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Abstract The Derivative-free nonlinear Kalman Filter is
used for developing a robust controller which can be applied
to quadcopters. The control problem for quadcopters is non-
trivial and becomes further complicated if this robotic system
is subjected tomodel uncertainties and external disturbances.
Using differential flatness theory it is shown that the model
of a quadcopter can be transformed to linear canonical form.
For the linearized equivalent of the quadcopter it is shown
that a state feedback controller can be designed. Since certain
elements of the state vector of the linearized system can not
be measured directly, it is proposed to estimate them with
the use of a novel filtering method, the so-called Derivative-
free nonlinear Kalman Filter. Moreover, by redesigning the
Kalman Filter as a disturbance observer, it is is shown that
one can estimate simultaneously external disturbance terms
that affect the quadcopter or disturbance terms which are
associated with parametric uncertainty. The efficiency of
the proposed control scheme is checked through simulation
experiments.
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1 Introduction

Quadrotors are four-rotor helicopters characterized by a
nonlinear 6-DOF unstable dynamical model. To succeed
autonomous navigation of the quadrotors it is necessary to
design efficient control algorithms that will exhibit robust-
ness to parametric uncertainties and to external disturbances.
One can cite several results on quadrotors’ control. An
approach for quadrotors’ control that is based on the transfor-
mation of their dynamical model in the linear canonical form
and which is consequently directly associated with differen-
tial flatness theory has been given in [1]. Moreover, in [2]
a flatness-based control approach is applied to quadrotors’
motion control. A predictive controller complemented by an
H∞ term for additional robustness has been analyzed and
tested in the quadrotor’s flight control problem in [3,4]. In [5]
motion control of the quadrotor was implemented using con-
trollers of the LQR-type and of the PID-type, while Kalman
Filtering has been used to provide position estimates out of a
visual measurements system. In [6] two control strategies are
employed as baseline controllers for the quadrotor’s model:
a LQR controller which is based on a linearized model of
the quadrotor and a Sliding Mode Controller which is based
on a nonlinear model of the quadrotor. Moreover, differen-
tial flatness theory has been used for trajectory planning. In
[7] and in [8] adaptive control schemes have been proposed
for the quadrotor’s model. The stability of the control loop
is confirmed through the Lyapunov approach. In [9] quadro-
tor’s control with the use of a sliding-mode controller and a
sliding-mode disturbance observer has been proposed.

In this paper a new control method is developed for
quadrotors that is based on differential flatness theory
together with the use of a disturbance observer that is also
in accordance to differential flatness theory, the so-called
Derivative-free nonlinearKalman Filter. The differential flat-
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ness theory-based design of the controller uses a change of
coordinates (diffeomorhism) that transforms the state-space
equation of the quadrotor’s model into the linear canonical
(Brunovsky) form [10–15]. For the linearized equivalent of
the quadrotor it is easier to design a state feedback controller
using techniques for linear feedback controllers’ synthe-
sis. To provide the quadrotor’s control loop with additional
robustness a disturbance observer is used. The disturbance
observer applies the standard Kalman Filter recursion on
the linearized model of the quadrotor. It is capable of esti-
mating simultaneously the quadrotor’s linear and rotational
velocities, as well as the vector of disturbances that affect
the quadrotor’s model without the need to compute Jaco-
bian matrices (derivative-free nonlinear Kalman Filter). The
accurate estimation of the disturbance inputs enables to intro-
duce an additional control term that compensates for the
disturbances’ effects. The accurate tracking of reference
trajectories that is performed by the quadrotor despite the
existence of external disturbances is shown in simulation
experiments.

Differential flatness theory has specific advantages when
used in nonlinear control systems [10–15]. By enabling an
exact linearization of the system’s dynamical model it makes
possible to avoid the use of linear models of local validity in
the controller’s design. The controller performs efficiently
despite the change of operating points. After the design
of such a state feedback controller, one can consider the
inclusion in the control loop of supplementary control terms
that will provide additional robustness. Thus one can design
flatness-based adaptive fuzzy controllers or flatness-based
sliding-mode controllers. As mentioned above, it is also pos-

Fig. 1 Reference axes for the quadcopter

sible to use a disturbance estimator-based auxiliary control
input for compensating for the effects of disturbances in the
feedback control loop. Moreover, the use of differential flat-
ness theory in the design of state estimators and filters has
also several strong points. One can perform estimation of the
complete state vector of the system without the need to com-
pute partial derivatives and Jacobian matrices. Moreover, by
avoiding numerical errors which are due to approximate lin-
earization of the system’s dynamic model (e.g. with the use
of expansion in Taylor series) linear estimation algorithms
can be implemented. In the case of Kalman Filter this means
that one can perform state estimation with the use of the stan-
dard Kalman Filter recursion, thus preserving the method’s
optimality features and providing state estimates of improved
precision (e.g. comparing to Extended Kalman Filtering).

The structure of the paper is as follows: in “Kinematic
of the Quadcopter” section the kinematic model of the
quadrotor is analyzed. In “Euler-Lagrange-equations for the
Quadrotor” section the dynamic model of the quadrotor is
introduced, using the Euler-Lagrange approach. In “Differ-
ential Flatness Theory MIMO Systems”section, differential
flatness theory for MIMO dynamical systems is analyzed
and conditions for the transformation of such systems into
the linear canonical form are provided. It is shown how
one can design a state feedback controller for the linearized
equivalent of the system and how a derivative-free imple-
mentation of nonlinear Kalman filtering can provide state
estimation for the quadrotor’s model. In “Design of Flat-
ness Based Controller for the Quadrotors Model”section,
the design of a flatness-based controller for the quadro-
tor’s model is explained. In “Disturbances Estimation in
Quadrotor with Kalman Filtering”section it is shown how
one can perform estimation of disturbance forces exerted
on the quadrotor’s model using a disturbance observer. The
derivative-free nonlinear Kalman Filter is re-designed as a
disturbance estimator, thus providing simultaneously esti-
mations of the quadrotor’s velocities and of the external
disturbance terms. In“Simulation Tests” experimental tests
are performed to evaluate the performance of the proposed
control scheme, based on differential flatness theory and the
derivative-free nonlinear Kalman Filter. Finally, in “Conclu-
sions” section concluding remarks are given.

2 Kinematic Model of the Quadcopter

Two reference frames are defined [3,4]. The first one B =
[B1, B2, B3] is attached to the quadcopter’s body, whereas
the second E = [Ex , Ey, Ez] is considered to be an inertial
coordinates system (Fig. 1). The Euler angles defining rota-
tion round the axes of the body-fixed frame B1, B2 and B3

are defined as θ , φ and ψ , respectively. The two reference
frames are connected to each other through a rotation matrix:
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R=
⎛
⎜⎝
CψCθ CψSθ Sφ−SψCφ CψSθCφ+SψSφ

SψCθ SψSθ Sφ+CψCφ SψSθCφ−CψSφ

−Sθ Cθ Sφ CθCφ

⎞
⎟⎠

(1)

where C = cos(·) and S = sin(·).
The connection between velocities in the two reference

frames is as follows:

VE = R·VB (2)

where VE = [uE , vE , wE ] and VB = [uB, vB, wB] are the
linear velocity vectors expressed in the two reference frames.
About the angular velocities in the two reference frames the
following relation holds

η̇ = W−1ω (3)

that is

⎛
⎝

φ̇

θ̇

ψ̇

⎞
⎠ =

⎛
⎝
1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)sec(θ) cos(φ)sec(θ)

⎞
⎠

⎛
⎝
p
q
r

⎞
⎠ (4)

where η = [φ, θ, ψ]T is the angular velocities vector in the
inertial reference frame and ω = [p, q, r ]T is the angular
velocities vector in the body-fixed reference frame.

3 Euler-Lagrange Equations for the Quadcopter

The Euler-Lagrange equation for the quadcopter is formu-
lated as follows

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

(
fξ
τη

)
(5)

where the Lagrangian is defined as L(q, q̇) = ECtrans +
ECrot − Ep, ECtrans is the kinetic energy of the quadrotor
due to translational motion, ECrot is the kinetic energy of
the quadrotor due to rotational motion and Ep is the total
potential energy of the quadrotor due to lift. The generalized
state vector is q = [ξ T , ηT ]T∈R6, τη∈R3 is the torques
vector that causes rotation round the axes of the body-fixed
reference frame, and fξ = R f̂ + αT is the translational
force applied to the quadcopter due to the main control input
U1 along the z-axis direction, while αT = [Ax , Ay, Az]T
are the aerodynamic forces vector, defined along the axes of
the inertial reference frame. Since the Lagrangian does not
contain cross-coupling between the ξ̇ and the η̇ terms, the
Lagrange-Euler equations can be divided into translational
and rotational dynamics.

The translational dynamics of the quadcopter is given by

mξ̈ + mge3 = fξ (6)

where e3 = [0, 0, 1]T is the unit vector along the z axis of
the inertial reference frame. Eq. (6) can be written using the
following three equations

ẍ = 1

m
(cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ))U1 + Ax

m

ÿ = 1

m
(sin(ψ)sin(θ)cos(φ) − cos(ψ)sin(φ))U1 + Ay

m

z̈ = − g + 1

m
(cos(θ)cos(φ))U1 + Az

m
(7)

where m is the quadcopter’s mass and g is the gravitational
acceleration.

The rotational dynamics of the quadcopter is given by

M(η)η̈ + C(η, η̇)η̇ = τη (8)

where the inertia matrix M(η) is defined as

M(η)=
⎛
⎜⎝

Ixx 0 −Ixx Sθ

0 IyyC2φ+ Izz S2φ (Iyy− Izz)CφSφCθ

−Ixx Sθ (Iyy− Izz)CφSφCθ Ixx S2θ+ Iyy S2φC2θ+ IzzC2φC2θ

⎞
⎟⎠

(9)

and the Coriolis matrix is

C(η, η̇) =
⎛
⎝
c11 c12 c13
c21 c22 c23
c31 c32 c33

⎞
⎠ (10)

where the elements of the matrix are

c11 = 0

c12 = (Iyy − Izz)(θ̇CφSφ + ψ̇S2φCθ)

+ (Izz − Iyy)ψ̇C2φCθ

c13 = (Izz − Iyy)ψ̇CφSφC2θ

c21 = (Izz − Iyy)(θ̇CφSφ + ψ̇S2φCθ)

+ (Iyy − Izz)ψ̇C2φCθ + Ixx ψ̇Cθ

c22 = (Izz − Iyy)φ̇CφSφ

c23 = − Ixx ψ̇SθCθ + Iyyψ̇S2φCθ Sθ + Izzψ̇C2φSθCθ

c31 = (Iyy − Izz)ψ̇C2θ SφCφ − Ixx θ̇Cθ

c32 = (Izz − Iyy)(θ̇CφSφSθ + φ̇S2φCθ)

+ (Iyy − Izz)φ̇C
2φCθ + Ixx ψ̇SθCθ

− Iyyψ̇S2φSθCθ − Izzψ̇C2φSθCθ

c33 = (Iyy − Izz)φ̇CφSφC2θ − Iyy θ̇S
2φCθ Sθ

− Izz θ̇C
2φCθ Sθ + Ixx θ̇Cθ Sθ (11)
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Thus, the mathematical model that describes the quadrotor’s
rotational motion is given by

η̈ = M(η)−1(τη − C(η, η̇)η̇) (12)

Denoting w = M(η)−1(τη −C(η, η̇)η̇), one has the follow-
ing notation for the rotational dynamics

⎛
⎜⎝

φ̈

θ̈

ψ̈

⎞
⎟⎠ =

⎛
⎜⎝

wa

wb

wc

⎞
⎟⎠ (13)

Considering small variations of the heading angle of the
quadrotor round ψ = π

2 , denoting w1 = U1/m and taking
also that the aerodynamic coefficients Ax , Ay, Az << m, a
simplified quadropter’s model is formulated as follows [1]

ẍ=w1sin(φ) ÿ=w1cos(φ)sin(θ) z̈ =w1cos(φ)cos(θ)−g

φ̈=wa θ̈ =wb ψ̈ =wc

(14)

4 Differential Flatness Theory for MIMO
Dynamical Systems

4.1 Basics of Differential Flatness Theory

Differential flatness theory will be used in the design of
the quadrotor’s controller. Differential flatness theory can be
applied to the generic class of systems ẋ = f (x, u). In this
study, the interest is in dynamic models of the form

ẋ = f (x, t) + g(x, t)u (15)

The principles of the differential flatness theory have been
extensively studied in the relevant bibliography [11,12,19]:
A finite dimensional system is considered. This can be writ-
ten in the form of an ordinary differential equation (ODE),
i.e. Si (w, ẇ, ẅ, . . . , w(i)), i = 1, 2, · · · , q. The term
w denotes the system variables (these variables are for
instance the elements of the system’s state vector and the
control input) while w(i), i = 1, 2, . . . , q are the associ-
ated derivatives. Such a system is said to be differentially
flat if there exists a set of m functions y = (y1, . . . , ym)

of the system variables and of their time-derivatives, i.e.
yi = φ(w, ẇ, ẅ, . . . , w(αi )), i = 1, . . . ,m satisfying the
following two conditions [10,20]:

1. There does not exist any differential relation of the form
R(y, ẏ, . . . , y(β)) = 0 which implies that the derivatives
of the flat output are not coupled in the sense of an ODE,
or equivalently it can be said that the flat output is differ-
entially independent.

2. All system variables (i.e. the elements of the system’s
state vector w and the control input) can be expressed
using only the flat output y and its time derivatives
wi = ψi (y, ẏ, . . . , y(γi )), i = 1, . . . , s. An equivalent
definition of differentially flat systems is as follows:

Definition The system ẋ = f (x, u), x∈Rn , u∈Rm is differ-
entially flat if there exist relations

h : Rn×(Rm)
r+1→Rm,

φ : (Rm)r→Rn and

ψ : (Rm)r+1→Rm (16)

such that

y = h(x, u, u̇, . . . , u(r)),

x = φ(y, ẏ, . . . , y(r−1)), and

u = ψ(y, ẏ, . . . , y(r−1), y(r)). (17)

This means that all system dynamics can be expressed as a
function of the flat output and its derivatives, therefore the
state vector and the control input can be written as

x(t) = φ(y(t), ẏ(t), . . . , y(r−1)(t)), and

u(t) = ψ(y(t), ẏ(t), . . . , y(r)(t)) (18)

4.2 Classes of Differentially Flat Systems

For certain classes of dynamical systems it has been proven
that they satisfy differential flatness properties. The following
classes of nonlinear differentially flat systems are defined
[14]:

1. Affine in-the-input systems: The dynamics of such sys-
tems is given by:

ẋ = f (x) +
m∑
i=1

gi (x)ui (19)

From Eq. (19) it can be seen that the above state equation
can also describeMIMOdynamical systems.Without out
loss of generality it is assumed that G = [g1, . . . , gm] is
of rank m. In case that the flat outputs of the aforemen-
tioned system are only functions of states x , then this
class of dynamical systems is called 0-flat. It has been
proven that a dynamical affine system with n states and
n − 1 inputs is 0-flat if it is controllable.

2. Driftless systems: These are systems of the form

ẋ =
m∑
i=1

fi (x)ui (20)
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For driftless systems with two inputs, i.e.

ẋ = f1(x)u1 + f2(x)u2 (21)

the flatness property holds, if and only if the rank of matrix
Ek+1 := {Ek, [Ek, Ek]}, k≥0 with E0 := { f1, f2} is equal
to k + 2 for k = 0, . . . , n − 2. It has been proven that a
driftless system that is differentially flat, is also 0-flat.
Moreover, for flat systems with n states and n − 2 control
inputs, i.e.

ẋ =
n−2∑
i=1

ui fi (x) x∈Rn (22)

the flatness property holds, if controllability also holds. Fur-
thermore, the system is 0-flat if n is even.

4.3 Conditions for Applying the Differential Flatness
Theory to MIMO Systems

Application of the differential flatness theory to multi-input
multi-output systems is of particular importance for the
UAVs, such as quadrotors, because the latter stand also for
MIMO systems. In order to demonstrate that aMIMO system
satisfies the differential flatness properties, the flat outputs of
the system have to be defined first. For nonlinear systems it is
still an open problem to construct flat outputs. The following
generic class of nonlinear systems is considered

ẋ = f (x, u) (23)

Such a system can be transformed to the form of an affine in
the input system by adding an integrator to each input [15]

ẋ = f (x) +
∑m

i=1
gi (x)ui (24)

The following definitions are used [15–18]:

(i) Lie Derivative: L f h(x) stands for the Lie derivative
L f h(x) = (∇h) f and the repeated Lie derivatives are
recursively defined as L0

f h = h for i = 0, Li
f h =

L f L
i−1
f h = ∇Li−1

f h f for i = 1, 2, . . ..

(ii) Lie Bracket: adif g stands for a Lie Bracket which

is defined recursively as adif g = [ f, adi−1
f g] with

ad0f g = g and ad f g = [ f, g] = ∇g f − ∇ f g.

If the system of Eq. (24) can be linearized by a diffeomor-
phism z = φ(x) and a static state feedback u = α(x)+β(x)v
into the following form

żi, j = zi+1, j for 1≤ j≤m and 1≤i≤v j − 1

żvi, j = v j (25)

with
∑m

j=1v j = n, then y j = z1, j for 1≤ j≤m are the 0-flat
outputswhich canbewritten as functions of only the elements
of the state vector x . To define conditions for transforming
the system of Eq. (24) into the canonical form described in
Eq. (25) the following theorem holds [15]

Theorem For the nonlinear systems described by Eq. (24)
the following variables are defined:

(i) G0 = span[g1, . . . , gm].
(ii) G1 = span[g1, . . . , gm, ad f g1, . . . , ad f gm].

· · ·
(k) Gk = span{ad j

f gi for 0≤ j≤k, 1≤i≤m}.

Then, the linearization problem for the system of Eq. (24)
can be solved if and only if

(1) The dimension of Gi , i = 1, . . . , k is constant for
x∈X⊆Rn and for 1≤i≤n − 1

(2) The dimension of Gn−1 if of order n.
(3) The distribution Gk is involutive for each 1≤k≤n − 2.

4.4 Transformation of MIMO Nonlinear Systems into
the Brunovsky Form

It is assumed now that after defining the flat outputs of the
initial MIMO nonlinear system, and after expressing the sys-
tem state variables and control inputs as functions of the flat
output and of the associated derivatives, the system can be
transformed in the Brunovsky canonical form:

ẋ1 = x2

ẋ2 = x3
· · ·
ẋr1−1 = xr1
ẋr1 = f1(x) + ∑p

j=1g1 j (x)u j + d1

ẋr1+1 = xr1+2

ẋr1+2 = xr1+3

· · ·
ẋ p−1 = xp

ẋ p = f p(x) + ∑p
j=1gp j (x)u j + dp

y1 = x1

y2 = x2
· · ·
yp = xn−rp+1

(26)

where x = [x1, . . . , xn]T is the state vector of the trans-
formed system (according to the differential flatness for-
mulation), u = [u1, . . . , u p]T is the set of control inputs,
y = [y1, . . . , yp]T is the output vector, fi are the drift
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functions and gi, j , i, j = 1, 2, . . . , p are smooth func-
tions corresponding to the control input gains, while d j is
a variable associated to external disturbances. In holds that
r1 + r2 + · · · + rp = n. Having written the initial nonlinear
system into the canonical (Brunovsky) form it holds

y(ri )
i = fi (x) +

∑p

j=1
gi j (x)u j + d j (27)

Next the following vectors and matrices can be defined

f (x) = [ f1(x), . . . , fn(x)]T
g(x) = [g1(x), . . . , gn(x)]T with gi (x)v

= [g1i (x), . . . , gpi (x)]T (28)

A = diag[A1, . . . , Ap], B = diag[B1, . . . , Bp]
CT = diag[C1, . . . ,Cp], d = [d1, . . . , dp]T

where matrix A has the MIMO canonical form, i.e. with
elements

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0

0 0 · · · 0
...

... · · · ...

0 0 · · · 1

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

ri×ri

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0
· · ·
0

1

⎞
⎟⎟⎟⎟⎟⎟⎠

ri×1

Ci =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0
· · ·
0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

1×ri

(29)

Thus, Eq. (27) can be written in state-space form

ẋ = Ax + B[ f (x) + g(x)u + d̃]
y = CT x (30)

which can be also written in the equivalent form:

ẋ = Ax + Bv + Bd̃

y = CT x (31)

where the transformed control input is defined as v = f (x)+
g(x)u. By demonstrating differential flatness for the aerial
vehicle’s model it is anticipated to express its dynamics in
the canonical form defined by Eqs. (29), (30).

5 Design of Flatness-Based Controller for the
Quadrotor’s Model

It will be shown, that the quadrotor’s model given in Eq. (14)
is a differentially flat one, i.e. that all its state variables and

the associated control inputs can be written as functions of a
new variable called flat output and of its derivatives.
The following state variables are introduced x1 = x , x2 = ẋ ,
x3 = y, x4 = ẏ, x5 = z, x6 = ż, x7 = φ, x8 = φ̇, x9 = θ ,
x10 = θ̇ , x11 = ψ , x12 = ψ̇ . Thus, one has the following
state-space description for the quadrotor’s dynamic model

ẋ1= x2 ẋ2=w1sin(x7) ẋ3= x4 ẋ4=w1cos(x7)sin(x9)

ẋ5= x6 ẋ6=w1cos(x7)cos(x9) ẋ7= x8 ẋ8=wa

ẋ9= x10 ẋ10=wb ẋ11= x12 ẋ12=wc

(32)

The flat output of the system is taken to be the vector y f =
[x1, x3, x5, x7, x9, x11]T . It holds that

x1 = [1 0 0 0 0 0]y f x2 = [1 0 0 0 0 0]ẏ f

x3 = [0 1 0 0 0 0]y f x4 = [0 1 0 0 0 0]ẏ f

x5 = [0 0 1 0 0 0]y f x6 = [0 0 1 0 0 0]ẏ f

x7 = [0 0 0 1 0 0]y f x8 = [0 0 0 1 0 0]ẏ f

x9 = [0 0 0 0 1 0]y f x10 = [0 0 0 0 1 0]ẏ f

x11 = [0 0 0 0 0 1]y f x12 = [0 0 0 0 0 1]ẏ f

(33)

According toEq. (33) all state variables of the quadcopter can
be written as functions of the flat output and its derivatives.
Using this and Eq. (32) one also has that the control inputs
of the quadcopter’s model,w1,wa ,wb andwc can be written
as functions of the flat output and its derivatives. Therefore,
it is confirmed that the system is a differentially flat one.

Defining now the new control inputs

v1=w1sin(x7) v2=w1cos(x7)sin(x9) v3=w1cos(x7)cos(x9)

v4=wa v5=wb v6=wc

(34)

one has the following state-space description for the system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẏ f1

ÿ f1

ẏ f2

ÿ f2

ẏ f3

ÿ f3

ẏ f4

ÿ f4

ẏ f5

ÿ f5

ẏ f6

ÿ f6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y f1

ẏ f1

y f2

ẏ f2

y f3

ẏ f3

y f4

ẏ f4

y f5

ẏ f5

y f6

ẏ f6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

v4

v5

v6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(35)
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and the measurement equation for this system becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

z2

z3

z4

z5

z6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y f1

ẏ f1

y f2

ẏ f2

y f3

ẏ f3

y f4

ẏ f4

y f5

ẏ f5

y f6

ẏ f6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(36)

Thus, using differential flatness theory the quadrotor’s model
has been written in a MIMO linear canonical (Brunovsky)
form, which is both controllable and observable.

After being written in the linear canonical form the
quadrotor’s state-space equation comprises 6 subsystems of
the form

ÿ fi = vi , i = 1, . . . , 6 (37)

For each one of these subsystems a controller can be defined
as follows

vi = ÿdfi − kdi (ẏ fi − ẏdfi ) − kpi (y fi − ydfi ), i = 1, . . . , 6

(38)

The control scheme is implemented in the form of two cas-
cading loops. The inner control loop controls rotation angles,
while the outer control loop sets the desired values of the
rotation angles and in order to control position in the xyz-
reference system. The computation of the reference setpoints
for the rotation angles φd(t), θd(t) and ψd(t) and for the
cartesian coordinates xd(t),yd(t) and zd(t) takes into account
the constraints imposed by the system dynamics.

6 Estimation of the Quadrotor’s Disturbance
Forces and Torques with Kalman Filtering

It was shown that the initial nonlinear model of the quadrotor
can be written in the MIMO canonical form of Eqs. (35) and
(36).Next, it is assumed that the quadrotor’smodel is affected
by additive input disturbances, thus one has

ẍ1 = (w1 + d1)sin(x7)

ẍ3 = (w1 + d1)cos(x7)sin(x9)

ẍ5 = (w1 + d1)cos(x7)cos(x9)

ẍ7 = wa + da

ẍ9 = wb + db

ẍ11 = wc + dc (39)

or using the new state variables y fi i = 1, . . . , 12 of the
differential flatness theory-based model and the transformed
inputs vi , i = 1, · · · , 6 one has

ÿ f1 = v1 + d1sin(y f7)

ÿ f3 = v2 + d1cos(y f7)sin(y f9)

ÿ f5 = v3 + d1cos(y f7)cos(y f9)

ÿ f7 = v4 + da

ÿ f9 = v5 + db

ÿ f11 = v6 + dc (40)

while by redefining the disturbance terms as d̃1=d1sin(y f7),
d̃2 = d1cos(y f7)sin(y f9), d̃3 = d1cos(y f7)cos(y f9), d̃4 =
da , d̃5 = db and d̃6 = dc, the dynamics of the disturbed
system can be written as

ÿ f1 = v1 + d̃1

ÿ f3 = v2 + d̃2

ÿ f5 = v3 + d̃3

ÿ f7 = v4 + d̃4

ÿ f9 = v5 + d̃5

ÿ f11 = v6 + d̃6 (41)

The system’s dynamics can be also written as ẏ f1 = y f2 ,
ẏ f2 = v1 + d̃1, ẏ f3 = y f4 , ẏ f4 = v2 + d̃2, ẏ f5 = y f6 ,
ẏ f6 = v3 + d̃3, ẏ f7 = y f8 , ẏ f8 = v4 + d̃4, ẏ f9 = y f10 ,
ẏ f10 = v5 + d̃5, ẏ f11 = y f6 , ẏ f6 = v6 + d̃6.
Without loss of generality, it is assumed that the dynamics
of the disturbance terms are described by their second order

derivative, i.e. ¨̃di = fdi , i = 1, · · · , 6. Next, the extended
state vector of the system is defined so as to include dis-
turbance terms as well. Thus one has the following state
variables

z f1 = y f1 z f2 = y f2 z f3 = y f3 z f4 = y f4 z f5 = y f5

z f6 = y f6 z f7 = y f7 z f8 = y f8 z f9 = y f9 z f10 = y f10

z f11 = y f11 z f12 = y f12 z f13 = d̃1 z f14 = ˙̃d1 z f15 = ¨̃d1
z f16 = d̃2 z f17 = ˙̃d2 z f18 = ¨̃d2 z f19 = d̃3 z f20 = ˙̃d3
z f21 = ¨̃d3 z f22 = d̃4 z f23 = ˙̃d4 z f24 = ¨̃d4 z f25 = d̃5

z f26 = ˙̃d6 z f27 = ¨̃d5 z f28 = d̃6 z f29 = ˙̃d6 z f30 = ¨̃d6
(42)
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Thus, the disturbed system can be described by a state-space
equation of the form

ż f = A f z f + B f v

zmeas
f = C f z f (43)

where A f ∈R30×30, B f ∈R30×6 and C f ∈R6×30, with

A f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01×1 1 01×28

01×12 1 01×17

01×3 1 01×26

01×15 1 01×14

01×5 1 01×24

01×18 1 01×11

01×7 1 01×22

01×21 1 01×8

01×9 1 01×20

01×24 1 01×5

01×11 1 01×18

01×27 1 01×2

01×13 1 01×16

01×14 1 01×15

01×30

01×16 1 01×13

01×17 1 01×12

01×30

01×19 1 01×10

01×20 1 01×9

01×30

01×22 1 01×7

01×23 1 01×6

01×30

01×25 1 01×4

01×26 1 01×3

01×30

01×28 1 01×1

01×29 1

01×30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01×6

1 01×5

01×1 1 01×4

01×6

01×2 1 01×3

01×6

01×3 1 01×2

01×6

01×4 1 01×1

01×6

01×5 1

018×6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×C f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 01×29

01×2 1 01×27

01×4 1 01×25

01×6 1 01×23

01×8 1 01×21

01×10 1 01×19

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(44)

For the aforementioned model, and after carrying out dis-
cretization of matrices A f , B f and C f with common

discretization methods one can implement the standard
Kalman Filter algorithm using Eqs. (46) and (47). This is
Derivative-free nonlinear Kalman filtering for the model of
the quadcopter which, unlike EKF, is performed without the
need to compute Jacobian matrices and does not introduce
numerical errors due to approximative linearizationwithTay-
lor series expansion.

The dynamics of the disturbance terms d̃i , i = 1, . . . , 6
are taken to be unknown in the design of the associated
disturbances’ estimator. Defining as Ãd , B̃d , and C̃d , the
discrete-time equivalents of matrices Ã f , B̃ f and C̃ f respec-
tively, one has the following dynamics:

˙̂z f = Ã f ·ẑ f + B̃ f ·ṽ + K
(
zmeas
f − C̃ f ẑ f

)
(45)

where K∈R30×6 is the state estimator’s gain. The associated
Kalman Filter-based disturbance estimator is given by [19,
20]

Measurement update:

K (k) = P−(k)C̃T
d

[
C̃d ·P−(k)C̃T

d + R
]−1

ẑ f (k) = ẑ−f (k) + K (k)
[
zmeas
f (k) − C̃d ẑ

−
f (k)

]

P(k) = P−(k) − K (k)C̃d P
−(k) (46)

Time update:

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k)

ẑ−f (k + 1) = Ãd(k)ẑ f (k) + B̃d(k)ṽ(k) (47)

To compensate for the effects of the disturbance forces it
suffices to use in the control loop the modified control input
vector

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 − ˆ̃d1
v2 − ˆ̃d2
v3 − ˆ̃d3
v4 − ˆ̃d4
v5 − ˆ̃d5
v6 − ˆ̃d6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 − ẑ13

v2 − ẑ16

v3 − ẑ19

v4 − ẑ22

v5 − ẑ25

v6 − ẑ28

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(48)

7 Simulation Tests

Initial simulation experiments were concerned with flight
control of the quadcopter in the disturbance-free case. The
considered reference trajectories are shown in Fig. 2. The
implementation of the flatness-based control enabled accu-
rate tracking of the reference trajectories. Convergence has
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Fig. 2 Control of the quadrotor in the disturbance free-case: a trajectory of the quadrotor in the cartesian space, b projection of the quadrotor’s
trajectory in the xy plane
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Fig. 3 Control of the quadrotor in the disturbance free-case: a position and velocity along the x axis, b position and velocity along the y axis

been succeeded for the linear position and velocity variables
to the associated setpoints as it can be seen in Fig. 3a and
b and in Fig. 4a. Moreover, there has been convergence of
the angular position and velocity variables to the associated
setpoints as it can be seen in Fig. 4a and in Fig. 5a and b.

Additional simulation experimentswere concernedwith con-
trol of the quadcopter in flight under disturbance forces and
torques. The estimation of the disturbance forces and torques
is shown in Fig. 6. The implementation of the flatness-based
control enabled accurate tracking of the reference trajecto-
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Fig. 4 Control of the quadrotor in the disturbance free-case: a position and velocity along the z axis, b rotation angle φ and associated angular
speed
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Fig. 5 Control of the quadrotor in the disturbance free-case: a rotation angle θ and associated angular speed, b rotation angle ψ and associated
angular speed

ries. There has been convergence of the linear position and
velocity variables to the associated setpoints as it can be seen
in Fig. 7a and b and in Fig. 8a. Moreover, there has been con-

vergence of the angular position and velocity variables to the
associated setpoints as it can be seen in Fig. 8b and in Fig. 9a
and b.
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Fig. 6 Use of the derivative-free nonlinear Kalman Filter in estimation of disturbances: a associated with linear motion, b associated with the
rotational motion of the aerial vehicle (blue line real value, green line estimated value)
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Fig. 7 Control of the quadrotor in the presence of external disturbances a position and velocity along the x axis, b position and velocity along the
y axis (blue line real value, green line estimated value, red line setpoint)

8 Conclusions

The paper has examined a new control scheme for quadro-
tors that is based on the use of differential flatness theory
and on disturbances estimation with the use of a new nonlin-

ear filtering method, the so-called Derivative-free nonlinear
Kalman Filter. It has been shown that the quadrotor’s model
is a differentially flat one since all its state vector elements
and control inputs can be expressed as functions of a vec-
tor variable that is the flat output of the system. Thus, the
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Fig. 8 Control of the quadrotor in the presence of external disturbances: a position and velocity along the z axis, b rotation angle φ and associated
angular speed (blue line real value, green line estimated value, red line setpoint)
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Fig. 9 Control of the quadrotor in the presence of disturbances: a rotation angle θ and associated angular speed, b rotation angle ψ and associated
angular speed (blue line real value, green line estimated value, red line setpoint)

application of differential flatness theory introduces a trans-
formation for the quadrotor’s state vector or equivalently a
change of coordinates (diffeomorphism) that brings the sys-
tem to the linear canonical (Brunovsky) form. It has been
shown that the linearized equivalent of the quadrotor is in

controllable and observable form. For this new model the
design of a state feedback controller is easier. Moreover, by
applying Kalman Filtering on the linearized equivalent of
the system it is possible to produce estimates for the quadro-
tor’s state vectorwithout the need of computation of Jacobian
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matrices and partial derivatives (unlike other nonlinear filter-
ing methods such as the Extended Kalman Filter). Finally,
by redesigning the derivative-free nonlinear Kalman Filter
as a disturbance observer it becomes possible to estimate
in real-time the external disturbances that affect the quadro-
tor’s model and consequently to compensate them with the
inclusion in the control loop of auxiliary control terms. The
efficiencyof the proposed control schemehas been confirmed
through simulation experiments.
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