical simu-
lation confirms the efficiency of both the proposed controller
and of the disturbance forces estimator.
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1 Introduction

In the recent years there has been significant effort in the
design of intelligent autonomous vehicles capable of oper-
ating in variable conditions. The precise modeling of the
vehicles’ dynamics improves the efficiency of vehicles con-
trollers in adverse cases, for example in high velocity, when
performing abrupt maneuvers, under mass and loads changes
orwhenmoving on rough terrain. Usingmodel-based control
approaches it is possible to design a nonlinear controller that
maintains the vehicle’s motion characteristics within desir-
able ranges [1–6]. When the vehicle’s dynamics is subject to
modeling uncertainties orwhen there are unknown forces and
torques exerted on the vehicle it is important to be in position
to estimate in real-time disturbances and unknown dynamics
so as to compensate them through the control input and to
maintain the satisfactory performance of the vehicle’s auto-
mated steering system. In this direction, estimation for the
unknown dynamics of the vehicle and state estimation-based
control schemes have been developed [7–10].

The objective of this researchwork is two-fold. On the one
side it analyzes the design of a controller for autonomous
navigation of automatic ground vehicles (AGVs). On the
other side it proposes a solution to the problem of four-wheel
vehicle control under model uncertainties and external dis-
turbances. Considering, that only under ideal conditions the
dynamic model of the vehicle is precisely known (e.g. there
may be variations in the transported mass, or in the corner-
ing stiffness coefficients characterizing the interaction of the
tires with the ground, or in the position of the vehicle’s center
of gravity) and that in several cases there is uncertainty about
the forces and torques developed on the vehicle (e.g. traction
and braking torques on the wheels, forces due to traction of
implements, or lateral forces which generate torques affect-
ing the yaw stability of the vehicle) the need for designing
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robust controllers of the autonomous vehicles becomes obvi-
ous [11–14]. By compensating efficiently such disturbances
forces and torques safety features of the vehicle are improved
and its autonomous functioning remains reliable even under
adverse road conditions.

Dynamic analysis for the 4-wheel vehicle is provided. A
3-DOF model is introduced having as elements the vehicle’s
velocity along the horizontal and vertical axis of an inertial
reference frame as well as the rate of change of its orientation
angle (this is the angle defined by the vehicle’s longitudinal
axis and the horizontal axis of the frame). Lateral forces are
shown to affect the vehicle’s motion and to be dependent
on the longitudinal and lateral velocity of the vehicle, on
the yaw rate and on the cornering stiffness coefficients for
the front and rear tires. The control inputs to the vehicles’
dynamic model are the traction/bracking wheel torque and
the turn angle of the steering wheel. Since the parameters of
the dynamic model of the vehicle cannot always be known
with precision or may be time-varying (e.g. cornering stiff-
ness coefficients, transported mass) and since there may be
unmodeled external forces and torques exerted on the vehicle
(e.g. due to road condition, disturbances in traction forces) it
is important to design a control loop with robustness to the
aforementioned sources of uncertainty and disturbances, as
well as to be in position to estimate in real-time such distur-
bances through the processing of measurements from a small
number of on-board sensors.

Next, it is shown how a nonlinear controller for the afore-
mentioned vehicle’s model can be obtained through the
application of the differential flatness theory [15–18]. The
flat output for the vehicle’s model is a vector comprising the
x-axis velocity and a second variable based on a linear rela-
tion between the y-axis velocity and the rate of change of the
orientation angle [1,2]. By expressing all state variables and
the control input of the four-wheel vehiclemodel as functions
of the flat output and its derivatives the system’s dynamic
model is transformed into the linear Brunovksy (canonical)
form [19,20]. For the latter model it is possible to design a
state feedback controller that enables accurate tracking of the
vehicle’s velocity set-points.

By exploiting the vehicle’s exactly linearized model and
its transformation into a canonical form it is possible to design
a linear state estimator for approximating the system’s state
vector through the processing of measurements coming from
a small number of on-board sensors. To this end the concept
ofDerivative-free nonlinear Kalman Filtering is introduced.
Unlike the Extended Kalman Filter, the proposed filtering
method provides estimates of the state vector of the nonlin-
ear system without the need for derivatives and Jacobians
calculation [21–23]. By avoiding linearization approxima-
tions, the proposed filtering method improves the accuracy
of estimation of the system’s state variables. Moreover, it
is shown that it is possible to redesign the Kalman Filter

in the form of a disturbance observer and using the esti-
mation of the disturbance to develop an auxiliary control
input that compensates for their effects. In this way the vehi-
cle’s control and autonomous navigation system can become
robust with respect to uncertainties in the model’s parame-
ters or uncertainties about external forces and torques. It is
also noted that in terms of computation speed the proposed
Kalman Filter-based disturbance estimator for the vehicle is
faster than disturbance estimators that may be based on other
nonlinear filtering approaches (e.g. Extended Kalman Filter,
Unscented Kalman Filter or Particle Filter) thus becoming
advantageous for the real-time estimation of the unknown
vehicle dynamics [24,25].

The efficiency of the proposed nonlinear control and
Kalman Filter-based disturbances estimation scheme is eval-
uated through numerical simulation tests. It has been shown
that by accurately estimating disturbance forces and torques
the control loop succeeds elimination of the tracking error
for all state variables of the vehicle. The structure of the
paper is as follows: in Sect. 2 the dynamic model of the 4-
wheel vehicle is analyzed. In Sect. 3 it is proven that the
4-wheel vehicle dynamical model satisfies the differential
flatness properties and the stages for designing a flatness-
based control for the vehicle’s model are analyzed. In Sect.
4 state estimation with the use of state observers and with
the use of the Kalman Filter is explained. In Sect. 5 the con-
cept of disturbance observers is introduced as a solution to
the problem of state estimation under model uncertainties
and external disturbances. In Sect. 6 it is shown how the
Derivative-free nonlinear Kalman Filter can be redesigned in
the form of a disturbance observer so as to estimate the dis-
turbance torques and forces that affect the vehicle’s dynamic
model. In Sect. 7 evaluation tests are provided about the per-
formance of the vehicle’s nonlinear control scheme and about
the performance of the state estimator that aims at real-time
identification of uncertainty in the vehicle’s dynamics. It is
shown that by applying an additional control input that is
based on the estimated disturbance variables the stability of
the vehicle’s control loop is preserved and elimination of
velocity tracking error is succeeded. Finally in Sect. 8 con-
cluding remarks are provided.

2 Dynamic Model of the Vehicle

2.1 Definition of Parameters in 4-Wheel Vehicle
Dynamic Model

With reference to Fig. 1 (where the lateral forces applied
on the wheels are considered to define the vehicle’s motion)
one has the following parameters: β is the angle between the
velocity and the vehicle’s transversal angle, V is the velocity
vector of the vehicle, ψ is the yaw angle (rotation round the
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Fig. 1 Nonlinear 4-wheeled vehicle model

z axis), fx : is the aggregate force along the x axis, fy is the
aggregate force along the y axis, Tz is the aggregate torque
round the z axis and δ is the steering angle of the front wheels
[1,4,17].

The motion of the vehicle is described by the following
set of equations:

1. Longitudinal motion

−mV (β̇ + ψ̇)sin(β) + mV̇ cos(β) = fx (1)

2. Lateral motion

mV (β̇ + ψ̇)cos(β) + mV̇ sin(β) = fy (2)

3. Yaw turn

I ψ̈ = Tz (3)

The above described vehicle dynamics can be also written
in matrix form

⎛
⎝

−sin(β) cos(β) 0
cos(β) sin(β) 0

0 0 1

⎞
⎠

⎛
⎝
mV (β̇ + ψ̇)

mV̇
I ψ̈

⎞
⎠ =

⎛
⎝

fx
fy
Tz

⎞
⎠ (4)

Finally a matrix relation is provided about the transfor-
mation of forces on a tire into forces and torques along the
vehicle’s axes:
⎛
⎝

fx
fy
Tz

⎞
⎠ =

⎛
⎝

−sin(δ) 0
cos(δ) 1

L1cos(δ) −L2

⎞
⎠

(
Ff

Fr

)
(5)

Fig. 2 Vehicle model with longitudinal and lateral forces

2.2 Vehicle Dynamical Model with Longitudinal and
Lateral Forces

The previous model of Fig. 1 is rexamined considering that
β̇ = 0 and that ψ is the yaw angle formed between the vehi-
cle’s longitudinal axis and the horizontal axis of an inertial
reference frame. Moreover, it is assumed that apart from the
lateral forces there are traction torques transferred from the
engine to the front wheels as well as braking torques on the
rear and front wheels. Due to the distance between thewheels
axes and the vehicle’s center of gravity, torques are also gen-
erated along the vehicle’s z-axis. With reference to Fig. 2
the model of the vehicle’s dynamics is formulated as follows
[1,4,17]:

mαx = m(V̇x − ψ̇ V̇y) = Fx1 + Fx2
mαy = m(V̇y + ψ̇ V̇x ) = Fy1 + Fy2 (6)

Izψ̈ = Tz1 + Tz2

where ax and ay are accelerations along the axes of the iner-
tial reference frame and V̇x , V̇y in a reference frame that
rotates with the yaw rate ψ̇ . The forces Fxi , i = 1, 2 on the
vehicle’s longitudinal axis and Fyi , i = 1, 2 on the vehi-
cle’s transversal axis are computed from the horizontal and
vertical forces applied on the vehicle’s wheels as follows:

Fx1 = Fx f cos(δ) − Fy f sin(δ)

Fx2 = Fxr
Fy1 = Fy f sin(δ) + Fy f cos(δ)

Fy2 = Fyr

Tz1 = L f (Fy f cos(δ) + Fx f sin(δ))

Tz2 = −Lr Fyr

(7)
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About the longitudinal and the lateral forces applied to the
vehicle one has:

1. Longitudinal force on the front wheel

Fx f =
(
1

R

)
(Ir ω̇ f + Tm − Tb f ) (8)

2. Longitudinal force on the rear wheel

Fxr = −
(
1

R

)
(Tbr + Ir ω̇r ) (9)

3. Lateral force on the front wheel (taking that the angle β

between the vehicle’s longitudinal axis and the wheel’s

velocity vector is approximated by β = Vy+ψ̇L f
Vx

)

Fy f = C f

(
δ − Vy + ψ̇L f

Vx

)
(10)

4. Lateral force on the rear wheel (taking that for the rear
wheel the steering angle is δ = 0 and that the angle β

between the vehicle’s longitudinal axis and the wheel’s

velocity vector is approximated by β = Vy−ψ̇Lr
Vx

).

Fyr = −Cr
Vy − ψ̇Lr

Vx
(11)

where C f and Cr are the cornering stiffness coefficients for
the front and rear tires respectively. Nominal values of these
cornering stiffness coefficients can be estimated through
identification procedures. The substitution of Eq. (8) to Eq.
(11) into Eq. (6) results into

mV̇x = mψ̇Vy − Ir
R

(ω̇r + ω̇ f ) + 1

R
(Tm − Tb f − Tbr )

+ C f

(
Vy + ψ̇L f

Vx

)
δ − C f δ

2

mV̇y =−mψ̇Vx−C f

(
Vy+ψ̇L f

Vx

)
−Cr

(
Vy−ψ̇L f

Vx

)

+
(
1

R

)
(Tm − Tb f )δ +

(
C f − Ir

R
ω̇ f

)
δ

Izψ̈ = −L f C f

(
Vy + ψ̇L f

Vx

)
+ LrCr

(
Vy − ψ̇L f

Vx

)

+ L f

R
(Tm − Tb f )δ + L f

(
Tm − Ir

R

)
δ

(12)

The motion of the vehicle along its longitudinal axis is con-
trolled by the traction or braking wheel torque Tω = Tm −Tb
with Tb = Tb f + Tbr and the lateral movement via the steer-
ing angle δ. The two control inputs of the four wheel vehicle
model are

u1 = Tω

u2 = δ (13)

A first form of the vehicle’s dynamic model is

ẋ = f (x, t) + g(x, t)u + g1u1u2 + g2u
2
2 (14)

where

f (x, t) =

⎛
⎜⎜⎜⎜⎝

Ir
mR (ω̇r + ω̇ f )

ψ̇Vx + 1
m

(
−C f

(Vy+L f ψ̇)

Vx
− Cr

(Vy−L f ψ̇)

Vx

)

1
Iz

(
−L f C f

(Vy+L f ψ̇)

Vx
+ LrCr

(Vy−L f ψ̇)

Vx

)

⎞
⎟⎟⎟⎟⎠

(15)

g(x, t) =

⎛
⎜⎜⎜⎝

1
mR

C f
m

(
Vy+L f ψ̇

Vx

)

0
(
C f R−Ir ω̇ f

mR

)

0
(L f C f R−L f Ir ω̇ f )

Iz R

⎞
⎟⎟⎟⎠ (16)

g1 =

⎛
⎜⎜⎝

0

1
mR

L f
Iz R

⎞
⎟⎟⎠ g2 =

⎛
⎜⎜⎝

−C f
m

0

0

⎞
⎟⎟⎠ x =

⎛
⎜⎜⎝
Vx

Vy

ψ̇

⎞
⎟⎟⎠ u =

(
u1

u2

)

(17)

The previously analyzed nonlinear model of the vehicle’s
dynamics can be simplified if the control inputs u1u2 and u22
are not taken into account. In the latter case the dynamics of
the vehicle takes the form

ẋ = f (x, t) + g(x, t)u (18)

3 Flatness-Based Controller for the 3-DOF Vehicle
Model

3.1 Differential Flatness Theory

Differential flatness theory can be applied to the generic
class of systems ẋ = f (x, u). In this study, the interest is
in dynamic models of the form of Eq. (18).

The principles of the differential flatness theory have been
extensively studied in the relevant bibliography [16,17,23]:
A finite dimensional system is considered. This can be writ-
ten in the form of an ordinary differential equation (ODE),
i.e. Si (w, ẇ, ẅ, . . . , w(i)), i = 1, 2, . . . , q. The quan-
tity w denotes the system variables (these variables are for
instance the elements of the system’s state vector and the
control input) while w(i), i = 1, 2, . . . , q are the associ-
ated derivatives. Such a system is said to be differentially
flat if there exists a set of m functions y = (y1, . . . , ym)

of the system variables and of their time-derivatives, i.e.
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yi = φ(w, ẇ, ẅ, . . . , w(αi )), i = 1, . . . ,m satisfying the
following two conditions [15,21]:

1. There does not exist any differential relation of the form
R(y, ẏ, . . . , y(β)) = 0 which implies that the derivatives
of the flat output are not coupled in the sense of an ODE,
or equivalently it can be said that the flat output is differ-
entially independent.

2. All system variables (i.e. the elements of the system’s
state vector w and the control input) can be expressed
using only the flat output y and its time derivatives
wi = ψi (y, ẏ, . . . , y(γi )), i = 1, . . . , s. An equivalent
definition of differentially flat systems is as follows:

Definition The system ẋ = f (x, u), x∈Rn , u∈Rm is differ-
entially flat if there exist relations

h : Rn×(Rm)
r+1→Rm,

φ : (Rm)r→Rn and

ψ : (Rm)r+1→Rm (19)

such that

y = h
(
x, u, u̇, . . . , u(r)

)
,

x = φ
(
y, ẏ, . . . , y(r−1)

)
, and

u = ψ
(
y, ẏ, . . . , y(r−1), y(r)

)
. (20)

This means that all system dynamics can be expressed as a
function of the flat output and its derivatives, therefore the
state vector and the control input can be written as

x(t) = φ
(
y(t), ẏ(t), . . . , y(r)(t)

)
, and

u(t) = ψ
(
y(t), ẏ(t), . . . , y(r+1)(t)

)
(21)

3.2 Classes of Differentially Flat Systems

For certain classes of dynamical systems it has been proven
that they satisfy differential flatness properties. The following
classes of nonlinear differentially flat systems are defined
[26]:

1. Affine in-the-input systems: The dynamics of such sys-
tems is given by:

ẋ = f (x) +
m∑
i=1

gi (x)ui (22)

From Eq. (22) it can be seen that the above state
equation can also describe MIMO dynamical systems.

Without out loss of generality it is assumed that G =
[g1, . . . , gm] is of rankm. In case that the flat outputs of
the aforementioned system are only functions of states
x , then this class of dynamical systems is called 0-flat.
It has been proven that a dynamical affine system with
n states and n − 1 inputs is 0-flat if it is controllable.

2. Driftless systems: These are systems of the form

ẋ =
m∑
i=1

fi (x)ui (23)

For driftless systems with two inputs, i.e.

ẋ = f1(x)u1 + f2(x)u2 (24)

the flatness property holds, if and only if the rank of matrix
Ek+1 := {Ek, [Ek, Ek]}, k≥0 with E0 := { f1, f2} is equal
to k+2 for k = 0, . . . , n−2. It has been proven that a driftless
system that is differentially flat, is also 0-flat. Moreover, for
flat systems with n states and n − 2 control inputs, i.e.

ẋ =
n−2∑
i=1

ui fi (x) x∈Rn (25)

the flatness property holds, if controllability also holds. Fur-
thermore, the system is 0-flat if n is even.

3.3 Conditions for Applying the Differential Flatness
Theory to MIMO Systems

Application of the differential flatness theory to multi-input
multi-output systems is of particular importance for the
AGVs because the latter stand also for MIMO systems. In
order to demonstrate that aMIMO system satisfies the differ-
ential flatness properties, the flat outputs of the system have
to be defined first. For nonlinear systems it is still an open
problem to construct flat outputs. The following generic class
of nonlinear systems is considered

ẋ = f (x, u) (26)

Such a system can be transformed to the form of an affine in
the input system by adding an integrator to each input [27]

ẋ = f (x) +
m∑
i=1

gi (x)ui (27)

The following definitions are used [28–30]:

(i) Lie derivative: L f h(x) stands for the Lie derivative
L f h(x) = (∇h) f and the repeated Lie derivatives are
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recursively defined as L0
f h = h for i = 0, Li

f h =
L f L

i−1
f h = ∇Li−1

f h f for i = 1, 2, . . ..

(ii) Lie Bracket: adif g stands for a Lie Bracket which is

defined recursively as adif g = [ f, adi−1
f g]with ad0f g =

g and ad f g = [ f, g] = ∇g f − ∇ f g.

If the system of Eq. (27) can be linearized by a diffeomor-
phism z = φ(x) and a static state feedback u = α(x)+β(x)v
into the following form

żi, j = zi+1, j for 1≤ j≤m and 1≤i≤v j − 1

żvi, j = v j (28)

with
∑m

j=1v j = n, then y j = z1, j for 1≤ j≤m are the 0-flat
outputswhich canbewritten as functions of only the elements
of the state vector x . To define conditions for transforming
the system of Eq. (27) into the canonical form described in
Eq. (28) the following theorem holds [27]

Theorem For the nonlinear systems described by Eq. (27)
the following variables are defined:

(i) G0 = span[g1, . . . , gm].
(ii) G1 = span[g1, . . . , gm, ad f g1, . . . , ad f gm].

· · ·
(k) Gk = span{ad j

f gi for 0≤ j≤k, 1≤i≤m}. Then, the lin-
earization problem for the system of Eq. (27) can be solved
if and only if

(1) The dimension of Gi , i = 1, . . . , k is constant for
x∈X⊆Rn and for 1≤i≤n − 1

(2) The dimension of Gn−1 if of order n.
(3) The distribution Gk is involutive for each 1≤k≤n − 2.

3.4 Transformation of MIMO Nonlinear Systems into
the Brunovsky Form

It is assumed now that after defining the flat outputs of the
initial MIMO nonlinear system, and after expressing the sys-
tem state variables and control inputs as functions of the flat
output and of the associated derivatives, the system can be
transformed in the Brunovsky canonical form:

ẋ1 = x2

ẋ2 = x3

· · ·
ẋr1−1 = xr1

ẋr1 = f1(x) +
p∑

j=1

g1 j (x)u j + d1

ẋr1+1 = xr1+2

ẋr1+2 = xr1+3

· · · (29)

ẋ p−1 = xp

ẋ p = f p(x) +
p∑

j=1

gp j (x)u j + dp

y1 = x1

y2 = x2

· · ·
yp = xn−rp+1

where x = [x1, . . . , xn]T is the state vector of the trans-
formed system (according to the differential flatness for-
mulation), u = [u1, . . . , u p]T is the set of control inputs,
y = [y1, . . . , yp]T is the output vector, fi are the drift
functions and gi, j , i, j = 1, 2, . . . , p are smooth func-
tions corresponding to the control input gains, while d j is
a variable associated to external disturbances. In holds that
r1 + r2 + · · · + rp = n. Having written the initial nonlinear
system into the canonical (Brunovsky) form it holds

y(ri )
i = fi (x) +

p∑
j=1

gi j (x)u j + d j (30)

Next the following vectors and matrices can be defined

f (x) = [ f1(x), . . . , fn(x)]T
g(x) = [g1(x), . . . , gn(x)]T

with gi (x) = [g1i (x), . . . , gpi (x)]T
A = diag[A1, . . . , Ap], B = diag[B1, . . . , Bp]

CT = diag[C1, . . . ,Cp], d = [d1, . . . , dp]T

(31)

where matrix A has the MIMO canonical form, i.e. with ele-
ments

Ai =

⎛
⎜⎜⎜⎜⎜⎝

0 1 · · · 0
0 0 · · · 0
...

... · · · ...

0 0 · · · 1
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

ri×ri

Bi =

⎛
⎜⎜⎜⎜⎝

0
0
· · ·
0
1

⎞
⎟⎟⎟⎟⎠

ri×1

Ci =

⎛
⎜⎜⎜⎜⎝

1
0
· · ·
0
0

⎞
⎟⎟⎟⎟⎠

1×ri

(32)

Thus, Eq. (30) can be written in state-space form

ẋ = Ax + B[ f (x) + g(x)u + d̃]
y = CT x (33)
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which can be also written in the equivalent form:

ẋ = Ax + Bv + Bd̃

y = CT x (34)

where the transformed control input is defined as v = f (x)+
g(x)u. Bydemonstratingdifferential flatness for the vehicle’s
model it is anticipated to express its dynamics in the canonical
form defined by Eq. (32) to Eq. (33).

3.5 Flatness-Based Controller for the 4-Wheel Vehicle

To show that the four-wheel vehicle is differentially flat the
following flat outputs are defined [1,2]:

y1 = Vx

y2 = L f mVy − Izψ̇ (35)

Then it holds that all elements of the system’s state vector can
bewritten as functions of theflat outputs and their derivatives.
Indeed, for x = [Vx , Vy, ψ̇]T it holds

Vx = y1 (36)

Vy = y2
L f m

−
(

Iz
L f m

)

×
(

L f my1 ẏ2 + Cr (L f + Lr )y2
Cr (L f + Lr )(Iz − L f Lrm) + (L f my1)2

)

(37)

ψ̇ = L f my1 ẏ2 + Cr (L f + Lr )y2
Cr (L f + Lr )(Iz − L f Lrm) + (L f my1)2

(38)

Expressing the system’s state variables as functions of the
flat outputs one has the following state-space description for
the system

(
ẏ1
ÿ2

)
= 	(y1, y2, ẏ2)

(
u1
u2

)
+ 
(y1, y2, ẏ2) (39)

where

	(y1, y2, ẏ2) =
(

	11(y1, y2, ẏ2) 	12(y1, y2, ẏ2)
	21(y1, y2, ẏ2) 	22(y1, y2, ẏ2)

)
(40)

with

	11(y1, y2, ẏ2) = 1

mR
(41)

	12(y1, y2, ẏ2) = C f

m

(
Vy + L f ψ̇

y1

)
(42)

	21(y1, y2, ẏ2)

= Cr (L f + Lr )(Vy − Lr ψ̇) − L f mψ̇ y21
mRy21

(43)

	22(y1, y2, ẏ2)

=
(

−L f my1 + LrCr (L f + Lr )

y1

)
(L f C f R − L f Ir ω̇ f )

Iz R

+ ((Cr (L f + Lr ))(Vy − Lr ψ̇) − L f mψ̇ y21 )

y21
(44)

×C f (Vy + L f ψ̇)

my1

− Cr (L f + Lr )

y1

RC f − Ir ω̇ f

mR

Moreover about matrix 
(y1, y2, ẏ2) it holds


(y1, y2, ẏ2) =
(


1(y1, y2, ẏ2)

2(y1, y2, ẏ2)

)
(45)

with elements


1(y1, y2, ẏ2) = ψ̇Vy − Ir
mR

(ω̇r + ω̇ f ) (46)


2(y1, y2, ẏ2)

= −L f my1 f3(x, t) − Cr (L f + Lr )

y1
f2(x, t) +

+C f (L f + Lr )(Vy − Lr ψ̇) − L f mψ̇ y21
y21

f1(x, t)

(47)

+ LrCr (L f + Lr )

y1
f3(x, t)

According to the above the system’s control input can be also
written as a function of theflat output and its derivatives. Thus
one has

(
ẏ1
ÿ2

)
= 	(y1, y2, ẏ2)

(
u1
u2

)
+ 
(y1, y2, ẏ2) (48)

i.e.

(
u1
u2

)
= 	−1(y1, y2, ẏ2)

−1
((

ẏ1
ẏ2

)
− 
(y1, y2, ẏ2)

)
(49)

which means that provided that matrix 	(y1, y2, ẏ2) is
invertible, the control input u = [u1, u2]T can be writ-
ten as a function of the flat output and its derivatives. The
non-singularity ofmatrix	(y1, y2, ẏ2) depends on the deter-
minant

det (	(y1, y2, ẏ2))

= (Ir ω̇ f − C f R)(L2
f y

2
1m

2 − Cr (L f + Lr )Lr L f m + Cr Iz Lr )

Iz R2y1m2

(50)

This determinant has non-zero values because it holds:
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(i) (Ir ω̇ f − C f R) �=0 since for the wheels rotational accel-

eration one has ω̇ f <
C f R
Ir

, and also

(ii) (L2
f y

2
1m

2 − Cr (L f + Lr )Lr L f m + Cr Iz Lr ) �=0 when
Iz > L f m.

The differentially flatmodel of the vehicle can be alsowritten
in a canonical form after defining the new control input vector

(
v1
v2

)
= 	(y1, y2, ẏ2)

(
u1
u2

)
+ 
(y1, y2, ẏ2) (51)

thus one obtains a MIMO system description into canonical
form, i.e.

⎛
⎝
ẏ1
ẏ2
ÿ2

⎞
⎠ =

⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝
y1
y2
ẏ2

⎞
⎠ +

⎛
⎝
1 0
0 0
0 1

⎞
⎠

(
v1
v2

)
(52)

Once the vehicle’s model is written in the differentially flat
form the controller that enables tracking of a desirable tra-
jectory defined by yre f1 , yre f2 , ẏre f2 is given by

v1 = ẏre f1 − kp1
(
y1 − yre f1

)

v2 = ÿre f2 − kd2
(
ẏ2 − ẏre f2

)
− kp2

(
y2 − yre f2

)
(53)

and defining the error variables e1 = y1 − yre f1 and e2 =
y2 − yre f2 one has the following tracking error dynamics for
the closed-loop system

ė1 + kp1e1 = 0

ë2 + kd2 ė2 + kp2e2 = 0 (54)

Therefore, the suitable selection of gains kp1>0 and kp2 >

0, kd2 > 0 assures the asymptotic elimination of the tracking
errors, i.e. limt→∞e1(t) = 0 and limt→∞e2(t) = 0.

The control input that is finally applied for the vehicle’s
steering is given by

(
u1
u2

)
= 	(y1, y2, ẏ2)

−1
( (

v1
v2

)
− 
(y1, y2, ẏ2)

)
(55)

or equivalently(
u1
u2

)
= 	(y1, y2, ẏ2)

−1

×
[(

ẏre f1 − kp1 (y1 − yre f1 )

ÿre f2 − kd2 (ẏ2 − ẏre f2 ) − kp2 (y2 − yre f2 )

)
− 
(y1, y2, ẏ2)

]

(56)

The transformation of the vehicle’s model into a canonical
form, through the application of the differential flatness the-
ory, facilitates not only the design of a feedback controller

for trajectory tracking but also the design of filters for the
estimation of the state vector of the vehicle out of a limited
number of sensor measurements.

4 State Estimation with the Kalman Filter

4.1 The Continuous-Time Kalman Filter for the Linear
State Estimation Model

In the dynamic model of the 4-wheel vehicle described in
Eq. (52) it is assumed that the measurable elements of the
state vector are y1 and y2, which in turn can be obtained
through measurements of the vehicle’s velocities Vx , Vy and
ψ̇ . Therefore, to implement the state feedback control of
Eq. (56) it is necessary to estimate the non-measurable state
vector elements through somefiltering/estimation procedure.
Moreover, the filtering/estimation will be useful for identi-
fying unknown forces and torques exerted on the vehicle.

In the continuous-time representation of the system’s
dynamics, the continuous-time Kalman Filter stands for a
state estimator of optimal accuracy. The following
continuous-time dynamical system is assumed:
{
ẋ(t) = Ax(t) + Bu(t) + w(t), t≥t0
z(t) = Cx(t) + v(t), t≥t0

(57)

where again x∈Rm×1 is the system’s state vector, and
z∈Rp×1 is the system’s output. Matrices A,B and C can be
time-varying and w(t),v(t) are uncorrelated white Gaussian
noises. The covariance matrix of the process noise w(t) is
Q(t), while the covariance matrix of the measurement noise
is R(t). Then theKalmanFilter is again a linear state observer
which is given by
⎧⎪⎨
⎪⎩

˙̂x = Ax̂ + Bu + K [z − Cx̂], x̂(t0) = 0

K (t) = PCT R−1

Ṗ = AP + PAT + Q − PCT R−1CP

(58)

where x̂(t) is the optimal estimation of the state vector x(t)
and P(t) is the covariance matrix of the state vector estima-
tion error with P(t0) = P0. It can be seen that as in the case
of the Luenberger observer, the Kalman Filter consists of the
system’s state equation plus a corrective term K [z − Cx̂].
The associated Riccati equation for calculating the covari-
ance matrix P(t) has the form given in the last row of Eq.
(58).

4.2 The Discrete-Time Kalman Filter for the Linear
State Estimation Model

In the discrete-time case the dynamical system is assumed to
be expressed in the form of a discrete-time state model:
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{
x(k + 1) = A(k)x(k) + B(k)u(k) + w(k)

z(k) = Cx(k) + v(k)
(59)

where the state x(k) is a m-vector, w(k) is a m-element
process noise vector and A is a m×m real matrix. Moreover
the output measurement z(k) is a p-vector, C is an p×m-
matrix of real numbers, and v(k) is the measurement noise.
It is assumed that the process noise w(k) and the measure-
ment noise v(k) are uncorrelated.

Now the problem of interest is to estimate the state x(k)
based on the measurements z(1), z(2), . . . , z(k). The initial
value of the state vector x(0), the initial value of the error
covariance matrix P(0) is unknown and an estimation of it is
considered, i.e. x̂(0) = a guess of E[x(0)] and P̂(0)=a guess
of Cov[x(0)].

For the initialization of matrix P one can set P̂(0) = λI ,
with λ > 0. The state vector x(k) has to be estimated taking
into account x̂(0), P̂(0) and the output measurements Z =
[z(1), z(2), . . . , z(k)]T , i.e. there is a function relationship:

x̂(k) = αn(x̂(0), P̂(0), Z(k)) (60)

Actually, this is a linear minimum mean squares estimation
problem (LMMSE) which is solved recursively, through the
function relationship

x̂(k + 1) = an+1(x̂(k), z(k + 1)) (61)

The process and output noise are white and their covari-
ance matrices are given by: E[w(i)wT ( j)] = Qδ(i − j)
and E[v(i)vT ( j)] = Rδ(i − j).

Using the above, the discrete-time Kalman Filter can be
decomposed into two parts: i) time update, and ii) measure-
ment update. The first part employs an estimate of the state
vector x(k) made before the output measurement z(k) is
available (a priori estimate). The second part estimates x(k)
after z(k) has become available (a posteriori estimate).

• When the set of measurements Z− = {z(1), . . . , z(k −
1)} is available. From Z− an a priori estimation of x(k)
is obtained which is denoted by x̂−(k) = the estimate of
x(k) given Z−.

• When z(k) becomes available, the set of the output mea-
surements becomes Z = {z(1), . . . , z(k)}, where x̂(k) =
the estimate of x(k) given Z .

The associated estimation errors are defined by

e−(k) = x(k) − x̂−(k) = the a priori error

e(k) = x(k) − x̂(k) = the a posteriori error (62)

Fig. 3 Schematic diagram of the Kalman filter loop

The estimation error covariance matrices associated with
x̂(k) and x̂−(k) are defined as [31]

P−(k) = Cov[e−(k)] = E[e−(k)e−(k)T ]
P(k) = Cov[e(k)] = E[e(k)eT (k)]

From the definition of the trace of a matrix, the mean square
error of the estimates can be written as

MSE(x̂−(k)) = E[e−(k)e−(k)T ] = tr(P−(k))

MSE(x(k)) = E[e(k)eT (k)] = tr(P(k))

Finally, the linear Kalman filter equations in cartesian coor-
dinates are measurement update:

K (k) = P−(k)CT [C ·P−(k)CT + R]−1

x̂(k) = x̂−(k) + K (k)[z(k) − Cx̂−(k)] (63)

P(k) = P−(k) − K (k)CP−(k)

time update:

P−(k + 1) = A(k)P(k)AT (k) + Q(k)

x̂−(k + 1) = A(k)x̂(k) + B(k)u(k) (64)

The schematic diagram of the KF loop is given in Fig. 3.

4.3 The Extended Kalman Filter

State estimation can be also performed for nonlinear dynam-
ical systems using the Extended Kalman Filter (EKF) recur-
sion. The following nonlinear model is considered [23,32]:

x(k + 1) = φ(x(k)) + L(k)u(k) + w(k)

z(k) = γ (x(k)) + v(k) (65)
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where x∈Rm×1 is the system’s state vector and z∈Rp×1 is the
system’s output, while w(k) and v(k) are uncorrelated, zero-
mean, Gaussian zero-mean noise processes with covariance
matrices Q(k) and R(k) respectively. The operatorsφ(x) and
γ (x) are vectors defined as

φ(x) = [φ1(x), φ2(x), . . . , φm(x)]T , and

γ (x) = [γ1(x), γ2(x), . . . , γp(x)]T , (66)

respectively. It is assumed that φ and γ are sufficiently
smooth in x so that each one has a valid series Taylor expan-
sion. Following a linearization procedure, φ is expanded into
Taylor series about x̂ :

φ(x(k)) = φ(x̂(k)) + Jφ(x̂(k))[x(k) − x̂(k)] + · · · (67)

where Jφ(x) is the Jacobian of φ calculated at x̂(k):

Jφ(x) = ∂φ

∂x
|x=x̂(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂φ1
∂x1

∂φ1
∂x2

· · · ∂φ1
∂xm

∂φ2
∂x1

∂φ2
∂x2

· · · ∂φ2
∂xm

...
...

...
...

∂φm
∂x1

∂φm
∂x2

· · · ∂φm
∂xm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(68)

Likewise, γ is expanded about x̂−(k)

γ (x(k)) = γ (x̂−(k)) + Jγ [x(k) − x̂−(k)] + · · · (69)

where x̂−(k) is the estimation of the state vector x(k) before
measurement at the k-th instant to be received and x̂(k) is the
updated estimation of the state vector after measurement at
the k-th instant has been received. The Jacobian Jγ (x) is

Jγ (x) = ∂γ

∂x
|x=x̂−(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂γ1
∂x1

∂γ1
∂x2

· · · ∂γ1
∂xm

∂γ2
∂x1

∂γ2
∂x2

· · · ∂γ2
∂xm

...
...

...
...

∂γp
∂x1

∂γp
∂x2

· · · ∂γp
∂xm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(70)

The resulting expressions create first order approximations
of φ and γ . Thus the linearized version of the system is
obtained:

x(k + 1) = φ(x̂(k)) + Jφ(x̂(k))[x(k) − x̂(k)] + w(k)

z(k) = γ (x̂−(k)) + Jγ (x̂−(k))[x(k) − x̂−(k)] + v(k)

(71)

Now, the EKF recursion is as follows: First the time update
is considered: by x̂(k) the estimation of the state vector at
time instant k is denoted. Given initial conditions x̂−(0) and
P−(0) the recursion proceeds as:

• Measurement update. Acquire z(k) and compute:

K (k) = P−(k)J Tγ (x̂−(k))·[Jγ (x̂−(k))

P−(k)J Tγ (x̂−(k)) + R(k)]−1

x̂(k) = x̂−(k) + K (k)[z(k) − γ (x̂−(k))]
P(k) = P−(k) − K (k)Jγ (x̂−(k))P−(k) (72)

• Time update. Compute:

P−(k + 1) = Jφ(x̂(k))P(k)J Tφ (x̂(k)) + Q(k)

x̂−(k + 1) = φ(x̂(k)) + L(k)u(k) (73)

5 State Estimation Under Model Uncertainties and
External Disturbances

5.1 Unknown Input Observers

To account formodel uncertainties and external disturbances,
observer-based estimation has been proposed, enabling to
solve the problem of model accuracy in reverse [33–37].
This is done by modeling the mechatronic or robotic system
with an equivalent input disturbance that includes unmod-
eled dynamics. An observer is then designed to estimate the
disturbance in real time and provide feedback to cancel it.

The Unknown Input observer is applied to dynamical sys-
tems of the form

ẋ = Ax + B(u + we)

z = Cx (74)

while the disturbance dynamics is given by

ḋ = A f d

we = C f d (75)

Then, the unknown input observer provides a state estimate
of the extended state vector

( ˙̂x
˙̂d

)
=

(
A BC f

0 A f

)(
x̂
d̂

)
+

(
B
0

)
u + K (z − Cx̂) (76)

In the generic case one can assume that the disturbances
vector we varies dynamically in time. However, in several
cases it suffices to assume a constant or piecewise constant
disturbance ẇe(z) = 0 where A f = 0 and C f = 1. The
observer’s gain can be obtained through the standard Kalman
Filter recursion.
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5.2 Perturbation Observer

The perturbation observer is an extension of the unknown
inputs observer which takes into account not only exter-
nal disturbances but also parametric uncertainties. In the
discrete-time form, the system dynamics is given by

xk+1 = Axk + Buk + w f

z = Cxk (77)

while the disturbance dynamics is given by

dk = A f dk−1 + B f (B
+(x̂k − Ax̂k−1) − uk−1)

ŵ fk = C f dk (78)

x̂k+1 = Ax̂k + B(uk + ŵ fk ) + L(zk − Cx̂k)

where B+ is theMoore-Penrose pseudo-inverse of matrix B.
The unknown input can represent traditional external distur-
bances and model uncertainties, i.e. w f = we + 	Axk +
	Buk .

5.3 Extended State Observer

The Extended State Observer uses a canonical form so the
unmodelled dynamics appear at the disturbance estimation
part. The system’s description in the canonical form is given
by

x (n)
1 = f (x, t, u, w f ) + bmu

z = x1 (79)

x =
(
x1 ẋ1 · · · x (n−1)

1

)T

⎛
⎜⎜⎜⎜⎜⎝

˙̂x1
· · ·
˙̂xn−1˙̂xn˙̂f

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

x̂2
· · ·
x̂n

f̂ + bmu
0

⎞
⎟⎟⎟⎟⎠

+ K (x1 − x̂1) (80)

The Extended State Observer can be also modified to take
into account derivatives of the disturbance

x (n)
1 = f (x, t, u, w f ) + bmu

z = x1

x =
(
x1 ẋ1 · · · x (n−1)

1

)T

F = (
f ḟ · · · f (h−1)

)T

(81)

and now the state and disturbance observer takes the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

˙̂x1
· · ·
˙̂xn−1˙̂xn˙̂F1
· · ·
˙̂Fh−1˙̂Fh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂2
· · ·
x̂n

f̂ + bmu
F̂2
· · ·
F̂h
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+ K (x1 − x̂1) (82)

The latter form of the Extended State Observer described in
Eq. (82) enables to track various types of disturbances. For
example, h = 1 allows estimation of disturbance dynamics
defined by its first order derivative, and h = 2 allows esti-
mation of disturbance dynamics defined by its second order
derivative.

6 Estimation of Vehicle Disturbance Forces with
Kalman Filtering

6.1 State Estimation with the Derivative-Free Nonlinear
Kalman Filter

It was shown that the initial nonlinear model of the vehicle
can be written in the MIMO canonical form

⎛
⎝
ẏ1
ẏ2
ÿ2

⎞
⎠ =

⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝
y1
y2
ẏ2

⎞
⎠ +

⎛
⎝
1 0
0 0
0 1

⎞
⎠

(
v1
v2

)
(83)

Thus one has a MIMO linear model of the form

ẏ f = A f y f + B f v

z f = C f y f (84)

where y f = [y1, y2, ẏ2]T and matrices A f ,B f ,C f are in the
MIMO canonical form

A f =
⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠ B f =

⎛
⎝
1 0
0 0
0 1

⎞
⎠CT

f =
⎛
⎝
1 0
0 1
0 0

⎞
⎠ (85)

where the measurable variables y1 = Vx , y2 = L f mVy −
Izψ̇ are associated with the linear velocity of the vehicle
Vx , Vy and with its angular velocity ψ̇ . For the aforemen-
tionedmodel, and after carryingout discretization ofmatrices
A f , B f and C f with common discretization methods one
can perform linear Kalman filtering using Eq. (63) and Eq.
(64). This is Derivative-free nonlinear Kalman filtering for
the model of the vehicle which, unlike EKF, is performed
without the need to compute Jacobian matrices and does not
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introduce numerical errors due to approximate linearization
with Taylor series expansion.

6.2 Kalman Filter-Based Estimation of Disturbances

It is assumed that disturbance forces affect the nonlinear
vehicle model along its longitudinal and transversal axis and
that disturbance torques affect the nonlinear vehicle model
on its z axis. For example disturbance forces be due to a
force vector that coincides with the vehicle’s longitudinal
axis (e.g. traction disturbance) or disturbance torques can be
due to unmodeled lateral forces. These disturbance forces
and torques change dynamically in time and their dynamics
is given by

d̃x = fdx (Vx , Vy, ψ̇)

d̃y = fdy (Vx , Vy, ψ̇) (86)

d̃ψ = Tdψ (Vx , Vy, ψ̇)

Since the state variables of the vehicle’s dynamic model can
be written as functions of the flat outputs y1 and y2 and of
their derivatives it also holds

d̃(i)
x = f (i)

dx
(y1, y2, ẏ2)

d̃(i)
y = f (i)

dy
(y1, y2, ẏ2) (87)

d̃(i)
ψ = T (i)

dψ
(y1, y2, ẏ2)

where i = 1, 2, . . . stands for the i-th order derivative of the
disturbance variable.

Considering the effect of disturbance functions on the ini-
tial nonlinear state equation of the vehicle and the linear
relation between the initial state variables [Vx , Vy] and the
state variables of the flat system description [y1, y2] one has
the appearance of the disturbance terms in the canonical form
model of Eq. (52)

⎛
⎜⎜⎝
ẏ1

ẏ2

ÿ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 0 0

0 0 1

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
y1

y2

ẏ2

⎞
⎟⎟⎠+

⎛
⎜⎜⎝
1 0

0 0

0 1

⎞
⎟⎟⎠

(
v1

v2

)
+

⎛
⎜⎜⎝

1
m d̃x

0

L f
˙̃dy − ˙̃dψ

⎞
⎟⎟⎠

(88)

Next, the state vector of the model of Eq. (88) is extended
to include as additional state variables the disturbance forces
d̃x , d̃y and d̃psi . Then, in the new state-space description one

has z1 = y1, z2 = y2, z3 = ẏ2, z4 = f̃a = 1
m d̃x , z5 = ˙̃fa ,

z6 = ˙̃fb = L f
˙̃dy − ˙̃dψ , z7 = ¨̃fb, which takes the form of

matrix equations

ż = Ã·z + B̃·ṽ (89)

where the control input is

ṽ =
(
v1 v2

1
m

¨̃dx L f d̃
(3)
y − d̃(3)

ψ

)T
or

ṽ =
(
v1 v2

¨̃fa f̃ (3)
b

)T
(90)

with

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

C̃T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(91)

where the measurable state variables are z1 and z2. Since
the dynamics of the disturbance terms f̃a and f̃b are taken
to be unknown in the design of the associated disturbances’
estimator one has the following dynamics:

żo = Ão·z + B̃o·ṽ + K (Coz − Coẑ) (92)

where K∈R7×2 is the state estimator’s gain and

Ão =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

B̃o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
C̃T
o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(93)

Defining as Ãd , B̃d , and C̃d , the discrete-time equivalents of
matrices Ão, B̃o and C̃o respectively, a Derivative-free non-
linear Kalman Filter can be designed for the aforementioned
representation of the system dynamics [24,25]. The associ-
ated Kalman Filter-based disturbance estimator is given by

measurement update

K (k) = P−(k)C̃T
d [C̃d ·P−(k)C̃T

d + R]−1

x̂(k) = x̂−(k) + K (k)[z(k) − C̃d x̂
−(k)] (94)

P(k) = P−(k) − K (k)C̃d P
−(k)

time update

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k)

x̂−(k + 1) = Ãd(k)x̂(k) + B̃d(k)ṽ(k) (95)
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Fig. 4 Control loop for the
autonomous vehicle comprising
a flatness-based nonlinear
controller and a Kalman
Filter-based disturbances
estimator

To compensate for the effects of the disturbance forces it
suffices to use in the control loop the modified control input
vector

v =
⎛
⎝v1 − ˆ̃fa

v2 − ˆ̃̇
fb

⎞
⎠ or v =

(
v1 − ẑ4
v2 − ẑ6

)
(96)

7 Simulation Tests

To evaluate for the performance of the proposed nonlin-
ear control scheme, as well as about the performance of
the Kalman Filter-based disturbances estimator simulation
experiments have been carried out. Different velocity set-
points have been assumed (for velocity along the horizontal
and vertical axis of the inertial reference frame, as well as for
angular velocity round the vehicle’s z axis). Moroever, dif-
ferent disturbances forces and torques have been assumed to
affect the vehicles’ dynamic model. Using the representation
of the vehicle’s dynamics given in Eq. (88) two general-
ized disturbance forces/torques have been considered: the
first denoted as f̃a was associated with state variable y1,
while the second one denoted as f̃b was associated with
the state variable y2. It was also assumed that the change
in time of the generalized forces and torques was defined

by the second derivative of the associated variable, i.e. ¨̃fa
and ¨̃fb. The disturbances dynamicswas completely unknown
to the controller and their identification was performed in
real time by the disturbance estimator. The control loop
used in the vehicle’s autonomous navigation is given in
Fig. 4

The measurable variables used by the control and distur-
bances’ estimation scheme were the vehicle’s velocity Vx

along the longitudinal axis, the vehicle’s velocity Vy along
the lateral axis and the vehicle’s yaw rate ψ̇ . The first two
variables can be obtained with the use of onboard accelerom-
eters while the third variable can be obtainedwith the use of a
gyrocompass. The longitudinal axis of the vehicle is denoted
as x-axis, while the lateral axis of the vehicle is denoted
as y-axis. As it can be seen in Figs. 5, 6, 7, 8, 9, 10, 11,
and 12 the proposed nonlinear controller succeeded accurate
tracking of velocity setpoints.Moreover, the efficient estima-
tion of disturbance forces and torques that was succeeded by
the Kalman Filter-based disturbance estimator enabled their
compensation through the inclusion of an additional control
term in the loop.

Remark 1 In the AGV state estimation and control problem,
randomvariables are the ones describingmeasurement noise.
The Kalman Filter provides an optimal estimate about the
state variables of the vehicle in the presence ofGaussianmea-
surement noise in sensors.Besides, there is lackof knowledge
about the mathematical description of disturbance forces and
torques that affect the vehicle’s motion. These perturbation
terms are not necessarily random but their mathematical
description is unknown and time-varying. By redesigning
the Derivative-free nonlinear Kalman Filter as a disturbance
observer it becomes possible to estimate such disturbance
inputs and to compensate for them.

Remark 2 By applying differential flatness theory and the
associated change of state variables (diffeomorphisms) the
state vector of the vehicle is transformed into the linear
canonical form, as described by Eq. (83). For the latter
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Fig. 5 Vehicle control under disturbances profile 1: a convergence of x-axis velocity Vx (blue line) to the desirable setpoint (red line), b convergence
of the y-axis velocity Vy (blue line) to the desirable setpoint (red line)
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Fig. 6 Vehicle control under disturbances profile 1: a convergence of yaw rate ψ̇ (blue line) to the desirable setpoint (red line), b estimation of
the disturbance terms and of their rate of change (red line) and the associated real values (blue line)

description of the system, state estimation can be performed
with the use of the standardKalman Filter recursion. Besides,
by exploiting the inverse transformation that is described in

Eqs. (36)–(38) it becomes possible to obtain estimates of the
state variables of the initial nonlinear model of the vehicle,
which has been been described in Eq. (1)–(3). Unlike state
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Fig. 7 Vehicle control under disturbances profile 2: a convergence of x-axis velocity Vx (blue line) to the desirable setpoint (red line), b convergence
of the y-axis velocity Vy (blue line) to the desirable setpoint (red line)
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Fig. 8 Vehicle control under disturbances profile 2: a convergence of yaw rate ψ̇ (blue line) to the desirable setpoint (red line), b estimation of
the disturbance terms and of their rate of change (red line) and the associated real values (blue line)

estimation for nonlinear dynamicalmodelswith the use of the
Extended Kalman Filter, in the proposed filtering approach
(Derivative-free nonlinear Kalman Filter) there is no need to

compute Jacobian matrices and the associated partial deriv-
atives. A detailed oomparison between the Derivative-free
nonlinear Kalman Filter and the Extended Kalman Filter
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Fig. 9 Vehicle control under disturbances profile 3: a convergence of x-axis velocity Vx (blue line) to the desirable setpoint (red line), b convergence
of the y-axis velocity Vy to the desirable setpoint (blue line) and the associated real values (red line)

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

time

V
e

lψ

0 20 40
−2

0

2

4

time

fa
 −

 f
a

e
s
t

0 20 40
−0.5

0

0.5

1

time

d
fa

/d
t 

−
 d

fa
e
s
t/
d

t

0 20 40
−10

0

10

20

30

time

d
fb

/d
t 

−
 d

fb
e
s
t/
d

t

0 20 40
−0.5

0

0.5

1

1.5

time

d
f2

b
/d

t2
 −

 d
f2

b
e
s
t/
d

t2

(b)(a)

Fig. 10 Vehicle control under disturbances profile 3: a convergence of yaw rate ψ̇ (blue line) to the desirable setpoint (red line) , b estimation of
the disturbance terms and of their rate of change (red line) and the associated real values (blue line)

can be found in [24] and [25]. The Derivative-free nonlinear
Kalman Filter outperforms the Extended Kalman Filter in
two aspects: (i) it is computationally faster because it does

not require the online computation of Jacobian matrices, (ii)
it provides more accurate state estimates because it avoids
the cumulative linearization errors which appear in the case
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Fig. 11 Vehicle control under disturbances profile 4: a convergence of x-axis velocity Vx (blue line) to the desirable setpoint (red line) , b
convergence of the y-axis velocity Vy (blue line) to the desirable setpoint (red line)
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Fig. 12 Vehicle control under disturbances profile 4: a convergence of yaw rate ψ̇ (blue line) to the desirable setpoint (red line) , b Estimation of
the disturbance terms and of their rate of change (red line) and the associated real values (blue line)

of the Extended Kalman Filter, and which are due to the trun-
cation of higher order terms in the Taylor series expansion
of the vehicle’s model.

Remark 3 The application of the disturbance estimation and
compensation scheme that is described in the manuscript
is not constrained to a specific type of perturbation inputs
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(forces and torques) that may distort the vehicle’s motion.
Therefore, there is no limitation about the mathematical
description of the perturbation inputs, apart from the require-
ment that they should be bounded. The disturbance terms
may even exhibit discontinuities and jumps and despite such
abrupt changes the Derivative-free nonlinear Kalman Filter
can track them accurately. Finally, in case that the sensors’
measurement noise (accelerometers and gyrocompasses) are
subjected to white Gaussian noise, the estimation that is pro-
vided by the Derivative-free nonlinear Kalman Filter, about
both the state variables of the model and the perturbation
inputs, is an optimal one.

Remark 4 Flatness-based control is a global linearization-
based control method which makes use of the linearized
state-space model of the system that is obtained after a state
variables transformation (diffeomorphism). Using the lin-
earized equivalent description of the system one can design a
stabilizing feedback controller with pole placementmethods.
The stability of flatness-based control loops is analytically
proven. On the other hand, in PID control the selection of
the controller gains follows in most cases an empirical pro-
cedure and remains valid only round local operating points.
This means that a change in the operating conditions of the
robotic vehicle, will also cause the loss of stability of the con-
trol loop. PID control is output feedback-based and performs
differentiation of the tracking error. Thismay also incur unde-
sirable transients and abrupt variations of the control signal.
Finally, taking into account the nonlinear dynamics of the
robotic vehicle no proof of global asymptotic stability of the
PID control can be demonstrated.

Remark 5 Singularities in the vehicle’s control are avoided.
The proposed control scheme is valid provided that the
vehicle’s velocity satisfies the constraint vx �= 0 and vy �= 0.
Apart from this, the non-singularity conditions of the control
method have been defined in Eqs. (49) and (50). By assuring
that matrix 	 is invertible then singularity is avoided. Nec-
essary and sufficient conditions for the avoidance of such a
singularity have been provided. The article solves both the
stabilization and tracking problem for the velocity state vec-
tor of the vehicle, according to the dynamic model defined
in Eqs. (1)–(3). The vehicle’s velocity expressed in an iner-
tial reference frame and comprising the linear velocity state
variables ẋ ,ẏ and the angular velocity state variable ψ̇ can be
made to convergence to any time-invariant setpoint (stabiliza-
tion) or can bemade to converge to any time-varying setpoint
(tracking). By extending the state vector of the vehicle so as
to comprise as state variable the cartesian coordinates of the
AGV as well as its heading angle one can also arrive at the
formulation of the control problem for the vehicle’s posi-
tion. This can be also solved in the context of flatness-based
control.

Remark 6 The objective of the article is not only to control
and stabilize the dynamics of the autonomous vehicles but
also to estimate its state vector from indirect measurements.
Thus one has to solve the joint nonlinear control and estima-
tion (filtering) problem for the AGV’s model, which is not
possible with other techniques, such as sliding mode control
or backstepping control. First about sliding mode control it
is noted that its application to the MIMO model of the vehi-
cle is not straightforward for the following reasons (i) the
sliding surface should have a vector form, (ii) uncertainty
ranges for the model of the vehicle and for external pertur-
bations are not known, (iii) the switching control term of
sliding mode control can cause undesirable oscillations and
unacceptable transients for the vehicle’s state vector, (iv) the
solution of the state estimation problem with the use of a
sliding mode observer will be also of inferior performance
comparing toKalman Filtering due to chattering phenomena,
(v) there is no direct and easy to implement stability proof for
the joint sliding-mode controller and sliding-mode observer
scheme. Second, about backstepping control it is noted that
its application to the model of the autonomous vehicle is not
possible because this model is not found in the backstepping
integral (triangular) form. For the AGV model to be brought
to such a form a prior transformation is needed, but this falls
again to the problem of writing the vehicle’s model in the
canonical (Brunovsky) form through differential flatness dif-
feomorphisms. Similarly, in the backstepping approach there
is no direct solution to the state and disturbances estimation
problem for the AGV.

8 Conclusions

Two different problems in the design of AGVs have been
treated. The first has to do with the design of a nonlinear
controller for autonomous navigation of the vehicle accord-
ing to specific velocity profiles. The second has to do with
the real time estimation and disturbances due to forces or
torques affecting the vehicle’s motion and with the estima-
tion of the unknown parts of the vehicle’s dynamics. Once
such disturbances have been identified with the use of a non-
linear filtering algorithm, that is redesigned in the form of a
disturbance observer, it is possible to include an additional
element in the vehicle’s controller that compensates for the
disturbances effects.

The proposed nonlinear controller is based on differential
flatness theory. It is shown that the vehicle’s model is a differ-
entially flat one, which means that all its state variables and
control inputs can be written as functions of the flat output
and its derivatives. Once this is done it is possible to write
the system in a linear canonical form (Brunovsky form) for
which one can easily design a state feedback controller. The
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flatness-based controller eliminates velocity tracking error
for all state variables of the vehicle.

The transformation into the linear canonical (Brunovsky)
form is also used to obtain an estimator of the vehicle’s
state vector through the processing of measurements from
on-board sensors. To this end the Derivative-free nonlinear
Kalman Filter is used, which stands for a linear Kalman
Filter recursion operating on the exactly linearized canon-
ical model of the vehicle, as obtained after the application
of the differential flatness transformation. The proposed
Derivative-free nonlinearKalmanFilter is significantly faster
than all other nonlinear state estimators (e.g. EKF or UKF)
while also succeeding very satisfactory accuracy in state esti-
mation. Moreover, comparing to the Extended Kalman Filter
it avoids linearization errors due to approximative lineariza-
tion and it does not require the computation of Jacobian
matrices.

By redesigning the Kalman Filter algorithm in the form
of a disturbance observer it is also possible to estimate
in real-time the effects of disturbance forces and torques
that are exerted on the vehicle’s model and of terms rep-
resenting unknown system dynamics. By knowing distur-
bances in the vehicle’s model their compensation is also
possible through the inclusion of an additional term in
the system’s controller. The efficiency of the proposed
scheme for nonlinear control of the 4-wheel vehicle’s
dynamic model and for estimation of disturbance’s or
uncertainties with the use of a Kalman Filter-based distur-
bance observer was confirmed through simulation experi-
ments.
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