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Abstract An adaptive fuzzy controller is designed for a
class of underactuated nonlinear robotic manipulators, under
the constraint that the system’s model is unknown. The
control algorithm aims at satisfying the H∞ tracking per-
formance criterion, which means that the influence of the
modeling errors and the external disturbances on the track-
ing error is attenuated to an arbitrary desirable level. After
transforming the robotic system into the canonical form,
the resulting control inputs are shown to contain nonlin-
ear elements which depend on the system’s parameters.
The nonlinear terms which appear in the control inputs are
approximated with the use of neuro-fuzzy networks. It is
shown that a suitable learning law can be defined for the
aforementioned neuro-fuzzy approximators so as to preserve
the closed-loop system stability. With the use of Lyapunov
stability analysis it is proven that the proposed adaptive fuzzy
control scheme results in H∞ tracking performance. The
efficiency of the proposed adaptive fuzzy control scheme is
checked in the case of a 2-DOF planar robotic manipulator
that has the structure of a closed-chain mechanism.
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Introduction

Control of underactuated robots has received significant
attention. The design of robotic mechanisms that can be con-
trolled with a smaller number of actuators than their degrees
of freedom enables to reduce cost and weight of robots and
to succeed robustness in the case of actuators’ failures. The
control problem of underactuated robotic manipulators has
been studied in several research articles during the last years
[1–10]. In [1] the property of differential flatness for a class
of planar under-actuated open-chain robots having a specific
inertia distribution, but driven by only one or two actuators
has been analyzed. In [3] it was shown that closed chain
underactuated robots satisfy differential flatness properties
and this enables their transformation into a linearized form
for which the design of a feedback controller becomes eas-
ier. In [4] energy-based control for underactuated robotic
manipulators has been proposed. In [5,6] a Lyapunov-based
approach to the design of efficient control for underactu-
ated robots is proposed. In [7] passive velocity field control
and decoupling vector field has been applied to the control
of underactuated mechanical systems. In [8] the problem
of point-to-point control for underactuated robotic manip-
ulators has been presented. In [9] an adaptive neuro-fuzzy
inference system is proposed for estimating contact forces in
underactuated robotic grippers. In [10] an open loop vibra-
tional control for an underactuated mechanical system has
been studied.

Flatness-based control is currently a main direction in
the design of nonlinear control systems [11–13]. The paper
proposes flatness-based adaptive fuzzy control for nonlinear
dynamical systemswith unknown parameters. To find out if a
dynamical system is differentially flat, the following should
be examined: (i) the existence of the so-called flat output,
i.e., a new variable which is expressed as a function of the
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system’s state variables. It should hold that the flat output
and its derivatives should not be coupled in the form of an
ordinary differential equation (ODE), (ii) the components of
the system (i.e., state variables and control input) should be
expressed as functions of the flat output and its derivatives
[14–22]. Differential flatness is a property characterizing
classes of systems. By expressing all system variables as
functions of the flat output and its derivatives enables trans-
formation to a linearized form for which the design of the
controller becomes easier. By showing that a system is dif-
ferentially flat one can easily design a reference trajectory
as a function of the so-called flat output and find a control
law that assures tracking of this desirable trajectory [15,17].
Results on flatness-based control under linear time-varying
models have been provided in [18]. Additionally, approaches
on adaptive control based on differential flatness theory have
been given in [19,20].

The paper is particularly concerned with closed-chain
underactuated robotic mechanisms which satisfy differential
flatness properties andwhich can bewritten in theBrunovsky
(canonical) form. Transformation into the Brunovsky form
can be succeeded for systems that admit static feedback lin-
earization (i.e., a change of coordinates for both the system
state variables and the system’s control input). Single-input
differentially flat systems admit static feedback lineariza-
tion and therefore can be finally written in the Brunovsky
form [23]. Moreover, flatness-based adaptive fuzzy control
can be applied to multi-input dynamical systems. For MIMO
dynamical systems which are differentially flat and which
admit static feedback linearization, transformation to the
canonical (Brunovsky) form can be performed. Moreover,
even for MIMO dynamical systems which are differentially
flat and do not admit static feedback linearization, however
they admit dynamical feedback linearization, it is possible to
succeed transformation to the canonical (Brunovsky) form.
Therefore, there exists a wide class of nonlinear dynamical
systems to which the proposed flatness-based adaptive fuzzy
control method can be applied [24].

After transformation to the linear canonical form, the
resulting control input for the underactuated robotic mecha-
nism is shown to contain nonlinear elements which depend
on the system’s parameters. If the parameters of the sys-
tem are unknown, then the nonlinear terms which appear
in the control signal can be approximated with the use of
neuro-fuzzy networks. In the present paper it is shown that a
suitable learning law can be defined for the aforementioned
neuro-fuzzy approximators so as to preserve the closed-loop
system stability. Lyapunov stability analysis proves also that
the proposed flatness-based adaptive fuzzy control scheme
results in H∞ tracking performance, in accordance to the
results of [25–28].

Adaptive fuzzy control has been proven to be an efficient
nonlinear control method [29–31]. The adaptive fuzzy con-

trol system based on differential flatness theory extends the
class of systems to which indirect adaptive fuzzy control can
be applied. This is particularly important for the design of
controllers, capable of efficiently compensating formodeling
uncertainties and external disturbances in nonlinear dynam-
ical systems. Unlike other adaptive fuzzy control schemes
which are based on several assumptions about the structure
of the nonlinear system as well as about the uncertainty char-
acterizing the system’s model, the proposed adaptive fuzzy
control scheme based on differential flatness theory offers an
exact solution to the design of fuzzy controllers for unknown
dynamical systems. The only assumption needed for the
design of the controller and for succeeding H∞ tracking per-
formance for the control loop is that there exists a solution for
a Riccati equation associated to the linearized error dynam-
ics of the differentially flat model. This assumption is quite
reasonable for several nonlinear systems, thus providing a
systematic approach to the design of reliable controllers for
such systems [24,27].

The structure of the paper is as follows: in “Dynamic
Model of the Closed-Chain 2-DOF Robotic System” sec-
tion the dynamic model of the closed-chain underactuated
robotic manipulator is analyzed. In “Linearization of the
Closed-Chain 2-DOF Robotic System Using Lie Algebra
Theory” section linearization of the dynamic model of the
robotic mechanism is performed with the use of Lie algebra
theory. In “Differential Flatness Theory” section differen-
tial flatness theory is analyzed. In “Differential Flatness
of the Closed-Chain 2-DOF Robotic System” section it is
proven that the dynamic model of the closed-chain under-
actuated robotic mechanism satisfies differential flatness
properties and through the associated diffeomorphism can
be transformed to the linear canonical (Brunovsky) form.
In “Flatness-Based Adaptive Fuzzy Control” section adap-
tive fuzzy control based on differential flatness theory is
applied to the closed-chain underactuated robotic mecha-
nism. In “Lyapunov Stability Analysis” section Lyapunov
stability analysis is provided for the adaptive fuzzy control
schemeof the roboticmanipulator. In “SimulationTests” sec-
tion the performanceof the adaptive fuzzy control approach is
evaluated through simulation experiments. Finally, in “Con-
clusions” section concluding remarks are stated.

DynamicModel of theClosed-Chain 2-DOFRobotic
System

The considered closed-chain 2-DOF robotic system depicted
in Fig. 1 consists of four bodies: (i) bodies 1 and 2 are two
sliders with massesm1 andm2, respectively [1–3]. Body 3 is
connected with a revolute joint to body 1 and has mass m3,

length l3 while its moment of inertia is I3. Similarly body 4
is connected to body 2 with a revolute joint, has mass m4,

length l4 while the associated moment of inertia is I4. The
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Fig. 1 A two-part
underactuated robotic system
constituting a closed-chain
mechanism

motion of the system takes place in the 2D xy plane depicted
in Fig. 1 while its dynamics is subjected to gravity.

The state variables for the robotic system are as follows
q = [q1, q2, q3, q4]T : q1 is the displacement of mass m1

along the x-axis, q3 is the turn angle of body 3 round the
revolute joint A. q2 is the displacement of m2 along the x-
axis and q4 is the turn angle of body 4 round the revolute
joint B. The following geometric constraints hold:

l3 sin (q3) = l4 sin (q4) ,

q1 + l3 cos (q3) = q2 + l4 cos (q4) . (1)

The control inputs exerted on the robotic model are the
horizontal force F1 that causes the displacement of mass m1

along the x-axis, the torque T3 that causes the rotation of the
link with length l3 round the revolute joint A, the horizontal
force F2 that causes the displacement of mass m2 along the
x-axis and the torque T4 that causes the rotation of the link
with length l4 round the revolute joint B. Thus, in the most
generic case the input vector can be u = [ f1, T3, f2, T4]T .

According the Euler–Lagrange analysis the dynamic model
of the robotic manipulator is obtained

A(q)q̈ + h(q, q̇) = u, (2)

where

A(q) =

⎛
⎜⎜⎝
a11 a12 0 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 a44

⎞
⎟⎟⎠ , (3)

with a11 = m1 + m3, a12 = a21 = −m3lc3 sin(q3), a22 =
m3l2c3 + I3, a33 = m2 + m4, a34 = a43 = −m4lc4 sin(q4),
a44 = m4l2c4 + I4, and

h(q, q̇) =

⎛
⎜⎜⎝

−m3lc3 cos(q3)q̇
2
3

m3glc3 cos(q3)
−m4lc4 cos(q4)q̇

2
4

m4glc4 cos(q4)

⎞
⎟⎟⎠ . (4)

Next, the case in which l3 = l4 is examined. Moreover,
it is considered that the mass m2 is connected to a spring
with elasticity k2. Finally, it is assumed that the only inputs
applied to the robotic model are u1 = f1 and u2 = T3. Then
the dynamic model of the robot becomes

A (ql) q̈l + h (ql , q̇l) = [u1, u2]
T , (5)

where ql = [q1, q3]T and q = [q1, q2, q3, q4]T .The inertia
and Coriolis matrices are defined as

A (ql) =
(
M1 + M2 −2M2l3 sin(q3)
−2M2l3 sin(q3) I3 + I4 + 4M2l23 sin

2(q3)

)
, (6)

h (ql , q̇l ) =
( −2M2l3q̇23 cos(q3) + k2ld
k4(q3 − π) + 2l3 sin(q3)(2M2l3q̇23 cos(q3) − k2ld ),

)

(7)

where M1 = m1 + m3, M2 = m2 + m4, ld = q1 +
2l3 cos(q3)− L . Denoting x = [q1, q3, q̇1, q̇3]T the robot’s
dynamic model can be written in the following state-space
form:
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ẋ = f (x) + g1(x)u1 + g2(x)u2, (8)

where

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

q̇1
q̇3

−k2ld (I3+I4)+2l3M2(k2(π−q3)sin(q3)+(I3+I4)q̇23 cos(q3)

M2(I3+I4)+M1(I3+I4+4M2l23 sin
2(q3)))

k4(M1+M2)(π−q3)+2I3M1 sin(q3)(k2ld−2l3M2q̇23 cos(q3))

M2(I3+I4)+M1(I3+I4+4M2l23 sin
2(q3))

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(9)

g1(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

I3+I4+4M2l23 sin
2(q3)

(I3+I4)M2+M1(I3+I4+4M2l23 sin
2(q3))

2M2l3 sin(q3)
(I3+I4)M2+M1(I3+I4+4M2l23 sin

2(q3))

⎞
⎟⎟⎟⎟⎟⎟⎠

, (10)

g2(x) =

⎛
⎜⎜⎜⎜⎜⎝

0
0

2M2l3 sin(q3)
(I3+I4)M2+M1(I3+I4+4M2l23 sin

2(q3))

M1+M2
(I3+I4)M2+M1(I3+I4+4M2l23 sin

2(q3))

⎞
⎟⎟⎟⎟⎟⎠

. (11)

The robotic system is underactuated when only one of the
control inputs is enabled. It can be proven that when the only
input is u1 = F1 then the robotic system is not static feedback
linearizable.

Next, the case in which the only control input is u2 = T3 is
examined. When k2 �= 0 and k4 = 0 then the robotic model
is static feedback linearizable. Equivalently this means that
(i) the distribution D3 = 〈g(x), ad f (x)g(x), ad2f (x)g(x),

ad3f (x)g(x)〉 has full rank and (ii) the vector fields D0 =
〈g(x)〉, D1 = 〈g(x), ad f (x)g(x)〉 and D2 = 〈g(x), ad f (x)

g(x), ad2f (x)g(x)〉 are involutive.

Linearization of the Closed-Chain 2-DOF Robotic
System Using Lie Algebra Theory

The following variable is defined first

z1 = y = h1(q) = (M1 + M2) q1 + 2M2l3 cos (q3) . (12)

Applying Lie-algebra theory, tt holds that [32]

z2 = L f h1 =
(

∂h1
∂q1

∂h1
∂q3

∂h1
∂q̇1

∂h1
∂q̇3

)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z2 = L f h1 = (
(M1 + M2 −2M2l3 sin(q3) 0 0)

)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z2 = L f h1 = (M1 + M2) f1 − 2M2l3 sin (q3) f2⇒
z2 = L f h1 = (M1 + M2) q̇1 − 2M2l3 sin (q3) q̇3. (13)

Similarly, it holds

z3 = L2
f h1 =

(
∂z2
∂q1

∂z2
∂q3

∂z2
∂q̇1

∂z2
∂q̇3

)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z3 = L2
f h1 = (

0 −2M2l3 cos(q3)q̇3 (M1 + M2) −2M2l3 sin(q3)
)

⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z3 = L2
f h1 = (M1 + M2) f3 − 2M2l3 sin (q3)

× f4 − 2M2l3 cos (q3) q̇3 f2. (14)

It holds that

q̈1 = f3 + ga3u1 + gb3u2⇒q̈1 = f3 + gb3u2⇒ f3

= q̈1 − gb3u2

q̈3 = f4 + ga4u1 + gb4u2⇒q̈4 = f4 + gb4u2⇒ f4

= q̈3 − gb4u2. (15)

Therefore, it holds

z3 = (M1 + M2) f3 − 2M2l3 sin (q3) f4 − 2M2l3 cos (q̇3) f2⇒
z3 = (M1 + M2) q̈1 − (M1 + M2) gb2u2 − 2M2l3 sin (q3) q̈3

+2M2l3 sin (q3) gb4u2 − 2M2l3 cos (q3) q̇
2
3⇒, (16)

or equivalently

z3 = (M1 + M2) q̈1 − 2M2l3 sin (q3) q̈3

− (M1 + M2)2M2l3 sin(q3)

(I3 + I4)M2 + M1(I3 + I4 + 4M2l23 sin
2(q3))

u2

+ (M1 + M2)2M2l3 sin(q3)

(I3 + I4)M2 + M1(I3 + I4 + 4M2l23 sin
2(q3))

u2

− 2M2l3 cos(q3)q̇
2
3 . (17)

Consequently, it holds that

z3 = (M1 + M2) q̈1 − 2M2l3 sin (q3) q̈3 − 2M2l3q̇
2
3 cos (q3) .

(18)

Using Eqs. (5) and (6)–(7) one obtains that

(M1 + M2) q̈1 − 2M2l3 sin (q3) q̈3

= 2M2l3q̇
2
3 cos (q3) − k2ld + u1, (19)
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with u1 = 0 due to underactuation. Therefore, it holds

z3 = 2M2l3q̇
2
3 cos (q3) − k2ld − 2M2l3q̇

2
3 cos (q3) ⇒

z3 = −k2ld⇒z3 = −k2 (q1 + 2l3 cos (q3) − L) . (20)

Similarly, one has

z4 = L3
f h1(q) =

(
∂z3
∂q1

∂z3
∂q3

∂z3
∂q̇1

∂z3
∂q̇3

)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z4 = (−k2 2k2l3 sin(q3) 0 0
)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z4 = −k2 f1 + 2k2l3 sin (q3) f2⇒
z4 = −k2q̇1 + 2k2l3 sin (q3) q̇3. (21)

Moreover, it holds that

ż4 = L4
f h1 + Lga L

3
f h1u1 + Lgb L

3
f h1u2. (22)

It holds that

L4
f h1 =

(
∂z4
∂q1

∂z4
∂q3

∂z4
∂q̇1

∂z4
∂q̇3

)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

L4
f h1 = (

0 2k2l3 cos(q3)q̇3 −k2 2k2l3 sin(q3)
)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

L4
f h1 = 2k2l3 cos (q3) q̇3 f2 − k2 f3 + 2k2l3 sin (q3) f4⇒

L4
f h1 = 2k2l3 cos (q3) q̇

2
3 − k2 f3 + 2k2l3 sin (q3) f4. (23)

It holds that u1 = 0 and

Lgb L
3
f h1 =

(
∂z4
∂q1

∂z4
∂q3

∂z4
∂q̇1

∂z4
∂q̇3

)
⎛
⎜⎜⎝
gb1
gb2
gb3
gb4

⎞
⎟⎟⎠ ⇒

Lgb L
3
f h1 = (

0 2k3l3 cos(q3)q̇3 −k2 2k2l3 sin(q3)
)
⎛
⎜⎜⎝
gb1
gb2
gb3
gb4

⎞
⎟⎟⎠ ,

(24)

which can be also written as

Lgb L
3
f h1 = −k2

2M2l3 sin(q3)

(I3 + I4)M2 + M1(I3 + I4 + 4M2l23 sin
2(q3))

+2k2l3 sin (q3)
M1 + M2

(I3 + I4)M2 + M1(I3 + I4 + 4M2l23 sin
2(q3))

⇒

Lgb L
3
f h1 = 2k2l3 sin(q3)M1

(I3 + I4)M2 + M1(I3 + I4 + 4M2l23 sin
2(q3))

.

(25)

Using next the relation

ż4 = L(4)
f h1 + Lga L

3
f h1u1 + Lgb L

3
f h1u2 = v, (26)

and that ż1 = z2, ż2 = z3, ż3 = z4 one has that the robotic
model can be written in the linear canonical (Brunovsky)
form

⎛
⎜⎜⎝
ż1
ż2
ż3
ż4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
z1
z2
z3
z4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ v. (27)

For the linearized system, a suitable feedback control law
is

v = żd4 − k1
(
z4 − zd4

)
− k2

(
z3 − zd3

)
− k3

(
z2 − zd2

)

− k4
(
z1 − zd1

)
. (28)

Differential Flatness Theory

Overview of Differential Flatness Theory

Differential flatness theory can be applied to the generic class
of systems ẋ = f (x, u). In this study, the interest is in
dynamic models of the form of Eq. (29).

ẋ = f (x, t) + g(x, t)u. (29)

The principles of differential flatness theory have been
extensively studied in the relevant bibliography [11–23]: a
finite dimensional system is considered. This can be writ-
ten in the form of an ODE, i.e., Si (w, ẇ, ẅ, . . . , w(i)), i =
1, 2, . . . , q. The term w denotes the system variables (these
variables are for instance the elements of the system’s state
vector and the control input) while w(i), i = 1, 2, . . . , q
are the associated derivatives. Such a system is said to
be differentially flat if there exists a set of m functions
y = (y1, . . . , ym) of the system variables and of their time-
derivatives, i.e., yi = φ(w, ẇ, ẅ, . . . , w(αi )), i = 1, . . . ,m
satisfying the following two conditions [15,23]:
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(1) There does not exist any differential relation of the form
R(y, ẏ, . . . , y(β)) = 0 which implies that the deriva-
tives of the flat output are not coupled in the sense of an
ODE, or equivalently it can be said that the flat output is
differentially independent.

(2) All system variables (i.e., the elements of the system’s
state vector w and the control input) can be expressed
using only the flat output y and its time derivatives
wi = ψi (y, ẏ, . . . , y(γi )), i = 1, . . . , s. An equivalent
definition of differentially flat systems is as follows:

Definition the system ẋ = f (x, u), x∈Rn, u∈Rm is differ-
entially flat if there exist relations

h: Rn×(
Rm)r+1→Rm,

φ:
(
Rm)r→Rn and

ψ :
(
Rm)r+1 →Rm, (30)

such that

y = h
(
x, u, u̇, . . . , u(r)

)
,

x = φ
(
y, ẏ, . . . , y(r−1)

)
, and

u = ψ
(
y, ẏ, . . . , y(r−1), y(r)

)
. (31)

This means that all system dynamics can be expressed as
a function of the flat output and its derivatives, therefore the
state vector and the control input can be written as

x(t) = φ
(
y(t), ẏ(t), . . . , y(r−1)(t)

)
, and

u(t) = ψ
(
y(t), ẏ(t), . . . , y(r)(t)

)
. (32)

Classes of Differentially Flat Systems

For certain classes of dynamical systems it has been proven
that they satisfy differential flatness properties. The following
classes of nonlinear differentially flat systems are defined
[21,23]:

(1) Affine in-the-input systems the dynamics of such systems
is given by:

ẋ = f (x) +
m∑
i=1

gi (x)ui . (33)

From Eq. (33) it can be concluded that the above state
equation can also describe MIMO dynamical systems.
Without loss of generality it is assumed that G =
[g1, . . . , gm] is of rank m. In case that the flat outputs of
the aforementioned system are only functions of states

x, then this class of dynamical systems is called 0-flat.
It has been proven that a dynamical affine system with n
states and n − 1 inputs is 0-flat if it is controllable.

(2) Driftless systems these are systems of the form

ẋ =
m∑
i=1

fi (x)ui . (34)

For driftless systems with two inputs, i.e.,

ẋ = f1(x)u1 + f2(x)u2, (35)

the flatness property holds, if and only if the rank of
matrix Ek+1 := {Ek, [Ek, Ek]}, k≥0 with E0 :=
{ f1, f2} is equal to k + 2 for k = 0, . . . , n − 2. It has
been proven that a driftless system that is differentially
flat, is also 0-flat.

Moreover, for flat systems with n states and n − 2 control
inputs, i.e.,

ẋ =
n−2∑
i=1

ui fi (x) x∈Rn, (36)

the flatness property holds, if controllability also holds. Fur-
thermore, the system is 0-flat if n is even.

Differential Flatness of the Closed-Chain 2-DOF
Robotic System

Differential Flatness Properties of the Underactuated
Robot

The following flat output is chosen:

y = (M1 + M2) q1 + 2M2l3 cos (q3) . (37)

It holds that

ẏ = (M1 + M2) q̇1 − 2M2l3 sin (q3) q̇3⇒
ÿ = (M1 + M2) q̈1 = 2M2l3 sin (q3) q̈3

− 2M2l3 cos (q3) q̇
2
3 . (38)

Using Eqs. (2) and (3)–(4) it holds that

(M1 + M2) q̈1 − 2M2l3 sin (q3) q̈3

= 2M2l3q̇
2
3 cos (q3) − k2ld + u1, (39)

where due to underactuation one has u1 = F1 = 0. There-
fore, it holds

ÿ = −k2ld⇒ÿ = −k2 (q1 + 2l3 cos (q3) − L) . (40)
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Fig. 2 Flatness-based
diffeomorphism and its inverse,
enabling the implementation of
nonlinear control for the
underactuated robotic
mechanism

Consequently

y(3) = −k2 [q̇1 − 2l3 sin (q3) q̇3] , (41)

and respectively

y(4) = −k2q̈1 + 2k2l3 cos (q3) q̇
2
3 + 2k2l3 sin (q3) q̈3. (42)

From Eq. (37) describing the flat output and from the equa-
tions of its higher order derivatives one has a set of equations
which can be solved with respect to the state variables
q1, q3, q̇1 and q̇3. It holds that

q1 = k2y − M2 ÿ + M2k2L

k2M1
, (43)

q3 = cos−1
(
ÿ + k2q1 − k2L

2k2l3

)
, (44)

q̇1 = k2 ẏ + M2y(3)

k2M1
, (45)

q̇3 = 1

sin(q3)

(M1 + M2)q̇1 − ẏ

2M2l3
. (46)

Having expressed the elements of the state vector q as func-
tions of the flat output and its derivatives and knowing that
q̈1 = f3 + ga3u1 + gb3u2 and q̈3 = f4 + ga4u1 + gb4u2 it
holds that the control inputs u1 and u2 can be also written as
functions of the flat output and its derivatives. Therefore, the
robotic system stands for a differentially flat model. The dif-

ferential flatness theory transformation of the underactuated
model and its inverse are depicted in Fig. 2.

Design of a Flatness-Based Controller for the
Closed-Chain 2-DOF Robotic System

From the relation q̇ = f (q) + ga(q)u1 + gb(q)u2 and the
associated relations about f (q), gaq and gb(q) it holds

q̈1 = f3 + ga3u1 + gb3u2⇒q̈1 = f3 + gb3u2⇒

q̈1 = −k2ld (I3 + I4) + 2l3M2[K4(π − q3) sin(q3) + (I3 + I4)q̇23 cos(q3)]
M2(I3 + I4) + M1(I3 + I4 + 4M2l23 sin

2(q3))

+ 2M2l3 sin(q3)

(I3 + I4)M2 + M1(I3 + I4 + 4M2l23 sin
2(q3))

u2. (47)

Equivalently, one has

q̈3 = f4 + ga4u1 + gb4u2⇒q̈3 = f3 + gb4u2⇒

q̈3 = k4(M1 + M2)(π − q3) + 2l3M1 sin(q3)[K2ld − 2l3M2q̇23 cos(q3)]
M2(I3 + I4) + M1(I3 + I4 + 4M2l23 sin

2(q3))

+ M1 + M2

(I3 + I4)M2 + M1(I3 + I4 + 4M2l23 sin
2(q3))

u2. (48)

Consequently, it holds

y(4) = −k2q̈1 + 2k2l3 cos (q3) q̇
2
3 + 2k2l3 sin (q3) q̈3⇒

y(4) = −k2
(
f3 + gb3

)
u2 + 2k2l3 cos (q3) q̇

2
3

+ 2k2l3 sin (q3)
(
f4 + gb4u2

) ⇒
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y(4) = 2k2l3 cos (q3) q̇
2
3 − k2 f3 + 2k2l3 sin (q3) f4

+ [−k2gb3 + 2k2l3 sin (q3) gb4
]
u2⇒

y(4) = fv + gvu⇒y(4) = v, (49)

where v = fv + gvu2 with

fv = 2k2l3 cos (q3) q̇
2
3 − k2 f3 + 2k2l3 sin (q3) f4,

gv = −k2gb3 + 2k2l3 sin (q3) gb4 . (50)

The following new state variables are defined z1 = y, z2 =
ẏ, z3 = ÿ and z4 = y(3). For the new state variables a
description of the system in the linear canonical (Brunovsky)
form is obtained

⎛
⎜⎜⎝
ż1
ż2
ż3
ż4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
z1
z2
z3
z4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ v. (51)

Considering that the linear displacement of the left part of
the kinematic chain q1 is measurable, and that the same holds
for the turn angle q3 of joint A one has that the flat output
y = (M1 + M2)q1 + 2M2l3 cos(q3) is also a measurable
variable.

Using the description of system in the linear canonical
form, the appropriate control law is

v = żd4 − k1
(
z4 − zd4

)
− k2

(
z3 − zd3

)
− k3

(
z2 − zd2

)

− k4
(
z1 − zd1

)
. (52)

Flatness-Based Adaptive Fuzzy Control

Nonlinear System Transformation into the Brunovsky
form

A single-input differentially flat dynamical system is consid-
ered again:

ẋ = fs(x, t) + gs(x, t)(u + d̃), x∈Rn, u∈R, d̃∈R,

(53)

where fs(x, ), gs(x, t) are nonlinear vector fields defining
the system’s dynamics, u denotes the control input and d̃
denotes additive input disturbances. Knowing that the system
of Eq. (53) is differentially flat, the next step is to try to write
it into a Brunovsky form. It has been shown that, in general,
transformation into the Brunovsky (canonical) form can be
succeeded for systems that admit static feedback lineariza-
tion [23]. Single input differentially flat systems, admit static
feedback linearization, therefore they canbe transformed into

the Brunovsky form. For multi-input differentially flat sys-
tems there exists a transformation into the Brunovsky form
[24].

The selected flat output is again denoted by y. Then, as
analyzed in “Differential Flatness Theory” section, for the
state variables xi of the system of Eq. (53) it holds

xi = φi

(
y, ẏ, . . . , y(r−1)

)
, i = 1, . . . , n, (54)

while for the control input it holds

u = ψ
(
y, ẏ, . . . , y(r−1), y(r)

)
. (55)

Introducing the new state variables y1 = y and yi =
y(i−1), i = 2, . . . , n, the initial system of Eq. (53) can be
written in the Brunovsky form [33,34]:

⎛
⎜⎜⎜⎜⎜⎜⎝

ẏ1
ẏ2
· · ·
· · ·
ẏn−1

ẏn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

y1
y2
· · ·
· · ·
yn−1

yn

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
· · ·
· · ·
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

v,

(56)

wherev = f (x, t)+g(x, t)(u+d̃) is the control input for the
linearized model, and d̃ denotes additive input disturbances.
Thus one can use that

y(n) = f (x, t) + g(x, t)(u + d̃), (57)

where f (x, t), g(x, t) are unknown nonlinear functions,
while as mentioned above d̃ is an unknown additive distur-
bance. It is possible tomake the system’s state vector x follow
a given bounded reference trajectory xd . In the presence of
model uncertainties and external disturbances, denoted by
wd , successful tracking of the reference trajectory is pro-
vided by the H∞ criterion [28,35]:

∫ T

0
eT Qedt ≤ ρ2

∫ T

0
wd

Twddt, (58)

where ρ is the attenuation level and corresponds to the max-
imum singular value of the transfer function G(s) of the
linearized model associated to Eqs. (56) and (57).

Remark 1 From the H∞ control theory, the H∞ norm of
a linear system with transfer function G(s), is denoted
by ||G||∞ and is defined as ||G||∞ = supωσmax [G( jω)]
[25,28]. In this definition sup denotes the supremum or least
upper bound of the function σmax [G( j (ω)], and thus the H∞
normofG(s) is themaximumvalue ofσmax [G( j (ω)]over all
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frequencies ω. H∞ norm has a physically meaningful inter-
pretation when considering the system y(s) = G(s)u(s).
When this system is driven with a unit sinusoidal input at a
specific frequency, σmax |G( jω)| is the largest possible out-
put for the corresponding sinusoidal input. Thus, the H∞
norm is the largest possible amplification over all frequen-
cies of a sinusoidal input.

Remark 2 The input additive disturbance term d̃ in the
dynamics of the controlled system does not affect the trans-
formation into the canonical form that is performedaccording
to differential flatness theory. Such a disturbance is efficiently
compensated by the proposed adaptive fuzzy control law.

Control Law

For the measurable state vector x of the system of Eqs. (56)
and (57), and for uncertain functions f (x, t) and g(x, t) an
appropriate control law is

u = 1

ĝ(x, t)

[
y(n)
d − f̂ (x, t) − KT e + uc

]
, (59)

with e = [e, ė, ë, . . . , e(n−1)]T and e = y − yd , KT =
[kn, kn−1, . . . , k1], such that the polynomial e(n)+k1e(n−1)+
k2e(n−2) + · · · + kne is Hurwitz. The control law of Eq. (59)
results into

e(n) = −KT e + uc + [ f (x, t) − f̂ (x, t)]
+ [g(x, t) − ĝ(x, t)]u + g(x, t)d̃, (60)

where the supervisory control term uc aims at the compen-
sation of the approximation error

w = [ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u, (61)

as well as of the additive disturbance term d1 = g(x, t)d̃.

The above relation can be written in a state-equation form.
The state vector is taken to be eT = [e, ė, . . . , e(n−1)],which
after some operations yields

ė =
(
A − BKT

)
e + Buc + B

{
[ f (x, t) − f̂ (x, t)]

+[g(x, t) − ĝ(x, t)]u + d1
}
, (62)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · 1
0 0 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
· · ·
· · ·
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (63)

and K = [kn, kn−1, . . . , k2, k1]T . As explained above, the
control signal uc is an auxiliary control term, used for the
compensation of d̃ and w, which can be selected according
to H∞ control theory:

uc = −1

r
BT Pe. (64)

Approximators of Unknown System Dynamics

The approximation of functions f (x, t) and g(x, t) of
Eq. (57) can be carried out with neuro-fuzzy networks
(Fig. 3). The estimation of f (x, t) and g(x, t) can be written
as [36,37]:

f̂
(
x |θ f

) = θTf φ(x), ĝ
(
x |θg

) = θTg φ(x), (65)

Fig. 3 Neuro-fuzzy
approximator: Gi Gaussian
basis function, Ni normalization
unit
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where φ(x) are kernel functions with elements

φl(x) =
∏n

i=1μ
l
Ai

(xi )∑N
l=1

∏n
i=1μ

l
Ai

(xi )
l = 1, 2, . . . , N . (66)

It is assumed that the weights θ f and θg vary in the
bounded areas Mθ f and Mθg which are defined as

Mθ f =
{
θ f ∈ Rh :

∥∥θ f
∥∥ ≤ mθ f

}
,

Mθg =
{
θg ∈ Rh :

∥∥θg
∥∥ ≤ mθg

}
, (67)

with mθ f and mθg positive constants.
The values of θ f and θg that give optimal approximation

are:

θ∗
f = arg minθ f ∈Mθ f

[
supx∈Ux

∣∣∣ f (x) − f̂
(
x |θ f

)∣∣∣
]
,

θ∗
g = arg minθg∈Mθg

[
supx∈Ux

∣∣g(x) − ĝ
(
x |θg

)∣∣] . (68)

The approximation error of f (x, t) and g(x, t) is given
by

w =
[
f̂
(
x, |θ∗

f

)
− f (x, t)

]
+

[
ĝ

(
x |θ∗

f

)
− g(x, t)

]
u ⇒

w =
{[

f̂
(
x |θ∗

f

)
− f̂

(
x |θ f

)] +
[
f̂
(
x |θ f

) − f (x, t)
]}

+
{[

ĝ
(
x |θ∗

g

)
− ĝ

(
x |θg

)] + [
ĝ

(
x |θg

) − g(x, t)
]
u
}

,

(69)

where: (i) f̂ (x |θ∗
f ) is the approximation of f for the best

estimation θ∗
f of the weights’ vector θ f , (ii) ĝ(x |θ∗

g ) is the
approximation of g for the best estimation θ∗

g of the weights’
vector θg.

The approximation error w can be decomposed into wa

and wb, where

wa =
[
f̂
(
x |θ f

) − f̂
(
x |θ∗

f

)]
+

[
ĝ

(
x |θg

) − ĝ
(
x |θ∗

g

)]
u,

wb =
[
f̂
(
x |θ∗

f

)
− f (x, t)

]
+

[
ĝ

(
x |θ∗

g

)
− g(x, t)

]
u.

(70)

Finally, the following two parameters are defined:

θ̃ f = θ f − θ∗
f ,

θ̃g = θg − θ∗
g . (71)

Lyapunov Stability Analysis

The adaptation law of the weights θ f and θg as well as of the
supervisory control term uc is derived by the requirement

for negative definite derivative of the quadratic Lyapunov
function

V = 1

2
eT Pe + 1

2γ1
θ̃Tf θ̃ f + 1

2γ2
θ̃Tg θ̃g. (72)

Substituting Eq. (62) into Eq. (72) and differentiating
gives

V̇ = 1

2
ėT Pe + 1

2
eT Pė + 1

γ1
θ̃Tf

˙̃
θ f + 1

γ2
θ̃Tg

˙̃
θg ⇒

V̇ = 1

2
eT

{(
A − BKT

)T
P + P

(
A − BKT

)}
e

+ BT Pe (uc + w + d1) + 1

γ1
θ̃Tf

˙̃
θ f + 1

γ2
θ̃Tg

˙̃
θ g. (73)

Assumption 1 For given positive definite matrix Q and
coefficients r and ρ there exists a positive definite matrix
P, which is the solution of the following matrix equation

(
A − BKT

)T
P + P

(
A − BKT

)
− PB

(
2

r
− 1

ρ2

)
BT

P + Q = 0. (74)

Substituting Eq. (74) into V̇ yields after some operations

V̇ = −1

2
eT Qe + 1

2
eT PB

(
2

r
− 1

ρ2

)
BT Pe

+ BT Pe

(
−1

r
eT PB

)

+ BT Pe(w + d1) + 1

γ1
θ̃Tf

˙̃
θ f + 1

γ2
θ̃Tg

˙̃
θg. (75)

It holds that

˙̃
θ f = θ̇ f − θ̇∗

f = θ̇ f ,

˙̃
θg = θ̇g − θ̇∗

g = θ̇g. (76)

The following weight adaptation laws are considered [36]

θ̇ f =
{

−γ1eT PBφ(x) i f ||θ f || < mθ f ,

0 i f ||θ f || ≥ mθ f ,
(77)

θ̇g =
{

−γ2eT PBφ(x)uc i f ||θg|| < mθg ,

0 i f ||θg|| ≥ mθg .
(78)

θ̇ f and θ̇g are set to 0, when

∥∥θ f
∥∥ ≥ mθ f ,

∥∥θg
∥∥ ≥ mθg . (79)

The update of θ f stems from a LMS algorithm on the cost
function 1

2 ( f − f̂ )2.The update of θg is also of the LMS type,
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while uc implicitly tunes the adaptation gain γ2. Substituting
Eqs. (77) and (78) in V̇ finally gives

V̇ = −1

2
eT Qe − 1

2ρ2 e
T PBBT Pe + eT PB(w + d1)

− eT PB
(
θ f − θ∗

f

)T
φ(x)

− eT PB
(
θg − θ∗

g

)T
φ(x)uc ⇒

V̇ = −1

2
eT Qe − 1

2ρ2 e
T PBBT Pe

+ eT PB (w + d1) + eT PBwα. (80)

Denoting w1 = w + d1 + wα one gets

V̇ = −1

2
eT Qe − 1

2ρ2 e
T PBBT Pe + eT PBw1

or equivalently,

V̇ = −1

2
eT Qe − 1

2ρ2 e
T PBBT Pe + 1

2
eT PBw1

+ 1

2
wT
1 B

T Pe. (81)

Lemma The following inequality holds:

1

2
eT PBw1 + 1

2
wT
1 B

T Pe − 1

2ρ2 e
T PBBT Pe

≤ 1

2
ρ2wT

1 w1. (82)

Proof The binomial
(
ρa − 1

ρ
b
)2 ≥ 0 is considered.

Expanding the left part of the above inequality one gets

ρ2a2 + 1

ρ2 b
2 − 2ab ≥ 0 ⇒ 1

2
ρ2a2 + 1

2ρ2 b
2 − ab ≥ 0 ⇒

ab − 1

2ρ2 b
2 ≤ 1

2
ρ2a2 ⇒ 1

2
ab + 1

2
ab − 1

2ρ2 b
2 ≤ 1

2
ρ2a2.

(83)

The following substitutions are carried out: a = w1 and
b = eT PB and the previous relation becomes

1

2
wT
1 B

T Pe + 1

2
eT PBw1 − 1

2ρ2 e
T PBBT Pe ≤ 1

2
ρ2wT

1 w1.

(84)

The previous inequality is used in V̇ , and the right part of
the associated inequality is enforced

V̇≤ − 1

2
eT Qe + 1

2
ρ2wT

1 w1. (85)

Equation (85) can be used to show that the H∞ perfor-
mance criterion is satisfied. For ρ sufficiently small the right

part of the previous inequality will remain upper bounded
by zero, and in this manner the asymptotic stability of the
control loop is demonstrated. Additionally, the integration of
V̇ from 0 to T gives

∫ T

0
V̇ (t)dt ≤ −1

2

∫ T

0
||e||2dt + 1

2
ρ2

∫ T

0
||w1||2dt ⇒

2V (T ) +
∫ T

0
||e||2Qdt ≤ 2V (0) + ρ2

∫ T

0
||w1||2dt. (86)

Moreover, if there exists a positive constant Mw > 0 such
that
∫ ∞

0
‖w1‖2dt ≤ Mw, (87)

then one gets

∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Mw. (88)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover,

V (T ) is bounded and from the definition of the Lyapunov
function V in Eq. (72) it becomes clear that e(t) will be also
bounded since e(t) ∈ 
e = {e|eT Pe≤2V (0) + ρ2Mw}.

According to the above and with the use of Barbalat’s
Lemma one obtains limt→∞e(t) = 0.

Simulation Tests

The efficiency of the proposed adaptive fuzzy control scheme
for the underactuated robotic manipulator was evaluated in
the tracking of various setpoints for state variable q1, i.e., the
linear displacement of mass M1 of the mechanism and state
variable q3, i.e., the rotation angle of joint A. As it can be
observed in Figs. 4, 5 and 6, the proposed control scheme
enabled accurate tracking of the reference setpoints by the
robot’s state variables. Indicative results about the estimation
of unknown functions fv(x, t) and gv(x, t) in the robot’s
dynamics by the neurofuzzy approximators is shown in Fig.
7. By including an additional term in the control loop that
was based on the disturbances estimation it became possible
to compensate for the disturbances effects.

Remark 1 Flatness-based adaptive control approach is a com-
pletely model-free control method. Flatness-based adaptive
fuzzy control needs no prior knowledge about the system’s
dynamics (apart from the order of the system), and also needs
no prior knowledge about the values of the parameters of the
system’s model. The proposed flatness-based adaptive fuzzy
control approach can be applied to both robotic systems that
admit static feedback linearization as well as to robotic mod-
els that admit dynamic feedback linearization. The necessary
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Fig. 4 Convergence of the robot’s state variables (blue line): a setpoint 1 and b setpoint 2 (red line)
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Fig. 5 Convergence of the robot’s state variables (blue line): a to setpoint 3 and b to setpoint 4 (red line)

and sufficient condition for the application of the proposed
adaptive fuzzy control method is the robot system to be dif-
ferentially flat. This enables the use of adaptive fuzzy control
to a wide class of dynamical systems.

Remark 2 Flatness-based control can be applied to a wider
class of dynamical systems than Lie algebra-based control.
This is because the necessary and sufficient condition for
the application of flatness-based adaptive fuzzy control is
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Fig. 6 Convergence of the robot’s state variables (blue line): a to setpoint 5 and b to setpoint 6 (red line)

the system to be differentially flat. This covers the widest
class of nonlinear dynamical systems. On the other side,
the necessary and sufficient condition for the application of
Lie algebra-based control is the system to be input-to-state
linearizable. This constrains the application of the method
to a more narrow class of dynamical systems. Besides, by
using differential flatness theory one can solve simultane-
ously the control and state estimation problem for the case
of nonlinear underactuated robotic manipulators, without the
need appearing in the Lie algebra-based approach for com-
puting Jacobian matrices of the system’s transformed state
vector.

Remark 3 Comparison of flatness-based adaptive control to
other nonlinear control methods. (i) An alternative global
linearization-based control method is Lie algebra-based con-
trol. However, as mentioned above this is applicable to a
more constrained class of robotic systems.Moreover, to solve
the associated state estimation and filtering problems the
method requires the computation of Jacobian matrices, (ii)
another option is local linearization-based control methods.
Thesemake use of approximately linearized dynamical mod-
els of the robot which are obtained round local operating
points (equilibria). This linearization procedure requiresTay-
lor series expansion of the roboticmodel and the computation
of Jacobian matrices, which in the case of multi-DOF robots
can be a computationally demanding procedure. Besides,
the use of an approximately linearized method introduces to
the control loop inherent modelling errors and perturbations

which should be continuously suppressed by the robustness
of the feedback controller.

Remark 4 The state variables of the underactuated robot are
x1 = q1, x2 = q3, x3 = q̇1 and x4 = q̇3 where q1 is dis-
placement of mass m1 along the horizontal axis x, and q3 is
rotation angle of the joint mounted on massm1 which finally
denotes the turn of the first link. State variable x3 = q̇1 is
the first order derivative of x1 and denotes the linear veloc-
ity of mass m1 along the x axis. State variable x4 = q̇3 is
the first order derivative of x2 and denotes the angular veloc-
ity of the joint mounted on mass m1. The flat output of the
robot’s state-space model is given in Eq. (37) and is a linear
function of state variables x1 and x3. It has been shown that
state variables x3 and x4 can be directly expressed as dif-
ferential functions of this flat output. The dynamics of the
robot is considered to be described by Eq. (5) which uses as
state variables [q1, q3]T and their derivatives. According to
Eqs. (2)–(4), the right part of the robotic mechanismwhich is
described by state variables [q2, q4]T appears to be decou-
pled from state variables [q1, q3]T , therefore its control can
be analyzed in a similar manner as in the case of the left part
of the mechanism.

Remark 5Adifference between the neurofuzzy approximator
depicted in Fig. 3 and a RBF neural network is the normaliza-
tion layer that appears between the Gaussian basis functions
layer and the weights output layer. After normalization, the
sum (over the complete set of rules) of the fuzzymembership
values of each input pattern becomes equal to 1. The neuro-
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Fig. 7 Estimation of functions
fv(x, t) and gv(x, t) of the
robot dynamics by neurofuzzy
networks when tracking: a
setpoint 1 and b setpoint 2
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fuzzymodel provides also linguistic interpretability (in terms
of fuzzy rules) about the implemented control law [38].

Conclusions

The paper has examined the problem of flatness-based adap-
tive fuzzy control for closed-chain underactuated robotic
mechanisms. First, the concept of differential flatness was
analyzed. It was shown that a system is considered to be dif-
ferentially flat if (i) the so-called flat-output can be defined
(the flat output is a function of the system’s state variables
for which it is assured that it is not coupled to its deriva-
tives through an ODE), (ii) the system’s state variables and
the control inputs can be all expressed as functions of the
differentially flat output and its derivatives.

The paper was concerned with closed underactuated
robotic mechanisms which stand for single-input differen-

tially flat systems. However the results can be also gener-
alized for the case of MIMO systems. Such systems can be
brought to a Brunovsky (canonical form) through a nonlinear
transformation applied to the state variables and to the con-
trol input. The resulting control signal was shown to contain
nonlinear elements which in turn depend on the system’s
parameters. If the parameters of the system are unknown,
then the nonlinear elements which appear in the control sig-
nal can be calculated by approximating the unknown system
dynamicswith the use of neuro-fuzzy networks. It was shown
that through Lyapunov stability analysis one can compute a
learning law for the aforementioned neuro-fuzzy approxi-
mators which assures stability of the control loop. Moreover,
it was shown that the proposed adaptation law assures H∞
tracking performance for the closed-loop system. Finally, the
efficiency of the considered flatness-based control scheme
was tested through simulation experiments on the tracking
of various reference setpoints.
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