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Abstract
Evaluation of the hydrological impact of urbanization-induced land use land cover (LULC) changes for medium to large 
catchments is still an important research topic due to the lack of evidence to conclude about how local changes translate to 
impacts across scales. This study aims to provide evidence on the effects of LULC change on the streamflow of the Akaki 
catchment that hosts Addis Ababa, the capital city of Ethiopia. Since the comparative performance of classification algorithms 
is poorly understood, we compared the performance of one parametric and five non-parametric machine learning methods 
for LULC mapping using Landsat imageries. To investigate the effect of LULC changes on streamflow, a semi-distributed 
HEC-HMS model was calibrated and validated using daily discharge data at multiple sites. Findings of this study showed 
that: (i) the accuracy of classification and regression tree (CART) was superior to the other classifiers, (ii) from 1990 to 2020, 
urban and forest cover increased at the expense of agricultural and bare land, (iii) the performance of the HEC-HMS model 
was acceptable at all stations during both the calibration and validation periods, and (iv) the mean annual and main rainy 
seasonal streamflow of the catchment experienced significant increases due to LULC change but the simulated streamflow 
changes highly varied with the type of LULC classifier. This study contributes to the limited evidence on how catchments, 
with rapidly developing cities are prone to hydrological regime changes that need to be recognized, understood and quanti-
fied, and incorporated into urban planning and development.
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Introduction

Cities around the world are growing, attracting millions of 
people due to the opportunities they provide to improve live-
lihoods. In 2018, around 55% of the world’s population lived 
in cities, this is expected to rise to more than two-thirds by 
2050 (UN 2021). This is abruptly changing the land use 
of catchments hosting cities (Ahmed et al. 2020) and alter-
ing rainfall-runoff relationships (Guzha et al. 2018; Birhanu 
et al. 2019; Bulti and Abebe. 2020) which in turn causes an 
environmental impact that is hindering sustainable devel-
opment (Wagner et al. 2013; Degife et al. 2019). However, 
land use land cover (LULC) changes and their hydrological 
impacts are still among the 23 unsolved problems in hydrol-
ogy as identified by hydrologists (Saddique et al. 2020).

Published systematic reviews exist with an effort to 
draw conclusions on the relationship between changes in 
specific LULC classes and streamflow regimes (e.g., Zhao 
et al. 2016; Kayitesi et al. 2022). However, these efforts 
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were not fully successful partly because most of the exist-
ing studies focused on small catchments and annual stream-
flow. Kayitesi et al. (2022) concluded that despite the fastest 
LULC changes in tropical regions, only a few studies evalu-
ated the corresponding hydrological impacts. Results of 
these few studies on LULC change impact on streamflow are 
not consistent at a large scale (Reintjes et al. 2011). Hence, 
there is still a lack of understanding about the impacts of 
LULC change at scales relevant to water resources planning 
and management, i.e., for medium and large catchments. As 
a result, based on a systematic review of existing literature 
Zhao et al. (2016) advocated for more studies on the impact 
of LULC change on the entire flow regime changes in large 
basins.

The major issues in assessing the impact of LULC 
change are: (i) accuracy of LULC maps, and (ii) separation 
of hydrological impacts of LULC change from impacts due 
to climate change. Despite the availability of global land 
cover maps (e.g., Chen et al. 2015; Peter et al. 2020; Potapov 
et al. 2022) their use for local studies is constrained by scale, 
aggregation, lack of validation and incomplete documenta-
tion describing the details of the data collected (Verburg 
et al. 2011). As a result, hydrological studies often involve 
the preparation of a bespoke LULC map for their study 
catchment. However, the accuracy of locally prepared 
LULC maps is constrained by the type of classifier, num-
ber of ground control points (GCPs), its spatial distribution, 
images’ characteristics, catchment’s characteristics and other 
factors (Shetty et al. 2021).

The limitations of classifiers have a significant impact 
on the accuracy of LULC classification (Shetty 2019b; Qu 
et al. 2021) and hydrological behaviors that motivate the 
ongoing research on improving the performances of clas-
sifiers. The non-parametric classifiers (e.g., machine learn-
ing) have some advantages over the parametric traditional 
classifiers (e.g., maximum likelihood) for LULC mapping. 
These advantages include improved performance using 
noisy reference or training data, and the ability to deal with 
complex land cover. Adoption of machine learning classi-
fiers for LULC classification is increasing due to their higher 
accuracy and performances (Kelsey et al. 2018; Tassi and 
Vizzar 2020). However, most studies still use traditional par-
ametric classifiers (e.g., Andualem et al. 2018; Engida et al. 
2021; Leta et al. 2021) and the comparative performance 
assessment to inform the selection of classifiers among the 
many types of machine learning and parametric classifiers is 
lacking in the literature. In this study, instead of arbitrarily 
selecting single LULC classifiers (e.g.,Astuti et al. 2019; 
Koneti et al. 2018; Phan et al. 2021), we based our selection 
on a comparison of multiple classifiers. We also assessed the 
LULC change effect variation on streamflow using different 
LULC classifier product. This is in contrast to past LULC 
mapping in the study area that either partially covered the 

catchment by focusing only on Addis Ababa city (Arsiso 
et al. 2018) or used the traditional maximum likelihood clas-
sifier that is arbitrary selected for use (Worako 2016).

In LULC mapping, processing of big data, access to 
cloud-free satellite imageries, searching, downloading, 
and mosaicking the images are other factors that consume 
researchers’ time (Gorelick et  al. 2017). However, the 
recently available Google Earth Engine (GEE) cloud-based 
computing platform provides a useful resource to overcome 
these issues. The platform uses Java or Python scripts for 
image classification without the need to download the data to 
the local computing resources (Nyland et al. 2018). Further-
more, it contains several packages of machine learning clas-
sifiers, useful for LULC classification (Zurqani et al. 2018; 
Chung et al. 2021; Shafizadeh Moghadam et al. 2021). In 
this study, GEE was used for two purposes: (i) to access 
Landsat images, and (ii) to classify LULC of the Akaki 
catchment, Ethiopia, using machine learning classifiers.

This study aims to quantify the effects of historical 
(1990–2020) LULC change on streamflow in the Akaki 
catchment. The Akaki catchment is a very complex catch-
ment due to ongoing rapid development in Addis Ababa city 
and its surrounding towns such as Sendafa, Legedadi, Dire, 
and Burayu, with the major portions of the catchment hav-
ing a large impervious surface. The catchment also includes 
three artificial water supply reservoirs: Gefersa, Legedadi, 
and Dire. The presence of those artificial reservoirs adds 
complexity to understanding the catchment through rainfall-
runoff modeling. However, in the previous study (e.g., Shi-
beshi et al. 2019; Zeberie. 2019) the reservoir effect was not 
accounted in their modeling.

In this study, a semi-distributed HEC-HMS model was 
used for LULC change impact assessment. HEC-HMS 
model was tested and calibrated for a variety of purposes, 
including flood forecasting (Bhuiyan et al. 2017), rainfall-
runoff simulation (Gumindoga et al. 2016; Bitew et al. 
2019), assessing the effects of land-use change on hydro-
logical responses (Guzha et al. 2018; Shanshan et al. 2020; 
Dipak and Shirish. 2021) and climate change impact assess-
ment (Meenu et al. 2012). This study adds to the gap in the 
literature on the impact of LULC change on the streamflow 
of a complex catchment with multiple reservoirs and rapid 
urbanization. Therefore, the approach and findings of this 
study will inform similar research in urban–rural catchments 
that are experiencing rapid change.

Material and methodology

Study area

The Akaki catchment is found in central Ethiopia, and it is 
one of the headwaters of the Awash River. The catchment 
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hosts the capital city of Ethiopia, Addis Ababa, and sur-
rounding towns such as Legedadi, Sendafa, Dire and Burayu. 
The Akaki catchment is located between 8°36ʹ–9°12ʹ N and 
38°40ʹ–39°4ʹ E with an area coverage of around 1500  km2. 
The elevation of the study area ranges from 2000 m.a.s.l 
around the bridge of Addis Ababa to Debre Zeit Road to 
3400 m.a.s.l on Entoto Mountain (Fig. 1).

The drainage system of the Akaki catchment is divided 
into the Little Akaki and Big Akaki river systems. The Big 
Akaki river sub-catchment covers about 62% of the Akaki 
catchment area, whereas the Little Akaki sub-catchment 
covers the remaining part of the catchment area. Big Akaki 
River has two major tributaries, the Kebena River that 
originates from the Entoto Mountains in the north of Addis 
Ababa, and Bulbula River that originates in the northeast 
of Addis Ababa. This river system contains two water sup-
ply reservoirs (Legedadi and Dire). The other river system 

Little Akaki River originates from the Entoto Mountains 
in the north of Addis Ababa and Wechecha Mountain in 
the northwest of Addis Ababa. Gefersa reservoir, the third 
water supply reservoir, is located in the upstream part of 
this river. Both Big and Little Akaki Rivers drain to the 
Aba-Samuel reservoir.

The main rainy season of the Akaki catchment is from 
June to September. It receives minor rains from mid-Feb-
ruary to April. Between 1990 and 2018 the mean monthly 
maximum and minimum areal rainfall was observed in 
August (290 mm) and December (7 mm), respectively, 
with around 1265 mm mean annual rainfall amount over 
the catchment. The mean monthly maximum and mini-
mum temperature of the study area varies from 7 to 11 °C 
and 21–25 °C, respectively, over the period of 1990 and 
2018. During the same period, the lowest temperatures 
were recorded in July and August, while the highest tem-
peratures were recorded in February and March.

Fig. 1  Location map a Ethiopian river basins, b Awash basin, and c Akaki catchment. where—RF is the rainfall gauging station, hydrological 
station is flow gauging station, and the DEM legend unit is a meter
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Data sets

Spatial and temporal data

The main datasets used in this study included Digital Eleva-
tion Model (DEM), satellite images, ground control points 
(GCPs), soil map, and hydro-meteorological data. The DEM 
was collected from ALOS PALSAR product (https:// asf. 
alaska. edu/), which has 12.5 m × 12.5 m spatial resolution. 
It was used for catchment delineation and extraction of other 
catchment characteristics such as time of concentration (Tc), 
basin storage coefficient (R), sub-basin area (A), longest flow 
path (L), and slope of the watercourse (S).

Time series images were obtained from Landsat thematic 
mapper (TM),  enhanced thematic mapper  (ETM+) and 
operational land imager (OLI). These images were used for 
image classification in GEE to derive the LULC maps of 
the study area. The dataset included full scenes for the years 
1990, 2000, 2010, and 2020. The selection of the images was 
based on the criteria that the images had no cloud cover over 
the study area, and the resolution of the images were similar 
(30 m × 30 m). All images were acquired in the dry months 
of November and December to ensure cloud-free images. 
GCPs for the three historical periods (1990, 2000, and 2010) 
were collected from topographic maps and SPOT images 
together with historical LULC information. Topographic 
maps (1993, 1995, and 1997) with a scale of 1:250,000 and 
SPOT 6 and SPOT 7 (for the year 2000 and 2010) images 
with 5 m and 1.5 m spatial resolutions respectively, were 
collected from the Ethiopian Geospatial Information Insti-
tute (EGII). The daily rainfall data of 12 stations and daily 
temperature data (maximum and minimum) for 5 stations 
were collected from the Ethiopian Meteorological Institute 
(EMI) of Ethiopia. The rainfall and temperature data cover 
the period 1990 to 2004 to match the observation period of 
streamflow data. Daily streamflow data recorded at three 
stations (from 1990 to 2004), and soil data were collected 
from the Ministry of Water Energy (MoWE). See Fig. 1 for 
the locations of stations.

Reservoir data

Elevation–area–volume (E–A–V) curve is very essential to 
represent the effects of reservoirs in rainfall-runoff mod-
eling. For the Legedadi reservoir, the E–A–V curves were 
established by a company called BECOM in 1992, and for 
Dire reservoir, it was developed by TAHAL company, in 
1997. However, for the Gefersa reservoir, two E–A–V curves 
were collected from the 2018 bathymetry report. The first 
curve was prepared by the Addis Ababa Water and Sewerage 
Authority (AAWSA) in 1966 and then the revised curve was 
prepared in 2018 by the Ethiopian construction design and 
supervision works corporation (ECoDSWC). As a result, in 

this study, a new E–A–V curve was calculated for the cali-
bration period from the original and revised E–A–V curves 
by interpolation technique. The daily water production data 
for the three reservoirs were collected from AAWSA. The 
dam feature data (bottom outlet elevation, size of bottom 
outlet, dead storage level, normal pull level, spillway length, 
dam crest level elevation and dam crest length) were col-
lected from the 2018 bathymetry design reports.

Land use land cover data processing

Field survey

Before field visits, unsupervised image classification was 
conducted to determine the major LULC classes of the study 
area for ground truth data collection. This was followed by a 
detailed field survey which was undertaken in October 2020. 
The major objective of the field visit was: (i) to revise the 
major LULC classes of the study area which were obtained 
using the unsupervised image classification, (ii) to collect 
GCPs for the identified LULC classes, and (iii) to collect 
additional information about the historical LULC classes 
and changes in the study area. During the field visit, 6 major 
LULC classes and 27 sub-classes were identified. 450 GCPs 
were collected with the help of a geographic positioning sys-
tem (GPS) with ± 3 m horizontal error. Following common 
practice in literature (Rientjes et al. 2011; Yimer et al. 2020), 
a split-sample validation method was then applied in which 
80% of the GCPs were used for training the classification 
algorithms, and 20% of the GCPs were used for validation.

To collect historical information on the past LULC (i.e., 
1990, 2000, and 2010), 25 people were interviewed. This 
information was combined, (i) with the GCPs for 2020, (ii) 
GCPs that were identified from the SPOT image and then 
used for the preparation of historical LULC maps of the 
study area. For LULC classification in 1990 and 2000, 370 
GCPs were identified by using a topographic map, defined 
relationships of NDVI and LULC class and information col-
lected from elder people. For classifying the image of 2010, 
420 GCPs were identified from the SPOT image and the 
information obtained from the interviewees.

LULC classification

In this study, five machine learning (ML) classifiers that 
have been used in recent studies (e.g., Zurqani et al. 2020; 
Akanksha et al. 2021; Shetty et al. 2021) and one tradi-
tional parametric classifier were compared to select the best 
classifier for LULC mapping of Akaki catchment. Those 
ML classifiers used in this study are: (i) classification and 
regression tree (CART), (ii) random forest (RF), (iii) sup-
port vector machine (SVM), (iv) minimum distance (MD), 
and (v) Naïve Bayes (NB). From the traditional methods, 

https://asf.alaska.edu/
https://asf.alaska.edu/
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Maximum likelihood classifier (MLC) was also considered. 
MLC is the most common parametric classifier found in 
many image processing packages. Equal number of training 
data and image band combinations were used for each clas-
sifier. For a quantitative comparison of the performance of 
the classifiers, the classification results were evaluated using 
a confusion matrix. Such comparison helps to evaluate the 
agreement and details of disagreements between the classi-
fied results and reference data in terms of the overall clas-
sification accuracy, kappa coefficient, producer’s accuracy, 
and user’s accuracy (Rientjes et al. 2011; Yimer et al. 2020; 
Assefa et al. 2021).

The overall accuracy was calculated by dividing the cor-
rectly classified pixels by the total number of ground truth 
pixels. The user's accuracy informs the user how well the 
map represents the reality on the ground, and the produc-
er's accuracy measures how well a certain area is classified 
(Chughtai et al. 2021). The user's accuracy corresponds to 
an error of commission (inclusion) and producer's accuracy 
corresponds to an error of omission (exclusion). Individual 
accuracies of more than 70%, overall accuracy of at least 
85%, and the Kappa coefficient of 75% indicate acceptable 
accuracies (Ramita et al. 2009; Phan et al. 2021).

HEC‑HMS model setup

The initial values of the HEC-HMS model parameters are 
summarized in Table 1. These initial values were estimated 
by combining information from the allowable range value 
of parameters (USACE, 2018), basin characteristics, analy-
sis of observed streamflow data, and literature (Haile et al. 
2016). Rainfall-runoff generation in the Akaki catchment is 
expected to show large spatial variation mainly due to: (i) 
significant spatiotemporal rainfall variations, (ii) heterogene-
ous LULC characteristics, and (iii) presence of reservoirs. 
Hence, we divided the catchment into 15 sub-basins (Fig. 2) 
by considering the location of flow gauging stations and 
reservoirs, distribution of rain gauges, size of drainage area, 
major tributaries and the dominant LULC classes. The larg-
est sub-basin drainage area is 205.3  km2 (W4580), and the 
smallest sub-basin drainage area is 39  km2 (W6940).

HEC-HMS uses separate models to represent each com-
ponent of the rainfall-runoff process (USACE 2018). In this 
study, the following seven HEC-HMS methods were used 
for simulation, calibration, and validation. SCS-CN method 
was selected to calculate losses due to its applicability to 
evaluate the impact LULC change since its parameter can 
be determined from LULC and other readily available data. 
Clark unit hydrograph was used to transform excess precipi-
tation into a direct runoff. This method was selected since it 
requires only two input data, it is easy to use and it has been 
used by many researchers. Muskingum method was applied 

for flow routing in the channels. The recession method was 
used for modeling of base flow. This method has been used 
often in literature to explain the drainage from the natural 
storage in watersheds. Simple surface method was applied to 
model losses due to surface storages and depreciations. Sim-
ple canopy method was also applied in the study to model 
loss due to trees and other vegetation.

The storage and routing effect of the reservoirs were 
represented in HEC-HMS model of Akaki. The outflow 
structure routing method was selected in this study since 
this method was designed to model reservoirs with several 
uncontrolled outlet structures like spillway, intake, low-level 
bottom outlet structures and evaporations from the surface 
of reservoirs. Diversion of water from the reservoirs to the 
city was represented as a loss in the model.

HEC‑HMS model sensitivity

Sensitivity analysis is a critical component of rainfall-runoff 
modeling that helps to identify the influential parameters 
to guide model calibration. For this study, several model 
simulations were performed first using the initial values 
of the parameters, and then sequentially changing the val-
ues of one parameter by increments from ± 10% to ± 100% 
while keeping the values of other parameters fixed. For each 
simulation, the values of the objective functions (Nash Sut-
cliffe efficiency (NSE), relative volume error (RVE), and 
coefficient of determination  (R2)) were estimated, and then 
these estimated values of the objective functions were plot-
ted against the parameter values. A steep line plot of values 
of a parameter against the objective function shows that the 
model is highly sensitive to that parameter.

HEC‑HMS model calibration and validation

The semi-distributed HEC-HMS model of Akaki was manu-
ally calibrated and validated at Mutinicha, Big Akaki and 
Little Akaki stations. This was done by iteratively changing 
the model parameters’ values until a reasonable match was 
achieved between the simulated and observed streamflow. 
This was repeated at the catchment outlet just upstream 
of Aba-Samuel reservoir by transferring the streamflow 
data from Big Akaki and Little Akaki gauging stations by 
catchment area ratio. In the Akaki catchment, the atten-
tion given to streamflow monitoring declined over recent 
years. As a result, access to streamflow data is limited up to 
2004. Hence, the historical streamflow data (1990 to 2004) 
at the gauging stations were used for model initialization 
(1990–1992), calibration (1993–1999), and validation 
(2000–2004). This modeling period covers both high (1999) 
and low flow (2002) conditions in the catchment.
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The performance of the HEC-HMS model was evaluated 
through visual inspection of various aspects of the simulated 
and observed hydrographs, and a set of objective functions 
that measure the goodness of fit between various aspects 
of the two hydrographs. The objective functions which 
were used in this study are Nash–Sutcliffe model efficiency 
(NSE), coefficient of determination  (R2), and Relative Volu-
metric Error (RVE) as shown below.

(1)NSE = 1 −

∑n

I=1
(Qobs,i − Qsim,i)

2

∑n

i=1
(Qobs,i − Qobs,i)

2

(2)R2 =

∑n

i=1
(Qobs,i − Qobs,i)

2

−
∑n

i=1
(Qsim, − Qsim.i)

2

∑n

i=1
(Qobs,i − Qobs,i)

2

(3)RVE =

∑n

i=1
(Qsim,i − Qobs,i)
∑n

i=1
Qsim,i

× 100

where, Qobs,i is the observed streamflow at time step i, Qsim,i 
is the simulated streamflow at the same time step, n is the 
number of observations, and the overbar indicates the mean 
of the streamflow over the calibration or validation period.

NSE is used to assess the model's ability to reproduce 
the pattern of the observed hydrograph. Its lower limit 
is − ∞ with and upper limit of 1 (that indicates a perfect 
match). Values of NSE between 0.6 and 1.0 show accept-
able levels of performance, whereas NSE = 0 indicates 
that the mean observed value is a better predictor than the 
simulated value, indicating poor model performance. The 
values of RVE range between − ∞ to + ∞ with values of 
zero being the target performance in terms of capturing the 
observed streamflow volume. RVE values between − 5 and 
5% indicate the model performance is very good, values 
between −10 and −5%, and 5 and 10% indicate acceptable 
(good performance) volumetric error and values outside 
the range of -10 and 10% indicate unacceptable model 
performance.  R2 is sensitive to extremes in the hydrograph 
but insensitive to additive and proportional differences. 

Fig. 2  HEC-HMS basin model representation of the Akaki catchment



 Sustainable Water Resources Management (2023) 9:78

1 3

78 Page 8 of 19

Its values range from 0 to 1, with one indicating perfect 
agreement between the extremes of the observed and simu-
lated discharge.

Hydrological impact of LULC changes

HEC-HMS model allows evaluation of LULC change impact 
by changing the curve number (CN), percentage of impervi-
ous (IP) and initial abstractions (IA) as per the LULC cover 
of 1990, 2000, 2010, and 2020 as well as other basin param-
eters. The model parameters such as CN, IP and IA were 
estimated as a function of land use, soil type, and anteced-
ent moisture conditions. For hydrological impact evaluation, 
two sets of LULC maps were produced using the traditional 
MLC and CART classifiers. The simulations were carried 
out using 7 years of climate data (1993 to 1999) for all land 
uses scenarios. We did not vary the climate data to isolate 
the impact of climate change and variability on changes in 
annual and seasonal streamflow caused by LULC change. 
Figure 3 shows the conceptual framework of the present 
study, and hence summarizes the steps that we followed in 
our research.

Result and discussion

Assessment of classifiers accuracy

Table 2 shows the accuracy assessment result of the six clas-
sifiers for the Akaki catchment. The highest overall accuracy 
(95.2%) was observed using CART classifier. The producer 
accuracy ranges from 73.9% for bare land to 99.5% for the 
water body using this classifier. This indicates that about 
74% of the bare land pixels on the ground are identified as 
bare land on the produced LULC map while nearly all the 
water body pixels on the ground are classified as water bod-
ies on the map. The user’s accuracy ranges from 70.94% for 
bare land to 97.40% for the forest. Thus, 70.94% of the bare 
land in the classified map occurs on the ground, and 97.94% 
of the forest on the classified map occurs on the ground. 
The result shows the presence of almost perfect agreement 
between the classified map pixels and the reference data as 
indicated by a kappa coefficient of 0.921. Therefore, the 
classification accuracies are within acceptable ranges com-
pared to the recommended individual accuracies of more 
than 70%, the overall accuracy of at least 85%, and the kappa 
coefficient of 75% (Kelsey et al. 2018; Phan et al. 2021).

The second-highest overall accuracy was observed 
(94.61%) for the RF classifier. For RF, the producer’s accu-
racy ranges from 74.18% for grassland to 98.73% for the 
forest. The user's accuracy ranges from 67.94 for bare land 
to 97.40% for the forest. The result shows the presence of 
good agreement between the classified map pixels and the 

reference data as indicated by kappa coefficients of 0.90%. 
However, the RF classifier resulted in the user’s accuracy 
below the recommended value of 70%.

In the SVM classifier, the third-highest overall accuracy 
(92.49%) was registered. The producer accuracy of SVM is 
relatively low (77.41%) for urban area whereas the user’s 
accuracy is lowest for waterbody (95.02%). SVM resulted 
in a good agreement between the classified map pixels and 
the reference data as indicated by the kappa coefficients 
of 0.856%. However, typically this classifier classifies the 
grassland and bare land as agricultural areas.

The fourth-highest overall accuracy (81.5%) was pro-
duced by the MLC classifier. It resulted in producer’s and 
user’s accuracies that were below the acceptable value 
(< 70%). Therefore, the classifier is not suitable for LULC 
classification in the study area.

The MD classifier did not provide acceptable accuracies 
as the individual accuracies are below than 70%, the overall 
accuracy is less than 85%, and the kappa coefficient is less 
than 75%.

As a result, based on the accuracy assessment result and 
visual inspection of the classified map, the CART classifier 
outperforms all the other classifiers. Therefore, CART was 
chosen to detect long-term LULC changes between 1990 
and 2020 for the catchment. However, we also assessed the 
impact of LULC change on streamflow using the traditional 
MLC and CART classifiers.

LULC classification

Figure 4 shows the LULC maps of the study area for the 
year 1990, 2000, 2010, and 2020 using the CART classifier. 
The highlands in the north and northeast of Addis Ababa 
city were dominantly covered by forests with considerable 
bare land. Most of the central part of the catchment was 
highly urbanized because the catchment hosts Addis Ababa, 
Ethiopia's capital and largest city. Agricultural land was the 
dominant and widespread land cover class in the catchment. 
The major agricultural practices in this area were rain-fed 
agriculture. However, irrigated agriculture was also detected 
along the Akaki Rivers though it was not widespread.

The LULC detection map of Akaki shows that the LULC 
has changed dramatically in the past three decades. The agri-
cultural land was the dominant LULC class in the catch-
ment. In 1990, it was representing 76.26% (1109.96  km2) 
of the total catchment area. However, this class was sub-
stantially reduced to 52.98% (771.12  km2) in 2020. Simi-
larly bare land faces a large decline from 7.57% (110.18 
 km2) in 1990 to 3.23% (47.01  km2) in 2020. However, the 
urban area experienced the most significant increase over 
the study period. The area has grown from 8.05% (117.16 
 km2) in 1990 to 29.21% (425.15  km2) in 2020. Similarly, 
the forest area increased from 4.65% (67.68  km2) in 1990 
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to 10.09% (146.85  km2) in 2020. This suggests the presence 
of tree-planting campaigns in the catchment. The change in 

the water body and grassland cover was not very significant 
in the catchment.

Fig. 3  Conceptual framework of the study
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Figure 5 shows the LULC maps of Akaki produced using 
MLC for the year 1990, 2000, 2010, and 2020. The MLC 
classifier resulted in widespread bare lands and large cover-
age of grassland at the expense of agricultural land. This is 
in contrary to our field observation, and a large deviation 
from the results of the CART classifier. Such deviation of 
land cover coverage by MLC is consistent across the analysis 
period.

HEC‑HMS model calibration and validation

The observed and simulated streamflow hydrographs at 
Mutinicha, Big Akaki, and Little Akaki gauging stations, 
as well as just upstream of Aba-Samuel reservoir (catch-
ment outlet), are shown in Figs. 6, 7, 8, and 9 for both the 
calibration and validation period. The model calibration 
and validation results show the presence of a good match 
between the rising limb of the simulated and observed 
hydrographs. The recession limb and the base flows are 
also well captured. Some peaks, however, are slightly over-
estimated while others are slightly underestimated. This 
could be related to rating curve uncertainties or observa-
tion intervals of water levels, but further investigation is 
required. The model also performed well in reproducing 
the observed streamflow during the independent (valida-
tion) period suggesting the model’s capability outside the 
calibration period.

The model performed well in terms of NSE,  R2, and 
RVE objective functions (Table 3). For instance, accord-
ing to the calibration at Little Akaki station, the observed 
and simulated streamflow volumes matched very well in 
terms of relative volume error (RVE = 0). Similarly, the 
calibration was under good range in terms of capturing 
the pattern of the observed hydrograph (NSE = 0.71). 
Overall, the model performance can be rated relatively 
very good in terms of reproducing the volume and pattern 
of the streamflow that was observed at the Little Akaki 
gauging station. The model was also found to perform 
very well in terms of NSE at Mutinicha, Big Akaki, and 
Aba-Samuel. However, the performance slightly deterio-
rated at Mutinicha in terms of RVE. Considering uncer-
tainties related to the flood release of the Legedadi reser-
voir, the model performance can be considered acceptable 
at Mutinicha.

Table 4 summarizes the performance of the HEC-HMS 
model for the validation period. According to the valida-
tion result the model well performed in the Akaki catch-
ment in terms of NSE,  R2, and RVE objective functions. 
For instance, according to the validation at Little Akaki 
station, the observed and simulated streamflow volumes 
matched well in terms of volume error (RVE = − 4.1%). 
Similarly, the validation was under a very good range 
in terms of reproducing the pattern of the observed Ta
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hydrograph (NSE = 0.70). The validation results indicate 
that the model achieved a relatively very good fit between 
simulated and observed streamflow at the Little Akaki 
gauging station. The model performance was found to be 
very good in terms of NSE at all gauging stations. How-
ever, in terms of RVE, model performance at Big Akaki 
and Mutinicha slightly deteriorated as compared to the 
performance in the calibration period. Considering data 
limitations and the highly dynamic nature of the catch-
ment, the model performance indicates that HEC-HMS 
model can be used for streamflow simulation in the study 
area.

Hydrological impact of LULC change

The model simulation for LULC change impact assessment 
was carried out to investigate the magnitude and direction 
of changes in streamflow. The HEC-HMS model was used 
to investigate the effects of LULC change in stream flow 
in the Akaki catchment over four different time periods 
(1990, 2000, 2010, and 2020). The assessment indicates the 
streamflow changed under each LULC change scenarios. 
Table 5 shows the mean annual streamflow responses to 
the past 30-year LULC changes at three river gauging sta-
tions and at the catchment outlet using two different LULC 

Fig. 4  Land use land cover maps of Akaki catchment from (1990–2020) using CART classifier



 Sustainable Water Resources Management (2023) 9:78

1 3

78 Page 12 of 19

products (CART and MLC). The Mutinicha river catch-
ment is located in the northeast direction of Addis Ababa 
city. The catchment includes two water supply reservoirs 
(Dire and Legedadi) and the mean annual streamflow was 
decreased by 5.57% and 2.56% using CART and MLC dur-
ing the study period, respectively. This may be related to 
the fact that the bare land area in the highlands of the catch-
ment was replaced by forest plantation. The Big Akaki and 
Little Akaki rivers’ catchments cover both the old and new 
parts of Addis Ababa city. The mean annual streamflow in 
those river catchments increased over the study period. This 
was due to very dynamic urban expansion in those catch-
ments. For example, between the year 1990 and 2020 the 
mean annual streamflow of the Big Akaki river catchment 
was increased by 11.07% and 39.07% using CART and 

MLC classifiers, respectively (see Table 5). Similarly, the 
mean annual streamflow of the Little Akaki catchment was 
increased by 26.78% and 33.34% over the study period for 
LULC maps using CART and MLC classifiers, respectively.

Streamflow at the four sub-catchments of Akaki increased 
in the wet season (June–September). Using LULC maps gen-
erated by CART, the increment in streamflow was relatively 
small in 1900–2000 but becomes large from 2000 onwards 
(Table 6). Over the analysis period (1990–2000), Mutinicha 
experienced the smallest change in the wet season stream-
flow in the Akaki. For the other three catchments, there is a 
small difference in the magnitude of streamflow change over 
the analysis period, with Big Akaki experiencing the larg-
est change. Noticeable urbanization is occurring in the Big 
Akaki catchment. Use of LULC maps generated by the MLC 

Fig. 5  Land use land cover maps of Akaki catchment from (1990–2020) using MLC
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classifier exaggerates the magnitude of streamflow change 
because of LULC change. The largest percent exaggera-
tion in streamflow increment occurred for the Little Akaki 
catchment.

The Big Akaki catchment saw the largest decline 
in streamflow during the dry season (Table 7). It was 
reduced by 36.09% and 28.94% when CART and MLC 
classifiers were used to generate the LULC product maps, 
respectively. This is in line with the LULC change result 

that shows that the urban areas expanded in the east-
ern and southeastern parts of the Big Akaki catchment. 
The percentage decline in dry season flow was lowest 
at Mutinicha. Similarly, streamflow during the dry sea-
son decreased in the Little Akaki river catchment. In this 
study, the effects of LULC change on streamflow were 
more pronounced in the central part of the study area 
compared to the entire catchment.

Fig. 6  Observed and simulated stream flow at Little Akaki gauging station (1993 to 1999 for calibration and 2000 to 2004 for validation)

Fig. 7  Observed and simulated stream flow for the calibration and validation period at Mutinicha station (1993 to 1999 for calibration and 2000 
to 2004 for validation)
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Discussion

The purpose of this study was to assess the effects of 
LULC changes on streamflow in the Akaki catchment. 

Because of rapid urbanization, agricultural activity, the 
presence of artificial reservoirs, and the wide ranges 
of elevation variation, the catchment is complex. Pre-
paring accurate LULC maps for change detection and 

Fig. 8  Observed and simulated stream flow for the calibration between 1993 and 1999 and validation period between 2000 and 2004 at Big 
Akaki station

Fig. 9  Observed and simulated stream flow for the calibration and validation period just upstream of Aba-Samuel reservoir (1993 to 1999 for 
calibration and 2000 to 2004 for validation)

Table 3  Performance of 
HEC-HMS model during the 
calibration period for the four 
stations

Statistics Little Akaki Mutinicha Big Akaki Aba-Samuel

Value Performance Value Performance Value Performance Value Performance

NSE (−) 0.71 Very good 0.77 Very good 0.74 Very good 0.69 Very good
RVE (%) 0.00 Very good 5.40 Good 4.50 Very good 0.00 Very good
R2 0.65 Good 0.79 Very good 0.761 Very good 0.69 Very good
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hydrological modeling studies in a such catchment is criti-
cal. Our study showed the significance of comparing dif-
ferent classifiers for LULC mapping studies is important. 
However, there is still a scarcity of studies that provide 
a comparative analysis of LULC classifiers. Still, some 

studies are advocating for a comparison of the algorithms 
(e.g., Ghosh and Joshi. 2014; Loukika et al. 2021).

There are some efforts in literature that compare per-
formance of land cover classifiers (Michelson et al 2000; 
Jamali 2019). However, we were not able to compare the 

Table 4  Performance of HEC-
HMS model for validation 
period at the four stations

Statistics Little Akaki Mutinicha Big Akaki Aba-Samuel

Value Performance Value Performance Value Performance Value Performance

NSE (− ) 0.70 Very good 0.65 Very good 0.74 Very good 0.66 Very good
RVE (%) − 4.10 Very good 9.70 good − 5.20 good 4.00 Very good
R2 0.70 Very good 0.75 Very good 0.79 Very good 0.70 Very good

Table 5  Summary of LULC change impacts on mean annual streamflow for major rivers outlets in Akaki catchment

Major rivers outlets Mean annual stream flow  (m3/s) under four LULC maps of 
CART 

Mean annual stream flow  (m3/s) under four LULC 
maps of MLC

1990 2000 2010 2020 1990 2000 2010 2020

Mutinicha 6.53 6.42 6.29 6.17 7.83 7.78 7.73 7.67
Big Akaki 19.39 19.50 20.90 21.54 17.94 20.27 23.33 24.95
Little Akaki 3.38 3.55 3.74 3.89 2.23 2.92 3.16 3.39
Catchment outlet 35.54 35.89 40.56 45.05 27.65 30.64 34.00 39.63

Major rivers outlets Stream flow change in percent (%) for LULC of CART Stream flow change in percent (%) for LULC of 
MLC

1990–2000 1990–2010 1990–2020 1990–2000 1990–2010 1990–2020

Mutinicha − 1.74 − 3.73 − 5.57 − 1.28 − 1.92 − 2.56
Big Akaki 0.54 7.76 11.07 13.00 30.04 39.07
Little Akaki 4.95 10.62 15.01 31.80 42.63 63.39
Catchment outlet 1.01 14.14 26.78 7.09 16.08 33.34

Table 6  Summary of LULC change impacts on mean of main wet season (June–September) stream flow for major rivers outlets in Akaki catch-
ment

Major rivers outlets Mean wet season stream flow  (m3/s) under four LULC maps 
of CART 

Mean wet season stream flow  (m3/s) under four 
LULC maps of MLC

1990 2000 2010 2020 1990 2000 2010 2020

Mutinicha 17.46 17.73 17.94 18.46 21.12 22.03 22.11 22.50
Big Akaki 41.69 42.20 46.83 48.69 42.82 44.81 50.28 53.17
Little Akaki 7.88 8.24 8.64 9.04 5.85 7.48 8.10 9.35
Catchment outlet 74.10 74.90 80.51 83.75 67.10 70.64 76.89 89.81

Major rivers outlets Stream flow change in percent (%) for LULC map of CART Stream flow change in percent
(%) for LULC map of MLC

1990–2000 1990–2010 1990–2020 1990–2000 1990–2010 1990–2020

Mutinicha 1.55 2.75 5.57 4.33 4.71 6.65
Big Akaki 1.23 12.35 16.80 6.44 17.43 24.19
Little Akaki 4.50 9.58 14.33 27.85 38.51 59.91
Catchment outlet 1.08 8.65 13.03 5.28 14.60 33.84
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findings of these studies since they did not compare the 
same set of classifiers. There is a strong need to reach 
agreement on which set of algorithms to include in any 
comparison study. Having a standard set of algorithms 
helps to compare findings across sites and draw a conclu-
sion on the comparative advantages of the available algo-
rithms. In our study, we compared six different classifica-
tion algorithms and the result shows that CART performs 
best for LULC mapping of the Akaki catchment. As com-
pared to Jamali (2019) who compared eight algorithms, 
we obtained a broader variation in the performance level 
of the five algorithms compared in this study.

The LULC maps of the study area were prepared at 
10-year intervals, taking the importance of long-term 
changes into account. Image classification was performed 
using TM, ETM + , and OLI Landsat images. According 
to our findings, rapid LULC changes have occurred over 
the past 30 years, with the urban area expanding by 21% 
and the agricultural area shrinking by 24% during the study 
period. The effects of LULC changes in streamflow simula-
tion were conducted using the conceptual semi-distributed 
HEC-HMS model. The Akaki catchment’s LULC change 
simulation result over the last 30 years reveals the presence 
of changes in streamflow. The rapid LULC change in the 
study area resulted in an increase in the mean annual stream-
flow by 13.03%, 39–64%. This increment is much larger than 
the annual streamflow change reported by the conversion of 
forest to agricultural land in the rural catchment of Gilgel 
Abay in Ethiopia (Rientjes et al. 2011). This suggests that 
the impacts of LULC change on streamflow are larger for 
urban than agricultural watersheds. The streamflow changes 
in the Akaki catchment were mainly attributed to the loss 

of agricultural area and the rapidly increasing urbanized 
areas. The sub-basin level simulation revealed the largest 
streamflow increase was located in the central parts of the 
catchment, i.e., in urbanized area.

Other researchers were also investigated the effects of 
LULC change on surface runoff in various parts of the 
world. Sun et al. (2013), for example, investigated the long-
term LULC change (1992–2009) on surface runoff in Bei-
jing, Chania. For the LULC map preparation, they used 
an SVM classifier and Landsat TM/ETM + imagery. Their 
findings show that surface runoff increased by 30% and 
35% for the entire catchment and the urbanized catchment, 
respectively. The increased urbanization in the area was 
responsible for the increase in surface runoff. From 1982 to 
2003, Li and Wang (2013) studied the effects of urbaniza-
tion in the Dardenne Creek watershed in Missouuni. The 
findings of their study revealed that LULC have changed sig-
nificantly. The study's findings revealed a rapid increase in 
urban areas in the watershed, from 3.4% in 1982 to 27.3% in 
2003. Because of the rapid change in LULC, surface runoff 
increased by more than 70%. Astuti et al. (2019) investigated 
the effect of LULC change on surface runoff in increasingly 
urbanized East Java, Indonesia. The SWAT model was used 
in their study to assess the effects of LULC on surface run-
off. According to the findings of their study, LULC caused 
an 8% change in runoff. Bulti and Abebe (2020) also inves-
tigated the effect of LULC change on surface runoff in the 
urban–rural catchment of Adama, Ethiopia. Their findings 
indicate that the urbanization of Adama city increases sur-
face runoff. The findings of the previous studies are simi-
lar to our findings that annual streamflow increments were 
highly correlated with urban expansion.

Table 7  Summary of LULC change impacts on mean of main dry season (December–March) stream flow for major rivers outlets in Akaki 
catchment

Major rivers outlets Mean dry season stream flow  (m3/s) under four LULC maps 
of CART 

Mean dry season stream flow (m3/s) under four 
LULC maps of MLC

1990 2000 2010 2020 1990 2000 2010 2020

Mutinicha 0.89 0.84 0.83 0.82 0.83 0.83 0.84 0.84
Big Akaki 4.43 3.85 2.92 3.28 4.36 4.11 4.01 3.72
Little Akaki 0.58 0.56 0.53 0.50 0.12 0.18 0.20 0.22
Catchment outlet 12.36 12.05 11.54 10.58 5.45 5.11 5.01 4.27

Major rivers outlets Stream flow change in percent (%) for LULC of CART Stream flow change in percent (%) for LULC of 
MLC

1990–2000 1990–2010 1990–2020 1990–2000 1990–2010 1990–2020

Mutinicha − 4.89 − 7.39 − 9.90 − 0.26 − 0.07 − 0.06
Big Akaki − 15.99 − 23.34 − 36.09 − 5.70 − 8.00 − 28.94
Little Akaki − 3.45 − 5.36 − 10.71 45.96 57.82 76.32
Catchment outlet − 2.47 − 6.60 − 14.37 − 6.31 − 8.14 − 21.71
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Conclusions

The effects of LULC changes on streamflow in the Akaki 
catchment, which hosts the rapidly growing city of Addis 
Ababa, Ethiopia, were investigated in this study. Images 
from Landsat TM, ETM + , and OLI sensors were used to 
create the LULC maps. For producing the LULC maps, 
five non-parametric machine learning and one parametric 
classifier were compared. The accuracy assessment result 
reveals small to large differences in classifier performance. 
The following conclusions are drawn based on the results 
of this study:

• Accuracy assessments from mapping LULC of the Akaki 
catchment indicated that the performance of CART and 
RF classifiers was high whereas that of MD and NB were 
relatively low.

• The finding showed that the Akaki catchment experi-
enced significant LULC changes during the study period 
(i.e., 1990–2020). There were six major LULC classes 
identified: urban, forest, agriculture, waterbody, grass-
land, and bare land. Among these LULC classes, urban 
area has increased significantly in the last two decades 
(2000–2010 and 2010–2020) at the expense of agricul-
tural area. Similarly, forest cover increased in the catch-
ment during the study period, at the expense of bare 
land. The increase in forest cover was primarily due to 
increased plantation activity in the catchment during the 
study period.

• The conceptual semi-distributed HEC-HMS model simu-
lated discharge was compared to the observed streamflow 
at four different hydrological stations for both calibration 
and validation periods between 1993–1999 and 2000–
2005, respectively. The model performed well, with NSE 
and RVE ranging between 0.69–0.77 and 0.00–5.40, 
respectively. The calibrated HEC-HMS model was used 
to assess the effects of LULC change on streamflow.

• Our analysis revealed that the Akaki catchment experi-
enced significant changes in streamflow due to LULC 
change over the last three decades. The catchment's mean 
annual and wet season streamflow increased, while the 
dry season streamflow decreased.

• However, the LULC maps generated by the MLC clas-
sifier did not satisfactorily reflect LULC features on 
the ground. The classification error propagated to the 
simulated streamflow, exaggerating the effects of LULC 
changes on streamflow. However, the CART classifier 
results were found to be accurate and valid for the study 
area. As a result, future research should avoid arbitrarily 
selecting LULC classifiers for impact evaluation stud-
ies. Classifier selection should be based on a comparison 

of multiple classifiers to determine which one performs 
best.

There are numerous effects of LULC change due to 
urban expansion on hydrology. These are as follows: (i) 
watersheds lose their ability to hold and retain water due 
to increased impervious surface; (ii) decreased infiltration 
capacity and groundwater potentials of the area; and (iii) 
increased stormwater and the frequency of extreme hydro-
logical events cause more intense local flooding. As a result, 
similar research in other rapidly developing cities is critical 
for understanding LULC changes caused by urbanization, as 
it aids in quantifying and recognizing such impacts.
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