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Abstract The paper is concerned with proving differential
flatness of the three-phase voltage source converter (VSC)
model and its resulting description in the Brunovsky (canon-
ical) form.For the linearized canonicalmodel of the converter
a feedback controller is designed. At a second stage, a
novel Kalman Filtering method (Derivative-free nonlinear
Kalman Filtering) is introduced. The proposedKalman Filter
is redesigned as disturbance observer for estimating addi-
tive input disturbances to the VSC model. These estimated
disturbance terms are finally used by a feedback controller
that enables the DC output voltage track desirable setpoints.
The efficiency of the proposed state estimation-based control
scheme is tested through simulation experiments.
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Introduction

The paper proposes a nonlinear control scheme for three-
phase voltage source converters (VSCs) where estimation of
disturbances and variations of the load current is performed
with the use of a new nonlinear filtering approach, the so-
called Derivative-free nonlinear Kalman Filter. VSCs, are
three-phase filtered rectifiers, that arewidely used in the elec-
tric power grid (mainly for power flow control). VSCs are the
main building blocks of power flow controllers in transmis-
sion lines. For example, VSCs are contained in unified power
flow controllers, or distribution-static synchronous compen-
sators. VSCs enable control of the amplitude and phase angle
of the AC terminal voltages. Moreover, their bidirectional
power flow capabilities allow VSCs to perform real and/or
reactive power flow control in AC transmission lines [1].

The dynamic model of VSCs is a nonlinear one and sev-
eral nonlinear control methods have been proposed for it.
Linearization round certain operating points with the compu-
tation of Jacobian matrices and control with the use of linear
feedback control methods have to cope with the approximate
linearization errors [2,3]. Operation range is restricted and
a relatively big capacitor is needed for keeping a constant
DC-voltage in presence of a varying load. Initial nonlinear
control approaches consider the representation of the VSC
dynamics in the dq reference frame and use PI compensators.
Passivity-based control methods have been proposed in [4].
Neural/fuzzy control methods for VSCs have been analyzed
in [5–8]. Back-stepping control approaches have been pro-
posed in [9]. State estimation-based control for VSCs has
been studied in [10–12]. The power matching modulation
approach has been proposed in [13,14], while the virtual flux
control method has been analyzed in [15,16].

Other control approaches consider input–output lineariza-
tion, as well as input-state linearization [17]. The latter
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methods transform the nonlinear system into a decoupled
linear one. It is also known that one can attempt transforma-
tion of the nonlinear VSC model into the linear canonical
(Brunovsky) form through the application of Lie-algebra.
With the application of Lie-algebra methods it is possible
to arrive at a description of the system in the linear canonical
form if the relative degree of the system is equal to the order
of the system. However, this linearization procedure requires
the computation of Lie derivatives (partial derivatives on the
vector fields describing the system dynamics) and this can
be a cumbersome computation procedure.

Moreover, differential flatness theory has been proposed
for VSC control [18–20]. Differential flatness theory is cur-
rently a main direction in nonlinear dynamical systems and
enables linearization for awider class of systems than the one
succeeded with Lie-algebra methods [21–23]. To find out if a
dynamical system is differentially flat, the following should
be examined: (i) the existence of the so-called flat output,
i.e., a new variable which is expressed as a function of the
system’s state variables. The flat output and its derivatives
should not be coupled in the form of an ordinary differential
equation (ODE), (ii) the components of the system (i.e., state
variables and control input) should be expressed as functions
of the flat output and its derivatives [24–27]. In certain cases
the differential flatness theory enables transformation to a
linearized form (canonical Brunovsky form) for which the
design of the controller becomes easier. In other cases by
showing that a system is differentially flat, one can easily
design a reference trajectory as a function of the so-called
flat output and can find a control law that assures tracking of
this desirable trajectory [25,26].

This paper is concerned with proving differential flatness
of the three-phase VSC model and its resulting description
in the Brunovsky (canonical) form [28]. It is shown that for
the linearized converter’s model it is possible to design a
feedback controller. At a second stage, a novel Kalman Fil-
tering method, the Derivative-free nonlinear Kalman Filter,
is proposed for estimating the non-measurable elements of
the state vector of the linearized system. With the redesign
of the proposed Kalman Filter as a disturbance observer,
it becomes possible to estimate disturbance terms which
are due to variations of the load current and to use these
terms in the feedback controller. By avoiding linearization
approximations, the proposed filtering method, improves the
accuracy of estimation, and results in smooth control signal
variations and in minimization of the tracking error of the
associated control loop [29–32].

The structure of the paper is as follows: in “Linearization
of the Converter’s Model Using Lie Algebra” section the
dynamicmodel of theVSC is analyzed.Moreover, it is shown
how linearization of the model of the VSC can be performed
by applying Lie-algebra theory. In “Differential Flatness of
the Voltage Source Converter” section it is proven that the

model of the VSC is a differentially flat one and that it can be
transformed to the linear canonical form. In “Kalman Filter-
Based Disturbance Observer for the VSC Model” section it
is shown that the Derivative-free nonlinear Kalman Filter can
be redesigned in the form of a disturbance observer so as to
enable estimation of disturbance terms which are due to load
current variations. In “Simulation Tests” section simulation
tests are provided to evaluate the performance of the proposed
nonlinear control scheme. Finally, in “Conclusions” section
concluding remarks are stated.

Linearization of the Converter’s Model Using Lie
Algebra

Dynamic Model of the Voltage Source Converter

The VSC model in the rotating dq reference frame is given
by [11,20]:

Li̇d = −Rid + Lωiq + vd − Vdc
2

u1,

Li̇q = −Lωid − Riq + vq − Vdc
2

u2, (1)

CDC V̇DC = − 1

Rc
VDC + 3

4
idu1 + 3

4
iqu2,

where id , iq are the line currents (ia, ib, ic) after transfor-
mation in the dq reference frame, and equivalently vd , vq
are the phase voltages va, vb, vc after transformation in the
dq reference frame. Variable Vdc denotes the DC voltage
output of the converter, u1 = ηd and u2 = ηq stand for con-
trol inputs. The line losses and the transformer conduction
losses are modelled by R and the inverter switching losses
are modeled by Rc. Moreover, vq is taken to be 0.

In Fig. 1 the electric circuit of the VSC is depicted. Denot-
ing x = [id , iq , Vdc]T as the state vector, y = [ec, iq ]T as
the output and u = [ηd , ηq ]T as the input vector, the MIMO
nonlinear one of the VSC is written in the state-space form

ẋ = f (x) + G(x)u,

y = h(x), (2)

where

f =

⎛
⎜⎜⎝

− R
L x1 + ωx2 + vd

L

−ωx1 − R
L x2

− x3
CDCRc

⎞
⎟⎟⎠ ,

G = [g1 g2] =

⎛
⎜⎜⎝

− x3
2L 0

0 − x3
2L

3x1
4Cdc

3x1
4Cdc

⎞
⎟⎟⎠ , (3)
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Fig. 1 Electrical circuit of the voltage source converter

h =
(
h1

h2

)
=

(
ec

iq

)
=

(
3
4 L(x21 + x22 ) + Cdc

2 x23
x2

)
. (4)

Linearization of the Converter’s Model Using
Lie-Algebra

Linearization of the converter’s model will be performed
using Lie-algebra and with the computation of the associ-
ated Lie derivatives [33,34]. The following state variables
are defined: z1 = h1(x), z2 = L f h1(x), and z3 = h2(x).
After intermediate computations (see “Appendix: Lineariza-
tion of the Converter’s Model Using Lie-Algebra” section)
one arrives at the following equations

ż1 = z2,

ż2 = v1,

ż3 = v2, (5)

or in state-space description
⎛
⎜⎝
ż1
ż2
ż3

⎞
⎟⎠ =

⎛
⎜⎝
0 1 0

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝
z1
z2
z3

⎞
⎟⎠ +

⎛
⎜⎝
0 0

1 0

0 1

⎞
⎟⎠

(
v1

v2

)
,

(
y1
y2

)
=

(
1 0 0

0 0 1

) ⎛
⎜⎝
z1
z2
z3

⎞
⎟⎠ , (6)

where the new control inputs are defined as

v1 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h2(x)u2,

v2 = f21 + g22u2. (7)

Therefore, the initial nonlinear system of theVSC is trans-
formed into the linear canonical form. The linearized system
is controllable and observable.

Differential Flatness of the Voltage Source
Converter

Definition of Differentially Flat Systems

Differential flatness is a structural property of a class of non-
linear systems, denoting that all system variables (such as
state vector elements and control inputs) can be written in
terms of a set of specific variables (the so-called flat out-
puts) and their derivatives. The following nonlinear system
is considered:

ẋ(t) = f (x(t), u(t)). (8)

The time is t∈R, the state vector is x(t)∈Rn with initial
conditions x(0) = x0, and the input is u(t)∈Rm . Next, the
properties of differentially flat systems are given [21–27,35].

The finite dimensional system of Eq. (8) can be written in
the general form of an ODE, i.e., Si (w, ẇ, ẅ, . . . , w(i)),

i = 1, 2, . . . , q. The term w is a generic notation for the
system variables [these variables are for instance the ele-
ments of the system’s state vector x(t) and the elements
of the control input u(t)] while w(i), i = 1, 2, . . . , q are
the associated derivatives. Such a system is differentially
flat if there are m functions y = (y1, . . . , ym) of the
system variables and of their time-derivatives, i.e., yi =
φ(w, ẇ, ẅ, . . . , w(αi )), i = 1, . . . ,m satisfying the follow-
ing two conditions [23–28,35]:

(1) There does not exist any differential relation of the form
R(y, ẏ, . . . , y(β)) = 0 which implies that the deriva-
tives of the flat output are not coupled in the sense of an
ODE, or equivalently it can be said that the flat output
is differentially independent.

(2) All system variables (i.e., the elements of the system’s
state vector w and the control input) can be expressed
using only the flat output y and its time derivatives
wi = ψi (y, ẏ, . . . , y(γi )), i = 1, . . . , s. An equivalent
definition of differentially flat systems is as follows:

Definition: The system ẋ = f (x, u), x∈Rn, u∈Rm is dif-
ferentially flat if there exist relations

h: Rn×(
Rm)r+1→Rm,

φ:
(
Rm)r→Rn and

ψ :
(
Rm)r+1 →Rm, (9)

such that

y = h
(
x, u, u̇, . . . , u(r)

)
,

x = φ
(
y, ẏ, . . . , y(r−1)

)
, and

u = ψ
(
y, ẏ, . . . , y(r−1), y(r)

)
. (10)
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This means that all system dynamics can be expressed as
a function of the flat output and its derivatives, therefore the
state vector and the control input can be written as

x(t) = φ
(
y(t), ẏ(t), . . . , y(r−1)(t)

)
, and

u(t) = ψ
(
y(t), ẏ(t), . . . , y(r)(t)

)
. (11)

It is noted that for linear systems the property of differen-
tial flatness is equivalent to that of controllability.

Differential Flatness of the Voltage Source Converter’s
Model

It will be shown that the dynamic model of the VSC is a
differentially flat one, i.e., it holds that all state variables and
its control inputs can be written as functions of the flat out-
puts and their derivatives. Moreover, it will be shown that
by expressing the elements of the state vector as functions of
the flat outputs and their derivatives one obtains a transforma-
tion of the VSC model into the linear canonical (Brunovsky)
form.

The following flat outputs are defined

y f1 = h1 = 3L

4

(
x21 + x22

)
+ Cdc2

2
x23 , (12)

y f2 = h2 = iq . (13)

It holds that

ẏ f1 = −3

2
R

(
x21 + x22

)
+ 3

2
vd x1 − 1

Rc
x23 , (14)

while deriving once more with respect to time one gets

ÿ f1 = 3R2

2

(
x21 + x22

)
− 3R

L
vd x1 + 2x23

CdcR2
c

+
(

−3R

2L
x1x3 − 3

4L
vd x3 − 3x1x3

2RcCdc

)
u1

+
(
3Rx2x3
2L

− 3x2x3
2RcCdc

)
u2. (15)

Moreover,

ẏ f2 =
(

−ωx1 − R

L
x2

)
− x3

2L
u2. (16)

It can be confirmed that all state variables and the control
inputs of the VSC model can be written as functions of the
flat outputs y f1 , y f2 and of their derivatives. It holds that
y f2 = x2 = iq . Moreover, using the definition of the flat
outputs it holds

ẏ f1 = −3

2
R

(
x21 + x22

)
+ 3

2
vd x1 − 1

Rc
x23 , (17)

y f2 = x2. (18)

Solving Eq. (17) with respect to x23 one obtains

x23 = Rc

[
−3

2
Rx21 − 3

2
Ry2f2 + 3

2
vd x1 − ẏ f1

]
. (19)

By substituting Eq. (19) into Eq. (12) one gets

y f1 = 3

4
Lx21 + 3

4
Ly2f2

+ Cdc

2
Rc

[
−3

2
Rx21 − 3

2
Ry22 + 3

2
vd x1 − ẏ f1

]

⇒
(
3L − 3CdcRcR

4

)
x21 + 3CdcRcvd

4
x1

+
(
3

4
Ly2f2 −

3CdcRcR

4
y2f2 −

CdcRc

2
ẏ f1−y f1

)
= 0.

By computing the roots of the binomial given in the above
equation it becomes possible to express state variable y1 as
a function of the flat outputs and their derivatives. Thus, by
keeping the maximum of the binomial’s root’s one obtains

x1 = fa
(
y f1 , ẏ f1 , y f2

)
. (20)

Using the relation for x1 described in Eq. (20) into Eq. (19)
one has

x23 = Rc

[
−3

2
R fa

(
y f1 , ẏ f1 , y f2

) − 3

2
Ry2f2

+ 3

2
vd fa

(
y f1 , ẏ f1 , y f2

) − ẏ1

]
⇒x3

= Rc

[
−3

2
R fa

(
y f1 , ẏ f1 , y f2

) − 3

2
Ry2f2

+ 3

2
vd fa

(
y f1 , ẏ f1 , y f2

) − ẏ1

] 1
2 ⇒x3

= fb
(
y f1 , ẏ f1 , y f2

)
.

From the first line of the state-space description of the
system given in Eq. (2) and Eqs. (3)–(4) it holds that

ẋ1 =
(

− R

L
x1 + ωx2 + vd

L

)
− x3

2L
u1⇒

u1 =
(− R

L x1 + ωx2 + vd
L

) − ẋ1
x3
2L

⇒
u1 = fc

(
y f1 , ẏ f1 , y f2

)
. (21)

Similarly, from the second line of the state-space descrip-
tion of the system given in Eq. (2) and Eqs. (3)–(4) it holds
that
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ẋ2 =
(

−ωx1 − R

L
x2

)
− x3

2L
u2⇒

u2 = −ωx1 − R
L x2 − ẋ2

x3
2L

⇒
u2 = fd

(
y f1 , ẏ f1 , y f2

)
. (22)

Consequently, all state variables and the control inputs
in the model of the VSC can be written as functions of the
flat outputs and their derivatives. Thus, the VSC model is a
differentially flat one.

Linearization of the Converter’s Model Using
Differential Flatness Theory

Using the definitions of the flat outputs y f1 and y f2 for the
VSC model, and considering the new state variables z1 =
y f1 , z2 = ẏ f1 and z3 = y f2 one obtains

ż1 = z2,

ż2 = 3R2

2

(
x21 + x22

)
− 3R

L
vd x1 + 2x23

CdcR2
c

+
(
3R

2L
x1x3 − 3

4L
vd x3 − 3x1x3

2RcCdc

)
u1

+
(
3Rx2x3
2L

− 3x2x3
2RcCdc

)
u2,

ż3 =
(

−ωx1 − R

L
x2

)
− x3

2L
u2, (23)

or equivalently

ż1 = z2,

ż2 = v1,

ż3 = v2, (24)

which can be also written in state-space form

⎛
⎜⎝
ż1

ż2

ż3

⎞
⎟⎠ =

⎛
⎜⎝
0 1 0

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝
z1

z2

z3

⎞
⎟⎠ +

⎛
⎜⎝
0 0

1 0

0 1

⎞
⎟⎠

(
v1

v2

)
,

(
ẏ1

ẏ2

)
=

(
1 0 0

0 0 1

) ⎛
⎜⎝
z1

z2

z3

⎞
⎟⎠ . (25)

As already noted, the linearized system is controllable
and observable. The new control inputs vi , i = 1, 2 are the
same as the ones defined in the Lie algebra-based approach
[see Eq. (50) in “Appendix: Linearization of the Converter’s
Model Using Lie-Algebra” section]. The linearized model of
the VSC can be described by the following two equations

z̈1 = v1,

ż3 = v2. (26)

The control inputs which enable convergence to the desir-
able setpoints are

v1 = z̈d1 − k11

(
ż11 − żd1

)
− k12

(
z1 − zd1

)
,

v2 = żd3 − k21

(
z3 − zd3

)
. (27)

The control law of Eq. (27) succeeds the following track-
ing error dynamics

ë1 + k11 ė1 + k12e1 = 0,

ė3 + k21e3 = 0, (28)

which results into limt→∞e1(t) = 0 and limt→∞e3(t) = 0.
It can be noticed that the linearized model of the converter
obtained after the application of differential flatness theory
is the same with the one obtained with the use of the Lie
derivative approach. It holds that

v1 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2,

v2 = L f h2(x) + Lg1h2(x)u1 + Lg2h2(x)u2, (29)

or, in matrix form

(
v1

v2

)
=

(
L2

f h1(x)

L f h2(x)

)

+
(
Lg1L f h1(x) Lg2L f h1(x)

Lg1h2(x) Lg2h2(x)

) (
u1

u2

)
. (30)

It holds that

(
v1

v2

)

=
⎛
⎝

3R2

2 (x21 + x22 ) − 3R
L vd x1 + 2x23

Cdc R2
c

−ωx1 − R
L x2

⎞
⎠

+
(

3R
2L x1x3− 3

4L vd x3− 3x1x3
2RcCdc

3Rx2x3
2L − 3x2x3

2RcCdc

0 − x3
2L

) (
u1

u2

)
.

(31)

According to the above, the VSC dynamic model can be
also written in a more compact form as

ṽ = f̃ + Mũ⇒
ũ = M−1(ṽ − f̃ ). (32)

Outlining the previous linearization approach one starts
from Eqs. (12) and (13) which provide the flat outputs of
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the system. By successive derivations of these flat outputs
with respect to time one arrives at an input–output linearized
equivalent description which can be also written in the lin-
ear canonical (Brunovsky) form. Thus linearization of the
system’s dynamics is achieved and from that point on the
solution of the feedback control and of the state estimation
problems becomes possible. The flat outputs for a dynamical
system are chosen to be functions of its state vector ele-
ments. In a large part of the relevant bibliography there is
no systematic approach for selecting flat outputs, as there is
no systematic way to choose a Lyapunov function for a con-
trol loop. However, as noted in [35], recently there have been
developedmethods which enable to compute analytically the
flat outputs of dynamical systems is based on expressing the
system in the so-called implicit form and in computing the
associated differential matrix [24].

To solve state estimation problems in the VSC model the
Derivative free nonlinear Kalman Filter will be introduced
next. The Derivative-free nonlinear Kalman Filter stands for
a new contribution to the field of nonlinear estimation and
under certain conditions it is proven to maintain the optimal-
ity features of the standard Kalman Filter. By proving that
the monitored system is differentially flat, its transformation
to the linear canonical (Brunovsky) form becomes possible.
This enables to solve both the control and the state estimation
problem. The novelty of the article is primarily in the used
nonlinear estimation method, which is the Derivative-free
nonlinear Kalman Filter. The filter consists of (i) a nonlin-
ear transformation (diffeomorphism) which enables to write
the state-space model of the system into the linear canoni-
cal form, (ii) application of the Kalman Filter recursion to
the equivalent linearized model, and (iii) an inverse transfor-
mation, based again on differential flatness theory, which
enables to obtain state estimates for the initial nonlinear
model. This filtering method is a new and genuine result in
nonlinear estimation theory which under specific conditions
retains the optimality features of the standard Kalman Filter.
Moreover, the use of the aforementioned filter as a distur-
bances estimator is also a novel element in this researchwork.
The filter estimates simultaneously the non-measurable state
vector elements of the converters and disturbances or mod-
elling error terms that affect its functioning. Comparing to
other nonlinear estimators the new filter provides state esti-
mates of improved accuracy (minimum variance). Moreover,
in [35] it has been demonstrated that this filter is compu-
tationally faster than other nonlinear filters (extended and
unscented Kalman Filter or particle filter).

Kalman Filter-Based Disturbance Observer for the
VSC Model

The simultaneous estimation of the non-measurable elements
of the VSC state vector (e.g., ẏ f1 ) as well as the estimation of

additive disturbance terms (e.g., associatedwith variations of
the load current iL ) is possible with the use of a disturbance
estimator [36–40].

Next, it will be considered that additive input disturbances
(e.g., due to load variations) affect the VSC model. Thus, it
is assumed that the third row of the state-space equations of
the VSC of Eq. (2) includes a disturbance term

ẋ3 = − x3
CdcRc

+ 3x1
4CDC

u1 + 3x2
4CDC

u2 + d̃. (33)

By describing the system’s dynamics using the differen-
tial flatness theory approach and using the definition of the
input v1 given in Eq. (31), the disturbances’ effects appear as
follows

ÿ f1 = v1 +
(

− 2

Rc
x3d̃

)
, (34)

which means that the additive disturbance term is now
described by

T̃d = − 2

Rc
x3d̃. (35)

The disturbance T̃d may also comprise additional uncer-
tainty terms associated with the numerical values of the
parameters of the VSC model. It is assumed that the aggre-
gate dynamics of term T̃d is described by its third order
derivative

T̃ (3)
d = fL

(
y f1 , ẏ f1 , y f2

)
. (36)

Thus, it holds that z1 = y f1 , z2 = ẏ f1 , z3 = y f2 , z4 =
T̃d , z5 = ˙̃Td and z6 = ¨̃Td . The dynamics of the extended
state-space model is written as

ż1 = z2 ż2 = v1 + T̃d ż3 = v2,

ż4 = z5 ż5 = z6 ż6 = fL
(
y f1 , ẏ f1 , y f2

)
, (37)

or in matrix form one has

˙̃z = Ãz̃ + B̃ṽ,

ỹ = C̃ z̃, (38)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1

ż2

ż3

ż4

ż5

ż6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

z2

z3

z4

z5

z6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

v1

v2

fL(y f1 , ẏ f1 , y f2)

⎞
⎟⎠ ,

(
y1

y2

)
=

(
1 0 0 0 0 0

0 0 1 0 0 0

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

z2

z3

z4

z5

z6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (39)

The associated state estimator is

ˆ̃̇z = Ão ˆ̃z + B̃oṽ1 + Ko(ỹ − C̃ ˆ̃z), (40)

where

Ão =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B̃o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C̃o =
(
1 0 0 0 0 0

0 0 1 0 0 0

)
, (41)

while the estimator’s gain Ko∈R6×2 is obtained from the
standard Kalman Filter recursion [41–44].

Defining as Ãd , B̃d , and C̃d , the discrete-time equivalents
of matrices Ão, B̃o and C̃o, respectively, the Derivative-free
nonlinear Kalman Filter can be designed for the afore-
mentioned representation of the system dynamics [23,31].
The associated Kalman Filter-based disturbance estimator is
given by

Measurement update

K (k) = P−(k)C̃T
d

[
C̃d ·P−(k)C̃T

d + R
]−1

,

ˆ̃z(k) = ẑ−(k) + K (k)
[
C̃d z̃(k) − C̃d ˆ̃z−(k)

]
, (42)

P(k) = P−(k) − K (k)C̃d P
−(k),

Time update

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k),

ˆ̃z−(k + 1) = Ãd(k) ˆ̃z(k) + B̃d(k)ṽ(k). (43)

It is of worth to give a brief comparison between global
linearization and control for the VSC model using differ-
ential flatness theory and Lie algebra. One should point
out that whereas necessary and sufficient conditions for the
use of Lie algebra-based control exist only if the system
is input-to-state linearizable, for the use of flatness-based
control necessary and sufficient conditions are the system
to be differentially flat which also means input–output lin-
earizable. Obviously, input–output linearizable systems are a
wider class than input-to-state linearizable systems and con-
sequently flatness-based control can be applied to a wider
class of nonlinear dynamical systems.

Simulation Tests

To evaluate the performance of the proposed nonlinear con-
trol scheme, that uses Kalman Filtering to estimate the
nonmeasurable disturbances of the VSC model, simulation
experiments have been carried out. Different DC voltage set-
points VDC have been assumed. Moreover, different external
disturbance terms d̃ (e.g., due to load perturbations) have
been considered to affect the VSC dynamic model. The con-
trol loop used in the VSC control is shown in Fig. 2. It can
be noticed that the aggregate control signal comprises the
flatness-based control input and the term for the annihilation
of the disturbances which is based on the estimation provided
by the Kalman Filter.

Several cases of VSC operation under different perturba-
tion terms have been presented. The disturbance dynamics
was completely unknown to the controller and its identifica-
tion was performed in real time by the disturbance estimator.
It is shown that the Derivative-free nonlinear Kalman Filter
redesigned as a disturbance observer is capable of esti-
mating with accuracy the unknown disturbance input d̃ .

Fig. 2 Control loop for the VSC comprising a flatness-based nonlin-
ear controller and a Kalman Filter-based disturbances estimator. The
aggregate control input comprises
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Fig. 3 a Control of the state variables (blue line) of the VSC in case of reference setpoint 1 (red line), and b estimation of disturbance input (first
diagram green line) and variation of the control inputs (second and third blue lines)
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Fig. 4 a Control of the state variables (blue line) of the VSC in case of reference setpoint 2 (red line), and b estimation of disturbance input (first
diagram green line) and variation of the control inputs (second and third blue lines)

The associated results are presented in Figs. 3, 4, 5 and 6.
In these diagrams the setpoints are drawn with the red line,
the real values of the state vector elements of the converter are
depicted with the blue line, while the state estimates which
are provided by the Derivative-free nonlinear Kalman Fil-
ter are printed with a green line. Several reference setpoints

have been defined for the VSC state variables, i.e., currents
id , iq and the output voltage Vdc and as it can be observed
from the associated diagrams, the proposed control scheme
resulted in fast and accurate convergence to these setpoints.
The disturbance observer that was based on the Derivative-
free nonlinear Kalman Filter was capable of estimating the
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Fig. 5 a Control of the state variables (blue line) of the VSC in case of reference setpoint 3 (red line), and b estimation of disturbance input (first
diagram green line) and variation of the control inputs (second and third diagrams blue line)
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Fig. 6 a Control of the state variables of the VSC (blue line) in case of reference setpoint 4 (red line), and b estimation of disturbance input (first
diagram green line) and variation of the control inputs (second and third diagrams blue line)

unknown and time-varying input disturbances affecting the
VSC model.

The simulation experiments have confirmed that the pro-
posed state estimation-based control schemenot only enables
implementation of VSC control through the measurement of
a small number of variables (e.g., the ones appearing in the

flat outputs y f1 and y f2 ) but also improves the robustness of
the VSC control loop in case of disturbances.

The improvement in the performance of the control loop
that is due to the use of a disturbance observer based on
the Derivative-free nonlinear Kalman Filter is explained as
follows: (i) compensation of the disturbance terms which
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Fig. 7 Convergence of the output voltage Vdc (blue line) to the reference setpoint (red line) a without using the disturbance observer and b when
using the disturbance observer

are generated by parametric uncertainty or unknown external
inputs and (ii) more accurate estimation of the disturbance
terms because the filtering procedure is based on an exact
linearization of the system’s dynamics and does not introduce
numerical errors (as for example in the case of the extended
Kalman Filter). This is shown in Fig. 7.

The disturbances depicted in Figs. 3, 4, 5 and 6 of the
article represent the cumulative effects of modelling uncer-
tainty and of external perturbations. Modelling uncertainties
can be due to parametric variations in the electric circuit of
the VSC, while the external perturbations can be induced by
voltage variations in the grid (e.g., voltage sags, harmonics
distortions, etc.). It is shown that by using the Derivative-
free nonlinear Kalman Filter as a disturbance estimator it is
possible to estimate simultaneously the non-measurable state
vector elements of the converter and the aggregate perturba-
tion inputs. By knowing such disturbance inputs it is possible
to compensate for them by introducing an additional term to
the feedback control input.

As an outline of the previous analytical and experimen-
tal results it can be stated that by proving that the VSC
model is differentially flat, its transformation to the linear
canonical (Brunovsky) form becomes possible. This enables
to solve both the control and the state estimation problem.
The novelty of the article is primarily in the used nonlinear
estimation method, which is the Derivative-free nonlinear
Kalman Filter. This filtering method is a new and genuine
result in nonlinear estimation theory which under specific
conditions retains the optimality features of the standard

Kalman Filter. Moreover, the use of the aforementioned fil-
ter as a disturbances estimator is also a novel element in
this research work. The filter estimates simultaneously the
non-measurable state vector elements of the converter and
disturbances or modelling error terms that affect its function-
ing. Additionally, one can compare control based on global
linearization methods and the differential flatness theory
approach, against control based on approximate lineariza-
tion. It has been confirmed that flatness-based control is of
improved robustness. Finally, comparing to adaptive con-
trol methods the proposed flatness-based control approach is
computationally simpler.

Conclusions

The paper has proposed a nonlinear control scheme for
three-phase VSCs. Estimation of disturbances terms due
to variations of the load current has been performed with
the use of a new nonlinear filtering approach, the so-called
Derivative-free nonlinear Kalman Filter. First, it was proven
that the dynamic model of the three-phase VSC is a dif-
ferentially flat one, and this enabled its description in the
Brunovsky (linear canonical) form. It has been shown that
for the linearized converter’s model it is possible to design a
state feedback controller. At a second stage, a novel Kalman
Filtering method, the Derivative-free nonlinear Kalman Fil-
ter, has been proposed for estimating the non-measurable
elements of the dynamic model of the VSC.
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It has been shown that by avoiding linearization approx-
imations, the proposed filtering method, improves the accu-
racy of estimation, and results in smooth control signal
variations and in minimization of the tracking error of the
VSC control loop. Moreover, with the redesign of the pro-
posed Kalman Filter as a disturbance observer, it became
possible to obtain estimates of disturbance terms associated
with variations of the load current. The VSC’s control input
was generated by including in the state-feedback control law
an input that is based on the estimate of the disturbance
terms. Simulation tests have been provided to evaluate the
performance of the nonlinear control scheme. A comparison
between the approach that was based on differential flatness
theory and Lie algebra-based linearization of the converter’s
model has been performed.

Appendix: Linearization of the Converter’s Model
Using Lie-Algebra

Linearization of the converter’s model can be also performed
using Lie-algebra and with the computation of the associ-
ated Lie derivatives [33,34]. The following state variables
are defined: z1 = h1(x), z2 = L f h1(x), and z3 = h2(x).
Thus one gets

L f h1(x) = ∂h1
∂x1

f1 + ∂h1
∂x2

f2 + ∂h1
∂x3

f3⇒L f h1(x)

= 3

2
Lx1

(
− R

L
x1 + ωx2 + vd

L

)

+ 3

2
Lx2

(
−ωx1 − R

L
x2

)

+Cdcx3

(
− x3
CdcRc

)
⇒z12 = L f h1(x)

= −3

2
R

(
x21 + x22

)
+ 3

2
vd x1 − 1

Rc
x23 .

Similarly, one has

ż2 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h2(x)u2, (44)

where

L2
f h1(x) = ∂z12

∂x1
f1 + ∂z12

∂x2
f2 + ∂z12

∂x3
f3⇒L2

f h1(x)

=
(

−3Rx1 + 3

2
vd

) (
− R

L
x1 + ωx2 + vd

L

)

+ (−3Rx2)

(
−ωx1 − R

L
x2

)

+
(

− 2

Rc
x3

) (
− x3
CdcRc

)
⇒L2

f h1(x)

= 3R2

L

(
x21 + x22

)
− 3R

L
vd x1 + 2x23

CdcR2
c
,

while it also holds

Lg1L f h1(x) = ∂z12
∂x1

g11+ ∂z12
∂x2

g21+ ∂z12
∂x3

g31⇒Lg1L f h1(x)

=
(

−3Rx1 + 3

2
vd

) (
− x3
2L

)
+ (−3Rx2) 0

+
(

− 2

Rc
x3

) (
3x1
4Cdc

)
⇒Lg1L f h1(x)

= 3R

2L
x1x3 − 3

4L
vd x3 − 3x1x3

2RcCdc
,

and also

Lg2L f h1(x) = ∂z12
∂x1

g12 + ∂z12
∂x2

g22 + ∂z12
∂x3

g32⇒

Lg2L f h1(x) =
(

−3Rx1 + 3

2
vd

)
0 + (−3Rx2)

(
− x3
2L

)

+
(

− 2

Rc
x3

) (
3x2
4Cdc

)
⇒Lg2L f h1(x)

= 3Rx2x3
2L

− 3x2x3
2RcCdc

.

Therefore, one has

ż1 = z2,

ż2 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2. (45)

It can be confirmed that it holds ż1 = z2. Indeed one has
z1 = h1(x) therefore

ż1 = ∂z11
∂x1

ẋ1 + ∂z11
∂x2

ẋ2 + ∂z11
∂x3

ẋ3⇒ż1

= 3

2
Lx1

(
− R

L
x1+ωx2+ vd

L

)
+ 3

2
Lx2

(
−ωx1− R

L
x2

)

+Cdcx3

(
− x3
CdcRc

)
⇒ż1 = −3

2
Rx21

+ 3

2
Lωx1x2+ 3

2
vd x1− 3

2
Rx22− 3

2
Lωx1x2− 1

RC
x23 .

Thus, one finally obtains

ż1 = −3

2
R

(
x21 + x22

)
+ 3

2
vd x1 − 1

Rc
x23 . (46)

123



32 Intell Ind Syst (2016) 2:21–33

Equation (44) can be also confirmed. Indeed, using that
z2 = L f h1(x) = − 3

2 R(x21+x22 )+ 3
2vd x1− 1

Rc
x23 one obtains

ż2 = ∂z12
∂x1

ẋ1 + ∂z12
∂x2

ẋ2 + ∂z12
∂x3

ẋ3⇒ż2

=
(

−3Rx1 + 3

2
vd

) (
− R

L
x1 + ωx2 + vd

L
− x3

2L
u1

)

+ (−3Rx2)

(
−ωx1 − R

L
x2 − x3

2L
u2

)

+
(

− 2

Rc
x3

) (
− x3
CdcRc

+ 3x1
4Cdc

u1 + 3x2
4Cdc

u2

)
⇒

ż2 = 3R2

L

(
x21 + x22

)
− 3R

L
vd x1 + 2x23

CdcR2
c

+
(
3R

2L
x1x3 − 3

4L
vd x3 − 3x1x3

2RcCdc

)
u1

+
(
3Rx2x3
2L

− 3x2x3
2RcCdc

)
u2, (47)

which through the previous relations about L2
f h1(x),

Lg1L f h1(x) and Lg2L f h1(x) confirms finally Eq. (44).
The third state variable is also examined, that is z3 =

h2(x) = iq . It holds that

L f h2(x) = ∂h2
∂x1

f1 + ∂h2
∂x2

f2 + ∂h2
∂x3

f3⇒
L f h2(x) = 0 f1 + 1 f2 + 0 f3⇒
L f h2(x) = −ωx1 − R

L
x2. (48)

Equivalently, one gets

Lg1h2(x) = ∂h2
∂x1

g11 + ∂h2
∂x2

g21 + ∂h2
∂x3

g31⇒
Lg1h2(x) = 0g11 + 1g21 + 0g31⇒
Lg1h2(x) = 0, (49)

and similarly one has

Lg2h2(x) = ∂h2
∂x1

g12 + ∂h2
∂x2

g22 + ∂h2
∂x3

g32⇒
Lg2h2(x) = 0g12 + 1g22 + 0g32⇒
Lg2h2(x) = − x3

2L
. (50)

Therefore, it holds

ż3 = L f h2(x) + Lg1h2(x)u1 + Lg2h2(x)u2⇒
ż3 =

(
−ωx1 − R

L
x2

)
+ 0u1 − x3

2L
u2,

ż3 =
(

−ωx1 − R

L
x2

)
− x3

2L
u2. (51)

Equation (51) corresponds to the second line of the state-
space equations of Vdc and therefore confirms the relation

ż3 = L f h2(x) + Lg1h2(x)u1 + Lg1h2(x)u2. (52)

Therefore one arrives at the following equations

ż1 = z2,

ż2 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h2(x)u2,

ż3 = f21 + g22u2, (53)

where the new control inputs are defined as

v1 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h2(x)u2,

v2 = f21 + g22u2. (54)

Consequently, one gets

ż1 = z2,

ż2 = v1,

ż3 = v2, (55)

or in state-space description

⎛
⎜⎝
ż1

ż2

ż3

⎞
⎟⎠ =

⎛
⎜⎝
0 1 0

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝
z1

z2

z3

⎞
⎟⎠ +

⎛
⎜⎝
0 0

1 0

0 1

⎞
⎟⎠

(
v1

v2

)
,

(
y1

y2

)
=

(
1 0 0

0 0 1

) ⎛
⎜⎝
z1

z2

z3

⎞
⎟⎠ . (56)

Therefore, the initial nonlinear system of theVSC is trans-
formed into the linear canonical form.
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