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Abstract Combining dynamic state estimation methods
such asKalmanfilterswith real-timedata generated/collected
by digital meters such as phasor measurement units (PMU)
can lead to advanced techniques for improving the quality
of monitoring and controllability in smart grids. Classic
Kalman filters achieve optimal performance with ideal sys-
temmodels, which are usually hard to obtain in practice with
unexpected disturbances, device failures, and malicious data
attacks. In this work, we introduce and compare a novel
method, viz. adaptive Kalman Filter with inflatable noise
variances, against a variety of classic Kalman filters. Exten-
sive simulation studies demonstrate the powerful ability of
our proposed algorithm under suboptimal conditions such as
wrong system modeling, sudden disturbance and bad data
injection.
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Introduction

Over the past few decades, power systems have become
highly complex and dynamic.While state estimators now use
measured data from a supervisory control and data acqui-
sition in time intervals of several seconds, this level of
granularity has traditionally not translated into methods for
accurately capturing system dynamics. In recent times, how-
ever, phasor measurement technology promises significant
improvement in real-time system state tracking, particularly
when combined with dynamic state estimation techniques.

Kalman filters are among the most popular dynamic state
estimation techniques that have found applications in a wide
range of disciplines, from weather forecasting to missile
tracking. In traditional power system studies, power system
state can be estimated by combining Kalman filters with a
hypothetically “true model and available measurements. In
the ideal case, the hypothetical system model has accurate
noise statistical characteristics incorporated into it. However,
in reality, noise statistics can never be really known exactly.
Apart from errors arising in themodeling phase, themeasure-
ments are also riddledwith errors due to device failure or even
worse, malicious data attacks. To facilitate illegal activities
like energy theft, attachers construct bad data which evades
bad data detection mechanisms in power systems. This can
have devastating effects like false dispatch in the distribution
process and device breakdown during power generation [1].

The two limitations stated above—viz. inaccuracies in the
system model and bad data—present key areas of improve-
ment. Towards that end,we propose an adaptiveKalmanfilter

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40903-015-0009-6&domain=pdf


30 Intell Ind Syst (2015) 1:29–36

with inflatable noise variances (AKF with InNoVa) for more
robust and accurate state estimation. Primarily, this novel
approach distinguishes itself from other classic Kalman filter
techniques with a dual-test procedure: normalized innova-
tion test and normalized residual test, which can effectively
identify modeling errors and measurement errors separately.
Followed by dynamic noise parameters adjustment, our algo-
rithm is remarkably efficient in dealing with various adverse
conditions such as inaccurate system models and measure-
ment data errors/attacks.

In “Problem Formulation andMethods” section we define
the problem and describe the different Kalman filter tech-
niques tested in this study, including traditional Kalman filter
(KF), naive Robust Kalman filter (naive RKF), ensemble
Kalman filter (EnKF), ensemble adjustment Kalman filter
(EAKF), and our proposed adaptiveKalman filter with inflat-
able noise variances (AKF with InNoVa) with its principles
and implementation details. Simulation results are given in
“Case Studies” section, which compare these Kalman filter
techniques under different abnormal conditions. “Conclu-
sions and Future Work” section concludes the paper and
proposes future ideas.

Problem Formulation and Methods

State estimation claims an indispensable position in modern
power system operations. The purpose of a state estima-
tor is to generate a reliable database which is critical for
other operation functions, such as real-time monitoring, load
forecasting, and frequency control. A typical state estima-
tion procedure [2] involves (1) modeling, which determines
network topology and preliminary data; (2) observability
determination,which classifies variousmeasurements as crit-
ical or redundant; (3) state estimation, which generates a set
of state variables from near-real-time telemetered measure-
ments to reflect a best estimate of the system conditions; and
(4) detection and identification of errors.

A state estimator can be roughly classified as static or
dynamic: the former calculates the state from the measure-
ment set only for a certain time instant, while the latter has the
ability to estimate and forecast the state ahead of time. Clas-
sic static estimators such as the weighted least square (WLS)
estimator have been used for decades in power system studies
[3]. Nowadays with the rapid advancement of synchropha-
sor technology [4], the use of dynamic estimators has seen
an explosion in interest for real-time monitoring and control
applications.

Synchrophasor technology has been considered to be one
of the key factors that enable smart gridswith the deployment
of phasormeasurement units (PMUs). They are synchronized
by the common GPS radio clock to provide high frequency
(30Hz or higher) voltage and current phasor measurements

[5], which significantly reduces the complexity and increases
the accuracy of power system state computation. It is com-
monly assumed that a PMU installed at a bus can not only
measure the bus voltage phasor, but also all the current pha-
sors along lines incident to this bus [6]. A more detailed
system modeling can be found in our previous research [7].
In this setting the rectangular coordinate formulation will be
preferable, where the real and imaginary parts of bus voltages
are considered state variables [6].

Traditional Kalman Filter

A large portion of dynamic state estimation algorithms are
Kalman-filter-based. The original Kalman filter (KF) was
proposed in the 1960s [8,9] as a recursive mean squared
error minimizer to estimate the state of a process, using
noisy measurements as feedback. The equations fall into two
groups—time update (“Predict”) and measurement update
(“Correct”):

Predict

{
x̂−
k = Ax̂k−1 + Buk−1

P−
k = APk−1AT + Q

Correct

⎧⎨
⎩

Kk = P−
k HT (HP−

k HT + R)−1

x̂k = x̂−
k + Kk(zk − Hx̂−

k )

Pk = (I − KkH)P−
k

(1)

where x̂−
k ∈ Rn is the a priori state estimate at time step

k given the knowledge of the process prior to k, P−
k is the

a priori estimate error covariance, Q is the process noise
covariance. The “prediction” projects the previous state xk−1

and error covariance estimates Pk−1 forward in time, to
obtain the a priori estimates for time step k. x̂k is called a pos-
teriori state estimate at time step k givenmeasurement vector
zk ∈ Rm, Pk is the a posteriori estimate error covariance, R
is themeasurement noise covariance. The “correction” incor-
porates newmeasurements into the estimate throughKalman
gain matrix K , which weighs how much we trust the mea-
surement zk versus the prediction ẑ−k = Hx̂−

k . The larger R
is, the more we trust the predicted value; the smaller R is,
the more we trust the measured values.

Naive Robust Kalman Filter

In the WLS estimator, the most commonly used methods for
bad data detection and identification are largest normalized
residual test and hypothesis testing identification [3]. Now
with phasormeasurements incorporated, the same techniques
still apply, an example is theWLS state estimator with largest
normalized residual tests [10]. Similarly in this study, we
define anaive robustKalmanfilter (naiveRKF) that combines
the largest normalized innovation test with the traditional KF
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to identify and exclude bad measurements, without adjusting
model parameters.

Ensemble Kalman Filter

In reality, the process and the measurement’s relationship to
the state are often nonlinear, so one solution is the extended
Kalman filter (EKF), which linearize those non-linear func-
tions about the point of interest x in the state space [9]. EKF
rose to prominence in aerospace and motion tracking appli-
cations where the state space is small; however in systems
with high-dimensional state space such as those in weather
and disease prediction, it falls short due to the intractable
computational burden associated with Jacobian matrices at
each time step.

One way to avoid such labor-intensive computation is
to use data assimilation techniques, such as the ensemble
Kalman filter (EnKF) [11] and the particle filter [12]. These
filters are related in the sense that a particle is an ensemble
member; the difference is that EnKF assumes Gaussian dis-
tributed noise characteristics, and if that is the case, EnKF is
more efficient than the particle filter. The essential ideas of
EnKF are (1) maintaining an ensemble of state estimates (a
collection of state samples) instead of a single estimate, (2)
simply advancing each member of the ensemble and (3) cal-
culating the mean and error covariance matrix directly from
this ensemble instead of maintaining a separate covariance
matrix. As a comparison, the Kalman gain is calculated as

Kk = corr(x̂−
k , ẑ−k )

cov(ẑ−k ) + cov(zk)
, (2)

where corr and cov denote the sample correlation and sam-
ple covariance operations respectively.

EnKF offers great ease of implementation and handling of
nonlinearity due to the absence of Jacobian calculations; on
the other hand, it is critical to choose an ensemble size that
is large enough to be statistically representative. The choice
of an optimal ensemble size should be addressed based on
the knowledge of trade-offs between estimation accuracy and
computational complexity. The theories and implementation
details of EnKF can be found in [11,13,14].

Ensemble Adjustment Kalman Filter

The ensemble adjustment Kalman filter (EAKF) is a varia-
tion of the EnKF. The difference lies in that EAKF does not
add Gaussian noise to the measurement prediction. Instead,
the EAKF deterministically adjusts each ensemble member
so that the posterior variance is identical to that predicted
by Bayes theorem under Gaussian distribution assumptions,
while keeping the ensemble mean unchanged. The detailed
description of EAKF can be found in [14–17].

Adaptive Kalman Filter with Inflatable Noise Variances

Bearing in mind that a state evolution model may not always
be correct in practice (for now we do not consider cases with
multiple/switching process models), and the data is prone to
instrument and man-made error, we are motivated to develop
this approach, AKF with InNoVa. By definition, these errors
are unknown and unpredictable, so they cannot be reflected in
process noise covariance Q and measurement noise covari-
ance R.

AKF with InNoVa differs from the above mentioned
Kalman filter techniques in that it can dynamically adjust
Q and R by analyzing the innovation and residual. The
innovation is defined as I−

k = (zk − Hx̂−
k ), which is the dif-

ference between the measurement and that being computed
from the a priori state estimate; the residual is defined as
Ik = (zk − Hx̂k), which is the difference between the mea-
surement and that being computed from the a posteriori state
estimate [18]. Ideally, the innovation should be normally dis-
tributed with zero mean and covariance Sk = HP−

k HT + R
[19]; the residual should also be normally distributed with
zero mean and covariance Tk = RS−1

k R [20].
A naive RKF is capable, in a limited manner, of detect-

ing and identifying bad data. Under abnormal conditions, the
innovation distribution will change and RKF is able to cap-
ture that when the normalized innovation (normalized by its
covariance Sk) exceeds a predetermined threshold. However,
since Q and R are already blended in Sk , it is impossible for
this method to determine whether the anomaly is caused by a
wrong process model, a wrong measurement model, or both.
However in AKFwith InNoVa, by investigating both innova-
tion and residual, we make it possible to distinguish process
errors from measurement errors.

AKF with InNoVa contains the following steps (the time
step count k is omitted to simplify the notation):

1. Predict the state and error covariance using “predict”
equations in (1).

2. Compute the ideal innovation covariance S and the nor-
malized innovation Ĩ− where

Ĩ−
i = |I−

i |/√Sii , i = 1, 2, ...m. (3)

If Ĩ−
i > τ for some threshold τ , then i ∈ Out . We set

τ = 3 (measurement units) in our experiments.Out is the
set that holds potential outlier indices. IfOut = ∅, deflate
Q to Q∗e−r and R to R∗e−r with user customized decay
constant r according to the user’s expectation and the
specific circumstances, and go to step 8. Else, continue.

3. We first assume the anomalies are caused by unknown
process error. If we “inflate” Q by a diagonal matrix
ΔQ, P− will also be inflated by ΔQ and S will in turn
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be inflated byΔS = H(ΔQ)HT with diagonal elements

ΔSii =
n∑
j=1

H2
i jΔQ j = (H(i, :)

· H(i, :))([ΔQ1, ...ΔQn]T ), (4)

where “·” denotes dot product. In order to achieve

Ĩ−
i = |I−

i |/√Sii + ΔSii ≤ τ, i = 1, 2, ...m, (5)

we construct the linear programming problem and solve
for ΔQi :

min
n∑

i=1

ΔQi (6)

s.t. ΔSii = (H(i, :) · H(i, :))([ΔQ1, ...ΔQn]T )

≥ (|I−
i |/τ)2 − Sii , ∀i ∈ Out

ΔQ1 ≥ 0,ΔQ2 ≥ 0, ...ΔQn ≥ 0.

4. Similarly, we compute the ideal residual covariance T
and the normalized residual Ĩ where

Ĩi = |Ii |/
√
Tii , i = 1, 2, ...m. (7)

If Ĩi > τ , then i ∈ MeasOut . MeasOut is the set that
holds measurement outlier indices, indicating abnormal
measurements.
Now we can separate the measurement factors from
the process factors. Let us denote ProcOut = Out\
MeasOut = {i : i ∈ Out and i /∈ MeasOut} as the
process outliers, which is the set difference between Out
and MeasOut . If MeasOut = ∅, go to step 7. Else,
continue.

5. Reconstruct the optimization problem (6) for ∀i ∈
ProcOut and solve for ΔQi .

6. As for the measurements, for ∀i ∈ MeasOut , if Rii is
inflated to λi Rii then T = RS−1R will also be inflated
where the i th diagonal element becomes λ2

i Tii . In order
to achieve

Ĩi = |Ii |/λi

√
Tii ≤ τ, i = 1, 2, ...m, (8)

we need to solve for λi s using

λi = (|Ii |/
√
Tii )/τ, i ∈ MeasOut. (9)

Then we can inflate measurement noise Rii to λi Rii .
7. Inflate process noise Qii to Qii + ΔQi .
8. With updated Q and R, correct the state and error covari-

ance using “correct” equations in (1) and go to step 1.

Case Studies

The abovementionedKalmanfiltermethods have been tested
on a 16-generator-68-busNewEnglandTest SystemandNew
York Power System model [7] for a head-to-head compari-
son. They are simulated at time intervals of 0.01s, with a
three-phase fault at bus 29 occurs t = 1.1 second and clears
in 0.05s. On top of this unexpected event causing voltage
oscillations, bad measurements are also injected into the sys-
tem to further complicate our testing cases.

According to the latest IEEE Standard for Synchropha-
sorMeasurements for Power Systems IEEEC37.118.1–2011
([5]), PMU data are assumed to contain 1% random noise.
It is also assumed that the users are unaware of any possible
contingencies, hence a quasi-static model of a power system
has been deployed as the process model (which no longer
holds once the fault occurs). In each testing case we exe-
cuted five Kalman filters: the traditional KF, the naive RKF,
the EnKF with 200 ensembles, the EAKF with 200 ensem-
bles and the AKF with InNoVa.

For a fair comparisonwe useMeanAbsolute Error (MAE)
plots and their histogram plots to evaluate these filters. MAE
is one of the most commonly used accuracy evaluation cri-
teria in quantitative methods of forecasting, which is defined
as:

MAE = 1

n

n∑
i=1

‖x̂i − xi‖ = 1

n

n∑
i=1

‖ei‖ (10)

where x̂i and xi are the estimated and actual state of the
i th state variable respectively. In this particular application,
the i th state variable is the voltage phasor at bus i . Thus
ei = ‖x̂i − xi‖ is the absolute error (norm of the phasor
error). To maintain consistency of our experiments in this
subsection, the bin (i.e. interval) size of each histogram is set
to be 0.001.

Case 1: Low Process Noise Setting, a PMU with Bad
Data Injection

In this case each state variable is initialized with a very small
process noise (0.2%), which means that the user is very
confident with the system being stable. The voltage mea-
surement provided by the PMU at bus 25 is injected with
additional error, with normal distribution N (2, 0.12). The
accuracy evaluation of all filters is shown in Fig. 1.

Under this setting, traditional KF is more influenced
by the measurement error, while EnKF is more influ-
enced by the quasi-static process setting. EAKF performs
slightly better than EnKF, but it is still heavily domi-
nated by the wrong process model. Naive RKF can identify
and drop the bad measurements, yet still being affected
by the under-valued process noise Q. AKF with InNoVa
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Fig. 1 State estimation
accuracy comparison of five
Kalman filters in case 1

delivers the most impressive performance: it not only adjusts
process noise parameters (among which, the largest process
noise which occurs at bus 29 has grown to 34.13% is
in consistent with the fact that the fault happened at bus
29), but also detects and identifies the bad measurement.
Notice that AKF with InNoVa does not drop measurements
in order to avoid unobservable conditions by maintain-
ing sufficient redundancy, however the noise of this bad
data injected measurement has grown to 73.21% in 5s,
which is significantly larger than the others at 1%, hence
this measurement has a negligible impact on the estimated
state.

Case 2: Fair Process Noise Setting, a PMU with Bad
Data Injection

With the same bad data injection at bus 25, this time the
process noise is set more appropriately at 20%.

Figure 2 confirms that both EnKF and EAKF have con-
verged to traditional KF, however they are all suffered from
the impact of this bad data injection, hence the shifted track-
ing results. AKF with InNoVa, on the other hand, has its
process noise at bus 29 grown to 34.15%; it also identifies
the badmeasurement at bus 25 and inflated the corresponding
measurement noise to 74.32%. Compared to others at 1%,
it is quite obvious that the voltage measurement at bus 25
is questionable. While the AKF with InNoVa still performs
the best, in this case naive RKF is able to correctly iden-
tify and eliminate bad data, making it achieve comparable
performance to AKF with InNoVa.

Case 3: High Process Noise Setting, a PMU with Bad
Data Injection

Now the initial process noise is assigned with a much larger
value: 50%, meaning that the user is not confident with the
system being stable. An injected error with uniform distrib-
ution U(1.2, 1.4) is added to the PMU voltage measurement
at bus 25.

Figure 3 shows that EnKF and EAKF are both not only
converged to traditional KF, but also in overlapping with
naive RKF. The reason why naive RKF does not detect the
bad data is that the process noise Q is set so high (hence S
is so high), the normalized innovations always fall below the
threshold. However the error is captured by the normalized
residual test in AKFwith InNoVa. The noise of this badmea-
surement has been inflated to 46.67%, in comparison with
other measurement noise at 1%. Figure 3 illustrated the best
estimates produced by AKF with InNoVa, while all other
Kalman filters fall short.

Case 4: High Process Noise Setting, Multiple Bad Data
Injections

With the same process noise setting as in case 3, now we
are facing more complicated bad data injections (notice we
do NOT constrain them to be Gaussian and white, which
is rarely the case in reality): from t = 0 to t = 1, bus 2
voltage measurement is injected by a constant value of 1;
from t = 1 to t = 2, a uniformly distributed error U(2, 2.1)
is injected to bus 12 voltage measurement; from t = 2 to
t = 3, bus 22 voltage measurement is injected by two bad
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Fig. 2 State estimation
accuracy comparison of five
Kalman filters in case 2

Fig. 3 State estimation
accuracy comparison of five
Kalman filters in case 3

data sources, one with uniformly distribution U(1, 2) and
another with normal distribution N (0, 12); from t = 3 to
t = 4, a normally distributed error N (0, 152) is injected to
line 22–21 current measurement; and from t = 4 to t =
5, bus 32 voltage measurement is injected by a uniformly
distributed error U(1, 1.5), while at the same time, bus 42
voltage measurement is injected by a normally distributed
error N (0, 0.52).

Figure 4 shows that traditional KF, EnKF and EAKF
are all vulnerable to these bad data injections. Naive RKF
is able to correctly detect bad measurements and calibrate
results only when the error is significant enough (e.g., from
t = 1 to t = 2), otherwise it does not perform well. Fortu-
natelyAKFwith InNoVaprovides highly accurate estimation
results throughout, showing impressive robustness under var-
ious adverse conditions.
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Fig. 4 State estimation
accuracy comparison of five
Kalman filters in case 4

Conclusions and Future Work

This paper has tested and compared some of the most pop-
ular Kalman filter techniques against a novel method called
AKF with InNoVa in estimating power system state with
real-time phasor measurements provided by PMUs. This
method has demonstrated a promising path towards secure
and dynamic power system state estimation under various
adverse conditions. The key ideas are (1) using a dual-
test procedure (normalized innovation test and normalized
residual test) to help separate the process and measurement
factors, and (2) adaptively adjusting the process and mea-
surement noise parameters on-the-fly and separately, to deal
with wrong system modeling as well as bad measurements.
Another benefit that comes along is, the inflation of process
noise indicates change of system dynamics/wrong model,
while the inflation of measurement noise signals users of a
need to inspect and repair devices or defend against data
attacks. An exponential decay process is also adopted to
ensure automatic deflation of noise parameters if problems
are resolved.

In non-linear applications such as using electro-mechanic-
al power systemmodel to estimate generator state [21], AKF
with InNoVa can be combined with EKF to form a two-stage
filtering approach to achieve satisfying results [20]. How-
ever in systems with much higher dimensional state space
and more severe non-linearity, EnKF and EAKF will be a
better choice to alleviate computational burden considering
the limited capabilities of current computer technology. Thus
a future research direction is to incorporate the same philoso-
phy of adaptive noise parameters in EnKF and EAKF, which

will require further exploration in uncertainty quantification
and big data technologies.
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