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Abstract Small geologic structures pose a great threat to

production safety of the coal mines in China. Many water

hazards and rock collapses are related to these small geo-

logic structures. Accurate prediction of these structures

relies on multiple lines of evidence including coal seam

dip, thickness change, amount of gas accumulated, water

flow changes, temperature, fracture type and degree of

fragmentation of coal seams. Through the use of artificial

neural network technology, this article presents a working

method for forecasting small geologic structures in coal

mines. The methods are applied to Zhangcun Coal Mine,

China. A nonlinear model consisting of coal seam dip and

thickness is constructed to predict the small structures in

the front of working faces. The predictions are verified by

field data. The distribution characteristics of the small

structures can be accurately predicted in the coal seam

extraction process as long as data of the controlling factors

are accurately collected.

Keywords Size-limited geologic structure � Artificial
neural network � Water hazards � Coal mines, China

Introduction

Small geologic structures, also referred to as sized-limited

structures, are faults and folds of less than 3 m and are not

readily recognizable in individual roadways or working

faces (Wang et al. 1993). High frequency of their

occurrence leads to compromised stability of roof and floor

in coal mines, resulting in difficulties in roof and floor

management. In coal mines that are susceptible to gas

outbursts, the outbursts often occur in places where the

small geologic structures are intensely developed. These

small structures often form pathways for groundwater,

inducing significant increase of inflow in the mines, even

causing water inrushes and flooding mines or working

stopes. With the continuous increase in mechanic mining

and hydraulic support joint unit use, the production safety

issues within the stope caused by the small structures

become more serious. However, predicting the small

structures is extremely difficult because their hidden nature

and limited scale challenge this effort (Li and Ma 1993).

The geologic structures with displacements similar to

the thickness of coal seams are not readily identifiable

during the phase of coal exploration. Previous studies on

the prediction of the small geologic structures mainly

focused on two methods—one is geophysical prospecting

and the other is application of regional tectonic system

analysis. Geophysical methods have often been used for

exploring and predicting the structures, such as electrical

and seismic wave methods and ground penetrating radar.

The radio wave method is currently the most popular and

widely used in situ geophysical method. The rock layers

are fractured/faulted during the tectonic deformation.

Adjacent to the geologic structure influence area, many

different fractured/faulted faces exist. These faces deflect,

reflect or scatter the radio waves; thus, the absorbed energy

is larger than the normal area. If the fracture/fault zones are

full of water, the electrical resistivity becomes lower and

the absorption coefficient becomes larger. Therefore, these

fracture/fault zones result in the abnormal values on the

curves of geophysical prospecting. Another method for

small geologic structure prediction is the analysis of the
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regional tectonic system. The distribution of small geologic

structures is under control of the regional tectonic system,

with which most of the structures are associated. Some of

the geologic structures are small faults along coal seam

planes under the area stress, and some of them in the coal

seam are formed under the local stress field. To predict

these structures, the distribution of regional large/median

tectonic system must be determined first. Attention must be

paid for mining approaches of these tectonic areas (Yang

1997). Although the methods aforementioned have exerted

huge effects in the prediction of the small geologic struc-

tures, they have their individual deficiencies. They are

costly and often misjudge the position of these structures

by application of the analysis of the regional large/median

tectonic system (Wu et al. 2007, 2008).

The challenges in predicting the small geologic struc-

tures include their limited sizes and lack of obvious

expression on the subsurface. However, knowledge about

these structures has been accumulated during the long-term

mining practices. The following factors are typically

indicative of the existence of small structures (Wu et al.

1999):

• Thickness of coal seam: tectonic movement is a major

cause of change in coal seam thickness. Based on

statistics, there may exist small structures in the

forward direction when the change in coal seam

thickness is greater than 20 %. Some faults bifurcate

and causes pinch-out in the coal seams, whereas folds

often accompany irregular seams with mutated

thickness.

• Dip of coal seam: small folds and faults tend to pull the

coal beds, even crumple and deform them. Practical

measurements indicate that small structures may exist

in the forward direction where the coal seam dip angles

more than 0.6� within less than 10 m.

• Degree of fragmentation in the coal seam: rigid

deformation results in fractures in coal seams that are

fragmented, although the original layering structures

may remain.

• Fracture type: fractures in coal seams can be divided

into endogenous fractures and exogenous fractures.

Exogenous fractures are produced by tectonic activities

after the coal seams are formed. Endogenous fractures

are characterized by perpendicular to bedding orienta-

tion and smooth surfaces. Exogenous fractures may

intersect with coal layers in any angle and have wavy

surfaces with feathery scratches. When the seam

fracture has the above changes, there may exist small

structures in the front of the mining direction (Wu et al.

2011).

• Gas content in coal seam: originally, gas content in coal

seams is typically big, but the amount of gas emission

is usually small and slow. When the geologic structure

is developed, the gas content of coal seams is signif-

icantly reduced (Wu et al. 2015).

• Temperature of coal seam: small geologic structures

may become water-bearing media or pathways for

groundwater flow, which may lead to a change in the

temperature of the coal seam.

• Water discharge from the coal seam: the geologic

structures are the most important channels for water

inrush. When mining areas approach fault zones, water

inflow may increase and water inrushes may occur.

Abnormal increase of inflow at the forward direction of

digging may be indicative of the presence of small

geologic structures (Zeng and Wu 2014).

The fact that there are multiple factors relevant to the

small geologic structures and the weighting coefficient for

each factor is not clear makes artificial neural network

(ANN) an appropriate approach to predicting these struc-

tures. The ANNs have the abilities of the massively dis-

tributed parallel processing function, which has a natural

propensity for storing experiential knowledge, especially

when it is necessary to deal with several factors whose

relation to the prediction object is not clear.

ANN-based small structure prediction model

ANN has been extensively used in earth sciences including

geophysics exploration, iron cap recognition, and oil and

gas discrimination (McCorak 1991; Cai et al. 1994; Lv and

Zhao 1998). ANN brings a new approach to predicting the

geologic structures without the necessity of prior knowl-

edge of the relationships between the various affecting

factors. Model training is carried out automatically using

known small structures and their affecting factors, which

can avoid difficulty in data analysis and data processing.

With the lines of evidence for small geologic structures as

the inputs and known small structures as the output, the

focus is on the factors in favor of the existence of small

structures (Wang 1995; Chen and Wu 2001). The basic

principle of ANN is well documented (Wu et al. 1999; Cai

et al. 1994) and application of such models often consists

of the following three steps:

1. Provide the necessary input and training condition for

ANNswith a number sets of data relevant to the structures.

The data collections should be carried out in the failure

zone, affected zone and normal zone. These zones have

been observed from the numerous coal laneways.

2. Apply the ANN analysis model to deal with the data

and determine the weighting coefficient for the indi-

vidual factor by adopting the non-linear mathematics

method;
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3. Establish the overlap model and mathematic formula

for the prediction of the small geologic structures.

ANN can automatically simulate the natural relationship

between the various factors, get a global optimization

calculation, reduce man-made interference and improve the

effectiveness of the small structure prediction. Once the

ANN-based prediction model of small structures is estab-

lished, it often has a universal use and can be used in mines

with various geologic structures (Wu and Ye 2008; Cao

and Jiang 2002). In this paper, prediction of the small

geologic structures is performed in Zhangcun Coal Mine to

show the training and verification processes of the ANN-

based model.

Background setting of the Zhangcun Coal Mine

Zhangcun Coal Mine lies in Xiandewang and Baita Town

of Hebei Province, China (Fig. 1). It is on a platform ter-

rain, which is bounded by the hilly country east Taihang

Mountains. There is no perennial stream, and only two

seasonal creeks flow through this area. Geologically, the

study area is characterized by a set of Carboniferous–Per-

mian coal strata, which is typical of North China. The ninth

coal seam is a stable layer that can be commercially

exploited, while the second, eighth and tenth coal seams

are partially exploitable.

Geomorphologically, the Zhangcun Coal Mine is in the

central Xingtai Wuan depression, located on the northern

side of Ming River. The area is characterized by folds,

faults and magmatic rocks. According to the faulted

structure framework, Zhangcun Coal Mine is in the western

block segment of a horst, which results from Xiandewang

normal faults and Zhaodian normal faults. According to the

folded structure framework, the coal mine is part of a

regional syncline and anticline system. The Zhangcun Coal

Mine occupies most of the Zhongguan anticline and Xia-

guan-Zhujinzi syncline. In addition, there are many sec-

ondary minor folds. Because of the relatively strong

Yanshanian magmatic activity, magma intrusions occurred

in the mine field, which has a great impact on the coal

seams and coal and geological structures (Fig. 2). There

are 205 faults reported in the course of exploration and

production in the mine. Of these reported faults, 11 are

large- and medium-sized faults with their displacements

being more than 20 m, accounting for 5.4 % of the

revealed faults. Sixty-two are medium- and small-sized

faults with displacements between 3 and 20 m, accounting

for 30.2 % of the revealed faults. The remaining 132 are

small faults with displacements less than 3 m, accounting

for 64.4 % of the revealed faults.

The high density of small geologic structures seriously

affects roadway tunneling and mining operation in the coal

mine. Furthermore, because the Zhangcun Coal Mine is

located on the Zhongguan anticline, the shallow aquifer

and the fractured karst aquifer co-exist. Mining of the

lowest coal seam is threatened by the fractured karst water

that is confined and pressurized. As shown in Fig. 3, the

ninth coal seam is underlain by the Benxi formation and

Ordovician limestone aquifer. The Ordovician limestone is

Fig. 1 Location of the Zhangcun Coal Mine
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the main aquifer that poses threat to the safe operations of

the mine. The average thickness of the strata between the

top of the Ordovician limestone and the bottom of the

ninth coal seam is 32 m. Dense distribution of small

geologic structures undermines the stability of the coal

seam floor and tends to form subtle water channels for

water flow. The additional water flow not only increases

cost of the mine drainage, but also causes water inrush

accidents.

Establishment of the forecasting model and its
application

Date collection and quantification of controlling

factors

As shown in Fig. 4, two factors are selected for the input

factors to construct the size-limited structure backpropa-

gation neural network model. The selected factors are the

coal seam dip angle (CSDA) (Information source set A)

and coal seam thickness change (CSTK) (Information

source set B). Simulation training is based on Matlab that

establishes the nonlinear relationships of the input and

output layers. CSDA and CSTK are training and test data

of the ANN model in each area. Twenty-six sets of test data

are used as the training and test samples. The first 23

samples are the samples to train the network, while the

remaining three examples are test samples for checking the

performance of the network.

Because of the wide variation of CSDA and CSTK in

different samples, the numerical change rate that is relative

to the normal zone is used to be treated in a unified manner.

The values from the normal zone act as the baseline to 0,

whereas the values of the affected and failure zones are

given, respectively, based on the normalized values. The

similarity thresholds for the three zones are presented in

Tables 1 and 2. The mathematical expressions are as

follows:

L
eg

en
d 6 6'

Syncline

Anticline Normal

Reverse

Section

Coal field

Collapse

Borehole

Fault

Fault

Line

Boundary

Column

Gezigou  Anticline

Yao
po

Zh
on

gg
ua

n 
A

nt
ic

lin
e

X
iaguan

Syncline

Ant
icl

in
e

F2
F6

F5

F3

F10 F11
F19-1

F18

F9

F20

DF22

DF21

DF236

6'

F3

F2

N

Hole
6-2

Hole
6-3

Hole
6-5

Hole
6-6

Hole
ck-10

Hole
6-7

0 200 400m

Fig. 2 Geologic structures of the Zhangcun Coal Mine

Fig. 3 Geologic cross section of the Zhangcun Coal Mine along the 6-60 (location of 6-60 is shown in Fig. 2)
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y1 ¼ ðb� aÞ=a
�
�
�

�
�
�; y2 ¼ ðc� aÞ=a

�
�
�

�
�
�;

where y1 and y2 are the normalized data for the affected

zone and the failure zone, respectively. Parameters a, b and

c are the sample data from the normal zone, affected zone

and failure zone. The collected data are shown in Tables 1

through 3.

Network design

This research adopts the backpropagation ANN, which is

particularly effective in the analysis of complex relation-

ships. Because two main factors are used for prediction of

the size-limited structures in the Zhangcun Coal Mine, the

small structure prediction evaluation model has two input

nodes. The risk levels of small structure in front of working

faces are the output of the model. The mine area is divided

into three zones: the normal zone, the affected zone and the

failure zone, as shown in Fig. 5. Correspondingly, the

model has three output nodes in the form of matrix {1, 0,

0}, {0, 1, 0} and {0, 0, 1} for the normal zone, the affected

zone and the failure zone. A single hidden layer is selected

in this prediction model because its feedforward neural

network can map all continuous functions.

Adding nodes of hidden layers can improve the match-

ing accuracy of the network and training data sets.

According to the neuron number of input and output layer,

preliminary calculations of neurons in the intermediate

layer should be between 9 and 15. Verifying the network

performance by graded calculation results in a selection of

15 hidden-layer neurons. The transfer function of sigmoid

is adopted from the input layer to the hidden layer, while

Purlin transfer function is used from the hidden layer to the

output layer and Traimlm function is used as a training

function.

Network training

Matlab is used to perform the simulation training to build

the backpropagation ANN. Before the train function is

Normal
zone

Failure
zone

Output layer

(m)

0
10
20
30
40
50

0

1

0

1

0

1

Normal
zone

Fig. 4 Schematic relationship between controlling factors and size-

limited structures in the Zhangcun Coal Mine

Table 1 Training data in the normal zone

Sample Change rate of

coal thickness

Change rate of coal

seam dip angle

Expected

output

1–23 0.0000 0.0000 1, 0, 0

Table 2 Training data in the affected zone

Sample Change rate of

coal thickness

Change rate of

coal seam dip angle

Expected

output

Sample Change rate of

coal thickness

Change rate of coal

seam dip angle

Expected

output

1 0.2381 0.7778 0, 1, 0 13 0.3308 0.8333 0, 1, 0

2 0.3705 0.3333 0, 1, 0 14 0.3687 0.4359 0, 1, 0

3 0.2967 0.6364 0, 1, 0 15 0.8439 1.0000 0, 1, 0

4 0.3705 0.5556 0, 1, 0 16 0.2976 0.2381 0, 1, 0

5 0.3532 0.3333 0, 1, 0 17 0.1494 0.7037 0, 1, 0

6 0.3345 0.0909 0, 1, 0 18 0.6389 0.0556 0, 1, 0

7 0.1072 0.0370 0, 1, 0 19 0.1346 0.5556 0, 1, 0

8 0.3494 0.1579 0, 1, 0 20 0.0000 0.3333 0, 1, 0

9 0.3403 0.0435 0, 1, 0 21 0.3308 1.5000 0, 1, 0

10 0.475 0.3623 0, 1, 0 22 0.5986 0.0000 0, 1, 0

11 0.4768 0.3333 0, 1, 0 23 0.5042 1.6667 0, 1, 0

12 0.3345 0.4222 0, 1, 0
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applied onto the network training, set the maximum

training period to 1500, learning rate of the hidden layer

and output layer to 0.25 and the training time to 50. The

training accuracy is quantified by Ek, the mean square

value of global error. The training has met the requirements

when the global error variance Ek of network is less than

0.001. Otherwise, we modify the network weights and

thresholds between matrix and make iterative approxima-

tions until the ideal output conforms to the actual output of

the network. The ANN achieves the accuracy requirement

with the error mean square Ek ¼ 3:58� 10�4 after 57 steps

of training. The convergence curve of the BP network

training is shown in Fig. 6.

Model validation

In addition to selecting the 23 sets of samples for the

network training, the other three sets of sample are used to

test the model’s predictive power and verify the network

model in predicting small structures. The three sets of

sample data are input into the model and comparison is

made between the predicted results and field test results. As

presented in Table 4, the three sets of actual outputs are

close to the expected outputs. The general consistency

between the actual output and the expected output verifies

the accuracy of the predictive model. The training of the

model is considered to be successful.

Table 3 Training data in the failure zone

Sample Change rate of

coal thickness

Change rate of coal

seam dip angle

Expected

output

Sample Change rate of

coal thickness

Change rate of coal

seam dip angle

Expected

output

1 0.3542 0.0000 0, 0, 1 13 0.2939 0.5000 0, 0, 1

2 0.1692 0.0667 0, 0, 1 14 0.3111 0.8462 0, 0, 1

3 0.2292 0.3818 0, 0, 1 15 0.4537 0.0545 0, 0, 1

4 0.1692 0.4667 0, 0, 1 16 0.1063 0.6000 0, 0, 1

5 0.2123 0.2000 0, 0, 1 17 0.4527 0.4667 0, 0, 1

6 0.2906 0.5636 0, 0, 1 18 0.1472 0.3333 0, 0, 1

7 0.1928 0.3333 0, 0, 1 19 0.4183 1.0000 0, 0, 1

8 0.3805 0.0316 0, 0, 1 20 0.0000 0.5500 0, 0, 1

9 0.2856 0.513 0, 0, 1 21 0.2939 0.0000 0, 0, 1

10 0.4135 0.3391 0, 0, 1 22 1.0000 0.1200 0, 0, 1

11 0.3615 0.0400 0, 0, 1 23 0.7353 0.2800 0, 0, 1

12 0.2906 0.2267 0, 0, 1
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Fig. 5 ANN model for small structure prediction in the Zhangcun

Coal Mine
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Conclusions

Small geological structures arewell developed in theZhangcun

Coal Mine. Because these structures can weaken the rock

strength and act as pathways for groundwater flow, they pose a

threat to safe coal production.Although factors indicative of the

presence of small geologic structures may vary, seven factors

are to be considered and they are coal seam dip, thickness, the

amount of gas gathering, inflow changes, temperature, fracture

type and fragmentation degree of the coal seam. These factors

are integrated into the backpropagation ANN model to predict

the risk of three zones (normal zone, affected zone and failure

zone). The ANN model can automatically simulate nonlinear,

qualitative and quantitative relationships between the various

factors, reduce man-made interference, and improve the

effectiveness of the small structure prediction. On the basis of

analyzing the controlling factors in the Zhangcun Coal Mine,

two factors, the CSDA andCSTK, are screened out as themain

factors controlling small structures. Twenty-six sets of data

were collected with 23 as training data sets and the remaining 3

to verify the model performance. The prediction results of the

model are in good agreement with the field test results. The

distribution characteristics of the small structures can be

accurately predicted in the coal seam extraction process as long

as data of the controlling factors are accurate. Accurate pre-

diction of the small faults and folds helps control hazards

caused by gas and water in coal mines.
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