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Abstract A control method is developed for the VSC-
HVDC system, that is for an AC to DC voltage source
converter connected to the electricity grid through a high
voltage DC transmission line terminating at an inverter. By
showing that the VSC-HVDC system is a differentially flat
one, its transformation to the linear canonical form becomes
possible. This is a global input–output linearization proce-
dure that results into an equivalent dynamic model of the
VSC-HVDC system for which the design of a state feed-
back controller becomes possible. Moreover, to estimate and
compensate for modeling uncertainty terms and perturbation
inputs exerted on the VSC-HVDC model it is proposed to
include in the control loop adisturbanceobserver that is based
on the Derivative-free nonlinear Kalman Filter. This filtering
method makes use of the linearized equivalent model of the
VSC-HVDC system and of an inverse transformation which
is based on differential flatness theory and which finally pro-
vides estimates of the state variables of the initial nonlinear
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model. The performance of the proposed VSC-HVDC con-
trol scheme is evaluated through simulation experiments.
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Introduction

The integration of renewable energy sources in the elec-
tricity grid has imposed in several cases the development
of methods for power transmission through AC to DC and
DC to AC conversion, and with the intervention of high
voltage DC (HVDC) lines. Towards the design of more
efficient control schemes for VSC-HVDC grid connections
the following results can be noted: in [1–3] H∞ control
has been proposed for high voltage direct current links. In
[4,5] and [6] input–output linearization of the voltage con-
verter (VSC) and HVDC link is performed and accordingly
a state feedback controller is developed. In [7] and [8] feed-
back linearization is performed to model of multiple HVDC
links and subsequently optimal control is applied. In [9] a
decentralized PI passivity-based controller is developed for
high-voltage direct current transmission systems. Moreover,
in [10] model predictive control and decentralized PID con-
trol is applied to the system of multiple HVDC links. In [11]
a sliding-mode control method has been developed for the
VSC-HVDCmodel. Finally, in [12] flatness-based control is
proposed for the HVDC dynamics considering that the latter
is described by a PDE model, while in [13] a feedforward-
feedback control scheme is implemented for active power
control in VSC-HVDC.

The present paper proposes a global linearization appro-
ach, through differential flatness theory, for the problem of
nonlinear feedback control and state estimation of a volt-
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age source converter—HVDC line system. First, the dynamic
model of this electric power transmission system is consid-
ered. This comprises the state-space equations of an AC to
DC voltage source converter, that is connected to the rest of
the grid through an HVDC line terminating at an inverter.
This dynamic model describes the stages of transmission
of electric power from a power generator to the rest of the
grid, through the intervention of an HVDC line. Next, it
is shown that this model is a differentially flat one, which
means that all its state variables and its control inputs can be
expressed as differential functions of one specific state vari-
able of themodel, which the so-called flat output. By proving
that differential flatness properties hold for the electric power
transmission system it is also shown that the initial nonlin-
ear VSC-HVDC state-space model can be written into the
linear canonical (Brunovsky) form. This is a global (exact)
linearization procedure, that is valid throughout the entire
state-space of theVSC-HVDC system andwhich is not based
on approximate truncation of nonlinearities. For the latter
description of the system’s dynamics the design of a feed-
back controller becomes possible, thus permitting to make
the voltage output at the inverter’s side track any reference
setpoint [14–16].

Another problem that has to be dealt with in the design
of the feedback control scheme is that the control loop is
subject to modelling uncertainty and external disturbances.
To estimate and compensate for these perturbation terms it is
proposed to include in the control loop a disturbance observer
that is based on the Derivative-free nonlinear Kalman Filter.
Actually, the Derivative-free nonlinear Kalman Filter con-
sists of the Kalman Filter recursion applied to the linearized
equivalent model of the VSC-HVDC and of an inverse trans-
formation based again on differential flatness theory which
enables to obtain estimates for the state variables of the ini-
tial nonlinear model. The inclusion of an additional term
in the control input, based on the identification of these
exogenousor endogenousperturbations,makes possible their
compensation and improves the robustness of the control
loop [14,15]. The performance of the considered control
scheme for theVSC-HVDC system is evaluated through sim-
ulation experiments.

The structure of the paper is as follows: in “Modelling of
theVSC-HVDCTransmission System” section, themodel of
the dynamics of theVSC-HVDC system is provided. In “Dif-
ferential flatness of the VSC-HVDC System” section, the
differential flatness properties of the VSC-HVDC system are
shown. In “Flatness-based Control of the VSC-HVDC Sys-
tem” section, a flatness-based controller is designed for the
VSC-HVDC model and its stability and convergence prop-
erties are proven. In “Compensation of Disturbances Using
the Derivative-free Nonlinear Kalman Filter” section, the
Derivative-free nonlinear Kalman Filter is included in the
control loop as a disturbance observer, thus enabling to esti-

mate and compensate formodeling uncertainties and external
disturbances. In “Simulation Tests” section, the performance
of the proposed control scheme is tested through simulation
experiments. Finally, in “Conclusions” section concluding
remarks are stated. Finally, in an Appendix that is given at
the end of the mansucript Lie algrebra-based linearization of
the VSC-HVC system is performed, leading to an additional
global linearization-based control of this power transmission
system.

Modelling of the VSC-HVDC Transmission System

By connecting the three-phase voltage source converter,
which is found at the generator’s side with the three-phase
inverter which is found at the load’s side through an HVDC
line (see Fig. 1) the high voltage DC transmission system is
formed. Moreover, by applying Kirchhoff’s voltage and cur-
rent laws the dynamics of the HVDC line is obtained. Thus
at the converter’s side it holds

C1V̇DC1 = − 1

ZL
VDC1 + 1

ZL
VDC2 + 3

4
idu1 + 3

4
iqu2 (1)

where ZL is the impedance of the transmission line (Fig. 2).
Here ZL is considered to consist of only a resistance part
(if inductance part is also included in the transmission line’s
dynamics then a higher order state-space model for the VSC-
HVDC system will be obtained). It is also possible to model
the transmission line’s dynamics as a distributed parameters
system, however this latter assumption will not be followed
in this manuscript.

At the inverter’s side it holds

C2V̇DC2 = 1

ZL
VDC1 − 1

ZL
VDC2 (2)

The state-space model of the VSC-HVDC transmission
line, can be obtained using established models about the
dynamics of the voltage source converter [17–23]:

Li̇d = −Rid + Lωiq + vd − VDC1

2
u1

Li̇q = −Lωid − Riq + vq − VDC1

2
u2

CDC2 V̇DC2 = 1

ZL
VDC1 − 1

ZL
VDC2

CDC1 V̇DC1 = − 1

ZL
VDC1 + 1

ZL
VDC2 + 3

4
idu1 + 3

4
iqu2

(3)

By defining the new state vector of the VSC-HVDC sys-
tem as x = [x1.x2, x3, x4]T = [id , iq , VDC2 , VDC1 ] one
obtains the state-space description
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Fig. 1 Transmission system comprising a voltage source converter (VSC), a high voltage DC line (HVDC) and an inverter

Fig. 2 Components of the high voltage DC line (HVDC)

Lẋ1 = −Rx1 + Lωx2 + vd − x4
2
u1

Lẋ2 = −Lωx1 − Rx2 + vq − x4
2
u2

CDC2 ẋ3 = 1

ZL
x4 − 1

ZL
x3

CDC1 ẋ4 = − 1

ZL
x4 + 1

ZL
x3 + 3

4
x1u1

+ 3

4
x2u2 (4)

which can be also written in matrix form

⎛
⎜⎜⎝
ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

− R
L x1 + ωx2 + vd

L

−ωx1 − R
L x2 + vq

L
1

ZLCDC2
x4 − 1

ZLCDC2
x3

− 1
ZLCDC1

x4 + 1
ZLCDC1

x3

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

− x4
2L 0

0 − x4
2L

0 0
3

4CDC1
x1

3
4CDC1

x2

⎞
⎟⎟⎟⎟⎟⎠

(
u1
u2

)
(5)
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while, as in the case of the stand-alone VSC the output of the
voltage source converter is taken to be

h =
(
h1

h2

)
=

(
ec

iq

)
=

(
3
4 L

(
x21 + x22

) + CDC2
2 x23

x2

)
(6)

Consequently, the VSC-HVDC system is written again in
the state-space form

ẋ = f (x) + G(x)u

y = h(x) (7)

where f (x), G(x) and h(x) are given by

f (x) =

⎛
⎜⎜⎜⎜⎝

− R
L x1 + ωx2 + vd

L

−ωx1 − R
L x2 + vq

L
1

ZLCDC2
x4 − 1

ZLCDC2
x3

− 1
ZLCDC1

x4 + 1
ZLCDC1

x3

⎞
⎟⎟⎟⎟⎠

G(x) =

⎛
⎜⎜⎜⎝

− x4
2L 0
0 − x4

2L
0 0

3
4CDC1

x1
3

4CDC1
x2

⎞
⎟⎟⎟⎠ (8)

h(x) =
(

3
4 L

(
x21 + x22

) + CDC2
2 x23

x3

)
(9)

Remark 1 The impedance of the line can be considered to
consist of both a resistance part and of an inductance part.
Should one have adopted this description the dynamic model
of the HVDC-VSC systemwould not be described by Eq. (4)
but would be given a higher-order state-space description.
Besides, in such a case it would be necessary to consider
as state variables the derivatives of the control inputs and
to perform dynamic feedback linearization in place of sta-
tic feedback linearization. In several research articles, the
assumption made is that for short transmission lines (up to
tens of Km) the line can be modeled by only a resistance part
(see Ref. [24]).

Remark 2 The modelling of the VSC-HVDC system takes
into account the dynamics of the AC to DC voltage source
converter and the dynamics of the transmission line. The
dynamics of the inverter can be considered in Eq (2) by
including a current variable iD in its right part, which denotes
the current that becomes input to the inverter. However, one
can also consider this current term as unmodelled dynam-
ics which is described by the disturbance terms d̃1 and d̃2
appearing in Eqs. (69) and (70). It has been explained that
by using a Kalman Filter-based disturbance observer in the
control loop the effects of such disturbance terms can be esti-
mated and annihilated. Consequently, the model of the third

line of the VSC-HVDC system is adequate if current iD is
taken to be a disturbance parameter that will be compensated
by the robustness of the controller. Moreover, by considering
that the right part of the equation in the third row of Eq. (3)
is completed by the load current iD (the latter is taken to be
a disturbance input to the model), it is assured that even in
the steady-state Vdc1 will be greater than Vdc2 .

Differential Flatness of the VSC-HVDC System

Next, it will be shown that the dynamic model of the voltage
source converter is a differentially flat one, i.e. it holds that
all state variables and its control inputs can be written as
functions of the flat outputs and their derivatives [25–31].
Moreover, it will be shown that by expressing the elements
of the state vector as functions of the flat outputs and their
derivatives one obtains a transformation of the VSC-HVDC
model into the linear canonical (Brunovsky) form.

The dynamic model of the joint VSC-HVDC dynamics
has been defined as

ẋ1 = − R

L
x1 + ωx2 + vd

L
− x4

2L
u1 (10)

ẋ2 = −ωx1 − R

L
x2 + vq

L
− x4

2L
u2 (11)

ẋ3 = 1

ZLCDC2

x4 − 1

ZLCDC2

x3 (12)

ẋ4 = − 1

ZLCDC1

x4 + 1

ZLCDC1

x3 + 3x1
4CDC1

u1

+ 3x2
4CDC1

u2 (13)

The flat output of the system is taken to be y f =
[y f1 , y f2 ]T , where

y f1 = 3L

4

(
x21 + x22

)
+ CDC1

2
x24 (14)

y f2 = x3 (15)

By deriving Eq. (14) with respect to time one obtains

ẏ f1 = 3L

2
x1 ẋ1 + 3L

2
x2 ẋ2 + CDC1x4 ẋ4 ⇒

ẏ f1 = 3L

2
x1

[
− R

L
x1 + ωx2 + vd

L
− x4

2L
u1

]

+ 3L

2
x2

[
− R

L
x2 − ωx1 + vq

L
− x4

2L
u2

]

+CDC1x4

[
− 1

ZLCDC1

x4 + 1

ZLCDC1

x3

+ 3x1
4CDC1

u1 + 3x2
4CDC1

u2

]
(16)
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Using that vd is constant (d-axis component of the grid
voltage) and vq = 0, and after intermediate computations
one obtains

ẏ f1 = −3R

2

(
x21 + x22

)
+ 3x1

2
vd − x24

ZL
+ x3x4

ZL
(17)

From Eq. (12) one has

x4 = (ZLCDC2)

[
ẋ3 + 1

ZLCDC2

x3

]
⇒

x4 = (ZLCDC2)

[
ẏ f2 + 1

ZLCDC2

y f2

]
⇒

x4 = fa(y f , ẏ f ) (18)

which means that state variable x4 is a function of the flat
output and of its derivatives. Moreover, from Eq. (14) one
gets

(
x21 + x22

)
= 4

3L

[
y f1 − CDC1

2
x24

]
⇒

(
x21 + x22

)
= fb(y f , ẏ f ) (19)

Next, using Eq. (17) one has

x1 = 2

3vd

{
ẏ f1 + 3R

2

(
x21 + x22

)
+ x24

ZL
− x3x4

ZL

}
⇒

x1 = 2

3vd

{
ẏ f1 + 3R

2
fb(y f , ẏ f ) + x24

ZL
− y f2x4

ZL

}
(20)

Using Eq. (18) in Eq. (20) one finally gets that state vari-
able x1 is a function of the flat output and its derivatives

x1 = fc(y f , ẏ f ) (21)

Moreover, from Eqs. (19) and (21) it holds (x21 + x22 ) =
fb(y f , ẏ f ) and x1 = fc(y f , ẏ f ). Thus by solving with
respect to x2 one gets

x22 = fb(y f , ẏ f ) − f 2c (y f , ẏ f )⇒
x2 =

√
| fb(y f , ẏ f ) − f 2c (y f .ẏ f )| ⇒

x2 = fd(y f , ẏ f ) (22)

which means that state variable x2 is also a function of the
flat output and of its derivatives. Next by solving Eq. (10)
with respect to the control input u1 and Eq. (11) with respect
to the control input u2 one obtains

u1 = 2L

x4

{
ẋ1 + R

L
x1 − ωx2 − vd

L

}
(23)

u2 = 2L

x4

{
ẋ2 + ωx1 + R

L
x2 − vq

L

}
(24)

Using Eqs. (21), (22 and (18) in Eq. (23) it can be con-
cluded that

u1 = fe(y f , ẏ f ) (25)

Similarly, using Eqs. (21), (22 and (18) in Eq. (24) it can
be concluded that

u2 = fg(y f , ẏ f ) (26)

Consequently, all state variables and the control inputs
of the VSC-HVDC model can be written as differential
functions of the flat output y f = [y f1, y f2 ]T . Thus the VSC-
HVDC system is a differentially flat one.

Flatness-Based Control of the VSC-HVDC System

Next, a flatness-based controller will be designed for the
VSC-HVDC system. Using Eq. (16) and deriving ẏ f1 once
more with respect to time one gets

ÿ f1 = −3R

2
(2x1 ẋ1 + 2x2 ẋ2) + 3

ẋ1
2

vd − 2x4 ẋ4
ZL

+ ẋ3x4
ZL

+ x3 ẋ4
ZL

⇒

ÿ f1 =
(

−3Rx1 + 3vd
2

) [
− R

L
x1 + ωx2 + vd

L
− x4

2L
u1

]

−3Rx2

[
−ωx1 + R

L
x2 + vq

L
− x4

2L
u2

]

+ x4
ZL

(
x4

ZLCDC2

− x3
ZLCDC2

)

+
(

−2x + 4

ZL
+ x3

ZL

)

[
− x4
ZLCDC1

+ x3
ZLCDC1

+ 3x1
4CDC1

u1 + 3x2
4CDC1

u2

]

(27)

which after intermediate computations gives

ÿ f1 =
[
3R2

L

(
x21 + x22

)
− 6Rx1vd

L
+ 3ωvd x2

2
+ 3v2d

4

+ 2x24
Z2
LCDC1

− 2x1x4
Z2
LCDC1

+ x24
Z2
LCDC2

− x3x4
Z2
LCDC2

− x3x4
Z2
LCDC1

+ − x23
Z2
LCDC1

]
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+
[
3Rx1x4
2L

− 3vd x4
4L

− 6x1x4
4ZLCDC1

+ 3x1x3
4ZLCDC1

]
u1

+
[
3Rx2x4
2L

− 6x2x4
4ZLCDC1

+ 3x2x3
4ZLCDC1

]
u2 (28)

Equation (28) can be also written in the concise form

ÿ f1 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2 (29)

Functions L2
f h1(x), Lg1L f h1(x) and Lg2L f h1(x) are

defined in detail in Eqs. (69), (70) and (72) respectively,
which have been provided in Appendix. Additionally, from
the second component of the flat outputs vector given in Eq.
(15) one gets

y f2 = x2 ⇒ ẏ f3 = ẋ3 ⇒
ẏ f2 = 1

ZLCDC2

x4 − 1

ZLCDC2

x3 (30)

By deriving once more the above relation with respect to
time one gets

ÿ f2 = 1

ZLCDC2

ẋ4 − 1

ZLCDC2

ẋ3 (31)

Next, by substituting Eqs. (12) and (13) into Eq. (31) one
arrives at

ÿ f2 = 1

ZLCDC2

[
− 1

ZLCDC1

x4 + 1

ZLCDC1

x3

+ 3x1
4CDC1

u1 + 3x2
4CDC1

u2

]

− 1

ZLCDC2

[
1

ZLCDC2

x4 − 1

ZLCDC2

x3

]
(32)

which after intermediate operations gives

¨y f2 =
[
− x4
Z2
LCDC1CDC2

+ x3
Z2
LCDC1CDC2

− x4
Z2
LCDC2

2

+ x3
Z2
LCDC2

2

]

+ 3x1
4ZLCDC1CDC2

u1 + 3x2
4ZLCDC1CDC2

u2 (33)

which can be also written in the more concise form

ÿ f2 = L2
f h2(x) + Lg1L f h2(x)u1 + Lg2L f h2(x)u2 (34)

Functions L2
f h2(x), Lg1L f h2(x) and Lg2L f h2(x) are

defined in detail in Eqs. (74), (75) and (76) respectively,

which have been provided in Appendix. Next, Eqs. (29) and
(28) are written in matrix form

(
ÿ f1
ÿ f1

)
=

(
L2

f h1(x)
L2

f h2(x)

)
+

(
Lg1L f h1(x) Lg2L f h1(x)
Lg1L f h2(x) Lg2L f h2(x)

)

(
u1
u2

)
(35)

By defining the new control inputs v1 = L2
f h1(x) +

Lg1L f h1(x)u1 + Lg2L f h1(x)u2 and v2 = L2
f h2(x) +

Lg1L f h2(x)u1+Lg2L f h2(x)u2 one arrives at the linearized
and decoupled description of the dynamics of the VSC-
HVDC model

ÿ f1 = v1

ÿ f2 = v2 (36)

Moreover, by defining the following vectors and matrices

ỹ f =
(
y f1
y f2

)
f̃ =

(
L2

f h1(x)
L2

f h2(x)

)

M̃ =
(
Lg1L f h1(x) Lg2L f h1(x)
Lg1L f h2(x) Lg2L f h2(x)

)
ṽ =

(
v1
v2

)
(37)

one obtains the followingmatrix-form description of the sys-
tem’s dynamics

¨̃y f = f̃ + M̃ũ ⇒ ũ = M̃−1[ṽ − f ] (38)

where ũ is the control input that is actually exerted on the
VSC-HVDC system, while the transformed control input ṽ

is given by

ṽ = ¨̃ydf − Kd

( ˙̃y f − ˙̃ydf
)

− Kp

(
ỹ f − ỹdf

)
(39)

For the linearized model of the VSC-HVDC dynamics
one can also obtain a description in the linear canonical
(Brunovsky) form. The following state variables are defined:
z1 = y f1 , z2 = ẏ f1 , z3 = y f2 and z4 = ẏ f2 . This results in
the following state-space description

ż1 = z2

ż2 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2

ż3 = z4

ż4 = L2
f h2(x) + Lg1L f h2(x)u1 + Lg2L f h2(x)u2 (40)
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The previous state-space description results also in the
linear canonical (Brunovsky) form:

⎛
⎜⎜⎝
ż1
ż2
ż3
ż4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
z1
z2
z3
z4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠

(
v1
v2

)
(41)

and since the measurable variables for this system are taken
to be z1 = y f1 and z3 = y f2 the associated measurement
equation becomes

(
zm1
zm3

)
=

(
1 0 0 0
0 0 1 0

)
⎛
⎜⎜⎝
z1
z2
z3
z4

⎞
⎟⎟⎠ (42)

By defining the new control inputs

v1 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2

v2 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2 (43)

the VSC-HVDC system is written in the chain of integrators
form

z̈1 = v1

z̈1 = v2 (44)

Moreover, by defining the feedback control inputs

v1 = z̈d1 − k1d

(
ż1 − żd1

)
− k1p

(
z1 − zd1

)

v2 = z̈d2 − k2d

(
ż2 − żd2

)
− k2p

(
z2 − zd2

)
(45)

The tracking error dynamics for the closed loop becomes
ë1 + k1d ė1 + k1pe1 = 0 and ë2 + k2d ė2 + k2pe2 = 0. By
selecting the feedback gains k1p, k

1
d and k2p, k

2
d such that the

associated characteristic polynomials to be Hurwitz ones,
one has the tracking error dynamics limt→∞e1(t) = 0 and
limt→∞e2(t) = 0. It is possible to experiment with different
values of the gains k1p, k

1
d and k2p, k

2
d within the ranges that

assure the stability of the control loop, so as to achieve certain
performance indexes (such as overshoot or settling time).

To compute the control input that is actually applied to the
VSC-HVDC model one proceeds as follows: Eqs. (43) and
(44) are rewritten in the matrix form

¨̃y f = f̃ + M̃ũ (46)

where

ỹ f =
(
y f1
y f2

)
f̃ =

(
L2

f h1(x)
L2

f h2(x)

)

M̃ =
(
Lg1L f h1(x) Lg2L f h1(x)
Lg1L f h2(x) Lg2L f h2(x)

)
ṽ =

(
v1
v2

)
(47)

Using the above, the control input that should be exerted
on the VSC-HVDC model is for eliminating the tracking
error is

ũ = M̃−1[ṽ − f̃ ] (48)

Compensation of Disturbances Using the Derivat-
ive-Free Nonlinear Kalman Filter

Next, it is assumed that the VSC-HVDC model is subjected
to additive input disturbances, that is

ÿ f1 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2 + d̃1

ÿ f2 = L2
f h2(x) + Lg1L f h2(x)u1

+Lg2L f h2(x)u2 + d̃2 (49)

or equivalently

ÿ f1 = v1 + d̃1

ÿ f2 = v2 + d̃2 (50)

Moreover, it is considered that the disturbance inputs can
be described by their n-th order derivative. This is because
each function can be described either by its mathematical
equations or equivalently by its derivatives and the associated
initial conditions. However, in the studied case there will be
finally no use of initial conditions because the disturbance
function will be estimated by the Kalman Filter which is not
dependent on the processing of initial conditions. Without
loss of generality it is assumed that the additive disturbance
terms d̃i , i = 1, 2 are described by the signal’s second order
derivative, that is

¨̃d1 = fd1
¨̃d2 = fd2 (51)

Then by defining the new state variables z1 = y f1 , z2 =
ẏ f1 , z3 = y f2 , z4 = ẏ f2 , z5 = d̃1, z6 = ˙̃d1, z7 = d̃2,

z8 = z6 = ˙̃d2 one obtains the following extended state-space
description of the system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1
ż2
ż3
ż4
ż5
ż6
ż7
ż8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6
z7
z8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1 0
0 0
0 1
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
v1
v2

)
(52)
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while by denoting the extended state vector ze = [z1, z2, z3,
z4, z5, z6, z7, z8]T , the measurement equation for the exten-
ded system becomes

(
zm1
zm3

)
=

(
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

)
ze (53)

According to the above the extended state-space model of
the VSC-HVDC system is written in the linear matrix from

że = Aze + Bv

zme = Cze (54)

For the extended state-space model of the VSC-HVDC
system it is possible to perform simultaneously states and
disturbances estimation using the Derivative-free nonlinear
Kalman Filter. The latter consists of the Kalman Filter recur-
sion on the linearized equivalent model of the VSC-HVDC
system and of an inverse transformation, based on the results
of “Differential flatness of the VSC-HVDC system” section
which allows to obtain estimates of the state variables of
the initial nonlinear model described in Eqs. (10)– (13). The
filter’s algorithmuses the discrete time equivalents of the pre-
viously defined matrices A, B and C , which are denoted as
Ad , Bd and Cd respectively. The proposed filtering method
consists of a measurement update and a time update stage
[32–34]:

Measurement update

K (k) = P−(k)CT
d [Cd P(k)CT

d + R(k)]−1

ẑe(k) = ẑ−e (k) + K (k)[zme (k) − Cd ẑ
−
e (k)]

P(k) = P−(k) − K (k)Cd P
−(k) (55)

Time update

P−(k + 1) = Ad P(k)AT
d + Q(k)

ẑ−(k + 1) = Ad ẑ(k) + Bdv(k) (56)

where Q(k) and R(k) stand for process and measurement
noise covariance matrices. After estimating the disturbance

inputs , that is ẑ5 = ˆ̃d1 and ẑ7 = ˆ̃d2 the control input that is
applied to VSC-HVDC system is modified as follows:

v∗
1 = v1 − ẑ5

v∗
2 = v2 − ẑ7 (57)

Thus, with respect to Eq. (50), the closed-loop dynamics
becomes

ÿ f1 = v1 − ẑ5 + d̃1

ÿ f2 = v2 − ẑ7 + d̃2 (58)

Remark 3 Control based on differential flatness theory
implements actually a global linearization method. Through
a change of variables (diffeomorphism) the initial nonlinear
state-space model of the system is transformed into an equiv-
alent linear one. Unlike approximate linearization methods
this new description is not only valid round local lineariza-
tion points but can be extended throughout the state-space of
dynamical system. Besides, unlike local linearization, such
a global linearization method does not introduce any numer-
ical errors and consequently the associated feedback control
and filtering schemes are more robust.

Remark 4 The outputs defined in Eq. (6) are the input–
output linearizing outputs of the VSC-HVDC model. The
flat outputs of the model are also those described by Eq. (6).
Through successive derivation of these outputs one arrives
at the input–output linearized model of Eqs. (35) and (36).
There is not a standard procedure for selecting the lineariz-
ing outputs of a system, as there is no standard procedure
for selecting a Lyapunov function. However, once such out-
puts are found the system can be transformed into the linear
canonical form, where both the solution of the control and of
the filtering (estimation) problem become easier.

Simulation Tests

The performance of the control loop for the VSC-HVDC
system was tested through simulation experiments. The
associated results are presented in Figs. 3, 4, 5, 6 and 7.
Actually, in Figs. 3a, 4a, 5a, 6a and 7a the convergence of
the real state variables of the system xi , i = 1, · · · , 4 to
their reference setpoints is presented. Additionally, in Figs.
3b, 4b, 5b, 6b and 7b the estimated disturbance inputs of
the VSC-HVDC model are plotted. Moreover, diagrams of
the variation of the system’s control inputs are provided.
In the aforementioned diagrams, the per unit (p.u.) mea-
surement system has been used. It can be observed that
through the proposed control scheme, the state variables
of the VSC-HVDC system converge fast to the refer-
ence setpoints. Furthermore, the performance of the control
loop is improved against external disturbances by includ-
ing in it the Derivative-free nonlinear Kalman Filter. By
functioning as a disturbance observer the filter enables to
estimate in real-time additive disturbance inputs that affect
the VSC-HVDC model and subsequently to compensate for
them.

Remark 5 The vector control approach which is imple-
mented through PID controllers is unsuitable, because it is
not of proven stability while its robustness cannot be assured.
Taking into account that the dynamic model of the VSC-
HVDC system is characterized by parametric uncertainties

123



Intell Ind Syst (2015) 1:331–344 339

0 5 10
1

1.5

2

2.5

3

time (sec)

i d
 p

.u
.

0 5 10
1

1.5

2

2.5

3

time (sec)

i q
 p

.u
.

0 5 10
1

1.5

2

2.5

3

time (sec)

V
d

c2
 p

.u
.

0 5 10
1

1.5

2

2.5

3

time (sec)

V
d

c1
 p

.u
.

0 2 4 6 8 10
0

2

4

time (sec)

T
m

1
 −

 T
m

1
−

e
st

 p
.u

.

0 2 4 6 8 10
0

1

2

3

time (sec)

u
1

 p
.u

.

0 2 4 6 8 10
0

1

2

3

time (sec)

u
2

 p
.u

.

(a) (b)

Fig. 3 a Convergence of the state vector elements xi , i = 1, . . . , 4 to the associated reference setpoint No 1 for the initial nonlinear model of the
VSC-HVDC system, b estimation of disturbance input d̃ on the VSC-HVDC model and variation of control inputs ui , i = 1, 2
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Fig. 4 a Convergence of the state vector elements xi , i = 1, . . . , 4 to the associated reference setpoint No 2 for the initial nonlinear model of the
VSC-HVDC system, b estimation of disturbance input d̃ on the VSC-HVDC model and variation of control inputs ui , i = 1, 2

and external perturbations and that it functions under vary-
ing conditions, the performance of vector control becomes
questionable and consequently such a controller is not rec-
ommended for the VSC-HVDC model.

Remark 6 Comparing to nonlinear feedback control approa-
ches which are based on approximate linearization of the
VSC-HVDC system (round local operating points), the pro-

posed flatness-based control method is assessed as follows:
(i) it performs global linearization which is valid through the
entire state-space of the systems dynamicmodel. This is done
with the use of state variables’ transformations (diffeomor-
phisms), (ii) it does not introduce anymodelling error. On the
contrary, approximate linearization methods coming from
the application of Taylor series expansion induce cumulative
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Fig. 5 a Convergence of the state vector elements xi , i = 1, . . . , 4 to the associated reference setpoint No 3 for the initial nonlinear model of the
VSC-HVDC system, b estimation of disturbance input d̃ on the VSC-HVDC model and variation of control inputs ui , i = 1, 2
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Fig. 6 a Convergence of the state vector elements xi , i = 1, . . . , 4 to the associated reference setpoint No 4 for the initial nonlinear model of the
VSC-HVDC system, b estimation of disturbance input d̃ on the VSC-HVDC model and variation of control inputs ui , i = 1, 2

modelling errors which affect the robustness of the control
loop, (iii) the proposed flatness-based control method does
not require the computation of Jacobian matrices, and thus
in the case of electric power systems of high dimensional-
ity a cumbersome computational procedure is avoided, (iv)
unlike control based on approximate linearization, the pro-
posed flatness-based control does not have to compensate

for the effects of the cumulative linearization error and thus
the robustness of the control loop is improved, (v) unlike
control based on approximate linearization, the proposed
flatness-based control does not require the solution of Riccati
equations, which means that for systems of high dimen-
sionality a cumbersome computational procedure is again
avoided.
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Fig. 7 a Convergence of the state vector elements xi , i = 1, . . . , 4 to the associated reference setpoint No 5 for the initial nonlinear model of the
VSC-HVDC system, b estimation of disturbance input d̃ on the VSC-HVDC model and variation of control inputs ui , i = 1, 2

Conclusions

A new method of nonlinear control of high voltage direct
current (HVDC) links in the electric power system has
been developed using differential flatness theory. It has been
proven that the model of the joint dynamics between the
AC to DC voltage source converter and the DC transmission
line that constitute the VSC-HVDC link is a differentially
flat one. This means that all state variables and the control
inputs of this model (IGBT currents at the converter) can be
finally written as differential functions of an algebraic vari-
ablewhich is the flat output. The differential flatness property
of the VSC-HVDC model enables its transformation to the
linear canonical (Brunovsky) form. This is a global lineariza-
tion approach that remains valid for the complete state space
of the VSC-HVDC system and which does not introduce any
numerical errors or approximations. For the latter description
of the system’s dynamics the design of a state feedback con-
troller becomes easy.

Another problem that had to be dealt with in the design
of the feedback control loop was that of estimation and
compensation of the disturbances that affected the VSC-
HVDC model. To this end a disturbance observer has been
included in the control scheme. The observer was based
on the Derivative-free nonlinear Kalman Filter, that is on
the Kalman Filter recursion that was applied on the linear
equivalent of the VSC-HVDC model. Moreover, the filter
comprised an inverse transformation thatwas based on differ-
ential flatness theory and which enabled to obtain estimates
for the state variables of the initial nonlinear VSC-HVDC

model. The efficiency of the state estimation-based control
scheme for VSC-HVDC links was tested through simula-
tion experiments. The proposed method is a reliable solution
to this type of control problems appearing in the smart grid
and in the connection of renewable energy sources with the
electricity network.

Appendix

Lie Algebra-Based Linearization of the VSC-HVDC
Dynamics

First, it will be shown that input–output linearization of the
VSC-HVDC system can be succeeded with the use of Lie
algebra methods. Using Lie derivatives the following state
variables are defined z1 = h1(x), z2 = L f h1(x), z3 = h2(x)
and z4 = L f h2(x). It holds that:

z2 = L f h1(x)⇒z2 = ∂h1
∂x1

f1 + ∂h1
∂x2

f2 + ∂h1
∂x3

f3

+∂h1
∂x4

f4 (59)

Thus, one gets

L f h1(x) = 3L

2
x1

[
− R

L
x1 + ωx2 + vd

L

]

+3L

2
x2

[
−ωx1 − R

L
x2 + vq

L

]
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+0

[
1

ZLCDC2

x4 − 1

ZLCDC2

x3

]

+CDC1x4

[
− 1

ZLCDC1

x4 + 1

ZLCDC1

x3

]
(60)

which after intermediate computations gives

L f h1(x) = −3R

2

(
x21+x22

)
+ 3vd

2
x1 − x24

ZL
+ x3x4

ZL
(61)

Moreover, it holds that

Lg1h1(x) = ∂h1
∂x1

g11 + ∂h1
∂x2

g12 + ∂h1
∂x3

g13 + ∂h1
∂x4

g14⇒

Lg1h1(x) = 3L

2
x1·

(
− x4
2L

)
+ 3L

2
x2·0 + 0·0

+(CDC1x4)·
(

3x1
4CDC1

)
⇒

Lg1h1(x) = −3x1x4
4

+ 3x1x4
4

⇒Lg1h1(x) = 0 (62)

Similarly, one obtains

Lg2h1(x) = ∂h1
∂x1

g21 + ∂h1
∂x2

g22 + ∂h1
∂x3

g23 + ∂h1
∂x4

g24⇒

Lg2h1(x) = 3L

2
x1·0 + 3L

2
x2·

(
− x4
2L

)
+ 0·0

+CDC1x4

(
3x2

4CDC1

)
⇒

Lg2h1(x) = −3x2x4
4

+ 3x2x4
4

⇒ Lg2h1(x) = 0 (63)

Next, the Lie derivatives of the second flat output are com-
puted:

z4 = L f h2(x)⇒z4 = ∂h2
∂x1

f1 + ∂h2
∂x2

f2 + ∂h2
∂x3

f3

+∂h2
∂x4

f4 (64)

which gives

L f h2(x) = 0· f1 + 0· f2 + 1· f3 + 0· f4⇒
L f h2(x) = 1

ZLCDC2

x4 − 1

ZLCDC2

x3 (65)

and in a similar manner one gets

Lg1h2(x) = ∂h2
∂x1

g11 + ∂h2
∂x2

g12 + ∂h2
∂x3

g13 + ∂h2
∂x4

g14 ⇒
Lg1h2(x) = 0·g11 + 0·g12 + 1·g13 + 0·g14⇒
Lg1h2(x) = 0 (66)

while it also holds

Lg2h2(x) = ∂h2
∂x1

g21 + ∂h2
∂x2

g22 + ∂h2
∂x3

g23 + ∂h2
∂x4

g24⇒
Lg2h2(x) = 0·g21 + 0·g22 + 1·g23 + 0·g24⇒
Lg2h2(x) = 0 (67)

In the following, higher order Lie derivatives of the system
are computed:

L2
f h1(x) =

(
−3Rx1 + 3vd

2

) [
− R

L
x1 + ωx2 + vd

L

]

−3Rx2

[
−ωx1 − R

L
x2 + vq

L

]

+ x4
ZL

[
1

ZLCDC2

x4 − 1

ZLCDC2

x3

]

(
−2x4

ZL
+ x3

ZL

) [
− 1

ZLCDC1

x4

+ 1

ZLCDC1

x3

]
(68)

After performing intermediate computations, the previous
relation gives

L2
f h1(x) = 3R2

L

(
x21 + x22

)
− 6Rx1vd

L
+ 3ωvd x2

2
+ 3v2d

4

+ 2x24
Z2
LCDC1

− 2x1x4
Z2
LCDC1

+ x24
Z2
LCDC2

− x3x4
Z2
LCDC2

− x3x4
Z2
LCDC1

+ − x23
Z2
LCDC1

(69)

In a similar manner one computes:

Lg1L f h1(x) = Lg1 z2⇒Lg1L f h1(x)

= ∂z2
∂x1

g11 + ∂z2
∂x2

g12

+ ∂z2
∂x3

g13 + ∂z2
∂x4

g14⇒

Lg1L f h1(x) =
(

−3Rx1 + 3vd
2

)
·
(
− x4
2L

)

+ (−3Rx2·0) + x4
ZL

·0

+
(

−2x4
ZL

+ x3
ZL

)
3x1

4CDC1

⇒

Lg1L f h1(x) = 3Rx1x4
2L

− 3vd x4
4L

− 6x1x4
4ZLCDC1

+ 3x1x3
4ZLCDC1

(70)
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while it also holds

Lg2L f h1(x) = Lg2 z2⇒Lg2L f h2(x) = ∂z2
∂x1

g21 + ∂z2
∂x2

g22

+ ∂z2
∂x3

g23 + ∂z2
∂x4

g24⇒

Lg2L f h1(x) =
(

−3Rx1 + 3vd
2

)
·0 − (3Rx2) ·

(
− x4
2L

)

+ x4
ZL

·0 +
(

−2x4
ZL

+ x3
ZL

)
·
(

3x2
4CDC1

)

(71)

which finally gives

Lg2L f h1(x) = 3Rx2x4
2L

− 6x2x4
4ZLCDC1

+ 3x2x3
4ZLCDC1

(72)

Following the same approach one computes

L2
f h2(x) = L f z4⇒L2

f h2(x) = ∂z4
∂x1

f1 + ∂z4
∂x2

f2 + ∂z4
∂x3

f3

+ ∂z4
∂x4

f4⇒
L2

f h2(x) = 0· f1 + 0· f2
− 1

ZLCDC2

[
1

ZLCDC2

x4 − 1

ZLCDC2

x3

]

+ 1

ZLCDC2

[
− 1

ZLCDC1

x4 + 1

ZLCDC1

x3

]

(73)

which after intermediate operations gives

L2
f h2(x) = − x4

Z2
LC

2
DC2

+ x3
Z2
LC

2
DC2

− x4
Z2
LCDC1CDC2

+ x3
Z2
LCDC1CDC2

(74)

In a similar manner one computes

Lg1L f h2(x) = Lg1 z4⇒Lg1L f h2(x) = ∂z4
∂x1

g11 + ∂z4
∂x2

g12

+ ∂z4
∂x3

g13 + ∂z4
∂x4

g14⇒

Lg1L f h2(x) = 0·g11 + 0·g12 − 1

ZLCDC2

·0

+ 1

ZLCDC2

·
(

3x1
4CDC1

)
⇒

Lg1L f h2(x) = 3x1
4ZLCDC1CDC2

(75)

Finally, by applying the same method one computes

Lg2L f h2(x) = Lg2 z4⇒Lg2L f h2(x) = ∂z4
∂x1

g21 + ∂z4
∂x2

g22

+ ∂z4
∂x3

g23 + ∂z4
∂x4

g24⇒

Lg2L f h2(x) = 0·g21 + 0·g22 − 1

ZLCDC2

·0

+ 1

ZLCDC2

·
(

3x2
4CDC1

)
⇒

Lg2L f h2(x) = 3x2
4ZLCDC1CDC2

(76)

It can be confirmed that it holds

ż1 = z2

ż2 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2

ż3 = z4

ż4 = L2
f h2(x) + Lg1L f h2(x)u1 + Lg2L f h2(x)u2 (77)

The input–output linearized model takes the form

ż1 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2

ż2 = L2
f h2(x) + Lg1L f h2(x)u1 + Lg2L f h2(x)u2 (78)

By defining the new control inputs

v1 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2

v2 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2 (79)

the VSC-HVDC system is written in the chain of integrators
form

z̈1 = v1

z̈1 = v2 (80)

Moreover, by defining the feedback control inputs

v1 = z̈d1 − k1d(ż1 − żd1 ) − k1p
(
z1 − zd1

)

v2 = z̈d2 − k2d(ż2 − żd2 ) − k2p
(
z2 − zd2

)
(81)

The tracking error dynamics for the closed loop becomes
ë1 + k1d ė1 + k1pe1 = 0 and ë2 + k2d ė2 + k2pe2 = 0. By
selecting the feedback gains k1p, k

1
d and k2p, k

2
d such the

associated characteristic polynomials to be Hurwitz ones,
one has the tracking error dynamics limt→∞e1(t) = 0 and
limt→∞e2(t) = 0.

To compute the control input that is actually applied to
the VSC-HVDC model one proceeds as follows: Eq. (78) is
rewritten in the matrix form

¨̃y f = f̃ + M̃ũ (82)
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where

ỹ f =
(
y f1
y f2

)
f̃ =

(
L2

f h1(x)
L2

f h2(x)

)

M̃ =
(
Lg1L f h1(x) Lg2L f h1(x)
Lg1L f h2(x) Lg2L f h2(x)

)
ṽ =

(
v1
v2

)
(83)

Using the above, the control input that should be exerted
on the VSC-HVDC model is for eliminating the tracking
error is

ũ = M̃−1[ṽ − f̃ ] (84)
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