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Abstract Droughts can cause significant damage to

agricultural and other systems. An important aspect of

mitigating the impacts of drought is an effective method of

forecasting future drought events. In this study, five

methods of forecasting drought for short lead times were

explored in the Awash River Basin of Ethiopia. The

Standard Precipitation Index (SPI) was the drought index

chosen to represent drought in the basin. Machine learning

techniques including artificial neural networks (ANNs) and

support vector regression (SVR) were compared with

coupled models (WA-ANN and WA-SVR) which pre-

process input data using wavelet analysis (WA). This study

proposed and tested the SVR and WA-SVR methods for

short term drought forecasting. This study also used only

the approximation series (derived via wavelet analysis) as

inputs to the ANN and SVR models, and found that using

just the approximation series as inputs for models gave

good forecast results. The forecast results of all five data

driven models were compared using several performance

measures (RMSE, MAE, R2 and a measure of persistence).

The forecast results of this study indicate that the coupled

wavelet neural network (WA-ANN) models were the best

models for forecasting SPI 3 and SPI 6 values over lead

times of 1 and 3 months in the Awash River Basin.

Keywords Standard precipitation index � Drought
forecasting � Artificial neural networks � Support vector
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Introduction

Drought is a natural phenomenon that occurs when pre-

cipitation is significantly lower than normal (Belayneh

et al. 2014; Saadat et al. 2011). These deficits may cause

low crop yields for agriculture, reduced flows for ecolog-

ical systems, loss of biodiversity and other problems for the

environment, in addition to adversely impacting the

hydroelectric industry, as well as causing deficits in the

drinking water supply which can negatively affect local

populations. The less predictable characteristics of

droughts such as their initiation, termination, frequency

and severity can make drought both a hazard and a disaster.

Drought is characterized as a hazard because it is a natural

accident of unpredictable occurrence, but of recognizable

recurrence (Mishra and Singh 2010). Drought is also

characterized as a disaster because it corresponds to the

failure of the precipitation regime, causing the disruption

of the water supply to natural and agricultural ecosystems

as well as to other human activities (Mishra and Singh

2010). 22 % of the global damage caused by natural dis-

asters can be attributed to droughts (Keshavarz et al. 2013).

Droughts have also had a great impact in Africa. The

Sahel has experienced droughts of unprecedented severity

in recorded history (Mishra and Singh 2010). The impacts

in sub-Saharan Africa are more severe because rain-fed

agriculture comprises 95 % of all agriculture (Keshavarz

et al. 2013). In 2009, reduced rainfall levels led to an

increase in the frequency in droughts and resulted in an
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increase of 53 million food insecure people in the region

(Husak et al. 2013). Due to the changes in climate in Africa

and around the world (Adamowski et al. 2009, 2010;

Nalley et al. 2012, 2013; Pingale et al. 2014), it is likely

that droughts will become more severe in the future.

Due to their slow evolution in time, droughts are phe-

nomena whose consequences take a significant amount of

time with respect to their inception to be perceived by both

ecological and socio-economic systems. Due to this char-

acteristic, effective mitigation of the most adverse drought

impacts is possible, more than in the case of the other

extreme hydrological events such as floods, earthquakes or

hurricanes, provided a drought monitoring system which is

able to promptly warn of the onset of a drought and to

follow its evolution in space and time is in operation (Rossi

et al. 2007). An accurate selection of indices for drought

identification, providing a synthetic and objective

description of drought conditions and future drought con-

ditions, represents a key point for the implementation of an

efficient drought warning system (Cacciamani et al. 2007).

This can help local stakeholders to try and adapt to the

effects of droughts in an effective and sustainable manner

(Halbe et al. 2013; Kolinjivadi et al. 2014a, b; Straith et al.

2014; Inam et al. 2015; Butler and Adamowski 2015).

In this study, the drought index chosen to forecast

drought is the Standardized Precipitation Index (SPI),

which was developed to quantify a precipitation deficit for

different time scales (Guttman 1999). The Awash River

Basin was the study basin explored in this study and the

SPI index was used to forecast drought mainly because the

SPI drought index requires precipitation as its only input.

Furthermore, it has been determined that precipitation

alone can explain most of the variability of East African

droughts and that the SPI is an appropriate index for

monitoring droughts in East Africa (Ntale and Gan 2003).

In hydrologic drought forecasting, stochastic methods

have been traditionally used to forecast drought indices.

Markov Chain models (Paulo et al. 2005; Paulo and Pereira

2008) and autoregressive integrated moving average

models (ARIMA) (Mishra and Desai 2005, 2006; Mishra

et al. 2007; Han et al. 2010) have been the most widely

used stochastic models for hydrologic drought forecasting.

The major limitation of these models is that they are linear

models and they are not very effective in forecasting non-

linearities, a common characteristic of hydrologic data

(Tiwari and Adamowski 2014; Campisi et al. 2012; Ada-

mowski et al. 2012; Haidary et al. 2013).

In response to non-linear data, researchers in the last two

decades have increasingly begun to forecast hydrological

data using artificial neural networks (ANNs). ANNs have

been used to forecast droughts in several studies (Mishra

and Desai 2006; Morid et al. 2007; Bacanli et al. 2008;

Barros and Bowden 2008; Cutore et al. 2009; Karamouz

et al. 2009; Marj and Meijerink 2011). However, ANNs are

limited in their ability to deal with non-stationarities in the

data, a weakness also shared by ARIMA and other

stochastic models.

Support vector regression (SVRs) are a relatively new

form of machine learning that was developed by Vapnik

(1995), and which have been recently used in the field of

hydrological forecasting. There are several studies where

SVRs were used in hydrological forecasting. Khan and

Coulibaly (2006) found that a SVR model was more

effective at predicting 3–12 month lake water levels than

ANN models. Kisi and Cimen (2009) used SVRs to esti-

mate daily evaporation. Finally, SVRs have been success-

fully used to predict hourly streamflow (Asefa et al. 2006),

and were shown to perform better than ANN and ARIMA

models for monthly streamflow prediction (Wang et al.

2009; Maity et al. 2010), respectively. SVRs have also

been applied in drought forecasting (Belayneh and Ada-

mowski 2012).

Wavelet analysis, an effective tool to deal with non-

stationary data, is an emerging tool for hydrologic fore-

casting and has recently been applied to: examine the

rainfall–runoff relationship in a Karstic watershed (Labat

et al. 1999), to characterize daily streamflow (Saco and

Kumar 2000) and monthly reservoir inflow (Coulibaly

et al. 2000), to evaluate rainfall–runoff models (Lane

2007), to forecast river flow (Adamowski 2008; Ada-

mowski and Sun 2010; Ozger et al. 2012; Rathinasamy

et al. 2014; Nourani et al. 2014), to forecast groundwater

levels (Adamowski and Chan 2011), to forecast future

precipitation values (Partal and Kisi 2007) and for the

purposes of drought forecasting (Kim and Valdes 2003;

Ozger et al. 2012; Mishra and Singh 2012; Belayneh and

Adamowski 2012).

The effectiveness of these data-driven models and

wavelet analysis, coupled with ANN and SVR models, has

been shown in a variety of study locations. Kim and Valdes

(2003) used WA-ANN models to forecast drought in the

semi-arid climate of the Conchos River Basin of Mexico.

Mishra and Desai (2006) used ANN models to forecast

drought in the Kansabati River Basin of India. Bacanli

et al. (2008) forecast the SPI in Central Anatolia where the

precipitation was concentrated in the spring and winter and

where the temperature difference between summer and

winter was extremely high. Ozger et al. (2012) coupled

wavelet analysis with artificial intelligence models to

forecast long term drought in Texas, while Mishra and

Singh (2012) investigated the relationship between mete-

orological drought and hydrological drought using wavelet

analysis in different regions of the United States. While the

principal reason for the use of these models in the afore-

mentioned areas is the susceptibility of these regions to

drought, the variability in climatic conditions highlights
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how versatile and effective these new forecasting methods

are.

Belayneh and Adamowski (2012) forecast SPI 3 and SPI

12 in the Awash River Basin using ANN, SVR and WA-

SVR models. This study complements that study by fore-

casting the SPI over a larger selection of stations in the

same area, and by coupling, SVR models with wavelet

transforms. The main objective of the present study was to

compare traditional drought forecasting methods such as

ARIMA models with machine learning techniques such as

ANNs and SVR, along with ANNs with data pre-processed

using wavelet transforms (WA-ANN), SVR, and the cou-

pling of wavelet transforms and support vector regression

(WA-SVR) for short-term drought forecasting. The SPI,

namely SPI 3 and SPI 6, were forecast using the above

mentioned methods for lead times of 1 and 3 months in the

Awash River Basin of Ethiopia. Both SPI 3 and SPI 6 are

short-term drought indicators, and forecast lead times of 1

and 3 months represent the shortest possible monthly lead

time and a short seasonal lead time, respectively.

Theoretical development

Development of SPI series

The SPI was developed by McKee et al. (1993). A number

of advantages arise from the use of the SPI index. First, the

index is based on precipitation alone making its evaluation

relatively easy (Cacciamani et al. 2007). Secondly, the

index makes it possible to describe drought on multiple

time scales (Tsakiris and Vangelis 2004; Mishra and Desai

2006; Cacciamani et al. 2007). A third advantage of the SPI

is its standardization which makes it particularly well sui-

ted to compare drought conditions among different time

periods and regions with different climates (Cacciamani

et al. 2007). A drought event occurs at the time when the

value of the SPI is continuously negative; the event ends

when the SPI becomes positive. Table 1 provides a drought

classification based on SPI. Details regarding the

computation of the SPI can be found in Belayneh and

Adamowski (2012) and Mishra and Desai (2006).

Autoregressive integrated moving average (ARIMA)

models

Autoregressive integrated moving average models are

amongst the most commonly used stochastic models for

drought forecasting (Mishra and Desai 2005, 2006; Mishra

et al. 2007; Cancelliere et al. 2007; Han et al. 2010).

The general non-seasonal ARIMA model may be writ-

ten as (Box and Jenkins 1976):

zt ¼
hðBÞat
/ðBÞrd

ð1Þ

/ðBÞ ¼ ð1� /tB� /2B
2 � � � � � /pB

pÞ ð2Þ

and

hðBÞ ¼ ð1� h1B� h2B
2 � � � � � hqB

qÞ ð3Þ

where zt is the observed time series and B is a back shift

operator. /(B) and h(B) are polynomials of order p and q,

respectively. The orders p and q are the order of non-sea-

sonal auto-regression and the order of non-seasonal moving

average, respectively. Random errors, at are assumed to be

independently and identically distributed with a mean of

zero and a constant variance. rd describes the differencing

operation to data series to make the data series stationary

and d is the number of regular differencing.

The time series model development consists of three

stages: identification, estimation and diagnostic check

(Box et al. 1994). In the identification stage, data trans-

formation is often needed to make the time series station-

ary. Stationarity is a necessary condition in building an

ARIMA model that is useful for forecasting (Zhang 2003).

The estimation stage of model development consists of the

estimation of model parameters. The last stage of model

building is the diagnostic checking of model adequacy.

This stage checks if the model assumptions about the errors

are satisfied. Several diagnostic statistics and plots of the

residuals can be used to examine the goodness of fit of the

tentative model to the observed data. If the model is

inadequate, a new tentative model should be identified,

which is subsequently followed, again, by the stages of

estimation and diagnostic checking.

Artificial neural network models

ANNs are flexible computing frameworks for modeling a

broad range of nonlinear problems. They have many fea-

tures which are attractive for forecasting such as their rapid

development, rapid execution time and their ability to

handle large amounts of data without very detailed

Table 1 Drought classification based on SPI (McKee et al. 1993)

SPI values Class

[2 Extremely wet

1.5–1.99 Very wet

1.0–1.49 Moderately wet

-0.99 to 0.99 Near normal

-1 to -1.49 Moderately dry

-1.5 to -1.99 Very dry

\-2 Extremely dry
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knowledge of the underlying physical characteristics

(ASCE 2000a, b).

The ANN models used in this study have a feed forward

multi-layer perceptron (MLP) architecture which was

trained with the Levenberg–Marquardt (LM) back propa-

gation algorithm. MLPs have often been used in hydrologic

forecasting due to their simplicity. MLPs consist of an

input layer, one or more hidden layers, and an output layer.

The hidden layer contains the neuron-like processing ele-

ments that connect the input and output layers given by

(Belayneh and Adamowski 2012):

y0kðtÞ ¼ f0
Xm

j¼1

wkj � fn
XN

i¼1

wjixiðtÞ þ ðwj0Þ þ wk0

 !" #
ð4Þ

where N is the number of samples, m is the number of

hidden neurons, xiðtÞ = the ith input variable at time step t;

wji = weight that connects the ith neuron in the input layer

and the jth neuron in the hidden layer; wj0 = bias for the

jth hidden neuron; fn = activation function of the hidden

neuron; wkj = weight that connects the jth neuron in the

hidden layer and kth neuron in the output layer; wk0 = bias

for the kth output neuron; f0 = activation function for the

output neuron; and y0kðtÞ is the forecasted kth output at time

step t (Kim and Valdes 2003).

MLPs were trained with the LM back propagation

algorithm. This algorithm is based on the steepest gradient

descent method and Gauss–Newton iteration. In the

learning process, the interconnection weights are adjusted

using the error convergence technique to obtain a desired

output for a given input. In general, the error at the output

layer in the model propagates backwards to the input layer

through the hidden layer in the network to obtain the final

desired output. The gradient descent method is utilized to

calculate the weight of the network and adjusts the weight

of interconnections to minimize the output error.

Support vector regression models

Support vector regression (SVRs) was introduced by

Vapnik (1995) in an effort to characterize the properties of

learning machines so that they can generalize well to

unseen data (Kisi and Cimen 2011). SVRs embody the

structural risk minimization principle, unlike conventional

neural networks which adhere to the empirical risk mini-

mization principle. As a result, SVRs seek to minimize the

generalization error, while ANNs seek to minimize training

error.

In regression estimation with SVR the purpose is to

estimate a functional dependency f(x
!
) between a set of

sampled points X = x~1; x~2; . . .; x~l taken from Rn and target

values Y = fy1; y2; . . .; ylg with yi 2 R [the input and target

vectors (xi’s and yi’s) refer to the monthly records of the

SPI index]. Detailed descriptions of SVR model develop-

ment can be found in Cimen (2008).

Wavelet transforms

The first step in wavelet analysis is to choose a mother

wavelet (w). The continuous wavelet transform (CWT) is

defined as the sum over all time of the signal multiplied by

scaled and shifted versions of the wavelet function w
(Nason and Von Sachs 1999):

Wðs; sÞ ¼ 1ffiffiffiffiffi
sj j

p
Z1

�1

xðtÞw� t � s
s

� �
dt ð5Þ

where s is the scale parameter; s is the translation and *

corresponds to the complex conjugate (Kim and Valdes

2003). The CWT produces a continuum of all scales as the

output. Each scale corresponds to the width of the wavelet;

hence, a larger scale means that more of a time series is

used in the calculation of the coefficient than in smaller

scales. The CWT is useful for processing different images

and signals; however, it is not often used for forecasting

due to its complexity and time requirements to compute.

Instead, the successive wavelet is often discrete in fore-

casting applications to simplify the numerical calculations.

The discrete wavelet transform (DWT) requires less com-

putation time and is simpler to implement. DWT scales and

positions are usually based on powers of two (dyadic scales

and positions). This is achieved by modifying the wavelet

representation to (Cannas et al. 2006):

wj;kðtÞ ¼
1ffiffiffiffiffiffiffi
s
j
0

�� ��
q w

t � ks0s
j
0

s
j
0

 !
ð6Þ

where j and k are integers that control the scale and

translation respectively, while s0[ 1 is a fixed dilation step

(Cannas et al. 2006) and s0 is a translation factor that

depends on the aforementioned dilation step. The effect of

discretizing the wavelet is that the time–space scale is now

sampled at discrete levels. The DWT operates two sets of

functions: high-pass and low-pass filters. The original time

series is passed through high-pass and low-pass filters, and

detailed coefficients and approximation series are obtained.

One of the inherent challenges of using the DWT for

forecasting applications is that it is not shift invariant (i.e.

if we change values at the beginning of our time series, all

of the wavelet coefficients will change). To overcome this

problem, a redundant algorithm, known as the à trous

algorithm can be used, given by (Mallat 1998):
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Ciþ1ðkÞ ¼
Xþ1

l¼�1
hðlÞciðk þ 2ilÞ ð7Þ

where h is the low pass filter and the finest scale is the

original time series. To extract the details, wiðkÞ, that were
eliminated in Eq. (7), the smoothed version of the signal is

subtracted from the coarser signal that preceded it, given

by (Murtagh et al. 2003):

wiðkÞ ¼ ci�1ðkÞ � ciðkÞ ð8Þ

where ciðkÞ is the approximation of the signal and ci�1ðkÞ is
the coarser signal. Each application of Eqs. (7) and (8) cre-

ates a smoother approximation and extracts a higher level of

detail. Finally, the non-symmetric Haar wavelet can be used

as the low pass filter to prevent any future information from

being used during the decomposition (Renaud et al. 2002).

Study areas

In this study, the SPI was forecast for the Awash River

Basin in Ethiopia (Fig. 1). The Awash River Basin was

separated into three smaller basins for the purpose of this

study on the basis of various factors such as location,

altitude, climate, topography and agricultural development.

The statistics of each station is shown in Table 2. Drought

is a common occurrence in the Awash River Basin (Edossa

et al. 2010). The heavy dependence of the population on

rain-fed agriculture has made the people and the country’s

economy extremely vulnerable to the impacts of droughts.

The mean annual rainfall of the basin varies from about

1600 mm in the highlands to 160 mm in the northern point

of the basin. The total amount of rainfall also varies greatly

from year to year, resulting in severe droughts in some

Fig. 1 Awash River Basin (Source: Ministry of Water Resources, Ethiopia. Agricultural Water Management Information System. http://www.

mowr.gov.et/AWMISET/images/Awash_agroecologyv3.pdf. Accessed 06-June-2013)
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years and flooding in others. The total annual surface

runoff in the Awash Basin amounts to some

4900 9 106 m3 (Edossa et al. 2010). Effective forecasts of

the SPI can be used for mitigating the impacts of drought

that manifests as a result of rainfall shortages in the area.

Rainfall records from 1970 to 2005 were used to generate

SPI 3 and SPI 6 time series. The normal ratio method,

recommended by Linsley et al. (1988), was used to esti-

mate the missing rainfall records at some stations.

Methodology

ARIMA model development

Based on the Box and Jenkins approach, ARIMA models

for the SPI time series were developed based on three

steps: model identification, parameter estimation and

diagnostic checking. The details on the development of

ARIMA models for SPI time series can be found in the

works of Mishra and Desai (2005) and Mishra et al. (2007).

In an ARIMA model, the value of a given times series is

a linear aggregation of p previous values and a weighted

sum of q previous deviations (Mishra and Desai 2006).

These ARIMA models are autoregressive to order p and

moving average to order q and operate on dth difference of

the given times series. Hence, an ARIMA models is dis-

tinguished with three parameters (p, d, q) that can each

have a positive integer value or a value of zero.

Wavelet transformation

When conducting wavelet analysis, the number of

decomposition levels that is appropriate for the data must

be chosen. Often the number of decomposition levels is

chosen according to the signal length (Tiwari and Chat-

terjee 2010) given by L = int[log(N)] where L is the level

of decomposition and N is the number of samples.

According to this methodology the optimal number of

decompositions for the SPI time series in this study would

have been 3. In this study, each SPI time series was

decomposed between 1 and 9 levels. The best results were

compared at all decomposition levels to determine the

appropriate level. The optimal decomposition level varied

between models. Once a time series was decomposed into

an appropriate level, the subsequent approximation series

was either chosen on its own, in combination with relevant

detail series or the relevant detail series were added toge-

ther without the approximation series. With most SPI time

series, choosing just the approximation series resulted in

the best forecast results. In some cases, the summation of

the approximation series with a decomposed detail series

yielded the best forecast results. The appropriate approxi-

mation was used as an input to the ANN and SVR models.

As discussed in ‘‘Wavelet transforms’’, the ‘a trous’

wavelet algorithm with a low pass Haar filter was used.

ANN models

The ANN models used to forecast the SPI were recursive

models. The input layer for the models was comprised of

the SPI values computed from each rainfall gauge in each

sub-basin. The input data was standardized from 0 to 1.

All ANN models, without wavelet decomposed inputs,

were created with the MATLAB (R.2010a) ANN toolbox.

The hyperbolic tangent sigmoid transfer function was the

activation function for the hidden layer, while the activation

function for the output layer was a linear function. All the

ANN models in this study were trained using the LM back

propagation algorithm. The LM back propagation algorithm

Table 2 Descriptive statistics

of the Awash River Basin
Basin Station Mean annual

precipitation (mm)

Max annual

precipitation (mm)

Standard

deviation (mm)

Upper Awash Basin Bantu Liben 91 647 111

Ginchi 97 376 90

Sebeta 111 1566 172

Ejersalele 67 355 75

Ziquala 100 583 110

Middle Awash Basin Modjo 76 542 92

Wolenchiti 76 836 95

Gelemsso 77 448 75

Dire Dawa 51 267 54

Lower Awash Basin Eliwuha 44 374 57

Dubti 87 449 89

Bati 26 268 40
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was chosen because of its efficiency and reduced computa-

tional time in training models (Adamowski and Chan 2011).

There are between 3 and 5 inputs for each ANN model.

The optimal number of input neurons was determined by

trial and error, with the number of neurons that exhibited

the lowest root mean square error (RMSE) value in the

training set being selected. The inputs and outputs were

normalized between 0 and 1. Traditionally the number of

hidden neurons for ANN models is selected via a trial and

error method. However a study by Wanas et al. (1998)

empirically determined that the best performance of a

neural network occurs when the number of hidden nodes is

equal to log(N), where N is the number of training samples.

Another study conducted by Mishra and Desai (2006)

determined that the optimal number of hidden neurons is

2n ? 1, where n is the number of input neurons. In this

study, the optimal number of hidden neurons was deter-

mined to be between log(N) and (2n ? 1). For example, if

using the method proposed by Wanas et al. (1998) gave a

result of four hidden neurons and using the method pro-

posed by Mishra and Desai (2006) gave seven hidden

neurons, the optimal number of hidden neurons is between

4 and 7; thereafter the optimal number was chosen via trial

and error. These two methods helped establish an upper

and lower bound for the number of hidden neurons.

For all the ANN models, 80 % of the data was used to

train the models, while the remaining 20 % of the data was

divided into a testing and validation set with each set

comprising 10 % of the data.

WA-ANN models

The WA-ANN models were trained in the same way as the

ANN models, with the exception that the inputs were made

up from either, the approximation series, or a combination

of the approximation and detail series after the appropriate

wavelet decomposition was selected. The model architec-

ture for WA-ANN models consists of 3–5 neurons in the

input layer, 4–7 neurons in the hidden layer and one neuron

in the output layer. The selection of the optimal number of

neurons in both the input and hidden layers was done in the

same way as for the ANN models. The data was partitioned

into training, testing and validation sets in the same manner

as ANN models.

Support vector regression models

All SVR models were created using the OnlineSVR soft-

ware created by Parrella (2007), which can be used to build

support vector machines for regression. The data was

partitioned into two sets: a calibration set and a validation

set. 90 % of the data was partitioned into the calibration set

while the final 10 % of the data was used as the validation

set. Unlike neural networks the data can only be partitioned

into two sets with the calibration set being equivalent to the

training and testing sets found in neural networks. All

inputs and outputs were normalized between 0 and 1.

All SVR models used the nonlinear radial basis function

(RBF) kernel. As a result, each SVR model consisted of

three parameters that were selected: gamma (c), cost (C),
and epsilon (e). The c parameter is a constant that reduces

the model space and controls the complexity of the solu-

tion, while C is a positive constant that is a capacity control

parameter, and e is the loss function that describes the

regression vector without all the input data (Kisi and

Cimen 2011). These three parameters were selected based

on a trial and error procedure. The combination of

parameters that produced the lowest RMSE values for the

calibration data sets were selected.

WA-SVR models

The WA-SVR models were trained in exactly the same way

as the SVR models with the OnlineSVR software (2007)

with the exception that the inputs were wavelet decomposed.

The data for WA-SVR models was partitioned exactly

like the data for SVR. The optimal parameters for the WA-

SVR models were chosen using the same procedure used to

find the parameters for SVR models.

Performance measures

To evaluate the performances of the aforementioned data

driven models the following measures of goodness of fit

were used:

The coefficient of determination ðR2Þ ¼
PN

i¼1 ðŷi � �yiÞPN
i¼1 ðyi � �yiÞ2

ð9Þ

where �yi ¼
1

N

XN

i¼1

yi ð10Þ

where �yi is the mean value taken over N, yi is the observed

value, ŷi is the forecasted value and N is the number of

samples. The coefficient of determination measures the

degree of correlation among the observed and predicted

values. It is a measure of the strength of the model in

developing a relationship among input and output vari-

ables. The higher the value of R2 (with 1 being the highest

possible value), the better the performance of the model.

The Root Mean Squared Error RMSEð Þ ¼
ffiffiffiffiffiffiffiffiffi
SSE

N

r
ð11Þ

where SSE is the sum of squared errors, and N is the

number of data points used. SSE is given by:
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SSE ¼
XN

i¼1

ðŷi � yiÞ2 ð12Þ

with the variables already having been defined. The RMSE

evaluates the variance of errors independently of the

sample size.

The Mean Absolute Error MAEð Þ ¼
XN

i¼1

ŷi � yij j
N

ð13Þ

The MAE is used to measure how close forecasted

values are to the observed values. It is the average of the

absolute errors.

Results and discussion

In the following sections, the forecast results for the best

data driven models at each sub-basin are presented. The

forecasts presented are from the validation data sets for

time series of SPI 3 and SPI 6, which are mostly used to

describe short-term drought (agricultural drought).

SPI 3 forecasts

The SPI 3 forecast results for all data driven models are

presented in Tables 3 and 4. As the forecast lead time is

increased, the forecast accuracy deteriorates for all stations.

In the Upper Awash basin, the best data driven model for

SPI 3 forecasts of 1 month lead time was a WA-ANN

model. The WA-ANN model at the Ziquala station had the

best results in terms of RMSE and MAE, with forecast

results of 0.4072 and 0.3918, respectively. The Ginchi

station had the best WA-ANN model in terms of R2, with

forecast results of 0.8808. When the forecast lead time is

increased to 3 months, the best models remain WA-ANN

models. The Bantu Liben station had the model with the

lowest RMSE and MAE values of 0.5098 and 0.4941,

respectively. The Sebeta station had the best results in

terms of R2, with a value of 0.7301.

In the Middle Awash basin, for forecasts of 1 month

lead time, WA-ANN and WA-SVR models had the best

forecast results. The WA-ANN model at the Modjo station

had the best results in terms of R2 with a value of 0.8564.

However, unlike the Upper Awash basin, the best forecast

results in terms of RMSE and MAE were from a WA-SVR

model. The WA-SVR model at the Modjo station had the

lowest RMSE and MAE values of 0.4309 and 0.4018,

respectively. For forecasts of 3 months lead time, WA-

ANN models had the best results across all performance

measures with the Modjo station having the highest value

of R2 at 0.6808 and the Gelemsso station having the lowest

RMSE and MAE values of 0.5448 and 0.5334,

respectively.

In the Lower Awash basin, for forecasts of 1 month lead

time, the best results were from WA-ANN and WA-SVR

models, similar to the Middle Awash basin. The highest

value for R2 was 0.7723 and it was from the WA-ANN

model at the Eliwuha station. The lowest values for RMSE

and MAE were 0.4048 and 0.3873, and were from the WA-

SVR model at the Eliwuha station. For forecasts of

3 months lead time the best results were observed at the

Bati station in terms of R2. The WA-SVR model at this

station had the highest R2 value of 0.5915 and the WA-

SVR model at the Eliwuha station had the lowest RMSE

and MAE values of 0.5159 and 0.5129 respectively.

SPI 6 forecasts

The SPI 6 forecast data is presented in Tables 5 and 6. The

forecast results for SPI 6 are significantly better than SPI 3

forecasts according to all three performance measures. In

the Upper Awash Basin a WA-ANN model at the Bantu

Liben station had the best forecast result in terms of RMSE

with a result of 0.3438. Another WA-ANN model at the

Ginchi station provided the lowest MAE value of 0.3212.

The best forecast result in terms of R2, 0.9163, was from a

WA-SVR model at the Ziquala station. The forecast results

in Tables 5 and 6 show that WA-ANN and WA-SVR

models provide the best SPI 6 forecasts. Neither method is

significantly better than the other. This is best illustrated by

the fact the models provide very similar results according

to the performance measures used.

As the forecast lead time is increased the forecast

accuracy of all the models declines. This decline is most

evident in the ARIMA, ANN and SVR models. The fore-

cast accuracy for 3 month lead time forecasts are still

significantly better for WA-ANN and WA-SVR models. In

the Upper Awash Basin the best model in terms of R2 is a

WA-ANN model at the Sebeta station and has a forecast

result of 0.7723. The best model in terms of RMSE and

MAE is a WA-SVR model at the Ginchi station with

forecast results of 0.4224 and 0.3864 respectively. In the

Middle Awash Basin the best model in terms of R2 is also a

WA-ANN model and the Modjo station with a result of

0.7414 and the best model in terms of RMSE and MAE is a

WA-SVR model at the Dire Dawa station with forecast

results of 0.4049 and 0.3897 respectively. In the Lower

Basin the best result in terms of R2 and MAE is from a

WA-SVR model at the Eliwuha and Dubti stations

respectively and the best model in terms of RMSE is from a

WA-ANN model at the Dubti station.
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Discussion

As shown in the forecast results for both SPI 3 and SPI 6,

the use of wavelet analysis increased forecast accuracy for

both 1 and 3 month forecast lead times. This pattern is

similarly shown in SPI forecasts within the Awash River

Basin for lead times of 1 and 6 months in Belayneh and

Adamowski (2012). Once the original SPI time series was

decomposed using wavelet analysis it was found that the

approximation series of the signal was disproportionally

more important for future forecasts compared to the

wavelet detail series of the signal. Irrespective of the

number of decomposition levels, an absence of the

approximation series would result in poor forecast results.

Adding the approximation series to the wavelet details did

not noticeably improve the forecast results compared to

using the approximation series on its own in most models.

Traditionally, the number of wavelet decompositions is

either determined via trial and error or using the formula

L = log [N], with N being the number of samples. Using

this formula the optimal number of decompositions would

be L = 3. In this study, the above method was repeated for

wavelet decomposition levels 1 through 9 until the appro-

priate level was determined using the aforementioned

performance measures.

In general, WA-ANN and WA-SVR models were the

best forecast models in each of the sub-basins. Wavelet-

neural networks were also shown to be the best forecast

method in forecasting the SPI at 1 and 6 months lead time

in Belayneh and Adamowski (2012). Unlike the study by

Belayneh and Adamowski (2012), this study also coupled

wavelet transforms with SVR models. Coupled WA-SVR

Table 3 The best ARIMA, ANN and SVR models for 1 and 3 month forecasts of SPI 3

Basin Station ANN

models

R2 RMSE MAE ARIMA

models

R2 RMSE MAE SVR (c, C, e) R2 RMSE MAE

1 month lead time

Upper Bantu

Liben

3-4-1 0.777 0.729 0.713 (5, 1, 0) 0.743 0.846 0.825 0.8, 98, 0.008 0.804 0.729 0.719

Ginchi 4-4-1 0.725 0.744 0.729 (3, 0, 0) 0.698 0.832 0.824 0.5, 95, 0.007 0.753 0.703 0.792

Sebeta 4-4-1 0.848 0.74 0.721 (3, 1, 1) 0.768 0.822 0.817 0.4, 90, 0.008 0.746 0.735 0.723

Ejersalele 5-4-1 0.718 0.751 0.739 (1, 0, 0) 0.713 0.853 0.846 0.5, 95, 0.005 0.782 0.709 0.703

Ziquala 3-4-1 0.735 0.715 0.704 (1, 0, 0) 0.718 0.846 0.836 0.6, 93, 0.004 0.792 0.739 0.714

Middle Modjo 3-4-1 0.783 0.72 0.733 (5, 0, 1) 0.721 0.835 0.816 0.5, 94, 0.004 0.733 0.732 0.692

Wolenchiti 3-4-1 0.739 0.704 0.702 (3, 0, 2) 0.71 0.851 0.844 0.7, 98, 0.004 0.744 0.709 0.67

Gelemsso 4-4-1 0.808 0.74 0.689 (3, 0, 0) 0.716 0.852 0.835 0.4, 88, 0.007 0.832 0.739 0.711

Dire Dawa 3-4-1 0.777 0.707 0.697 (1, 1, 1) 0.711 0.852 0.833 0.6, 93, 0.004 0.8 0.723 0.681

Lower Eliwuha 4-4-1 0.709 0.732 0.723 (1, 1, 1) 0.701 0.856 0.853 0.6, 94, 0.008 0.731 0.714 0.703

Dubti 3-5-1 0.706 0.737 0.72 (2, 0, 1) 0.694 0.853 0.838 0.4, 96, 0.006 0.749 0.706 0.695

Bati 3-4-1 0.73 0.744 0.724 (3, 1, 0) 0.726 0.851 0.849 0.6, 88, 0.007 0.754 0.715 0.702

3 month lead time

Upper Bantu

Liben

4-4-1 0.5 0.978 0.954 (4, 0, 0) 0.46 1.345 1.314 0.7, 99, 0.006 0.5 0.984 0.871

Ginchi 5-4-1 0.516 0.949 0.942 (3, 0, 1) 0.454 1.263 1.254 0.8, 84, 0.004 0.475 0.936 0.818

Sebeta 5-4-1 0.587 0.925 0.908 (3, 1, 2) 0.446 1.313 1.287 0.7, 87, 0.005 0.448 0.995 0.89

Ejersalele 4-4-1 0.512 0.961 0.957 (1, 0, 0) 0.452 1.293 1.272 0.6, 93, 0.008 0.462 0.981 0.966

Ziquala 4-4-1 0.462 0.996 0.974 (1, 1, 0) 0.446 1.293 1.265 0.85, 90, 0.007 0.466 0.939 0.927

Middle Modjo 4-4-1 0.406 0.963 0.947 (2, 1, 0) 0.406 1.316 1.315 0.65, 97, 0.007 0.5 0.949 0.933

Wolenchiti 4-4-1 0.492 0.961 0.952 (1, 1, 1) 0.453 1.323 1.314 0.55, 85, 0.004 0.45 0.944 0.93

Gelemsso 5-4-1 0.424 0.994 0.971 (3, 0, 0) 0.414 1.325 1.305 0.6, 90, 0.007 0.494 0.932 0.919

Dire Dawa 4-4-1 0.435 0.986 0.959 (1, 0, 0) 0.416 1.327 1.325 0.6, 86, 0.01 0.524 0.949 0.933

Lower Eliwuha 5-4-1 0.48 0.962 0.945 (1, 0, 0) 0.456 1.352 1.349 0.7, 92, 0.01 0.611 0.946 0.936

Dubti 4-5-1 0.44 0.958 0.94 (2, 0, 2) 0.427 1.314 1.305 0.6, 93, 0.009 0.565 0.945 0.926

Bati 4-4-1 0.461 0.941 0.903 (3, 0, 1) 0.454 1.354 1.348 0.8, 79, 0.001 0.559 0.942 0.927

Column 3 is the ANN architecture detailing the number of nodes in the input, hidden and output layers respectively

In column 11 the parameters of the SVR models are given
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models had improved results compared to SVR models and

outperformed WA-ANN using some of the performance

measures models at some stations.

While both the WA-ANN and WA-SVR models were

effective in forecasting SPI 3, most WA-ANN models had

more accurate forecasts. In addition, as shown by Figs. 2

and 3, the forecast from the WA-ANN model seems to be

more effective in forecasting the extreme SPI values,

whether indicative of severe drought or heavy precipita-

tion. While the WA-SVR model closely mirrors the

observed SPI trends, it seems to underestimate the extreme

events, especially the extreme drought event at

170 months.

The reason why WA-ANN models seem to be slightly

more effective than WA-SVR models for forecasts of SPI

3, and seem to be more effective in forecasting extreme

events, is likely due to the inherent effectiveness of ANNs

compared to SVR models, such as their simplicity in terms

of development and their reduced computation time, as the

wavelet analysis used for both machine learning techniques

is the same. This observation is further supported by the

fact that most ANN forecasts have better results than SVR

models as shown in Table 3. Theoretically, SVR models

should perform better than ANN models because they

adhere to the structural risk minimization principle instead

of the empirical risk minimization principle. They should,

in theory, not be as susceptible to local minima or maxima.

However, the performance of SVR models is highly

dependent of the selection of the appropriate kernel and its

three parameters. Given that there are no prior studies on

the selection of these parameters for forecasts of the SPI,

the selection was done via a trial and error procedure. This

process is made even more difficult by the size of the data

set (monthly data from 1970 to 2005), which contributes to

the long computation time of SVR models. The uncertainty

regarding the three SVR parameters increases the number

of trials required to obtain the optimal model. Due to the

long computational time of SVR models the same amount

of trials cannot be done as for ANN models. For ANN

models, even in complex systems, the relationship between

Table 4 The best WA-ANN and WA-SVR models for 1 and 3 month forecasts of SPI 3

Basin Station WA-ANN R2 RMSE MAE WA-SVR R2 RMSE MAE

1 month lead time

Upper Bantu Liben 4-7-1 0.7952 0.43 0.3922 0.8, 98, 0.008 0.7228 0.4461 0.4038

Ginchi 4-7-1 0.8808 0.4663 0.4598 0.5, 95, 0.007 0.8462 0.4293 0.4188

Sebeta 4-5-1 0.8722 0.4742 0.4118 0.4, 90, 0.008 0.8029 0.4183 0.3961

Ejersalele 7-4-1 0.7797 0.47 0.4012 0.5, 95, 0.005 0.8193 0.4829 0.4711

Ziquala 6-4-1 0.7997 0.4072 0.3918 0.6, 93, 0.004 0.7628 0.483 0.4627

Middle Modjo 5-5-1 0.8564 0.4975 0.458 0.5, 94, 0.004 0.8398 0.4309 0.4018

Wolenchiti 4-4-1 0.7632 0.4781 0.4202 0.7, 98, 0.004 0.8429 0.4839 0.4683

Gelemsso 6-4-1 0.813 0.4409 0.4248 0.4, 88, 0.007 0.8287 0.4389 0.4104

Dire Dawa 4-5-1 0.7816 0.4893 0.4735 0.6, 93, 0.004 0.8245 0.4738 0.4596

Lower Eliwuha 5-4-1 0.7723 0.4217 0.3996 0.6, 94, 0.008 0.7911 0.4048 0.3873

Dubti 7-4-1 0.7495 0.4127 0.4067 0.4, 96, 0.006 0.7238 0.4079 0.3934

Bati 5-4-1 0.7507 0.4985 0.4875 0.6, 88, 0.007 0.7311 0.4281 0.3852

3 month lead time

Upper Bantu Liben 5-7-1 0.5566 0.5098 0.4941 0.7, 99, 0.006 0.5817 0.5012 0.4871

Ginchi 5-7-1 0.6204 0.5708 0.5143 0.8, 84, 0.004 0.5171 0.5782 0.5638

Sebeta 5-5-1 0.7301 0.582 0.5345 0.7, 87, 0.005 0.5281 0.5827 0.5739

Ejersalele 7-4-1 0.7178 0.5843 0.5406 0.6, 93, 0.008 0.5812 0.5922 0.5782

Ziquala 7-4-1 0.5598 0.5568 0.5343 0.85, 90, 0.007 0.5821 0.5881 0.5781

Middle Modjo 6-5-1 0.6808 0.5996 0.5604 0.65, 97, 0.007 0.6093 0.5921 0.5829

Wolenchiti 5-4-1 0.6059 0.5809 0.5738 0.55, 85, 0.004 0.6018 0.5921 0.5829

Gelemsso 7-4-1 0.5285 0.5498 0.5334 0.6, 90, 0.007 0.5728 0.5721 0.5617

Dire Dawa 5-5-1 0.6256 0.5966 0.5828 0.6, 86, 0.01 0.6092 0.5921 0.5817

Lower Eliwuha 6-4-1 0.5792 0.5908 0.5783 0.7, 92, 0.01 0.5056 0.5159 0.5129

Dubti 7-4-1 0.5621 0.5884 0.5725 0.6, 93, 0.009 0.5051 0.5253 0.519

Bati 6-4-1 0.563 0.5993 0.5403 0.8, 79, 0.001 0.5915 0.5494 0.5287

Column 3 is the ANN architecture detailing the number of nodes in the input, hidden and output layers respectively

In column 7 the parameters of the SVR models are given
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input and output variables does not need to be fully

understood. Effective models can be determined by varying

the number of neurons within the hidden layer. Producing

several models with varying architectures is not computa-

tionally intensive and allows for a larger selection pool for

the optimal model. In addition, the ability of wavelet

analysis to effectively forecast local discontinuities likely

reduces the susceptibility in ANN models when they are

coupled.

This study also shows that the à trous algorithm is an

effective tool for forecasting SPI time series. The à trous

algorithm de-noises a given time series and improves the

Fig. 2 SPI 3 forecast results for

the best WA-ANN model at the

Bati station for 1 month lead

time

Table 6 The best WA-ANN and WA-SVR models for 1 and 3 month forecasts of SPI 6

Basin Station WA-ANN R2 RMSE MAE WA-SVR R2 RMSE MAE

1 month lead time

Upper Bantu Liben 5-7-1 0.9064 0.3438 0.3271 0.2, 86, 0.002 0.8872 0.3983 0.3782

Ginchi 4-4-1 0.8686 0.3483 0.3212 0.08, 90, 0.005 0.8777 0.3478 0.3348

Sebeta 4-5-1 0.9006 0.4057 0.3826 0.0, 90, 0.001 0.8938 0.3569 0.3464

Ejersalele 7-4-1 0.8614 0.4035 0.3864 0.05, 98, 0.007 0.8981 0.3871 0.3617

Ziquala 6-4-1 0.8867 0.3652 0.3551 0.0, 88, 0.008 0.9163 0.3765 0.3647

Middle Modjo 5-5-1 0.9074 0.3872 0.3731 0.08, 90, 0.08 0.8879 0.389 0.3673

Wolenchiti 6-4-1 0.9155 0.346 0.3129 0.07, 92, 0.004 0.8983 0.347 0.337

Gelemsso 6-4-1 0.9252 0.3484 0.312 0.05, 93, 0.003 0.8765 0.3489 0.3324

Dire Dawa 4-5-1 0.8735 0.3534 0.3432 0.02, 96, 0.007 0.8983 0.3643 0.3547

Lower Eliwuha 5-4-1 0.894 0.3659 0.3495 0.06, 98, 0.06 0.8606 0.338 0.3228

Dubti 7-4-1 0.8582 0.3538 0.3353 0.09, 100, 0.008 0.9193 0.3421 0.3311

Bati 5-4-1 0.8849 0.3836 0.3621 0.06, 91, 0.007 0.8793 0.3785 0.3679

3 month lead time

Upper Bantu Liben 5-7-1 0.742 0.4476 0.4351 0.45, 86, 0.02 0.7291 0.4236 0.4201

Ginchi 5-7-1 0.7036 0.4323 0.3948 0.6, 90, 0.006 0.6938 0.4224 0.3864

Sebeta 5-5-1 0.7723 0.4378 0.4173 0.9, 90, 0.008 0.6748 0.4453 0.4201

Ejersalele 7-4-1 0.7307 0.4257 0.4105 0.8, 96, 0.02 0.6981 0.4234 0.4159

Ziquala 7-4-1 0.7403 0.4921 0.479 0.55, 93, 0.004 0.6838 0.4565 0.4372

Middle Modjo 6-5-1 0.7414 0.4568 0.4507 0.5, 100, 0.003 0.721 0.433 0.4249

Wolenchiti 5-4-1 0.7244 0.4556 0.4365 0.8, 95, 0.002 0.7234 0.4304 0.4192

Gelemsso 7-4-1 0.6829 0.448 0.4371 0.35, 94, 0.03 0.7123 0.443 0.4232

Dire Dawa 6-5-1 0.6655 0.4851 0.4793 0.75, 95, 0.09 0.7241 0.4049 0.3897

Lower Eliwuha 6-4-1 0.7126 0.4372 0.4149 0.9, 90, 0.007 0.7483 0.4378 0.3283

Dubti 7-4-1 0.6997 0.4204 0.4035 0.3, 85, 0.009 0.6599 0.4293 0.3158

Bati 6-4-1 0.6712 0.46 0.4487 0.5, 100, 0.005 0.6418 0.4357 0.4175

Column 3 is the ANN architecture detailing the number of nodes in the input, hidden and output layers respectively

In column 7 the parameters of the SVR models are given
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performances of both ANN and SVR models. The à trous

algorithm is shift invariant, making it more applicable for

forecasting studies, which includes drought forecasting.

The fact that wavelet based models had the best results is

likely due to the fact that wavelet decomposition was able

to capture non-stationary features of the data.

Conclusion

This study explored forecasting short-term drought condi-

tions using five different data driven models in the Awash

River basin, including newly proposed methods based on

SVR and WA-SVR. With respect to wavelet analysis, this

study found, for the first time, that the use of only the

approximation series was effective in de-noising a given

SPI time series. SPI 1 and SPI 3 were forecast over lead

times of 1 and 3 months using ARIMA, ANN, SVR, WA-

SVR and WA-ANN models. Forecast results for SPI 1 were

low in terms of the coefficient of determination, likely a

result of the low levels of autocorrelation of the data sets

compared to SPI 3. Overall, the WA-ANN method, with a

new method for determining the optimal number of neu-

rons within the hidden layer, had the best forecast results

with WA-SVR models also having very good results.

Wavelet coupled models consistently showed lower values

of RMSE and MAE compared to the other data driven

models, possibly because wavelet decomposition de-noises

a given time series subsequently allowing either ANN or

SVR models to forecast the main signal rather than the

main signal with noise.

Two of the three Awash River Sub-basins have semi-

arid climates. The effectiveness of the WA-ANN and WA-

SVR models indicate that these models may be effective

forecast tools in semi-arid regions. Studies should also

focus on different regions and try to compare the effec-

tiveness of data driven methods in forecasting different

drought indices. The forecasts did not show a particular

trend with respect to a particular sub-basin. The

climatology of a given sub-basin did not significantly

affect the forecast results for any particular station. This

study has not found a clear link between a particular sub-

basin and performance indicating the need for further

studies in different climates to determine whether there is a

significant link between forecast accuracy and climate. The

coupling of these data driven models with uncertainty

analysis techniques such as bootstrapping should be

investigated. In addition, coupling SVR models with

genetic algorithms to make parameter estimation more

efficient could be explored.
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