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Abstract Control of the heat diffusion in the welded metal
is of primary importance for successful welding of high qual-
ity (the latter being a prerequisite for efficient ship building).
The paper proposes a distributed parameter systems control
method that is based on differential flatness theory, aiming
at solving the problem of heat distribution control in the arc-
welding process. Besides it proposes a nonlinear filtering
method, under the name Derivative-free nonlinear Kalman
Filtering for reducing the number of real-time control mea-
surements needed to implement the feedback control loop.
The stability of the control method is confirmed analyti-
cally, while its efficiency is also evaluated through simulation
experiments.

Keywords Ship-building · Arc welding · Heat diffusion ·
Differential flatness theory · Nonlinear control · Nonlinear
Kalman Filtering

1 Introduction

Arc welding is one of the primary tasks in ship building [1].
Automated welding in ship-building is required because of
the low productivity of hand welding, which is the result
of the severe environmental conditions produced in the
intense heat and the fumes that are generated by the welding
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process. The dynamics of the welding process is given by a
diffusion-type partial differential equation which describes
the spatiotemporal variations of the temperature distribution
in the welded workpiece (Fig. 1). The parameters (inputs)
that affect this temperature distribution are the velocity of
the torch and the heat input power (Fig. 2). It is important to
control heat diffusion in the welding process and the associ-
ated temperature distribution in the weldedmaterial, because
this finally determines the quality, strength and endurance of
the weld.

According to welding theory, the temperature of the heat
affected zone determines the quality of the weld [2–6]. The
heat-affected zone is defined as the area round the weld
bead where the temperature of the melted material varies
between a lower and upper limit, where each limit is associ-
ated with transition to a different phase and structure of the
material. The structure of the material that is formed after
welding as well as the defects appearing in the weld depend
on the temperature that is developed in the heat-affected zone
and its variations during the welding process. For the mon-
itoring of the thermal distribution in the welded workpiece
several methods have been implemented, such as the use of
thermocouples, infrared thermometers and infrared cameras.
Efficient control of the thermal distribution during welding
is still an open problem. In this manuscript a solution will
be developed based on previous results on control and state
estimation for distributed parameter systems with the use of
differential flatness theory [7–9].

Methods for feedback stabilization of systems with non-
linear PDEdynamics have been aflourishing research subject
in the last years [10–14]. In particular, feedback control
of diffusion-type (parabolic) PDEs has been a subject of
extensive research and several remarkable results have been
produced [15–18]. For the control of the heat diffusion PDE,
boundary and distributed control methods have been devel-
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Fig. 1 Control scheme of the
nonlinear heat diffusion in the
welding process

Fig. 2 Control scheme of the
nonlinear heat diffusion in the
welding process

oped [19–25]. In this paper, following the procedure for
numerical solution of the nonlinear PDE of heat diffusion,
a set of coupled nonlinear ordinary differential equations is
obtained and written in a state-space form [26,27]. For the
latter state-space description, differential flatness properties
are proven. Thus, it is shown that all state variables and the
control inputs of the state-space model can be written as
differential functions of a vector of algebraic variables that
constitute the flat output [28–32]. By applying a change of
coordinates (diffeomorphism) which is based on differential
flatness theory it is shown that the state-space model of the
heat diffusion PDE can be written in a linear form, in which
thepreviously notednonlinear ordinarydifferential equations
are now transformed into linear ones. Next, feedback control
is applied to the heat diffusion PDE. For each local linear
model of the aforementioned differential equations the state

feedback control is selected such that asymptotic stability is
assured. This can be done using for instance pole-placement
methods. By computing the control input of the heat diffu-
sion PDE, which varies both in space and time one can also
compute the velocity that the welding torch should have at a
specific time instant at a point of the cartesian frame, so as
the temperature distribution of the workpiece to converge to
the reference setpoints.

Another objective of the article is to implement state-
feedback control of the nonlinear heat diffusion PDE using
measurements from a small number of sensors [33,34]. This
implies that for state vector elements of the PDE’s state-space
description which cannot be measured directly, state estima-
tion with filtering methods has to be be applied. Filtering for
nonlinear distributed parameter systems is again a non-trivial
problem [35–38]. Both observer-based and Kalman Filter-
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based approaches have been proposed [39–43]. To this end, in
this paper, a new nonlinear filtering method, under the name
Derivative-free nonlinear Kalman Filtering, is proposed. The
filter consists of the standard Kalman Filter recursion applied
to the linear equivalent state-space model of the heat diffu-
sion PDE and of an inverse transformation that enables to
obtain estimates of the state variables in the initial nonlinear
description [44–46].

The structure of the paper is as follows: In “Dynamic
Model of the Arc Welding Process” section the dynamic
model of the arc-welding process is analyzed and the
associated nonlinear heat diffusion PDE is explained. In
“State-Space Description of the Nonlinear Heat Diffusion
Dynamics” section differential flatness properties of the
welding’s heat diffusion PDE are shown and an equiva-
lent linear state-space description is obtained. In “Solution
of the Control and Estimation Problem for Nonlinear Heat
Diffusion” section a feedback controller is designed for the
nonlinear heat diffusion dynamics in arc welding. Moreover,
a Kalman Filtering approach is introduced for implement-
ing state feedback control using a small number of sensor
measurements. In “Simulation Tests” section the efficiency
of the proposed feedback control scheme for the arc-welding
process is shown through simulation experiments. Finally, in
“Conclusions” section concluding remarks are provided.

2 Dynamic Model of the Arc Welding Process

The reference frame of Fig. 3 is introduced and the following
nonlinear heat diffusion equation is considered, describ-
ing the spatiotemporal variations of the temperature in the
welded workpiece [2–4]

Fig. 3 Grid points for measuring φ(x, t)

∂φ

∂t
= K

∂2φ

∂x2
+ f (x, t) + u(x, t) (1)

where K is the heat conductivity and u(x, t) is a term associ-
atedwith the partial derivative of the temperature distribution
with respect to the space variable x as well as with the veloc-
ity of the welding torch. This is given by

u(x, t) = ∂φ(x, t)

∂x
vs(t) (2)

with vs(t) to stand for the velocity of the torch at time instant
t . Moreover, about the nonlinear term f (x, t) this is given by

f (x, t) = q(x)h(t) (3)

The term h(t) stands for the heating power provided by
the torch. The term q(x) denotes the spatial distribution of
the heating input and can be approximated by a Gaussian,
that is [5,6]

q(x) = ae− (x−xs )2

σ2 (4)

where a and σ are constant parameters and xs is the posi-
tion of the torch in the reference system used for the welding
process (Fig. 1). The previous dynamic model of the welding
process is the result of the energy conservation principle. In
the simplest scenario of welding the following assumptions
are made: (i) the thermal conductivity coefficient K remains
constant throughout the process and is not affected by tem-
perature variations of the welded material, (ii) the only heat
source provided to the welded material is the one given by
the torch, (iii) no heat is either produced or lost at any other
part of the workpiece.

3 State-Space Description of the Nonlinear Heat
Diffusion Dynamics

Using the approximation for the partial derivative in the par-
tial differential equation given in Eq. (1) one has

∂2φ

∂x2
� = φi+1 − 2φi + φi−1

�x2
(5)

and considering spatial measurements of variable φ along
axis x at points x0 + i�x, i = 1, 2, . . . , N one has

∂φi

∂t
= K

�x2
φi+1 − 2K

�x2
φi + K

�x2
φi−1 + f (φi ) + u(xi , t)

(6)
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By considering the associated samples of φ given by
φ0, φ1, . . . , φN , φN+1 one has

∂φ1

∂t
= K

�x2
φ2 − 2K

�x2
φ1 + K

�x2
φ0 + f (φ1) + u(x1, t)

∂φ2

∂t
= K

�x2
φ3 − 2K

�x2
φ2 + K

�x2
φ1 + f (φ2) + u(x2, t)

∂φ3

∂t
= K

�x2
φ4 − 2K

�x2
φ3 + K

�x2
φ2 + f (φ3) + u(x3, t)

· · ·
∂φN−1

∂t
= K

�x2
φN − 2K

�x2
φN−1 + K

�x2
φN−2 + f (φN−1)

+ u(xN−1, t)
∂φN

∂t
= K

�x2
φN+1 − 2K

�x2
φN + K

�x2
φN−1

+ f (φN ) + u(xN , t) (7)

By defining the following state vector

xT = (
φ1, φ2, . . . , φN

)
(8)

one obtains the following state-space description

ẋ1 = K

�x2
x2 − 2K

�x2
x1 + K

�x2
φ0 + f (x1) + u1

ẋ2 = K

�x2
x3 − 2K

�x2
x2 + K

�x2
x1 + f (x2) + u2

ẋ3 = K

�x2
x4 − 2K

�x2
x3 + K

�x2
x2 + f (x3) + u3

· · ·
ẋN−1 = K

�x2
xN − 2K

�x2
xN−1 + K

�x2
xN−2

+ f (xN−1) + uN−1

ẋN = K

�x2
φN+1 − 2K

�x2
xN

+ K

�x2
xN−1 + f (xN ) + uN (9)

where ui , i = 1, 2. . . . , N is the control input exerted at
grid point x0 + i�x . Next, the following state variables are
defined

y1,i = xi

y2,i = ẋi (10)

and the state-space description of the system becomes as
follows

ẏ1,1 = K

�x2
y1,2 − 2K

�x2
y1,1 + K

�x2
φ0 + f (y1,1) + u1

ẏ1,2 = K

�x2
y1,3 − 2K

�x2
y1,2 + K

�x2
y1,1 + f (y1,2) + u2

ẏ1,3 = K

�x2
y1,4 − 2K

�x2
y1,3 + K

�x2
y1,2 + f (y1,3) + u3

· · ·
· · ·

ẏ1,N−1 = K

�x2
y1,N − 2K

�x2
y1,N−1 + K

�x2
y1,N−2

+ f (y1,N−1) + uN−1

ẏ1,N = K

�x2
φN+1 − 2K

�x2
y1,N + K

�x2
y1,N−1 + f (y1,N ) + uN

(11)

The dynamical system described in Eq. (11) is a dif-
ferentially flat one with flat output defined as the vector
ỹ = [y1,1, y1,2, . . . , y1,N ]. Indeed all state variables can be
written as functions of the flat output and its derivatives.

Moreover, by defining the new control inputs

v1 = K

�x2
φ0 + f (y1,1) + u1

v2 = f (y1,2) + u2

v3 = f (y1,3) + u3

· · ·
vN−1 = f (y1,N−1) + uN−1

vN = K

�x2
φN+1 + f (y1,N ) + uN (12)

the following state-space description is obtained

⎛

⎜⎜
⎜⎜
⎝

ẏ1,1
ẏ1,2
· · ·

ẏ1,N−1

ẏ1,N

⎞

⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

− 2K
�x2

K
�x2

0 0 · · · 0 0 0 0

K
�x2

− 2K
�x2

K
�x2

0 · · · 0 0 0 0

0 K
�x2

− 2K
�x2

K
�x2

· · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 K

�x2
− 2K

�x2
K

�x2

0 0 0 0 · · · 0 0 K
�x2

− 2K
�x2

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

×

⎛

⎜⎜
⎜⎜
⎝

y1,1
y1,2
· · ·

y1,N−1

y1,N

⎞

⎟⎟
⎟⎟
⎠

+

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

v1

v2

v3

· · ·
vN−1

vN

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

(13)

Assuming that all measurements from the set of points
x j j∈[1, 2, . . . ,m] are available, the associated observation
(measurement) equation becomes

⎛

⎜⎜
⎝

z1
z2
· · ·
zm

⎞

⎟⎟
⎠ =

⎛

⎜
⎜⎜⎜
⎝

1 0 0 · · · 0 0
0 1 0 · · · 0 0
· · · · · · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1

⎞

⎟
⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜⎜
⎝

y1,1
y1,2
y1,3
· · ·

y1,N−1

y1,N

⎞

⎟⎟
⎟⎟⎟⎟
⎠

(14)

Thus, in matrix form one has the following state-space
description of the system

123



Intell Ind Syst (2016) 2:5–19 9

˙̃y = Aỹ + Bv

z̃ = C ỹ (15)

Moreover, denoting a = K
�x2

and b = − 2K
�x2

, the initial
description of the system given in Eq. (13) is rewritten as
follows

⎛

⎜⎜⎜⎜
⎝

ẏ1,1
ẏ1,2
· · ·

ẏ1,N−1

ẏ1,N

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜
⎜⎜⎜⎜⎜
⎝

b a 0 0 0 · · · 0 0 0 0 0 0
a b a 0 0 · · · 0 0 0 0 0 0
0 0 a b a · · · 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 0 · · · a b a 0
0 0 0 0 0 0 0 · · · 0 0 a b

⎞

⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

y1,1
y1,2
· · ·

y1,N−1

y1,N

⎞

⎟⎟⎟⎟
⎠

+

⎛

⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜
⎜⎜⎜⎜⎜
⎝

v1
v2
v3
· · ·

vN−1

vN

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(16)

In an outline of the above it can be noted that the PDE
dynamics of the heat diffusion undergoes semi-discretization
about its spatial (x-axis dimension). There are N equidistant
points along the x-axis and at these points the heat diffusion
dynamics is represented by a nonlinear ordinary differential
equationwith respect to time.Moreover, the finite differences
method has been applied to compute the partial derivatives of
the temperature distribution φ(x, t) with respect to the spa-
tial variable x . After transformation of the PDE dynamics
into the equivalent state-space model of Eq. (16) it can be
seen that there are virtual control inputs ui i = 1, 2, . . . , N
exerted on it. Based on the values of these control inputs and
on Eq. (19) one can finally compute the speed of the torch
which is the real and time varying control input exerted on
the system. The outputs of the welding system’s model are
specific elements of the state vector of Eq. (16). These are
associated with measurements of the heat distribution (tem-
perature) obtained at specific points of the welded element.
The boundary conditions for this PDEmodel areφ(x0, t) and
φ(xN , t) and these are associated with measurements about
the heat distribution (temperature) obtained at the initial and
final point of the x-axis dimension of the welded workpiece.

4 Solution of the Control and Estimation Problem
for Nonlinear Heat Diffusion

4.1 Solution of the Control Problem

Using the flat outputs notation, it holds that the dynamics of
the linearized equivalent model of the nonlinear heat diffu-
sion PDE takes the form

ẏ1,1 = by1,1 + ay1,2 + v1

ẏ1,2 = ay1,1 + by1,2 + ay1,3 + v2

ẏ1,3 = ay1,2 + by1,3 + ay1,4 + v3

· · ·
· · ·

ẏ1,N−1 = ay1,N−2 + by1,N−1 + ay1,N + vN−1

ẏ1,N = ay1,N−1 + by1,N + vN (17)

For the dynamics given in Eq. (17), the feedback con-
trol law that assures tracking of the reference setpoint yd =
[yd1,1, yd1,2, yd1,3, . . . , yd1,N−1, y

d
1,N ]T is

v1 = ẏd1,1 − by1,1 − ay1,2 − Kp1,1

(
yd1,1 − yd1,1

)

v2 = ẏd1,2 − ay1,1 − by1,2 − ay1,3 − Kp1,2

(
yd1,2 − yd1,2

)

v3 = ẏd1,3 − ay1,2 − by1,3 − ay1,4 − Kp1,3

(
yd1,3 − yd1,3

)

· · ·
· · ·

vN−1 = ẏd1,N−1 − ay1,N−2 − by1,N−1 − ay1,N

−Kp1,N−1

(
yd1,N−1 − yd1,N−1

)

vN = ẏd1,N − ay1,N−1 − by1,N

−Kp1,N

(
yd1,N − yd1,N

)
(18)

Next, using Eq. (18) one can compute the control action
that is applied to the heat diffusion dynamics

v1 = K

�x2
φ0 + f (y1,1) + u(y1,1)⇒u(y1,1)

= v1 − K

�x2
φ0 − f (y1,1)

v2 = f (y1,2) + u(y1,2)⇒u(y1,2) = v2 − f (y1,2)

v3 = f (y1,3) + u(y1,3)⇒u(y1,3) = v3 − f (y1,3)

· · ·
· · ·

vN−1 = f (y1,N−1) + u(y1,N−1)⇒u(y1,N−1)

= vN−1 − f (y1,N−1)

vN = K

�x2
φN+1 + f (yN ) + u(y1,N )⇒u(y1,N )

= vN − K

�x2
φN+1 − f (y1,N ) (19)

The control input u(x, t) is a heat distribution that is
generated by the moving welding torch. By knowing the spa-
tiotemporal variations of the heat distribution u(x, t) that is
provided by the torch and the associated partial derivative ∂φ

∂x
one can also compute the speed of the torch v that is needed
for making the heat distribution of the welded area reach the
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desirable setpoints. The proposed control scheme is depicted
in Fig. 2.

For the computation of the setpoints of the speed of the
welding torch one should proceed as follows: At each time
instant ti and for the complete sequence of the grid points
x1, x2, . . . , xN one has the set of equations:

∂φ(x, t)

∂x
|x=x1,t=ti ·v(ti ) = u(x1, ti )

∂φ(x, t)

∂x
|x=x2,t=ti ·v(ti ) = u(x2, ti )

· · ·
∂φ(x, t)

∂x
|x=xN−1,t=ti ·v(ti ) = u(xN−1, ti )

∂φ(x, t)

∂x
|x=xN ,t=ti ·v(ti ) = u(xN , ti ) (20)

By substituting the values of x j , j = 1, 2, . . . , xN and
ti in Eq. (20) the computation of v(ti ), that is v(ti ) can be
performed in the least squares sense.

4.2 Solution of the Estimation Problem

Next, measurements are selected from a subset of points
x j j∈[1, 2, . . . , N ] so as the observability of the state-space
model of the welding process to be preserved (Fig. 3). For
instance the associated observation (measurement) equation
may take the form

⎛

⎜
⎜
⎝

z1
z2
· · ·
zm

⎞

⎟
⎟
⎠ =

⎛

⎜⎜
⎜⎜
⎝

1 0 0 · · · 0 0
0 0 0 · · · 0 0
· · · · · · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 0

⎞

⎟⎟
⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜
⎝

y1,1
y1,2
y1,3
· · ·

y1,N−1

y1,N

⎞

⎟⎟⎟
⎟⎟⎟
⎠

(21)

For the description of the system in the form of Eq. (15)
one can perform estimation using the derivative-free non-
linear Kalman Filter recursion. In the filter’s algorithm, the
previously defined matrices A, B and C are substituted by
their discrete-time equivalents Ad , Bd and Cd . The discrete-
time Kalman filter can be decomposed into two parts: (i)
time update (prediction stage), and (ii) measurement update
(correction stage).
Measurement update:

K (k) = P−(k)CT
d [C ·P−(k)CT

d + R]−1

ŷ(k) = ŷ−(k) + K (k)[z(k) − Cd ŷ
−(k)]

P(k) = P−(k) − K (k)Cd P
−(k) (22)

Time update:

P−(k + 1) = Ad(k)P(k)AT
d (k) + Q(k)

ŷ−(k + 1) = Ad(k)ŷ(k) + Bd(k)u(k) (23)

Therefore, by taking measurements of φ(x, t) at time
instant t at a small number ofmeasuring points j = 1, . . . , n1
it is possible to estimate the complete state vector, i.e. to get
values of φ in a mesh of points that covers efficiently the
variations of φ(x, t). By processing a sequence of output
measurements of the system, one can obtain estimates of
the state vector ŷ. The measuring points (active sensors) can
vary in time provided that the observability criterion for the
state-space model of the PDE holds.

According to Eq. (22) and (23) an estimate of the system’s
state vector ŷ is obtained. Should one want to obtain an esti-
mate of the state vector x of the initial state-space description
of the nonlinear heat diffusion, he should apply the inverse
differential flatness transformation connecting xi ’s to yi ’s. In
the examined model of the nonlinear heat diffusion it holds
that

x̂1 = ŷ1,1 x̂2 = ŷ1,2 x̂3 = ŷ1,3

· · · · · · · · ·
x̂N−2 = ŷ1,N−2 x̂N−1 = ŷ1,N−1 x̂N = ŷ1,N (24)

The proposed derivative-free nonlinear Kalman Filter
is of improved precision because unlike other nonlinear
filtering schemes, e.g. unlike the Extended Kalman Fil-
ter it does not introduce cumulative numerical errors due
to approximative linearization of the system’s dynamics.
Besides it is computationally more efficient (faster) because
it does not require to calculate Jacobian matrices and partial
derivatives.

If state estimation-based control is applied to the state-
space model of the nonlinear heat diffusion equation of
the welding process, then the associated control inputs
are

v1 = K

�x2
φ0 + f (ŷ1,1) + u(ŷ1,1)⇒u(ŷ1,1)

= v1 − K

�x2
φ0 − f (ŷ1,1)

v2 = f (ŷ1,2) + u(ŷ1,2)⇒u(ŷ1,2)

= v2 − f (ŷ1,2)

v3 = f (ŷ1,3) + u(ŷ1,3)⇒u(ŷ1,3)

= v3 − f (ŷ1,3)

· · ·
· · ·

vN−1 = f (ŷ1,N−1) + u(ŷ1,N−1)⇒u(ŷ1,N−1)

= vN−1 − f (ŷ1,N−1)

vN = K

�x2
φN+1 + f (ŷN ) + u(ŷ1,N )⇒u(ŷ1,N )

= vN − K

�x2
φN+1 − f (ŷ1,N ) (25)
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In complement to the modelling and control part of heat
diffusion in the arc-welding model the following points are
worth of further analysis:

(i) The control problem for the welding PDE is finally for-
mulated as a single-input one. Although, the heating
power of the torch can affect the heat diffusion in the
welded metal, it is finally considered that this parame-
ter is kept constant while only the time-varying velocity
of the torch stands for a control input. The term of the
spatial distribution q(x) which is described in Eq. (4)
depends primarily on the heating power of the torch and
not on the velocity of the torch. Eq. (4) denotes that the
spatial distribution of the heating input is a Gaussian
centered at the present position x of the torch. If x
varies in time, that is ẋ �=0 then Eq. (4) still describes
the spatial distribution of the heating input since para-
meters α and σ are constants and do not depend on
x .

(ii) To implement the previously analyzed control method
one can consider that the boundary conditions of the
nonlinear heat diffusion PDE are known and are mon-
itored by specific sensors. However, knowledge of
boundary conditions is not necessary for the solution
of the control problem for the welding process. It is not
imperative to use dedicated sensors for measuring the
temperature distribution at boundary pointsφ(x0, t) and
φ(xN+1, t) of the welded element. By taking measure-
ments at specific points φ(xi , t) of the welded element
so as to assure the observability of the state-spacemodel
of the heat PDE, one can use the outcome of the Kalman
Filtering procedure for estimating the temperature dis-
tribution at points which are not monitored with the use
of sensors.

(iii) Moreover, even in the case that the PDE model is not
an exact one, or is characterized by missing terms or
is subjected to external perturbations one can make
use of robust Kalman Filtering approaches (such as the
H-infinity Kalman Filter or Kalman Filter-based distur-
bance observers) for obtaining accurate estimates of the
monitoring heat diffusion PDE.

(iv) In the treated case study, and for purposes of compu-
tational simplicity, the heat diffusion model has been
considered to be 1-dimensional. However, the evolu-
tion of the heat diffusion process make also take place
in 2 or 3 dimensions. Even in the latter case one can
apply the proposed PDE control and filtering method
based on differential flatness theory [47]. The primary
difficulty is that the order of the state space model will
be elevated (doubled or tripled) and accordingly more
measurement points have to be introduced.

(v) It is possible to extend the heat-diffusion model in three
dimensions, and in such a case one would come against

an elevated computational burden for the control and
filtering method. Instead of semi-discretization of the
diffusion process at N points one would have 3N such
points and the dimension of the state-space description
of the system’s dynamics would be raised by a factor of
3. Up to now the problem of PDE diffusion and control
with the proposed differential flatness theory approach
has been treated in 1D and 2D PDE systems. Indicative
multi-dimensional distributed parameter systems have
been given in Ref. [48] and Ref. [49].

(vi) It is also noteworthy that the heating power of the torch
was considered to remain constant. The only varying
control inputwas the speed of the torch. This suffices for
implementing a stabilizing feedback control scheme for
the heat diffusion PDE. It would be possible to apply a
multi-input control scheme for the arc-welding process
in which the heating power of the torch would also vary.
Thiswould not alter significantly the stages of the design
of feedback controller for this process which have been
explained above.

5 Simulation Tests

The performance of the proposed control scheme has been
tested in the model of the nonlinear heat diffusion PDE that
describes the arc welding process. A discretization grid of
the PDE consisting of N = 50 points, along the x axis
(Fig. 1) was considered. For N grid points and M measure-
ment sensors, process noise covariance matrix Q∈RN×N

is taken to be diagonal with zero elements equal to 10−3

and the measurement noise covariance matrix R∈RM×N is
taken to be diagonal with zero elements equal to 10−4. At
each grid point the local control input u(xi , t) was exerted to
the system. The state-space description of the heat-diffusion
PDE comprised also a state vector of dimension y∈R50×1.
The number of measurement points was m≤N were m
was selected such that the observability of the linearized
state-space model of the PDE is preserved (actually mea-
surements were sampled from half of the number of grid
points) as shown in Fig. 3.

The obtained results, for the case of moderate measure-
ment noise (trace of the covariance matrix of the noise vector
equal to 6.3×10−3), are presented in Figs. 4, 5, 6, 7, 8, 9 and
10. The plotted variables are originally measured in SI units,
however in the followingdiagrams their variation is presented
with the use of normalized values. It can be observed that
through the application of suitable control inputs the distri-
bution function φ(x, t) can be made to track the desirable
sinusoidal setpoints. Actually, the tracking of a sinusoidal
reference setpoint by the distribution φ(x, t) of the nonlin-
ear heat diffusion PDE is shown in Fig. 4a. Additionally in
Fig. 4b the variations of the control input term ∂φ(x,t)

∂x u(t) are
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Fig. 4 Control of the arc
welding process under moderate
measurement noise a Controlled
distribution φ(x, t) of the
nonlinear heat diffusion PDE
tracking a sinusoidal setpoint, b
Control input ∂φ(x,t)

∂x u(t)

Fig. 5 Control of the arc
welding process (distribution
φ(x, t)) under moderate
measurement noise a Grid
points p1 to p4 and b Grid
points p5 to p8 of the nonlinear
heat diffusion PDE: tracking of
the reference setpoints (red line)
by the value of the distribution
φ(x, t) (blue line)
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Fig. 6 Control of the arc
welding process (distribution
φ(x, t)) under moderate
measurement noise a Grid
points p9 to p12 and b Grid
points p13 to p16 of the
nonlinear heat diffusion PDE:
tracking of the reference
setpoints (red line) by the value
of the distribution φ(x, t) (blue
line)
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shown. Moreover, in Figs. 5, 6, 7, 8, 9 and 10 diagrams are
provided about the tracking accuracy of the proposed con-
trol method at specific points of the discretization grid. It can

be noticed that the state estimation-based control method
resulted in fast and accurate tracking of the reference set-
points.
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Fig. 7 Control of the arc
welding process (distribution
φ(x, t)) under moderate
measurement noise a Grid
points p17 to p20 and b Grid
points p21 to p24 of the
nonlinear heat diffusion PDE:
tracking of the reference
setpoints (red line) by the value
of the distribution φ(x, t) (blue
line)
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Fig. 8 Control of the arc
welding process (distribution
φ(x, t)) under moderate
measurement noise a Grid
points p25 to p28 and b Grid
points p29 to p32 of the
nonlinear heat diffusion PDE:
tracking of the reference
setpoints (red line) by the value
of the distribution φ(x, t) (blue
line)
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Fig. 9 Control of the arc
welding process (distribution
φ(x, t)) under moderate
measurement noise a Grid
points p33 to p36 and b Grid
points p37 to p40 of the
nonlinear heat diffusion PDE:
tracking of the reference
setpoints (red line) by the value
of the distribution φ(x, t) (blue
line)
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The problem of robust state estimation for filtering-based
control of the welding process is a significant one. Measure-
ment data can be corrupted by noise, or there may be missing

measurements or time-delays in the transmission of sensor
data (for instance in visual monitoring of the welding process
through distributed optical devices). Considering these cases,
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Fig. 10 Control of the arc
welding process (distribution
φ(x, t)) under moderate
measurement noise a Grid
points p41 to p44 and b Grid
points p45 to p48 of the
nonlinear heat diffusion PDE:
tracking of the reference
setpoints (red line) by the value
of the distribution φ(x, t) (blue
line)
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Fig. 11 Control of the arc
welding process under elevated
measurement noise a Controlled
distribution φ(x, t) of the
nonlinear heat diffusion PDE
tracking a sinusoidal setpoint, b
Control input ∂φ(x,t)

∂x u(t)

Fig. 12 Control of the arc
welding process (distribution
φ(x, t)) under elevated
measurement noise a Grid
points p1 to p4 and b Grid
points p5 to p8 of the nonlinear
heat diffusion PDE: tracking of
the reference setpoints (red line)
by the value of the distribution
φ(x, t) (blue line)
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the simulation tests were repeated under elevated measure-
ment noise (trace of the covariance matrix of the noise vector
equal to 6.3×10−1), so as to confirm the disturbance rejection

capabilities and the robustness of both the filtering methods
and the feedback control approach. The obtained results are
depicted in Figs. 11, 12, 13, 14, 15, 16 and 17. It can be
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Fig. 13 Control of the arc
welding process (distribution
φ(x, t)) under elevated
measurement noise a Grid
points p9 to p12 and b Grid
points p13 to p16 of the
nonlinear heat diffusion PDE:
tracking of the reference
setpoints (red line) by the value
of the distribution φ(x, t) (blue
line)
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Fig. 14 Control of the arc
welding process (distribution
φ(x, t)) under elevated
measurement noise a Grid
points p17 to p20 and b Grid
points p21 to p24 of the
nonlinear heat diffusion PDE:
tracking of the reference
setpoints (red line) by the value
of the distribution φ(x, t) (blue
line)
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Fig. 15 Control of the arc
welding process (distribution
φ(x, t)) under elevated
measurement noise a Grid
points p25 to p28 and b Grid
points p29 to p32 of the
nonlinear heat diffusion PDE:
tracking of the reference
setpoints (red line) by the value
of the distribution φ(x, t) (blue
line)
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noticed, that despite functioning under measurement noise
and perturbations the tracking performance of the tempera-
ture setpoints at the grid’s points remained satisfactory.

Indicative results about the variation of the root mean
square error (RMSE) of the temperature setpoint tracking
at grid points i1 = 10, i2 = 25 and i3 = 35, under
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Fig. 16 Control of the arc
welding process (distribution
φ(x, t)) under elevated
measurement noise a Grid
points p33 to p36 and b Grid
points p37 to p40 of the
nonlinear heat diffusion PDE:
tracking of the reference
setpoints (red line) by the value
of the distribution φ(x, t) (blue
line)
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Fig. 17 Control of the arc
welding process (distribution
φ(x, t)) under elevated
measurement noise a Grid
points p41 to p44 and b Grid
points p45 to p48 of the
nonlinear heat diffusion PDE:
tracking of the reference
setpoints (red line) by the value
of the distribution φ(x, t) (blue
line)
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Table 1 Tracking RMSE under disturbances

Trace (Cov)d̃ 0.0063 0.1002 0.2189 0.4008 0.6300

RMSEi1 0.0284 0.0292 0.0296 0.0313 0.0319

RMSEi2 0.0254 0.0285 0.0324 0.0384 0.0457

RMSEi3 0.0254 0.0285 0.0324 0.0384 0.0457

different measurement noise levels (described by the trace
of the covariance matrix of the measurement noise vector
trace(Cov)d̃ ), are given in Table 1. It can be noticed that
the filtering-based control scheme of the arc-welding process
exhibited robustness to the progressively increasing intensity
of disturbances.

In addition to the analytical proof of the stability and con-
vergence properties of the filtering and control methods for
the heat diffusion PDE in the arc welding process the follow-
ing points are outlined:

(i) The controller is primarily designed for an infinite
dimensional PDE system, which means that the num-
ber of grid points x1, x2, . . . , xN can be extended to
infinity. Next, the modeling of the PDE dynamics fol-
lows the common approach for the numerical solution
of PDEs, which means that the infinite number of grid
points is reduced into a finite one. Consequently, instead
of examining the entire x-axis about the spatial variation
of the temperature distribution φ(x, t) one constrains
the modeling of the PDE dynamics in a finite segment
consisting of the N grid points. However, this segment
can be shifted as the heat diffusion spreads in time, so
as to cover subsequent areas of the x-axis. According
to the above, the considered PDE model is an infinite
dimensional one but its implementation on a computer
requires to consider a finite approximation of it.

(ii) The proposed Derivative-free nonlinear Kalman Filter
is a nonlinear filtering method which does not suffer
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from the approximation errors of other nonlinear filter-
ing methods such as the Extended Kalman Filter, while
being also computationally more efficient than other
nonlinear filteringmethods such as SigmaPointKalman
Filters and Particle Filters [7–9]. It is known that the
accuracy and stability of the Extended Kalman Filter
can be set in question due to the cumulative lineariza-
tion errors that characterize this method. Moreover, it
is known that the Unscented Kalman Filter requires the
computation of cross-covariancematriceswhile the Par-
ticle Filter is based on the manipulation of large sets of
potential state estimates known as particles. Therefore,
the latter two methods impose a significant computa-
tional burden. On the other hand, the Derivative free
nonlinear Kalman Filter does not exhibit such numeri-
cal or computational weaknesses and therefore it is an
estimation method of improved performance.

(iii) Results about the numerical stability of PDEs when
solved with the use of semi-discretization and the
finite differences method have been given in Ref. [26].
Numerical stability methods for the discretization of
PDEs have been widely studied in the relevant bibli-
ography. By a dense sampling along both the spatial
dimension x and the time dimension t of the distributed
parameter system it is assured that numerical stability
of the algorithm is preserved. For diffusion and wave-
type PDEs it is known that the convergence condition is
2K (Dt)/Dx2 ≤ 1 where Dt and Dx are the discretiza-
tion steps in space and time [26].

(iv) To confirm the observability of the state-space descrip-
tion of the heat diffusion PDE given in Eq. (13) and
(14), the associated observability matrix has been com-
puted and this has been found to be a full rank one. One
cannot prescribe for all cases the number and position
of the measurement points that assure the observabil-
ity of the linearized state-space description of the PDE
model. As shown in the case of the arc-welding process,
the number of measurement points can be significantly
reduced with respect to the number of grid points (half
or less) and this is a noteworthy benefit for implement-
ing the associated control system at minimum cost.
Observability of the state-space model is also the con-
dition for the stability of the Kalman Filter recursion.
A weaker condition for the convergence of the Kalman
Filter is the model’s detectability, which in turn is asso-
ciatedwith the non-singularity of the Fisher information
matrix. To provide the filtering procedure with robust-
ness against modeling errors and external perturbations
one can either apply the H-infinity Kalman Filter or can
redesign the Kalman Filter as a disturbance observer
[7–9,50–52]. About testing different configurations of
themeasurement sensors that assure the observability of
the welding model one can consider an algorithmic pro-

cedure into which the observability matrix is computed
for all possible permutations of measurement sensors
on the spatial grid of the PDE.

(v) There are several approaches for improving the robust-
ness of the proposed control and state estimationmethod
for PDEs, with respect to modelling uncertainties and
external perturbations. The controller for the individual
ODEs into which the PDE model is decomposed can
be made more robust by including in it H-infinity or
sliding-mode terms. Another option is to use a distur-
bance observer in the control loop. By redesigning the
Kalman Filter as a disturbances estimator it is possible
to simultaneously estimate the state vector elements of
thePDE’s state-space description aswell as perturbation
terms affecting it. By knowing such perturbation terms
their annihilation becomes possible with the inclusion
of an additional control term in the feedback control
input. Finally, to robustify state estimation it is possi-
ble to use the H-infinity Kalman Filter in place of the
typical Kalman Filter recursion [9].

6 Conclusions

A method for feedback control of the nonlinear heat diffu-
sion PDE associated with the arc welding process has been
provided. After showing that the PDE model of arc welding
satisfies differential flatness properties it has become possi-
ble to transform it into an equivalent linear state-space form.
The procedure for numerical solution of the nonlinear PDE
of the heat diffusion dynamics has been followed, and a set
of coupled nonlinear ordinary differential equations has been
obtained.After defining state variables it has been also shown
that this set of nonlinear ODEs can be finally written in a
state-space form.

For the latter state-space description, differential flatness
properties have been proven. Thus, it has been shown that all
state variables and the control inputs of the state-spacemodel
can bewritten as differential functions of a vector of algebraic
variables that constitute the flat output. By applying a change
of coordinates (diffeomorphism) which is based on differen-
tial flatness theory it is shown that the state-space model of
the heat diffusion PDE can be written in a linear matrix form,
in which the previously noted nonlinear ordinary differential
equations are now transformed into linear ones. For the latter
description of the system the design of an asymptotically sta-
ble state feedback controller has become possible.Moreover,
to implement feedback control using measurements from a
small number of sensors a Kalman Filteringmethod has been
applied. The efficiency of the proposed control and state
estimation scheme has been confirmed through simulation
experiments.
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