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Abstract
Water supply security is a top priority for decision-makers in cities. Urban population growth increases water demand from 
aquifers, while urban expansion reduces water infiltration and boosts water pollution sources. Urban green spaces are a few 
of the remaining infiltration areas. Therefore, they are essential for water supply and urban hydric resilience. The urban 
dynamic directly influences shallow aquifers, but they usually are unappreciated. This work illustrates the relationship 
between urban green spaces and city water quality by evaluating the influence of urban green space, Reserva Ecológica del 
Pedregal de San Angel (REPSA), on a shallow aquifer in Mexico City. Five springs were sampled: two upstream of REPSA, 
a spring within REPSA, and two downstream. Because the study area is mainly residential but with an industrial history, 
water quality was tested based on microbiological pathogens, nutrients, pharmaceutical drugs, and heavy metals. Results 
showed an enhancement of water quality of the shallow aquifer in the sampling points downstream of REPSA for some of 
the pollutants. These results illustrate how urban green spaces can help to dilute pollutants present in the water of shallow 
aquifers, increasing water quality in cities.
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Introduction

Cities around the world are increasingly large and dense, 
causing land use modifications disturbing the quality and 
quantity of urban green spaces (UGS) (Elmqvist et al. 2013). 
Those modifications affect the provision of benefits that 
UGS spaces provide to society (Ecosystem Services—ES) 
such as climate regulation, reduction of air pollution, car-
bon capture, and biodiversity maintenance (Ayala-Azcárraga 

et al. 2019). Particularly, UGS deterioration also decreases 
ES related to water such as flood control, aquifer recharging, 
water supply and water quality regulation (McPhearson et al. 
2014; Zhang et al. 2012).

Since must of the cities must solve water-related prob-
lems, the relevance of UGS as ES providers for urban hydro-
logic issues is enhanced (Nasrabadi and Abbasi Maedeh 
2014; Palmer and Lewis 1998; Singh and Singh 2002; Zam-
brano et al. 2017). In many cities, aquifers are the primary 
source of water for human consumption. Therefore, popula-
tion growth increases urban water demand and generates a 
potential overexploitation of those aquifers (Soto and Herera 
2009). The change in land use promoted by urbanization 
processes is one of the variables that drastically affect the 
amount of water entering the soil (infiltration). The replace-
ment of natural areas (green areas) with urban areas (grey 
areas) impacts water dynamics and promotes the presence 
of impervious areas, limiting water infiltration and aquifer 
recharge. Additionally, the reduction and fragmentation of 
green areas, and the expansion of grey areas, favor the runoff 
of water into the sewage system and promote the presence of 
floods (Dimitriou and Moussoulis 2011; Gregory et al. 2006; 
Kollet and Maxwell 2008; Zambrano et al. 2017). Lastly, 
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urban expansion increases the presence of potential ground-
water pollution sources (Carmon et al. 1997).

Therefore, as UGS are crucial areas for water infiltration, 
their protection means the safeguard of water sources neces-
sary for sustainable urban development (Carmon et al. 1997; 
Mazari-Hiriart et al. 2006). Water infiltrated into UGS could 
act as a contaminant diluent for groundwater, particularly for 
shallow aquifers. These aquifers provide lower water quanti-
ties and are more vulnerable than deeper aquifers (Morris 
et al. 2003). There is limited knowledge about the relation 
of this type of aquifers with the surface. Therefore, having 
deeper information about the relation between shallow aqui-
fers and UGS could contribute to facing some water supply 
challenges in cities. However, it is necessary to understand 
the relationship between urbanization, UGS, and water 
quality in shallow aquifers to understand if shallow aquifers 
could be used as alternative water sources to address water 
availability issues in cities.

Mexico City is an example for the understanding of UGS 
as ecosystem services providers related to water. In this city, 
around of 70% of freshwater comes from aquifers (CONA-
GUA 2020) and land use change due to urbanization has 
induced the reduction of water infiltration and the increase 
of pollution sources (Mazari-Hiriart et al. 2006; Zambrano 
et al. 2017). In the south of Mexico City, there is a relation 
between an urban green space, the Reserva Ecológica del 
Pedregal de San Angel (REPSA in Spanish), and a shal-
low aquifer located beneath this UGS. REPSA retains its 
original characteristics regarding its biodiversity and its soil 
and subsoil (Canteiro et al. 2019; Lot and Cano-Santana 
2009). These characteristics favor the infiltration and per-
colation of rainwater towards the aquifers. This condition is 
because of the hydraulic conductivity in this type of system 
is 9 × 10–3 at 864 md−1 (Freeze and Cherry 1979). There-
fore, all the rain in this region could infiltrate the aquifer 
because its capacities are greater than the amount of water 
that falls in the region (the average rainfall in REPSA is 
2.54 × 10–5 m s−1). Even considering the rainiest month of 
the year (8.3 × 10–5 m s−1), the rainwater is far from saturat-
ing the soil (CONAGUA 2017; Freeze and Cherry 1979; Lot 
et al. 2012). However, these characteristics make the shal-
low aquifer susceptible to contamination from the surface 
along its entire length. This unconfined aquifer has rapid 
dynamics due to its short path and recent water infiltration 
(Canteiro et al. 2019). Therefore, the relation between said 
aquifer and the surface is decisive in the water quality in 
the aquifer. In this sense, due to the possibilities of water 
infiltration that REPSA presents, without altering its qual-
ity, the water infiltrated there could contribute to improving 
the aquifer water quality through the effect of dilution of 
the contaminants. The previous considering that the shallow 
aquifer receives water from infiltration in the REPSA and 
infiltrated water throughout its extension, and a large part of 

that area is entirely urban, so the quality of infiltrated water 
could be altered.

The threat that urban development represents for ground-
water quality has been extensively demonstrated (Carmon 
et al. 1997; Mazari and Mackay 1993; E. Soto et al. 2000). 
Some studies show the role of the UGS in regulating the 
amount of water in the city (floods and recharge of aquifers) 
(Calderón-Contreras and Quiroz-Rosas 2017; Gregory et al. 
2006; Zambrano et al. 2017, 2019). However, the direct rela-
tion of a UGS with the improvement of groundwater quality 
is unknown, and this information is relevant for the planning 
and management of water in cities such as Mexico City. 
Therefore, the objective of this investigation is to evaluate 
the benefits of the UGS in the infiltration process to shallow 
aquifers based on a potential dilution effect of water infil-
trated in REPSA in the groundwater quality.

Methodology

Study area

Mexico City, as several cities worldwide (Nasrabadi and 
Abbasi Maedeh 2014; Singh and Singh 2002), is catego-
rized as a city with high vulnerability associated with low 
water availability due to an overexploitation of the aqui-
fer and an improper management of water supply (Ávila 
García 2008). For example, in Mexico City and its metro-
politan area, nearly 20 million people live daily, with a total 
water demand of 77 m3/s (Mazari-Hiriart et al. 2014). This 
demand is mainly supplied (70%) by extracting water from 
the aquifer called the Zona Metropolitana de la Ciudad de 
México (the primary aquifer in this investigation) (CONA-
GUA 2020), which is located at a depth of between 70 and 
500 m (Morales-Casique et al. 2014). Moreover, according 
to Comisión Nacional del Agua (CONAGUA), this aqui-
fer is under intensive exploitation since there is a deficit of 
507,230,340 m3 per year of water extracted at the expense 
of non-renewable storage of the aquifer (CONAGUA 2020).

The south of Mexico City is an important area related to 
water dynamics in the city due to its geologic characteristics. 
The subsoil of this area is the result of the lava spill due to 
the eruption of the Xitle volcano 1670 years ago (Lot et al. 
2012), and it was originally known as the Pedregal of San 
Angel (The Pedregal). The Pedregal had an original exten-
sion of 80 km2, but due to urban expansion, the Pedregal 
was reduced and fragmented, and currently covers an area 
of 2.37 km2 that corresponds with REPSA (Zambrano et al. 
2016a, b).

In addition, in a previous study based on the analysis 
of geological sections, it is estimated that the extension 
of the shallow aquifer would represent the dimensions of 
El Pedregal (80 km2) and that this aquifer is hydraulically 
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separated from the primary aquifer throughout its entire 
extension (Canteiro et al. 2019). The main recharge of the 
shallow aquifer occurs mostly outside of the urban land, in 
the Xitle volcano area at an elevation of 2800 m.a.s.l., and 
the flow direction of the aquifer is from southwest to north-
east, following the general topographic behavior of the val-
ley and sharing the same direction with the primary aquifer 
(Canteiro et al. 2019).

The influence of a UGS on water dynamics encompasses 
its territory and the environment. Therefore, the study area 
includes REPSA and the 5 km around it. In this area, five 
springs were identified and selected within the basalt limit 
generated by the spill of the Xitle volcano (Fig. 1), and 
therefore it is assumed that their water belongs to the shal-
low aquifer (Table 1). Their selection was based on their 
location, the topographic characteristics of the city and con-
sidering the direction of water flow in the shallow aquifer 
estimated in a previous investigation (Canteiro et al. 2019). 

Two springs (S1 and S2) were selected upstream of REPSA 
(southwest respect REPSA), two springs (S4 and S5) down-
stream of REPSA (northeast respect REPSA) and a spring 
within REPSA (S3) (Fig. 1).

Fig. 1   “a” shows the Mexico City location in the country. “b” 
shows the geological characteristics of the city and the shallow aqui-
fer extension. “c” shows the sampled points with blue dots and the 

Pedregal current extension (REPSA) in green. Also, the image “c” 
shows the location of the meteorological station in pink and the water 
flow direction is illustrated with black arrows

Table 1   Location of the five springs sampled

* the value of the "z" coordinate of the S3 spring was estimated from 
the value of the surface in that area, subtracting 20 m because it is a 
spring resulting from an excavation of an old stone quarry (Lot 2007)

Site Coordinates

x y z

S1 481,003.365857 2,132,374.235820 231
S2 480,847.809306 2,133,771.367710 228
S3 481,782.999964 2,135,937.999890 207*
S4 483,932.999979 2,137,664.999920 225
S5 482,629.999973 2,138,359.999890 225
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Method

The five selected springs were sampled twice a year, based on 
the seasonality of Mexico City. This city is located in a moun-
tainous basin of 2240 m above sea level, named the Valley of 
Mexico. Its climate is tropical mountain with slight annual 
temperature variation and with seasonality divided into dry 
season (November–April) and rainy season (May–October) 
(Cui and De Foy 2012). The first sampling was carried out 
at the beginning of May 2017 to obtain water samples after 
the entire dry season. Complementary, to obtain water sam-
ples after the entire rainy season, sampling was carried out at 
the beginning of November 2017 (CONAGUA 2017). The 
comparison of the results allowed the analysis of seasonality 
differences in water quality of the shallow aquifer. Moreover, 
the sampling allowed a comparison between the water quality 
upstream and downstream of REPSA (Fig. 1). A table illustrat-
ing the level of precipitation in Mexico City in 2017, when the 
samplings were carried out, is presented in Table 2.

Water quality was measured through the following param-
eters: Temperature, pH, Eh, DO, CE, STD, sulfates (US-EPA 
1986), total Aluminum (US-EPA 2000), total Mercury (US-
EPA 1998), Lead (US-EPA 2000), Arsenic (US-EPA 2000), 
BTEX (Benzene, Ethylbenzene, Xylene and Toluene) (US-
EPA 2006), total and fecal coliforms (Secretaría de Economía, 
2015), Salmonella, total Nitrogen, nitrates and nitrites (O’Dell 
1996a), orthophosphates (O’Dell 1996b) and pharmaceutical 
drugs (Mazari‐Kriart et al. 1999; Sorensen et al. 2015). These 
parameters were selected based on available literature on urban 
groundwater pollution and considering the possible sources of 
groundwater pollution in the area (Lee et al. 2015; Nasrabadi 
and Abbasi Maedeh 2014; Soto et al. 2000).

Subsequently, the samples were sent to the Interteck + ABC 
Analytic Laboratory to perform analyzes of sulfates, total 
Aluminum, total Mercury, Lead, Arsenic, BTEX (Benzene, 
Ethylbenzene, Xylene, and Toluene), total coliforms, fecal 
coliforms, salmonella, total Nitrogen, nitrates, nitrites, and 
orthophosphates. Samples were also sent to the Environmen-
tal Engineering Laboratory of the Institute of Engineering of 
the UNAM where pharmaceutical drug analyzes were per-
formed (Clofibric acid, Ibuprofen, Salicylic acid, 2,4-dichlo-
rophenoxyacetic acid, Gemfibrozil, Naproxen, Ketoprofen, 
Diclofenac, and Carbamazepine) (Lee et al. 2015; Mazari‐Kri-
art et al. 1999; Sorensen et al. 2015; Soto et al. 2000).

In addition, the Electrical Conductivity (EC) of the water 
was measured in the spring S3 through a CTD-Diver by 
Schlumberger Water Services that was placed since January 
2017 for one year to have a complete cycle, and the data were 

collected through the software Diver-Office 2017. Precipita-
tion data were obtained from a meteorological station in the 
National Center for Disaster Prevention (CENAPRED in 
Spanish) because this is the nearest station from the sampling 
point S3. Data of EC and precipitation were analyzed to know 
the response of the aquifer to precipitation events. This infor-
mation made it possible to know the time between the pre-
cipitation event and the spring water emerging in the REPSA.

Results

The range of temperature of the five springs was from 12.86 °C 
to 19.70 °C, and the values of Electrical Conductivity (EC) 
were from 116.00 µS/cm to 869.88 µS/cm. The site S4 was 
the spring with the highest temperature and EC with 19.70 ºC 
and 0.87 mS/cm, respectively. The pH values were from 6.18 
to 8.34; the sites downstream of REPSA have lower values ​​
than the sites upstream. In the intra-site relation between dry 
and rainy sampling, the values ​​kept the same trend and only in 
the site S4 we can observe a difference between dry and rainy 
season regarding to pH values (Table 3). In addition, in the 
case of organic pollution, our outcomes show that 60% of the 
samples were positive to coliforms, while Salmonella bacteria 
were not present in any of the samples.

The Total Nitrogen (TN) concentration had values that 
were increasing in the same direction that the water flow 
of the aquifer. This increasing was up to site S3 where was 
the maximum value, and after this, the TN values decrease 
(Fig. 2a). Regarding the concentrations of nitrites found in 
the two sites upstream of REPSA (S1 and S2) and the site 
within REPSA (S3), there were no differences between the 
sampling in the dry season and the rainy season, nor between 
the sites. However, the two sites downstream the REPSA (S4 
and S5) had concentrations that differed from the other sites 
and between seasons on the same site (Fig. 2b). These two 
sites were the sites with the highest concentration of nitrites 
in the rainy season with values ​​of 0.01 mg/l and 0.009 mg/l 
respectively (Fig. 2b). Regarding the concentrations of nitrates 
found in the five sampling sites, it is possible to observe that 
the concentrations are similar in both seasons and that they 
tend to be higher upstream of REPSA (Fig. 2c).

Ortho-phosphates were observed in higher concentra-
tions downstream of REPSA, and no differences were found 
between the results in dry and rainy seasons in any of the sam-
ples. Only one of the five sites (S4) located downstream of 
REPSA had a higher concentration than the other four sites 
(Fig. 2d). This elevated concentration could be due to waste-
water urban infiltration or discharges on the aquifer.

Table 2   Precipitation in Mexico 
City in 2017

Month 1 2 3 4 5 6 7 8 9 10 11 12

Precipitation (mm) 0 0 18.1 12.9 48.9 86.2 101.7 101.3 86.8 31.4 0.6 0
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Regarding the four heavy metals analyzed, the presence 
of Aluminum was found in low concentrations in all sites. 
This presence can be related to the characteristics of the 
basalt of volcanic origin that promotes a colloidal behavior 
of Aluminum, since inorganic particles are small enough 
to aggregate and remain in the water column for long time 
scales, such as days (Viaroli et al. 2016). Besides, the site 
S4 was the only one with the presence of Arsenic and only 
in the rainy season with a concentration of 14 µg/l. Lead did 
not present concentrations above the detection limit (DL) at 

any sampling site (DL: 0.13 µg/l). Mercury was found on 
the S2 site, in the dry season, with a concentration 1.624 
µg/l (Table 4).

In the case of hydrocarbon pollution, even if the ana-
lyzed areas were reported to be sensible to this kind of pol-
lution due to the presence of fuel tanks in the area (E. Soto 
et al. 2000), our sampling does not present any concentra-
tion above the detection limit of: Benzene (LD: 0.041 µg/l), 
Ethylbenzene (LD: 0.032 µg/l), MYP-Xylene (LD: 0.071 
µg/l), o-Xylene (LD: 0.039 µg/l) Toluene (LD: 0.047 µg/l). 

Table 3   Values of temperature, 
pH and electrical conductivity 
measured in each sampling site

Site Temperature (°C) pH Electrical conductivity (µS/
cm)

Rainy season Dry season Rainy season Dry season Rainy season Dry season

S1 12.85 12.86 7.29 8.34 127.00 116.00
S2 14.17 14.12 8.25 7.91 235.20 183.20
S3 16.90 18.33 7.59 7.83 424.70 456.00
S4 19.70 19.11 7.58 6.18 869.88 707.80
S5 18.83 19.56 7.25 6.59 458.14 497.50

Fig. 2   Concentrations of nutri-
ents in the five sampling sites. 
“a” shows the concentration 
of Total Nitrogen, “b” shows 
the concentration of Nitrites, 
“c” shows the concentration of 
Nitrates and “d” shows the con-
centration of Ortho-phosphates

Table 4   Concentrations 
of heavy metals in the five 
sampling sites

Site Total aluminum (µg/l) Total arsenic (µg/l) Total mercury (µg/l)

Rainy season Dry season Rainy season Dry season Rainy season Dry season

S1 0 11.70 0 0 0 0
S2 93.60 11.20 0 0 0 1.62
S3 10.70 10.20 0 0 0 0
S4 0 10.60 14.00 0 0 0
S5 11.60 131.90 0 0 0 0
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Besides, no pharmaceutical drugs were found at the furthest 
sampling point upstream of REPSA (S1), whereas in the 
remotest point downstream of REPSA (S5), the presence of 
four different types of drugs was found (Ibuprofen, Salicylic 
acid, Naproxen, and Diclofenac). This gradient in the pres-
ence of these substances could be related to the contribution 
of pollutants from the urban area to the aquifer (Table 5).

The relation between the precipitation events and the 
Electrical Conductivity (EC) of the aquifer, analyzed in the 
spring S3, shows that to perceive a change in EC values, it 
is necessary a rain with an intensity higher than 7.8 mm. 
Besides, the response of the aquifer is within the first hour 
after a rain event higher than 7.8 mm (Fig. 3).

Discussion

Shallow urban aquifers are systems with a close relation 
to the surface. On the one hand, this characteristic makes 
them more vulnerable to contamination than deeper aqui-
fers in urban areas (Morris et al. 2003). On the other hand, 
this strong relation with the surface also makes shallow 
aquifers capable of being promptly benefiting from Eco-
system Services related to water when they are located 
under Urban Green Spaces. For instance, by infiltrating 
rainwater in a shorter amount of time than deeper aqui-
fers. This relation is highlighted by the analysis results 

Table 5   Concentration of drugs found in water in the springs in both seasons (dry and rainy). DL is the detection limit of the method

Site Ibuprofen (ng/l) Salicylic acid (ng/l) Naproxen (ng/l) Diclofenac (ng/l)

Rainy season Dry season Rainy season Dry season Rainy season Dry season Rainy season Dry season

S1  < DL  < DL  < DL  < DL  < DL  < DL  < DL  < DL
S2 4 ± 1  < DL 4 ± 1  < DL  < DL  < DL  < DL  < DL
S3  < DL  < DL 8 ± 2  < DL  < DL  < DL  < DL  < DL
S4  < DL  < 5 ± 1  < DL  < 7 ± 1  < DL 4 ± 1  < DL  < DL
S5 4 ± 1  < DL 6 ± 1 3 ± 1 3 ± 1  < DL 4 ± 1  < DL
DL: 0,25 ng/l

Fig. 3   Relation between precipitation and the Electrical Conductivity in the shallow aquifer. “a” shows the complete cycle of the 1 year, “b–e” 
show precipitation events analyzing the dynamics of the aquifer in terms of time and intensity of the precipitation
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related to the behavior of the Electrical Conductivity of 
water in the S3 spring and its relation with the amount of 
precipitation in the area. In this sample site, located within 
the REPSA, it was possible to observe that the rainwater 
reached the shallow aquifer in a period of hours.

It is estimated that the presence of REPSA over the 
shallow aquifer contributes around 2,000,000.00 m3 of 
water per year (Zambrano et al. 2016a). In addition, due to 
the state of conservation of the REPSA and its geological 
and ecological characteristics, it is possible to assume that 
this amount of infiltrated water would not alter its quality 
before reaching the shallow aquifer. Therefore, the water 
infiltrated in the REPSA could positively impact the water 
quality of the shallow aquifer through a dilution effect of 
the contaminants present in the aquifer. For example, the 
values associated with pollutants, such as total nitrogen 
and nitrates concentration, are higher in the aquifer areas 
which are inside the urban land and upstream the REPSA 
(according to the water flow). In contrast, the aquifer areas 
downstream of the REPSA have lower concentration val-
ues of these pollutants.

Another example is the concentration of Mercury found 
in site S2 (upstream of the REPSA). The presence of this 
metal could be related to a paper factory that existed in that 
area between 1825 and 1991, which used Mercury com-
pounds as preservatives (Martinez et al. 2015; Parnreiter 
2002; Ramírez et al. 2004). Mercury was possibly deposited 
in the soil and by leaching, downward percolation, runoff, 
and horizontal transport reached the groundwater, causing 
aquifer pollution (Hatcher and Filippelli 2011). However, in 
the spring, located on the REPSA and the ones downstream 
of the REPSA, this metal was not found. Both examples 
could be associated with a dilution effect of the water infil-
trated in the REPSA on groundwater quality.

These assumptions are based on the limited knowledge 
currently available about the characteristics of the studied 
shallow aquifer, who was recently discovered and described 
in the literature (Canteiro et al. 2019). Therefore, it is nec-
essary to deepen the understanding of the dynamics of the 
aquifer and its relationship with the surface with other lay-
ers of groundwater. In this sense, we must consider that the 
shallow aquifer not only receives water from REPSA, but 
that most of its recharge occurs in the south of the city on 
conservation land, that after the shallow aquifer enters the 
urban area, it also receives different types of contributions 
both from the surface and from the water distribution sys-
tem. The latter acquires importance since in Mexico City it 
is reported that up to 42% of the water is lost due to leaks 
in the system (Silva and Martínez Omaña 2023). Both this 
amount of water from the distribution system, as well as 
other possible sources of clean water that feed the aquifer, 
can contribute together with REPSA to the dilution of con-
taminants present in the shallow aquifer.

Urban areas above the aquifers can also have a negative 
impact on groundwater. If it is strong enough, this negative 
impact can counter the positive impact of the UGS or other 
sources of clean water. For example, in this study, values of 
temperature, EC, and orthophosphates, all of them related 
to urban pollution, are high in the urban area and remain 
high with a growing path downstream REPSA (Table 3 
and Fig. 3). This is also the case of pharmaceutical drugs 
analyzed in this research, which remain present upstream 
and downstream REPSA. These results indicate that, for 
some contaminants, the negative impact of the urban area 
on the shallow aquifer is higher than the positive influence 
of REPSA and other possible sources of clean water. Phar-
maceutical drugs are particularly relevant due to its impact 
on human health. Although the concentration values found 
for these drugs were low (World Health Organization 2012) 
and they are not regulated by the Mexican Norm regard-
ing drinking water (NOM-127-SSA1-1994) (Secretaría de 
Salud 1994), they can be considered a threat to public health 
(Rivera-Jaimes et al. 2018). Despite their low levels, pro-
longed exposure to medical drugs, even in low concentra-
tions, can represent a risk to human health because of the 
potential -and sometimes unknown- effects derived from the 
combination of different drugs (Osuoha et al. 2023; Rod-
riguez-Narvaez et al. 2017; Taheran et al. 2018). Besides, 
these kinds of pollutants are linked with chronic toxicity, and 
they bioaccumulate in macroinvertebrates, aquatic organ-
isms, and humans.

Conclusion

We found that UGS have an important role in water infil-
tration to the aquifer, helping to dilute pollutants. Urban 
shallow aquifers are systems sensitive to the impacts from 
the surface because of their close relation. Depending on 
the characteristics of the land use above the aquifer, these 
impacts could be positive or negative. We found a relation 
between the presence of UGS over urban shallow aquifers 
with the improvement of groundwater quality through the 
infiltration of water which generates a dilution effect of the 
pollutants present in the aquifer, even in the case of heavy 
metals as Mercury. However, urbanization has a negative 
influence on groundwater quality through the contribution 
of some contaminants that might not be counteracted by the 
positive effects of UGS infiltrated water.

In Mexico City, REPSA is a UGS that provides the eco-
system service of contributing to the regulation of the water 
quality of the shallow aquifer below it. Said contribution 
occurs through the infiltration of clean water to the shallow 
aquifer, which promotes the dilution of some contaminants. 
However, this effect is not able to counteract all the contami-
nants present in the aquifer. The geological and ecological 
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properties of the REPSA, its state of conservation and the 
characteristics of its management are fundamental to obtain 
the ecosystem services of regulation of the quantity and 
quality of water from the shallow aquifer. Therefore, it is 
essential to carry out complementary studies to determine 
the scope of the positive impacts provided by REPSA and 
other possible sources and impacts on the water quality of 
the shallow aquifer. For example, it is essential to know the 
amount of water that can be infiltrated into the REPSA to 
better understand the possible dilution effect proposed in this 
work and to further understand how UGS can be beneficial 
for regulating water quantity and quality of shallow urban 
aquifers.
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