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Abstract In this article, a new stochastic production
scheduling model for Virtual computer-integrated manufac-
turing (VCIM) systems is developed. This is an integrated
VCIM production scheduling model with uncertainties, in
which two sub-problems, namely agent selection and col-
laborative shipment scheduling, are fully integrated together
to explore the opportunity for reducing the overall cost of
products in a VCIM system. First, an explicit mathemati-
cal formulation of the proposed model is presented and then
an innovative method to solve the problem, based on Monte
Carlo simulation and optimisation solver, is proposed. Next,
a comprehensive case study is provided to demonstrate the
effectiveness of the proposed model. Finally, several aspects
of the proposed model and optimisation solution method are
discussed.

Keywords Virtual computer-integrated manufacturing ·
Stochastic model · Production scheduling · Collaborative
shipment scheduling · Optimisation

1 Introduction

Virtual computer-integrated manufacturing (VCIM) is a rel-
atively new concept of manufacturing system, which aims
at exploiting distributed manufacturing resources, locally as
well as globally [27, p. 1]. The VCIM system is still being
developed. With two special characteristics: full integration
and temporary cooperation between different manufacturing
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agents, the VCIM system is believed to have a great poten-
tial application in the global market. The general working
principle of a VCIM system is as follows.

When a VCIM system receives a product order, it decom-
poses the order into a number of components, based on its
built-in knowledge. Next, the system chooses appropriate
manufacturing agents to produce the product components.
The finished components are then shipped to a suitable
assembly agent to make the final product(s) which will be
shipped to the customer. After the customer order is ful-
filled, the cooperation between the selected manufacturing
and assembly agents is dissolved [22,27,31].

As can be seen from the VCIM working principle, each
product order is fulfilled by a group of manufacturing and
assembly agents; this group forms a temporary manufactur-
ing system to serve the particular product order. Different
orders or even the sameorders at different timesmight require
different temporary manufacturing systems. The process of
selecting manufacturing agents, assembly agents and the
related shipment schedules to establish such temporary man-
ufacturing systems to fulfil customer orders in a VCIM
system is called production scheduling herein.Obviously, the
VCIM production scheduling has a great impact on product
cost, quality and lead time. In other words, the production
scheduling activities play an important role in the success of
a VCIM system.

Recently, the VCIM production scheduling problem has
attracted considerable attention from operations researchers.
A number of VCIMproduction schedulingmodels have been
developed [7,22,26,27,30,32]. However, no published work
has attempted to consider uncertainties in the VCIM produc-
tion scheduling models so far.

In this article, a stochastic VCIM production scheduling
model is developed, which allows users to investigate the
effect of uncertainty factors of a VCIM system on total cost
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of products to make more robust decisions to operate the
system.

2 Latest Developments of VCIM Production
Scheduling Models

The VCIM production scheduling is critical to the success
of the system [7]. There are two major issues in the VCIM
production scheduling, called agent selection and shipment
scheduling. The agent selection problem herein is how to
select a group of manufacturing and assembly agents to pro-
duce the requested product(s) while the shipment scheduling
problem is how to schedule the related shipments between
the selected manufacturing and assembly agents as well as
between the selected assembly agents and the customer;
so that the product order can be fulfilled with the lowest
cost. The VCIM production scheduling problem has three
important characteristics. First, both the agent selection and
shipment scheduling problems should be simultaneously
optimised. Second, the selected group of manufacturing and
assembly agents is usually changing from one product order
to another. Finally, the agent selection problem does not
depend on the shipment scheduling problembut the shipment
scheduling problem is partially related to the agent selection
problem. Obviously, the VCIM production scheduling is a
multi-dimensional dynamic optimisation problem. To solve
this problem, it is required to haveboth comprehensiveVCIM
production scheduling model and robust optimisation algo-
rithm. This article mainly focuses on the development of
VCIM production scheduling model.

The existing VCIM production scheduling models can
be generally classified into two types: models with separate
shipments andmodelswith collaborative shipments. The sep-
arate shipment herein is referred to as shipping the product
components directly from their manufacturing agents to the
required assembly agents; while collaborative shipment is an
indirect shipmentmode inwhich the components are shipped
to the required assembly agents by joining other shipments
and passing other manufacturing agents. The collaborative
shipment can be used to save shipping cost.

There have been a number of publications developing
the VCIM production scheduling models with separate ship-
ments such as [7,22,26,27,30]. Doing the VCIM production
scheduling with this kind of models is straightforward. How-
ever, these models can be improved considerably through
shipment collaboration that has a great potential for product
cost reduction in a VCIM system.

As a global manufacturing system, shipping cost is a sig-
nificant component of product cost in a VCIM system. In
addition, there is a great potential for collaborative shipment
in a VCIM system since all of its agents are willing to work
together in a fully integrated manner. To exploit the poten-

tial for reducing product cost in general and shipping cost
in particular, the VCIM production scheduling models with
collaborative shipments have been developed by the authors
and such models are currently under review for publications.
It is noted that the VCIM production scheduling models
with separate shipments are special cases of the ones with
collaborative shipments. Nevertheless, all VCIM production
scheduling models developed so far are deterministic mod-
els, i.e. none of them considers uncertainties in the VCIM
systems.

To overcome the limitations, this article explains a devel-
oped stochastic production scheduling model for VCIM
systems, in which uncertainties in parameters such as man-
ufacturing, assembly and shipping times are considered.
A mathematical formulation of the model is provided and
solved by Monte Carlo simulation and commercial opti-
misation solver. Effects of the parameter uncertainties on
product cost using both kinds of VCIM production schedul-
ing models with separate and collaborative shipments are
analysed and compared through a comprehensive case study.
Other insight of the stochastic model, e.g. statistically signif-
icant/insignificant uncertainty parameters on VCIM product
cost, is also investigated herein using Taguchi Experimental
Design method.

3 Proposed Stochastic VCIM Production
Scheduling Model

3.1 Problem Statement

Consider:

• AVCIM system has a number of assembly andmanufac-
turing agents distributed both locally as well as globally,
which can produce and deliver an electronic product for
customers worldwide.

• Each product can be decomposed into a number of inde-
pendent standard components or independent standard
subassemblies (both are generally called components, for
short, hereafter).

• Each manufacturing agent is capable of producing a cer-
tain number of the product components

• Assembly agent is capable of doing the final assembly
for the product.

• Shipping service is always available to transport the com-
ponents/products from any agent to any destination.

• One order with certain number of the products, delivery
destination and deadline is being requested.

Determine:

• Allocation of the product components to manufacturing
agents.
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• Selection of assembly agent to assemble the products.
• Selection of the related shipment schedule.

So that:
A temporary production system in the VCIM system can

be formed to fulfil the requested product order with lowest
cost while all of the given constraints are satisfied.

Conditions:

• Setup costs of manufacturing/assembly lines to produce
the components/product in different agents are all differ-
ent but are known in advance.

• Manufacturing/assembly processing costs of the compo-
nents/product in different agents are also different but are
given in advance.

• All products in one order are assembled in one assembly
agent only.

• In each manufacturing agent, different types of product
components can be produced in parallel but the same
types of components are produced sequentially.

• Shipping cost between any two locations, which con-
sists of fixed cost and variable cost, is different from one
another but is known in advance.

• Two types of shipments, namely separate shipment and
collaborative shipment, are always available.

• Manufacturing/assembly setup times, manufacturing/
assembly processing times as well as shipping times
between any two locations are stochastic parameters with
known probability distribution, nominal values and stan-
dard deviations.

• Late product delivery is imposed by a penalty cost,
depending on the degree of lateness.

• Manufacturing/assembly agents can work 24 h a day, 7
days a week.

The proposed model is illustrated in Fig. 1 with a typical
production scheduling solution to fulfil the customer order
in which manufacturing agents (2, 3,5, 6, 7, 8, 10, 14, 16,
17, 18), assembly agent (4) are selected, and both separate
and collaborative shipments are used as shown. It should be
noted that the separate shipment herein refers to one ship-
ment carrying the components/products made by one agent
only;while, the collaborative shipment refers to one shipment
carrying the components produced by more than one agent.

3.2 Mathematical Formulation

In order to describe the proposed stochastic VCIM produc-
tion scheduling model in detail, the following mathematical
model is developed:

3.2.1 Assumptions

• The VCIM product can be decomposed into a number of
independent standard components.

• In each manufacturing agent, different types of product
components can be produced in parallel but the same
types of components are produced sequentially.

• Assembly agent is capable of doing any necessary tasks
such as assembly, testing, packing, etc. to build a final
product.

• Assembly operation for a product is done only when all
of its constituting components have arrived at the selected
assembly agent.

• All products in one order are assembled in one assembly
agent only.

• There are no component/product defects (for the sake
of simplicity, this assumption is used; however, the
proposed model could be modified, i.e. using penalty
function, to take such defects into account, if the users
want).

• Shipping service is always available to transport the com-
ponents/products from any agent to any destination.

• Fixed cost of a shipment is proportional to shipping dis-
tance and variable cost of a shipment is proportional to
shipping weight.

• Two types of shipments, separate shipment and collabo-
rative shipment, are always available.

• Manufacturing/assembly setup times as well as manu-
facturing/assembly processing times are stochastic para-
meters following normal distributions (this assumption
is commonly used in the literature, e.g. [2,10,13,14,19,
24]).

• Shipping times between any two locations are also
stochastic parameters following doubly truncated expo-
nential distributions [3,4,23]. This assumption is used,
because of three reasons: (1) shipping time should be
estimated with three parameters: expected time, earliest
time and latest time; (2) shipping time should be from
the earliest time to expected time to make the customers
happier; and (3) when generating an exponentially dis-
tributed random parameter, it is more likely to get a value
that is smaller than the expected value.

• Nominal value and standard deviation of every stochastic
parameter are given.

• Only one product order is considered at a time.
• One order may consist of more than one product.
• All product components produced by one agent is trans-
ported in one shipment only.

• Late product delivery is imposed by a penalty cost,
depending on degree of lateness.

• Every agent can work 24 h a day, 7 days a week.
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Fig. 1 Proposed VCIM production scheduling model

3.2.2 Indices

i Manufacturing agent index
j Assembly agent index
k Product component index

3.2.3 Parameters

STk
i Setup cost of manufacturing line to produce

component k in manufacturing agent i($)
PRk

i Manufacturing processing cost of component
k in manufacturing agent i($)

Qk Quantity of component k in the product order
n Number of independent standard components

of the product
m Number of manufacturing agents in the VCIM

system
AS j Setup cost of assembly line to assemble the

product in assembly agent j ($)
AP j Assembly processing cost of the product in

assembly agent j ($)
QP Quantity of the products in the customer order
a Number of assembly agents in the VCIM sys-

tem

DMi1i2 Distance between manufacturing agent i1 and
manufacturing agent i2 (km)

F Fixed shipping cost coefficient
WPk Weight of product component k (g)
MW Maximum weight associated with each fixed

shipping cost component (g). It is noted that if
total weight of items in a shipment exceeds this
maximum weight limit, more than one fixed
shipping cost component will be charged.

V Variable shipping cost coefficient
DAi j Distance between manufacturing agent i and

assembly agent j (km)
DC j Distance between assembly agent j and the

customer (km)
WF Weight of the final product (g)
EMk

i2
Earliest starting time to produce product com-
ponent k in manufacturing agent i2 (h)

SMk
i2

Setup time of manufacturing line to produce
product component k in manufacturing agent
i2 (h)

μk
si2

Mean value of setup time ofmanufacturing line
to produce product component k in manufac-
turing agent i2 (h)
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σ k
si2

Standard deviation of setup time of manufac-
turing line to produce product component k in
manufacturing agent i2 (h)

PMk
i2

Manufacturing processing time of product
component k in manufacturing agent i2 (h)

μk
pi2

Mean value of manufacturing processing time
of product component k in manufacturing
agent i2 (h)

σ k
pi2

Standard deviation of manufacturing process-
ing time of product component k in manufac-
turing agent i2 (h)

TTi1i2 Shipping time between manufacturing agents
i1 and i2 (h)

μi1i2 Mean value of shipping time between manu-
facturing agents i1 and i2 (h)

σi1i2 Standard deviation of shipping time between
manufacturing agents i1 and i2 (h)

li1i2 Lower bound of shipping time between manu-
facturing agents i1 and i2 (h)

ui1i2 Upper bound of shipping time between manu-
facturing agents i1 and i2 (h)

TTi2 j Shipping time between manufacturing agent i2
and assembly agent j (h)

μi2 j Mean value of shipping time between manu-
facturing agent i2 and assembly agent j (h)

σi2 j Standard deviation of shipping time between
manufacturing agent i2 and assembly agent j
(h)

li2 j Lower bound of shipping time between manu-
facturing agent i2 and assembly agent j (h)

ui2 j Upper bound of shipping time between manu-
facturing agent i2 and assembly agent j (h)

EA j Earliest starting time to assemble the product
in assembly agent j (h)

SA j Setup time of assembly line in agent j (h)
μs j Mean value of setup time of assembly line in

agent j (h)
σs j Standard deviation of setup time of assembly

line in agent j (h)
PA j Assembly processing time of the product in

agent j (h)
μpj Mean value of assembly processing time of the

product in agent j (h)
σpj Standard deviation of assembly processing

time of the product in agent j (h)
TTjc Shipping time between assembly agent j and

the customer (h)
μjc Meanvalue of shipping timebetween assembly

agent j and the customer (h)
σjc Standard deviation of shipping time between

assembly agent j and the customer (h)
ljc Lower bound of shipping time between assem-

bly agent j and the customer (h)

ujc Upper bound of shipping time between assem-
bly agent j and the customer (h)

DL Product delivery deadline (days)
R Late delivery penalty cost coefficient

($/day/product)
FMk

i If manufacturing agent i is capable of pro-
ducing the product component k, FMk

i = 1;
otherwise FMk

i = 0
FA j If assembly agent j is capable of assembling

the products to fulfil the order, FA j = 1; oth-
erwise FA j = 0

3.2.4 Special Mathematical Functions

Ce {X} A function that rounds the
value of X to the nearest inte-
ger towards positive infinity

S (i1, i2) A function that searches for
manufacturing agents i1 and
i2 in a list

R (i1) A function that removes the
agent i1 from a list

Y = [S(i1, i2);C; X; R(i1)]t A function capable of doing
the following tasks: (1) search
for manufacturing agents i1
and i2 in a list, which satisfy
condition set C ; (2) assign
Y = X ; (3) remove the agent
i1 from the list; and (4) repeat
three tasks above t times or
until there are no manufac-
turing agents satisfying the
condition set C

X ∼ N (μ, σ ) Stochastic parameter X fol-
lowing normal distribution
with mean value μ and stan-
dard deviation σ

X ∼ E (μ, σ, l, u) Stochastic parameter X fol-
lowingdoubly truncated expo-
nential distributionwithmean
value μ, standard deviation
σ , lower bound l and upper
bound u

Fn {X} Fn {X} = X if X > 0;
Fn {X} = 0 if X ≤ 0

〈Y = A|B〉 Conditional function mean-
ing that Y = A given event B
occurred; otherwise Y does
not exist

Sign {X} Sign {X} = 1 if X > 0;
Sign {X} = 0 if X ≤ 0;
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Table 1 Chromosome encoding. (Color figure online)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 a 6 3 10 7 2 14 5 17 16 8 18 0 0 0 0 0 0 0 0
Decision 
variable

6 3 3 10 7 2 14 6 5 17 16 8 18 4 7 4 15 7 4 1 7 1 1 7 1 9 4 19 14 13 8 10 11

Agent selection Collaborative shipment scheduling

Table 2 Customer order [18, pp. 131–138]

Product
quantity

Delivery
deadline
(h)

Delivery desti-
nation (Latitude,
Longitude)

Late penalty cost
per day per prod-
uct ($)

223 720* (35.38, −118.68) 6.46

* This value is modified by the authors

Table 3 Manufacturing setup cost ($) [18, p. 138]

Manufacturing
agent

Upper
lid

Back
cover

Screw Motor Circuit
board

Platter Head

1 686.2 810.6 738.3 963.7 1095.8 2325.6 1371.1

2 665.7 820.1 742.0 976.3 1117.9 2451.3 1608.1

3 670.5 800.9 735.3 980.3 1090.2 2560.3 1435.4

4 675.5 827.9 730.4 975.0 1080.7 3789.7 1509.0

5 681.0 814.0 721.2 967.9 1077.0 2544.1 2389.4

6 673.1 809.2 727.3 978.4 1050.4 4555.7 2884.9

7 678.1 821.1 759.0 970.2 1109.2 2630.6 1477.1

3.2.5 Decision Variables

Mk
i =

⎡
⎣
1 If manufacturing agent i is chosen to produce
component k

0 Otherwise

A j =
⎡
⎣
1 If assembly agent j is chosen to assemble the

products in the order
0 Otherwise

Ski1i2 =
⎡
⎣
1 If component k is shipped from manufacturing
agenti1 to manufacturing agent i2

0 Otherwise

Hk
i j =

⎡
⎣
1 If component k is shipped from manufacturing
agenti to assembly agent j

0 Otherwise

3.2.6 Objective Function

Objective function herein is total cost of the product order to
be minimised. The total cost calculated by Eq. 1 is the sum
of manufacturing cost (MC), assembly cost (AC), shipping
cost (SC) and penalty cost (PC).

T OC = MC + AC + SC + PC (1)

The cost components in Eq. 1 are computed as follows:

Table 4 Nominal manufacturing setup time (h) [18, p. 136]

Manufacturing
agent

Upper
lid

Back
cover

Screw Motor Circuit
board

Platter Head

1 5.297 8.446 4.147 6.249 8.810 8.571 6.086

2 5.123 7.811 6.613 6.513 8.829 9.814 6.863

3 5.619 6.793 6.250 6.377 9.090 9.998 7.459

4 4.163 7.802 6.448 7.905 8.735 9.297 6.433

5 5.167 8.219 5.923 6.668 8.155 8.871 6.498

6 4.999 8.100 6.500 6.798 8.512 10.431 8.512

7 5.100 7.800 5.998 6.456 6.602 9.523 6.756

Table 5 Assembly setup cost ($) [18, p. 138]

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

193.29 183.77 183.70 179.05 189.50

Table 6 Nominal assembly setup time (h) [18, p. 136]

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

4.157 3.631 3.627 3.370 3.984

• Manufacturing cost of the product components (MC):

MC =
m∑
i=1

n∑
k=1

(
ST k

i + PRk
i .Q

k
)
Mk

i (2)

• Assembly cost of the product order (AC):

AC =
a∑
j=1

(
ASj + APj .QP

)
A j (3)

• Shipping cost of the product order (SC), which is
the sum of shipping cost of transporting the product
components between the selected manufacturing agents
(SC1), shipping cost of transporting the product compo-
nents between the manufacturing agents and the selected
assembly agent (SC2) and shipping cost of transporting
the products from the assembly agent to the customer
(SC3):

SC = SC1 + SC2 + SC3 (4)
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Table 7 Manufacturing processing cost ($) [18, p. 137]

Manufacturing
agent

Upper
lid

Back
cover

Screw Motor Circuit
board

Platter Head

1 0.930 3.870 0.058 2.200 9.880 20.130 10.130

2 0.470 4.140 0.033 3.580 7.390 21.980 11.520

3 0.520 2.180 0.067 5.800 8.240 23.750 13.150

4 0.670 5.870 0.077 3.750 6.370 33.360 13.190

5 0.600 4.510 0.028 4.870 8.560 22.250 21.910

6 0.710 3.350 0.049 3.690 7.850 39.010 29.880

7 0.880 2.990 0.089 4.150 9.060 21.600 12.820

• Shipping cost of transporting the product components
between manufacturing agents (SC1), which is the sum
of fixed cost (first term) and variable cost (second term),
as shown below:

SC1 =
m∑

i2=1

m∑
i1=1

[
DMi1i2 .F.Ce

{∑n
k=1 WPk .Qk .Ski1i2

MW

}

+
(

n∑
k=1

WPk .Qk .Ski1i2

)
V

]
(5)

• Shipping cost of transporting the product components
betweenmanufacturing agents and the selected assembly
agent (SC2), again, which is the sum of fixed cost (first
term) and variable cost (second term), as shown below:

SC2 =
a∑
j=1

m∑
i=1

[
DAi j .F.Ce

{∑n
k=1 WPk .Qk .Hk

i j

MW

}

+
(

n∑
k=1

WPk .Qk .Hk
i j

)
V

]
(6)

• Shipping cost of transporting the products in the order
from the assembly agent to the customer (SC3), once
again, which is the sum of fixed cost (first term) and
variable cost (second term), as shown below:

SC3 =
a∑
j=1

[
DC j .F.A j .Ce

{
WF.QP

MW

}

+WF.QP.V ] (7)

• To calculate the penalty cost due to late delivery (PC),
completion timeof products in the order needs to bedeter-
mined first, as follows.

• Time to ship product component(s) from manufacturing
agent i2 (TCi2)—stage 1: shipment collaboration is not
considered.

Table 8 Nominal manufacturing processing time (h) [18, p. 135]

Manufacturing
agent

Upper
lid

Back
cover

Screw Motor Circuit
board

Platter Head

1 0.0050 0.1693 0.0001 0.0509 0.0516 0.9090 0.0766

2 0.0110 0.2074 0.0001 0.0657 0.0625 0.8570 0.0724

3 0.0082 0.1801 0.0001 0.0616 0.0538 1.0200 0.0790

4 0.0139 0.1479 0.0001 0.0690 0.0669 0.8020 0.0793

5 0.0098 0.2224 0.0001 0.0557 0.0664 1.2120 0.0738

6 0.0181 0.1313 0.0001 0.0593 0.0689 1.1230 0.0721

7 0.0074 0.1012 0.0001 0.0711 0.0751 0.9200 0.0758

Table 9 Assembly processing cost ($) [18, p. 137]

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

5.70 5.28 5.59 5.30 5.17

Table 10 Nominal assembly processing time (h) [18, p. 135]

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

0.1052 0.1107 0.1026 0.1046 0.1039

TCi2 = max∀k

{[
EMk

i2 + SMk
i2 ∼ N

(
μk
si2 , σ

k
si2

)

+ Qk .PMk
i2 ∼ N

(
μk

pi2 , σ
k
pi2

)]
Mk

i2

}
, ∀i2

(8)

• Time to ship product component(s) from manufacturing
agent i2 (TCi2 )—stage 2: synchronising the time to ship
the product components, considering the shipment col-
laboration.

TCi2 =
⎡
⎣s(i1, i2);

m∑
i3=1

n∑
k=1

ski3i1 = 0,
a∑
j=1

n∑
k=1

Hk
i1 j

= 0,
n∑

k=1

ski1i2 > 0;max{TCi1 + TTi1i2

∼ E(μi1i2 , σi1i2 , li1i2 , ui1i2); TCi2}; R(i1)
]
t

(9)

• Time to assemble the final products at the selected assem-
bly agent (TP):

TP = max∀i2, j
{[
TCi2 + TTi2 j

∼ E
(
μi2 j , σi2 j , li2 j , ui2 j

)] n∑
k=1

Hk
i2 j ;EA j .A j

}

(10)
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Table 11 Location of manufacturing and assembly agents

Manufacturing agent Assembly agent

1 2 3 4 5 6 7 1 2 3 4 5

Latitude 4.58 5.62 2.98 1.48 4.47 3.82 3.70 5.37 1.47 5.42 3.06 2.25

Longitude 101.08 100.50 101.80 103.38 101.05 103.33 101.52 100.57 103.77 100.25 101.70 102.25

Table 12 Assumed earliest starting time of producing the product com-
ponents (h)

Manufacturing
agent

Upper
lid

Back
cover

Screw Motor Circuit
board

Platter Head

1 96 480 72 720 96 120 480

2 408 48 192 24 264 168 240

3 48 480 96 264 120 192 96

4 336 72 120 600 72 480 48

5 456 48 96 192 48 120 192

6 120 360 24 216 96 48 120

7 24 312 264 72 96 336 528

Table 13 Assumed earliest starting time of assembling the product (h)

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

240 168 120 312 96

Table 14 Shipping cost and speed [18, p. 135]

Fixed shipping cost
coefficient ($/km)

Variable shipping cost
coefficient ($/gram)

Average shipping
speed (km/h)

0.331 0.005* 52.34

* This value was estimated by the authors

• Completion time of the final products at the selected
assembly agent (CT):

CT = TP + max∀ j

{[
SA j ∼ N

(
μs j , σs j

)]
A j
}

+max∀ j

{[
QP.PA j ∼ N

(
μpj , σpj

)]
A j
}

(11)

• Penalty cost due to late delivery (PC):

PC = Fn

⎧⎨
⎩
CT + max∀ j

{
A j .TTjc ∼ E

(
μjc, σjc, ljc, ujc

)}

24

−DL

⎫⎬
⎭R.QP (12)

Table 15 Estimated weights of the product components

Upper
lid

Back
cover

Screw Motor Circuit
board

Platter Head

Weight (g) 255.0 107.8 0.5 61.1 26.1 23.0 22.3

3.2.7 Constraints

• Functionality constraint of manufacturing agent:
FMk

i ≥ Mk
i , ∀i, k (13)

• Functionality constraint of assembly agent:

FA j ≥ A j , ∀ j (14)

• Flow conservation of product components at manufac-
turing agent i2:⎛
⎝

m∑
i1

n∑
k=1

Ski1i2 +
n∑

k=1

Mk
i2

⎞
⎠ Sign

{
n∑

k=1

Mk
i2

}

=
m∑

i3=1

n∑
k=1

Ski2i3 +
a∑
j=1

n∑
k=1

Hk
i2 j , ∀i2 (15)

• Constraint guaranteeing that quantity of the products in
the order is equal to quantity of each product component:

QP = Qk, ∀k (16)

• Constraint ensuring that all of the product components
are directly/indirectly shipped to the selected assembly
agent:

〈
m∑
i=1

n∑
k=1

Hk
i j

∣∣∣∣A j = 1

〉
= n (17)

• Range of the indices and parameters:

i = 1, 2, 3, . . .m (18)

i1 = 1, 2, 3, . . .m (19)

i2 = 1, 2, 3, . . .m (20)

i3 = 1, 2, 3, . . .m (21)
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Table 16 Grouped
manufacturing and assembly
tasks required to fulfil the
customer order

Grouped manufacturing task Grouped
assembly task

Upper lid Back cover Screw Motor Circuit
board

Platter Head

Quantity 223 223 1338 223 223 223 223 223

Table 17 Solver parameters and experimental levels [9, p. 2]

No. Parameter Code Level

1 2 3 4

1 Migration direction A Forward Both – –

2 Population size B 50 100 150 200

3 Fitness scaling function C Proportional Rank Top Shift linear

4 Selection function D Uniform Tournament Roulette Stochastic uniform

5 Elite count E 1 5 10 15

6 Crossover fraction F 0.3 0.5 0.7 0.9

7 Mutation function G Uniform Constraint dependent Adaptive feasible Gaussian

8 Crossover function H Single point Two point Arithmetic Scattered

9 Hybrid function I None Fminsearch Patternsearch Fminunc

j = 1, 2, 3, . . . a (22)

k = 1, 2, 3, . . . n (23)

m, a, n, Qk, QP = positive integers (24)

ST k
i , PRk

i , ASj , APj , DMi1i2 ,

F, WPk, MW, V, DAi j , DC j ,

WF, SMk
i2 , μk

si2 , σ
k
si2 > 0 (25)

PMk
i2 , μk

pi2 , σ k
pi2 , T Ti1i2 , μi1i2 ,

σi1i2 , li1i2 , ui1i2 , T Ti2 j , μi2 j ,

σi2 j , li2 j , ui2 j , SA j > 0 (26)

μs j , σs j , PA j , μpj , σpj , T Tjc, μ jc,

σ jc, l jc, u jc, DL , R > 0 (27)

EMk
i2 , E A j ≥ 0 (28)

It can be seen that there are two interrelated sub-problems,
agent selection and collaborative shipment scheduling, in
the proposed VCIM production scheduling model. This is
multi-dimensional dynamic optimisation problem. If (1) the
agents selected to fulfil the order are fixed, (2) only one ship-
ment route is used and (3) variable shipping cost is ignored,
this problem becomes the well-known travelling salesman
problem (TSP). In other words, TSP is a special case of the
VCIM production scheduling problem. From computational
complexity point of view TSP is a NP-hard problem [1, p.
546], [12, p. 87]. Therefore, the proposed VCIM production
scheduling is a NP-hard problem.

NP-hard, standing for Non-Polynomial-hard, is a techni-
cal term in computer science referred to a class of problems

which are complex with regard to their sizes and cannot be
solved in polynomial time [25, p. 384]. In other words, for
NP-hard problems, it is very easy to solve the small-size
problems but it is very difficult, most of the time impossible,
to solve the large-size problems. Since exact methods that
guarantee finding the global optimal solutions are not capa-
ble of solving large-size NP-hard problem, heuristic methods
are the popular choices [6,11,15,17,20]. In this research,
Genetic Algorithm solver in Matlab and Monte Carlo sim-
ulation were used to solve the stochastic VCIM production
scheduling problem. Detail of the solution method will be
explained in the next Section.

4 Solving the Problem Using Optimisation Solver

Genetic Algorithm (GA) solver in Matlab is a popular com-
mercial optimisation solver used in many research work
[8,16,28,33]. In this research, the GA solver was used
to search for an optimal solution to the stochastic VCIM
production scheduling problem as described in “Proposed
Stochastic VCIM Production Scheduling Model” section.
To use the solver, string-like chromosome representation
encoding the solutions to the problem must be developed.
In addition, objective function, constraints and solver para-
meters are needed to define.

4.1 Chromosome Encoding

The chromosome representation encoding the solutions to
the problem is explained in details with the aid of a typical
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Table 18 Experiment layout and data

Experiment Parameter of GA solver Computing
time (s)

Total cost ($)

A B C D E F G H I Run 1 Run 2 Run 3 Run 4 Run 5

1 1 1 1 1 1 1 1 1 1 120 49019.9 49019.9 49019.9 49019.9 48868.8

2 1 1 2 2 2 2 2 2 2 120 49019.9 48868.8 49019.9 49203.6 49019.9

3 1 1 3 3 3 3 3 3 3 120 48868.8 48868.8 48868.8 48868.8 48868.8

4 1 1 4 4 4 4 4 4 4 120 49057.2 48893.2 49019.9 48868.8 48868.8

5 1 2 1 1 2 2 3 3 4 120 48868.8 48868.8 48868.8 48868.8 48868.8

6 1 2 2 2 1 1 4 4 3 120 49019.9 49019.9 49019.9 49019.9 49019.9

7 1 2 3 3 4 4 1 1 2 120 48868.8 48868.8 48868.8 48868.8 48868.8

8 1 2 4 4 3 3 2 2 1 120 48868.8 48868.8 48868.8 48868.8 48868.8

9 1 3 1 2 3 4 1 2 3 120 48868.8 48868.8 48868.8 48868.8 48868.8

10 1 3 2 1 4 3 2 1 4 120 48868.8 48868.8 48868.8 48868.8 48868.8

11 1 3 3 4 1 2 3 4 1 120 48873.5 48952.5 48903.1 48898.9 48893.2

12 1 3 4 3 2 1 4 3 2 120 48868.8 49019.9 48868.8 48868.8 48893.2

13 1 4 1 2 4 3 3 4 2 120 48868.8 48868.8 48868.8 48868.8 48868.8

14 1 4 2 1 3 4 4 3 1 120 48868.8 48868.8 48868.8 48868.8 48868.8

15 1 4 3 4 2 1 1 2 4 120 49019.9 49019.9 48868.8 49019.9 49019.9

16 1 4 4 3 1 2 2 1 3 120 48898.9 48898.9 48933.9 48909.0 48893.2

17 2 1 1 4 1 4 2 3 2 120 48868.8 48868.8 48868.8 48868.8 48868.8

18 2 1 2 3 2 3 1 4 1 120 48868.8 49019.9 48868.8 49019.9 49019.9

19 2 1 3 2 3 2 4 1 4 120 48868.8 48868.8 48868.8 48868.8 48868.8

20 2 1 4 1 4 1 3 2 3 120 49116.2 49019.9 49474.3 49273.6 48868.8

21 2 2 1 4 2 3 4 1 3 120 48868.8 49019.9 48868.8 48868.8 48868.8

22 2 2 2 3 1 4 3 2 4 120 48904.3 48903.1 48998.1 48898.9 48903.1

23 2 2 3 2 4 1 2 3 1 120 49019.9 48893.2 49019.9 48868.8 48893.2

24 2 2 4 1 3 2 1 4 2 120 49019.9 48868.8 48868.8 48868.8 48868.8

25 2 3 1 3 3 1 2 4 4 120 48868.8 48868.8 48893.2 48868.8 48868.8

26 2 3 2 4 4 2 1 3 3 120 48868.8 48868.8 48868.8 48868.8 48868.8

27 2 3 3 1 1 3 4 2 2 120 49020.7 48916.7 49049.3 48934.1 48933.9

28 2 3 4 2 2 4 3 1 1 120 48868.8 48868.8 48868.8 48868.8 48868.8

29 2 4 1 3 4 2 4 2 1 120 48868.8 48868.8 48868.8 48868.8 48868.8

30 2 4 2 4 3 1 3 1 2 120 49019.9 49019.9 49019.9 48868.8 48868.8

31 2 4 3 1 2 4 2 4 3 120 49032.3 48933.9 48928.2 48898.9 48873.5

32 2 4 4 2 1 3 1 3 4 120 48917.9 48909.0 48904.3 48903.1 48898.9

example shown in Table 1. The chromosome with two differ-
ent parts, namely agent selection and collaborative shipment
scheduling, encodes a production schedule to fulfil a prod-
uct order consisting of 13 components (c1, c2, c3, . . ., c13)
in a VCIM system having 19 manufacturing agents and 7
assembly agents as illustrated in Fig. 1.

In the agent selection part, a positive integer number
represents the corresponding manufacturing agent selected
to produce the corresponding component (c column) or
the corresponding assembly agent selected for the prod-
uct assembly (a column). For example, manufacturing
agent 10 is selected to produce component c4 and assem-
bly agent 4 is selected for the product assembly. It is

noted that one manufacturing agent might be selected to
produce more than one component, agents 3 and 6, for
instance.

In the shipment scheduling part, a special manufactur-
ing agent sequence as highlighted in green in Table 1 is
introduced to support the chromosome encoding. The man-
ufacturing agent sequence is created by two following rules:
(1) it contains the same manufacturing agents in the same
order appeared as in the manufacturing agent selection part
but with no repetitions and (2) its maximum length is equal
to the number of manufacturing agents in the VCIM system.
Decision variables for the collaborative shipment schedul-
ing are positive integer numbers ranging from one to the
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Fig. 2 Main effect chart

number of manufacturing agents in the system. The ship-
ment schedule is decoded using the following rules: (1) there
is a shipment between any two agents in any two adjacent
cells in the manufacturing agent sequence on condition that
the corresponding decision variable values are the same, for
instance, a shipment between agents 17 and 16 as illustrated
in Table 1; (2) direction of shipment is always from the left
agent to the right agent in themanufacturing agent sequence,
e.g. from agents 17–16 as in Table 1; (3) there is always a
shipment from an agent with unique decision variable value
to the selected assembly agent, e.g. agent 10; (4) in the case
where more than one shipment tour are associated with the
same decision variable value, shipments are assigned from
the agent at the end of the first shipment tour, counted from
the left to the right, to the selected assembly agent, and from
the agents at the end of other shipment tours to the agent
at the end of the first shipment tour; (5) decision variables
related to the agents “0” are ignored when decoding the ship-
ment schedules. The full production schedule encoded in
the chromosome in Table 1 are decoded and visualised in
Fig. 1.

4.2 Objective Function and Constraints

As mentioned before, the objective function to be minimised
herein is total cost of the product order calculated by Eq. 1.
Due to stochastic parameters involved, Monte Carlo simula-
tion is used to estimate the total cost of the product order. For

details about Monte Carlo simulation, it is advised to refer to
[5]. One of the issues in Monte Carlo simulation is sample
size which is estimated by Minitab herein.

Due to crossover and mutation operations, some con-
straints of the problem may be broken. Therefore, infeasible
chromosomes may be produced during the evolutionary
process of the solutions. To handle the constraints, the GA
solver uses penalty functions and the decision maker must
check the feasibility of the solutions obtained before choos-
ing the best one.

4.3 Solver Parameters

To maximise performance of the GA solver, the parame-
ter tuning is required. In this study, Taguchi Experimental
Design was applied to investigate the effects of controllable
parameters of the solver on its performance to support the
parameter tuning. For details of the solver parameter tuning
procedure used herein, it is advised to refer to the authors’
previous work [9]. It is important to note that for the purpose
of tuning the solver parameters, a deterministic version of
the proposed model was used, which means that the standard
deviations of all stochastic parameters in the model were set
to zero.

The effectiveness of the proposed stochastic VCIM pro-
duction scheduling model will be demonstrated by a com-
prehensive case study in the next Section.

123



96 Intell Ind Syst (2016) 2:85–101

5 Case Study

5.1 Problem Description

Taking advantage of relevant data available fromLair [18, pp.
130–138], a VCIM system producing computer hard disks is
considered herein and its production scheduling problem is
described as follows.

The VCIM system producing computer hard disks has
seven manufacturing agents and five assembly agents. Cur-
rently, there is one customer order with specific product
quantity, delivery deadline, delivery destination and late
delivery penalty cost as shown in Table 2. Each product is
made of seven standard components, namely platter, back
cover, motor, upper lid, screw, circuit board and head. Man-
ufacturing setup cost and time of the product components
in different manufacturing agents are given in Tables 3 and
4. Assembly setup cost and time of the product in different
assembly agents are provided in Tables 5 and 6. Manufac-
turing processing cost and time of the product components
produced by different manufacturing agents are presented in
Tables 7 and 8. Assembly processing cost and time of the
product in different assembly agents are shown in Tables
9 and 10. In addition, locations of the manufacturing and
assembly agents are given in Table 11. Moreover, earliest
starting times in manufacturing and assembly agents are
assumed to be as shown in Tables 12 and 13. Furthermore,
shipping cost and speed as well as weights of the product
components are given in Tables 14 and 15; the maximum
weight of each shipment is assumed to be 20 kg. Stan-
dard deviation of any stochastic parameter is assumed to be
1 % of the corresponding nominal/mean value (To deter-
mine the real standard deviation of a stochastic parameter,
analysing statistical data collected from the real systemmust
be done. In VCIM systems, collecting such kind of statis-
tical data is very easy after the systems have operated for
some time, because everything is recorded in the VCIMdata-
base. Therefore, the standard deviation of every stochastic
parameter of the VCIM system will be updated accordingly.
At this stage, for the sake of simplicity, this assumption is
used and it does not affect the performance of the optimi-
sation approach). Finally, the lower and upper bounds of
every stochastic parameter with doubly truncated exponen-
tial distribution are assumed to be “μ − σ” and “μ + 2σ”,
respectively, where μ is mean value and σ is standard
deviation.

The VCIM production scheduling questions herein are
(1) which manufacturing agents should be selected to pro-
duce the product components, (2) which assembly agent
should be selected to assemble the products and (3) what
shipping schedule should be used; so that the requested
product order can be fulfilled with minimum expected

cost while all of the given constraints are simultaneously
satisfied.

5.2 Results and Discussions

To reduce the large setup expenses as shown in Tables 3, 4,
5 and 6 as well as computational complexity, it is reasonable
to group the manufacturing and assembly tasks required to
fulfil the customer order as shown in Table 16. Thereby, the
scheduling problem now becomes: (1) which manufacturing
agents should be selected to do the grouped manufactur-
ing tasks in Table 16, (2) which assembly agent should be
selected to do the grouped assembly task in Table 16 and (3)
what shipping schedule should be used; so that a temporary
production system in the VCIM system can be formed to ful-
fil the customer order with minimum expected cost while all
of the given constraints are simultaneously satisfied.

As mentioned before, the commercial GA solver in Mat-
lab is used to solve this case study problem, and to maximise
its performance the parameter tuning is required. The tuning
procedure based onTaguchiExperimentalDesign, developed
by [9], is adopted herein. The solver parameters and their
experimental design levels under consideration are shown
in Table 17; other parameters are set by default. Taguchi
Orthogonal Array Design L32 (21 48) generated by Minitab
and experimental data are shown in Table 18. It should be
noted that to make a fair comparison, in every experiment,
the solver was forced to terminate after 120 s of computing
time as indicated in Table 18. In addition, the determinis-
tic version of the proposed model, as mentioned in “Solver
Parameters” section, was used in the experiments to tune the
solver parameters. ANOVA analysis, conducted by Minitab,
revealed the main effects of the parameters on the total cost
of the customer order as shown in Fig. 2. Based on the effects
of the parameter levels in Fig. 2, a parameter set of the solver
was selected as shown in Table 19 to minimise the total
cost.

Characteristics of the proposed stochastic VCIM pro-
duction scheduling model are investigated by Monte Carlo
simulation and commercial GA solver inMatlab. Two differ-
entmodels, namelymodel 1 andmodel 2, are being compared
herein. Model 1 is a traditional model which does not con-
sider collaborative shipment and model 2 is the proposed
model in this article. With estimated standard deviation of
the objective function of $300 (based on preliminary tests),
margin of error for confidence interval of 70, confidence level
of 95 % and confidence interval of “two-sided”, sample size
of Monte Carlo simulation, estimated by Minitab, was 73.
This sample size of Monte Carlo simulation and the GA
solver with the parameters shown in Table 19 were used in
both models 1 and 2. In addition, termination criterion of the
solver was set to 250 generations. Finally, the convergence
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Table 19 Parameter set of the solver

Migration
direction (A)

Population
size (B)

Fitness scaling
function (C)

Selection
function (D)

Elite count
(E)

Crossover
fraction (F)

Mutation
function (G)

Crossover
function (H)

Hybrid
function (I)

Forward 150 Proportional Roulette 10 0.9 Constraint
dependent

Arithmetic Fminunc

Fig. 3 Typical convergence properties of the GA solver

properties of the GA solver in solving the case study problem
are visualised in Fig. 3

Performances of the two models in solving the case study
problem are compared in Table 20. In each model, ten tri-
als done in the same computer with processor: Intel(R)
Core(TM)2 Duo CPU E6550 @2.33 GHz, 4.00 GB RAM
were attempted and their outcomes including expected cost,
standard deviation of the customer order total cost obtained
as well as computing time are reported in Table 20. It can be
seen that computing times and consistencies of the solutions
obtained expressing by standard deviations in the twomodels
are about the same. However, the expected cost achieved by
model 2 is, on average, $368.7 lower, compared to the cost
obtained by model 1. This cost saving mainly comes from
the collaborative shipment because the collaborative ship-
ping mode is the only difference between the two models.
In addition, this amount of cost saving depends on the fixed
cost of the shipment, i.e. if the fixed cost increases, the cost
saving would be higher. It is noted that model 1 is a special
case of model 2, when the collaborative shipping mode is

not utilised. In addition, the best solution to the case study
problem with the expected cost of $48799.5 and standard
deviation of $191.1 was achieved by model 2 and its detail
is shown in Table 21. To decode the solution, it is advised to
refer to “Chromosome Encoding” section.

As mentioned before, the input stochastic parameters of
the VCIM production scheduling model were assumed to
follow normal distribution or doubly truncated exponential
distribution. One may ask: what distribution does the output
(expected cost) of themodel follow? To answer this question,
an attempt wasmade herein to figure out the distribution. Ten
samples visualised in Fig. 4 were randomly selected and then
tested against 16 distribution types with aid of Minitab soft-
ware. A typical result of the output distribution identification
tests is shown in Fig. 5 where a lower AD value indicates a
better fit to the corresponding distribution and a low P-value
(e.g., P-value < 0.05) indicates that the data do not follow
that distribution [21]. In addition, for some distributions, it is
not possible to calculate the P-value and it is therefore repre-
sented by asterisk. As can be seen from Fig. 5, the output of
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Table 20 Model performance
comparison

Trial Model 1 Model 2

Expected
cost ($)

Standard
deviation ($)

Computing
time (min)

Expected
cost ($)

Standard
deviation ($)

Computing
time (min)

1 48969.3 146.2 137.28 48799.5 191.1 135.1

2 48972.6 213.5 135.48 48855.2 203.7 137.0

3 48903.6 192.9 146.89 48885.1 213.2 135.4

4 48829.6 182.0 138.72 48852.1 214.2 140.3

5 48917.6 164.6 136.37 48855.9 201.3 136.6

6 49800.3 247.7 136.25 48820.6 186.2 138.7

7 48960.0 205.8 135.49 48826.2 167.9 136.3

8 49197.9 173.3 132.04 48821.5 194.5 136.3

9 49788.9 224.8 135.02 48886.3 191.3 138.4

10 49750.1 228.0 131.98 48800.5 186.5 138.3

Average 49209.0 197.9 136.6 48840.3 195.0 137.2

Table 21 The best solution to the case study problem ever achieved. (Color figure online)

c1 c2 c3 c4 c5 c6 c7 a 2 7 5 4 1 0 0

Decision variable 2 7 5 2 4 1 2 1 4 5 2 5 2 1 6

Agent selection Collaborative shipment scheduling

Fig. 4 Output distribution visualisation of ten random samples

the proposed stochastic VCIM production scheduling model
best fits into normal distribution after Johnson Transforma-
tion, which has the lowest AD value of 0.142 and the highest

P-value of 0.971. In other words, the output of the stochastic
model typically follows the normal distribution after Johnson
Transformation.
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Fig. 5 A typical result of output distribution identification tests

Table 22 Experimental levels of stochastic parameters’ standard deviations

No. Parameter Code Level 1 Level 2 Level 3 Level 4

1 Standard deviation of manufacturing setup time M1 1 5 10 15

2 Standard deviation of manufacturing processing time M2 1 5 10 15

3 Standard deviation of assembly setup time A1 1 5 10 15

4 Standard deviation of assembly processing time A2 1 5 10 15

5 Standard deviation of shipping time S 1 5 10 15

It can be clearly seen that standard deviations of dif-
ferent stochastic parameters of the VCIM system such as
standard deviations of manufacturing setup time, manufac-
turing processing time, assembly processing time, shipping
time, etc. have different effects on the expected cost of the
customer order. The standard deviations of parameters with
significant or insignificant effects on the expected cost should
be tightened orwidened, if possible, tomake the systemmore
robust. Therefore, another question that decisionmakers need
to know the answer to control the VCIM production system
is: the standard deviations of which stochastic parameters
have significant effects on the expected cost of the customer
order?Toanswer this question,TaguchiExperimentalDesign
was again applied herein.

There were five groups of standard deviations of the sto-
chastic parameters to be considered and their experimental
levels in terms of percentages of the corresponding nomi-
nal values are as shown in Table 22. Taguchi Orthogonal
Array Design L16 (45) was chosen and the corresponding
experiment data is shown in Table 23. It is noted that in
these experiments, the proposed stochastic VCIM produc-
tion scheduling model was solved by the GA solver with
the same parameters as given in Table 19 and with termina-
tion criterion of 250 generations. In addition, sample size of
Monte Carlo simulation was again 73 as estimated before.
Furthermore, each experiment was repeated for five times
and two objective function values, namely mean and stan-
dard deviation of the expected cost, were collected as shown
in Table 23.
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Table 23 Experiment layout and data

Experiment layout Experiment data - Expected cost ($)

Experiment Parameter Run 1 Run 2 Run 3 Run 4 Run 5

M1 M2 A1 A2 S Mean SD Mean SD Mean SD Mean SD Mean SD

1 1 1 1 1 1 48861.5 211.7 48803.9 172.0 48806.4 164.6 48849.1 185.3 48823.0 206.1

2 1 5 5 5 5 48753.2 921.8 48762.1 1066.5 48755.7 1072.8 49002.1 1033.1 48624.1 857.9

3 1 10 10 10 10 48563.7 2076.8 49114.0 2094.9 48996.7 1979.4 48554.0 1724.0 48463.8 1946.0

4 1 15 15 15 15 48745.2 3421.5 48965.3 3238.9 48401.3 2574.8 48603.7 3157.5 49098.9 3207.2

5 5 1 5 10 15 48522.2 3027.9 48623.6 2970.0 48448.6 3217.4 47903.3 2626.1 48624.0 3101.3

6 5 5 1 15 10 48535.9 1769.7 48787.9 2078.3 48673.5 1906.0 48547.1 1891.7 48690.2 1879.2

7 5 10 15 1 5 48653.1 1035.8 48935.5 858.9 48788.6 1051.3 48825.3 1278.8 48647.5 1083.7

8 5 15 10 5 1 48838.5 218.4 48819.5 221.7 48824.6 188.1 48824.8 191.0 48835.9 175.3

9 10 1 10 15 5 48575.5 801.6 48944.2 1079.8 48805.0 1024.1 48944.4 1078.7 48598.1 1021.1

10 10 5 15 10 1 48851.2 207.1 48800.1 179.2 48828.3 191.7 48824.7 193.5 48848.4 195.6

11 10 10 1 5 15 48678.7 3112.3 48762.0 3193.2 48463.7 2787.3 48593.1 3056.0 49375.8 3275.0

12 10 15 5 1 10 48347.3 2015.2 48384.9 1900.0 48743.4 1904.2 48718.5 2122.6 48431.4 1954.0

13 15 1 15 5 10 48897.2 2154.9 48554.3 2154.1 48908.7 2254.8 48623.1 1826.7 48855.9 1856.6

14 15 5 10 1 15 48363.4 3031.1 48105.4 2848.8 48304.2 2296.9 48134.7 2995.4 48753.9 3088.6

15 15 10 5 15 1 48824.5 200.6 48807.3 207.8 48850.4 197.7 48842.2 201.6 48791.6 164.6

16 15 15 1 10 5 48933.5 1055.3 48789.7 799.6 48727.3 1125.1 48766.5 1029.4 48755.2 999.8

Table 24 ANOVA analysis for mean of the expected cost

Source DF Seq SS Adj SS Adj MS F P

M1 3 150,162 150,162 50,054 1.34 0.269

M2 3 175,662 175,662 58,554 1.57 0.205

A1 3 296,508 296,508 98,836 2.65 0.056

A2 3 342,190 342,190 114,063 3.06 0.035

S 3 778,129 778,129 259,376 6.95 0.000

Error 64 2,387,576 2,387,576 37,306

Total 79 4,130,227

The ANOVA analysis, conducted by Minitab, revealed
the effects of the standard deviations of the stochastic para-
meters on the mean and standard deviation of the expected
cost of the customer order, as shown in Tables 24 and 25. In
Taguchi Experimental Design, the P-value in ANOVA analy-
sis is usually used to determine whether a design parameter
is statistically significant and a common practice is that if
the P-value is less than 0.05, then that parameter is signifi-
cant with 95 % confidence interval [29, p. 378]. In this case
study, therefore, standard deviations of shipping time (S) and
assembly processing time (A2) are significant to the mean of
the expected cost of the customer order, while only standard
deviation of shipping time (S) is significant to the standard
deviation of the expected cost, as indicated in Tables 24 and
25. This finding can support decision makers in adjusting the
tolerances of the stochastic parameters to make the VCIM
production system more robust.

Table 25 ANOVA analysis for standard deviation of the expected cost

Source DF Seq SS Adj SS Adj MS F P

M1 3 24,613 24,613 8204 0.30 0.823

M2 3 110,847 110,847 36,949 1.37 0.261

A1 3 108,269 108,269 36,090 1.33 0.271

A2 3 40,430 40,430 13,477 0.50 0.685

S 3 88,857,770 88,857,770 29,619,257 1095.19 0.000

Error 64 1,730,871 1,730,871 27,045

Total 79 90,872,802

6 Conclusions

In this paper, a stochastic VCIM production scheduling
model with collaborative shipment scheduling capability
has been developed. The proposed model has been explic-
itly expressed in the form of mathematical formulation. In
addition, an innovative procedure to solve the stochastic pro-
duction scheduling problem in VCIM systems using Monte
Carlo simulation and optimisation solver (GA solver in Mat-
lab) has been proposed. To demonstrate the effectiveness of
the proposed model, a comprehensive case study has been
done in which the proposed model could help the VCIM
production system save, on average, $368.7 in one typical
product order, compared to the traditional model, while their
computing times were about the same. Moreover, two other
insights of the proposed model have been revealed. First,
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the experiment result has shown that with stochastic input
parameters following normal distribution and/or doubly trun-
cated exponential distribution, the output (expected cost of
the customer order) of the proposedmodel closely follows the
normal distribution after Johnson Transformation. Second,
the ANOVA analysis has indicated that standard deviations
of shipping time and assembly processing times were statis-
tically significant to the expected cost of the customer order.

Future works, being done by the authors, are: (1) fur-
ther generalising the model by considering more realistic
assumptions, constraints and multi-objective optimisation,
(2) developing more robust optimisation method to solve the
problem, and (3) conducting more comprehensive tests on
both the model and solution method.
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