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Abstract Genetic algorithm (GA) has been used repeat-

edly in reservoir operation studies during last two decades.

GAs require trying different alternatives, different GA

parameter values, and select those which perform best for a

particular application. Besides this, there are chances of

getting trapped into local optima, since GA starts with

randomly generated initial population within the entire

search space. Therefore, GA’s search process is slow and

time-consuming. GA’s process may be speeded up if initial

population is generated in a narrowed search space. This

process may save time spent on sensitivity analysis of

parameters. Discrete dynamic programming (DP) provides

global optimal solutions, but discreteness and dimension-

ality are the main disadvantages in reservoir operation

applications. To overcome these deficiencies a hybrid

approach combining DP and GA (DP–GA) is proposed to

study a single reservoir operation problem. Where DP

provides the narrowed search space within which the

optimal solution for the problem is expected. GA then

search to achieve the possible optimal solution within this

space avoiding any discreteness of variables. Proposed

DP–GA approach was found to outperform both GA and

DP in terms of less computational requirement and quality

of the solution, respectively.

Keywords Genetic algorithm � Dynamic programming �
Reservoir operation � Large size reservoir

Introduction

Over the last decade, evolutionary and meta-heuristic

algorithms have been extensively used as search and

optimization tools in various problem domains. Their

applicability to wide-range of problems, easy to use, and

global perspective are the main reasons which makes them

preferred tools for extensive and successful applications to

a variety of problems. GA belongs to the evolutionary

algorithms (EA) family which has been used in many

single and multireservoir operation studies (Jothiprakash

and Shanthi 2006; Chen and Chang 2007; Yun et al. 2010;

Hinçal et al. 2011; Scola et al. 2011, 2014). The evolu-

tionary algorithms like GA, ant colony optimization (ACO)

and particle swarm optimization (PSO) have great potential

for handling non-linearity and solving multi-objective

problems. Genetic algorithm has been applied to many real

life optimization problems by several researchers. GA is

search and optimization procedure that is motivated by the

principle of natural genetics and natural selection (Davis

1991; Deb 2003; Goldberg 1989; Haupt and Haupt 2004;

Holland 1975; Michalewicz 1996; Mitchell 1999).

Traditional GA or simple GA along with many attractive

features poses computational difficulties, e.g., convergence

speed to attain the optimum and getting stuck at local

optima. Therefore, researchers have made efforts to modify

GA itself or used it with other techniques to overcome

these drawbacks. The main drawbacks are slow conver-

gence, sensitivity analysis to find proper GA parameters so

as to reach the optimum and getting struck into local

optima, which is usually due to the initial population

chosen or the parameters chosen. Ganji et al. (2007)

developed a modified version of the simple GA, called

SGA, for application to a reservoir operation problem. The

SGA reduces the overall run time as compared to the
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simple GA through dynamically updating the length of

chromosomes. Karamouz et al. (2007) solved a similar

problem using a GA-K nearest neighborhood (KNN) based

optimization model. In this methodology, the lengths of

chromosomes are increased based on the results of a KNN

forecasting model. A hyper cubic distributed GA (HDGA)

was applied by Chen and Chang (2007) with three general

GA operators, linear ranking selection, blend-a crossover

and Gaussian mutation, to search for the optimal reservoir

release.

Hinçal et al. (2011) applied GA to a multireservoir

system operation to maximize the energy production in the

system by using two different approaches, conventional

(monthly) and real-time approach. The comparison of the

results revealed that the energy amounts optimized by

using conventional approach were higher than the energy

produced in real-time operation. However, by using real-

time approach, a close approximation to the real opera-

tional data had been achieved.

The immune genetic algorithm (IGA), which is based on

the immune network theory and GA, was introduced in the

reservoir optimization field by Dong et al. (2010) as an

adaptive immune GA (AIGA) for finding optimal reservoir

dispatching. The main features of AIGA are the automatic

changing of the crossover probability and mutation prob-

ability with respect to the fitness value of the objective

function. A noisy GA (NGA) was proposed by Yun et al.

(2010) to deal stochastic inflow pattern. They compared the

efficiency of NGA with Monte Carlo method and con-

cluded that the NGA shows better performance than the

Monte Carlo optimization technique.

Generation of random initial population plays an

important role in faster convergence and to reach global

optimal solution for GA. Simple GA often suffers when

initial random population is not so good. To increase the

convergence speed of GA and to overcome getting stuck at

local optima, Cheng et al. 2008 used chaos optimization

algorithm (COA) for generating initial population for GA.

They proposed integrated COA and GA approach, named

chaos GA (CGA) and applied it for optimization of a

hydropower generating reservoir system. They found CGA

more feasible and effective in searching optimum as

compared to the traditional GA.

It is reported in a recent review paper that combined or

hybrid of GAs techniques shows better results than simply

GA (Hossain and El-shafie 2013). Rani and Moreira (2010)

reviewed both traditional and computational intelligence

techniques used in reservoir operation studies they also

ended up giving emphasis to investigate combined use of

traditional and computational intelligence approaches to

explore the unique advantages of these techniques. The

main motive behind the hybridization of different tech-

niques is to utilize their complementary characteristics, that

is, hybrids are supposed to give better results due to

interaction of their respective features. In fact, choosing a

suitable combination of complementary algorithmic con-

cepts can be the key for achieving top performance in

solving many difficult optimization problems. Owing to the

drawbacks of traditional GA, researchers have made efforts

to improve the technique itself by using the hybrid

approach.

Cai et al. (2001) presented a combined genetic algo-

rithm–linear programming (GA–LP) strategy for solving a

large nonlinear reservoir systems optimization model. The

hybrid approach was intended to overcome the limitation

of LP and to improve the performance of the traditional

GA. Use of GA was to linearize the original problem in

each time period which was later solved sequentially using

LP. The hybrid GA–LP approach was capable to find good

approximate solutions to the nonlinear models. In view of

computational advantages of combined GA–LP strategies

to deal with nonlinearities, Reis et al. (2006) proposed and

evaluated a stochastic hybrid GA–LP approach to opera-

tion of reservoir systems, which admits a variety of future

inflow variability through a treelike structure of syntheti-

cally generated inflows.

Huang et al. (2002) presented a GA-based stochastic

dynamic programming model (SDP) model to cope with

the dimensionality problem of a multiple-reservoir system.

A combination of GA and discrete differential dynamic

programming (DDDP) was proposed by Tospornsampan

et al. (2005) for irrigation reservoir operation problem. The

main advantage of the hybrid approach is to save the

computational resource for optimizing parameters. And

also, since the good solutions obtained from GA are used as

initial policy for DDDP, therefore reduces the probability

of DDDP to trap in local optima. To utilize the benefits

under safe flood control conditions, Liu et al. (2011)

derived an optimal refill rule for a multi-purpose reservoir

system. A hybrid multi-objective genetic algorithm

(HMGA) is used in their study to integrate a progressive

optimality algorithm into NSGA-II for a multi-objective

reservoir.

In another popular method, simulated annealing (SA), a

stochastic search technique is combined with the GA by

Chiu et al. (2007) for application in reservoir optimization

systems. The global search was undertaken in their study

by the GA and the local search by SA. In their study, the

process begins with the GA while they initiate a set of

random solutions and after that selection, mutation and

crossover operation is carried out for a few generations.

Subsequently, all of the latest solutions from the GA are

handled by SA to achieve further solutions. In such man-

ner, the algorithm used GA and SA methodology together

one after another. Li and Wei (2008) developed and

compared the IGA-SA (improved genetic algorithm-
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simulated annealing) with GA, DP and SA. The IGA-SA

can help to overcome premature convergence faster than

the earlier GA–SA algorithm and can escape the local

optima. A hybrid approach, incorporating Incremental DP

(IDP) and GA was proposed by Li et al. (2012). IDP was

used to provide a rough optimal solution which was used

for generating the initial population for GA. They con-

cluded that, the GA optimization efficiency can be con-

siderably enhanced and the difficulty of premature

convergence that is common in the practical applications of

GA to reservoir operation can be partially overcome. This

hybrid IDP–GA approach was applied for daily operation

of a two hydropower reservoirs. Authors showed that

hybrid IDP–GA approach outperformed both the univocal

IDP and the classical GA.

Lerma et al. (2013) demonstrated usefulness of a

method based on the combined use of genetic algorithms

(GA) and network flow optimization (NFO). The GA used

was PIKAIA, and was linked to the SIMGES simulation

model, a part of the AQUATOOL decision support system

(DSS). The optimization of various operating rules was

analyzed with the objective of minimizing short-term and

long-term water deficits. They showed that simple operat-

ing rules produced similar results to the more sophisticated

ones.

Modifications in the GA technique mainly improved

the efficiency of GA for the particular problems studied

and it may not necessarily be applicable to other prob-

lems therefore there is no unique method which may be

applicable for all problems. So, research on hybrid GAs

continues and further research scope still exists, espe-

cially for improvement in GAs or other EAs with the

intension of increasing the convergence speed by finding

better ways for generating initial population, reducing

sensitivity analysis of operators and reducing premature

convergence.

In this study an attempt is made to combine DP and GA

to study a single reservoir operation problem. The

methodology by combining DP and GA together is used to

overcome some computational difficulties which are faced

while applying DP or GA alone. GA is robust but suffers

slow convergence and need extensive sensitivity analysis

to optimize different parameters to reach optimum. DP has

its own limits namely, discreteness and dimensionality,

however can provide global optimal solution for discrete

case, but the solution is optimal for the given increment

and smaller increment size will give more precise solution

but will increase computational difficulties. In combined

approach, DP can provide the information of the potential

regions of the search space as DP provides global optimal

solution for discrete case. The initial population generated

with this extra information about search space is an

important help for the GA, and combined DP–GA

approach may lead to faster convergence and improvement

in the quality of the solutions as compared to a simple GA.

Motivation for the proposed DP–GA approach

When a reservoir operation problem is solved using DP the

storage (state variable) is divided in suitable discrete

increments to solve the model, and optimization is per-

formed conditionally on all combinations of storages. For a

large size reservoir, the size of these increments will be

bigger as to use very small increment size will pose com-

putational difficulty. Although LP can handle a large

number of variables but it cannot handle non-linearity,

therefore LP is useful as long as the objective function and

constraints are all linear. Addition of each increment

increases the computational burden of DP multiplicatively.

Although discrete DP will provide global optimal solution

for given sets of states and increment size, the actual

optimal may lie within the discrete interval between states

(Fig. 1). This may not be a favoring result while the aim of

the reservoir management is to efficiently and optimally

use the available water, and the policy obtained based on

these results may not be a good policy.

Heuristic optimization algorithms, such as, GAs are

alternative tools for solving such large scale problems.

However, for large size reservoirs the decision space

becomes large because of a number of feasible solutions

existing in the large search space. This may lead to pre-

mature convergence of these algorithms or computational

difficulties, as it will require significant number of gener-

ations or large population size in addition to immense

sensitivity analysis of GA parameters to achieve the opti-

mal solution.

If initial search space for GA can be narrowed in a way,

such that the optimal solution exists within this narrowed

search space, computational requirement of GAs can be

reduced up to large extent. The combined DP–GA is pro-

posed to exploit the advantage of DP which can provide

global optimal with less computational effort by using a

coarse discrete increment size, thereby providing a poten-

tial region for the search space, to be further used by GA.

This can further improve the solution with greater accu-

racy, avoiding any discreteness of decision or state vari-

ables. The DP–GA approach is used for a single reservoir

operation by considering a large size reservoir of

608 9 106 m3 capacity, as case study.

Methodology

The DP–GA approach is devised in this paper for deriving

optimal reservoir operation policy. The unique advantages

of the DP and GA are combined to overcome their
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respective drawbacks. DP with suitable discrete interval

size provides a global optimal solution to a problem. This

global solution derived is for the discrete values of storages

chosen. However, the actual optimal solution may fall

within these discrete values of storages. Therefore, a search

space could be defined around this solution. With the help

of these results, a search space for initial population gen-

eration for GA search could be constructed. GA is then

further used to find out a better optimum with continuous

state and decision variables. This also avoids any dis-

creteness in the variables. A flow chart of combined DP–

GA procedure is presented in Fig. 2. After a DP-based

search space is obtained, a certain number of unbiased

initial individuals of GA are generated randomly within

this space. The genetic operators including selection,

crossover, and mutation are then used to optimize the

objective function. By identifying the potential region for

search, a large number of (1) non-optimal solutions and (2)

needless computations of the GA, can be easily avoided.

The prior selection of the required reasonable search space

by the DP would (1) provide a narrowed corridor of search,

(2) reduce the time required to reach to the optimal solution

and (3) increase the overall computation efficiency.

Optimization with DP: finding the search space

for GA

DP optimization is first applied to reservoir operation

model to obtain an initial range for decision variables for

the GA algorithm in this study. The DP model is applied to

r=N 
QN

r=1 
Q1

r=2 
Q2

Smin=0 

 Smax

m-

Smin=0 

 Smax

m-

Smin=0 

 Smax

m-

Smin=0 

 Smax

m-

Smin=0 

 Smax

m-

Fig. 1 A reservoir operation

problem fitted to conventional

discrete DP framework

No 

No 

Stop 
Yes 

{ = , = + }

Define search space for GA using DP 
solution  

DP 
Optimization with  

Discrete DP 

Start 

Optimal Solution (set of optimal releases 
{ , , … , , … })

Crossover 

Mutation

Termination criteria 
satisfied or not?

 GA 

Yes 

Storage constraints 
satisfied or not? 

Generate initial population randomly 
(gen=1) within range defined using DP, i.e., 

{ = , = } 

Calculate final storages for each gene (release) 
using continuity equation  

Repair 
infeasible genes 

by randomly 
generating new 

ones in 
predefined 

rangeSelection 
gen=gen+1 

Fig. 2 Flow chart of combined DP–GA approach

4 Sustain. Water Resour. Manag. (2016) 2:1–12

123



estimate the optimal monthly releases, using monthly

inflows to set a proper operation policy for the reservoir.

The objective function is minimization of squared devia-

tion of releases from target demands. In the DP model, the

current inflow is the input to the reservoir; and the reservoir

release includes the spill. For backward process in the DP,

fr (Sr) is defined as the minimum optimal return function

from operation of reservoir from all the r stages to go given

that reservoir storage (state) in r stages to go is Sr; gr (Sr) is

the return function at r stages to go; Sr, Sr-1, Ir and EVr are

the initial reservoir storage (state), the resulting reservoir

storage (state), the inflow to reservoir and the evaporation

losses from reservoir in r stages to go, respectively; Qr is

the total reservoir release including spill, and is the deci-

sion variable for the DP model in r stages to go, respec-

tively; Dr and Spr are the release target and the reservoir

spill in r stages to go, respectively. Then the recursive

equation for backward process for the DP models is:

fr Srð Þ ¼ min
Qr

gr Sr;Qrð Þ þ fr�1 Sr�1ð Þ½ � 8r ¼ 1; . . .;N ð1Þ

The return function is:

gr Sr;Qrð Þ ¼ ðQr � DrÞ2 ð2Þ

Subject to the following constraints:

1. Reservoir continuity (state transformation) equation

Sr�1 ¼ Sr þ Ir � Qr � EVr; 8r ¼ 1; . . .;N ð3Þ

2. Spill from reservoir

Spr ¼ Qr � Dr; 8r ¼ 1; . . .;N ð4Þ

3. Other constraints related to the upper bounds are on

reservoir storages (states) limited to live storage

capacity (Ya) and non-negativity of state and decision

variables.

Qr � 0 8r ¼ 1; . . .;N ð5Þ
0� Sr�1 � Ya 8r ¼ 1; . . .;N ð6Þ

The whole reservoir operation process can be repre-

sented in DP framework as shown in the Fig. 1. Starting

from known initial storage at r = 1, possible release

decisions {Q1, Q1,…,QN} at each stage should be such that

in each stage the final storage belongs to the set of m

predefined discrete states {0 B Smin B md}, and Smax = -

Ya}. Small value of ‘d’ will increase the number of states if

the reservoir is a large size reservoir, as a result compu-

tations of DP will increase. Conversely, a coarse increment

size will reduce the accuracy of the optimal results,

although the solution will be global optimal for a given

increment. DP model solution provides a set of optimal

releases Q�
1;Q

�
2; . . .;Q

�
r ; . . .Q

�
N

� �
which is the optimal

policy for given discrete increment ‘d’.

Optimization with GA

Real coded GA is used since floating point representation

has advantages over binary, as it can represent the search

space more precisely and closely to the problem (Micha-

lewicz 1996). The objective function of GA is the same as

in DP. The constraints are also same except the limits on

releases, which are defined based on the search space

obtained from DP model solution in case of DP–GA, while

for simple GA the releases are limited by target demands.

The objective function is:

Minimization of squared deviation from target demands,

i.e.,

gt Qtð Þ ¼ Min
XN

t¼1

Qt � Dtð Þ2 ð7Þ

where gt(Qt) is function of release at time period t. Qt is the

release for period t and Dt is target demand for time period

t.

The constraints for the GA model are:

The continuity equation, which is stated as:

Stþ1 ¼ St þ It � Qt � Evt 8t ¼ 1; . . .;N ð8Þ

where St, It and Qt are the storage, inflow and releases for

the given reservoir at time period t and N is the time

horizon for the problem under consideration. Evt is evap-

oration from reservoir surface during time period t,

respectively.

Limits on storage impose constraints of the form

Smin � St � Smax 8t ¼ 1; . . .;N ð9Þ

Which ensure that the storage (St) will be within spec-

ified minimum and maximum storages.

Limits on release

Qmin �Qt �Qmax 8t ¼ 1; . . .;N ð10Þ

Release (Qt) should be within specified minimum and

maximum range.

Releases are the decision variables in this problem.

Decision variables exist in the composition of the chromo-

somes of the population, [ Q1
1;Q

1
2; . . .Q

1
t ; . . .;Q

1
N

� �
,

Q2
1;Q

2
2; . . .Q

2
t ; . . .;Q

2
N

� �
; . . .; QNP

1 ;QNP
2 ; . . .QNP

t ; . . .;
�

QNP
N g]. Since initial population is generated within the limits

specified for the decision variables, so the release constraints

are readily satisfied (Eq. 10). In case of simple GA decision

variables are generated within the entire range {Qmin = 0,

Qmax = Dt}. The search space for DP-GA is defined as

Qmin ¼ Q�
t � d; Qmax ¼ Q�

t þ d
� �

, that is in d vicinity of

the optimal release made by DP (Fig. 1). To further refine

this range the releases were generated within the range

Qmin ¼ Q�
t � d; Qmax ¼ Dt

� �
, i.e., the upper bounds

on releases are kept as the target demands. Continuity
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equation is also satisfied beforehand, since the storages are

computed using the continuity equation itself given in

Eq. (8).

Limits on storages are the only constraints which need to

be examined for their feasibility during GA computations.

Most popular approach to handle constraints in GA is using

penalty functions for the violating constraints and then

adding them to the objective function and then solving it as

unconstrained problem. Many authors (Chang et al. 2010;

Hinçal et al. 2011) have used penalty function approach for

handling constraints in reservoir operation studies. The

main problem in using this method is finding the appro-

priate penalty function associated to each constraint, which

requires a sensitivity analysis or prior information about

the constraints to set the penalty functions. Other approa-

ches are replacing or repairing the chromosomes which

create infeasibility or do not satisfy the constraints. The

latter approach was found to outperform penalized

approach by researchers (Alghazi et al. 2013; Michalewicz

1996). Repairing of chromosomes is adopted herein for

dealing with infeasible chromosomes.

For handling storage constraints, following procedure is

adopted. Assuming given initial storage at the beginning of

the operation period for each chromosome, final storages

are computed for each gene (release) using the continuity

equation. Since, releases are generated randomly within

specified limits; the corresponding storages may or may not

lie within the range specified for them. A chromosome

having genes (releases) which do not satisfy storage con-

straints is considered as infeasible chromosome and it goes

through repairing process. During GA computations, if a

storage value is less than the predefined lower limit, then

the corresponding gene is repaired and a new gene is

randomly generated in the search space, and is checked for

its feasibility, if the corresponding storage found infeasible

again then this cycle is repeated until a new gene is found

which satisfy the lower limit on the storage. In case, the

storage value exceeds the upper limit, the final storage will

be equal the storage capacity of the reservoir and rest will

be defined as spill (Spt) from the reservoir. The same

procedure is repeated for all genes of each chromosome in

the population to calculate final storages associated with

each release until a feasible initial population is found. This

population goes further through selection, crossover and

mutation process to find new generation of the parent

population. The new population is now checked for feasi-

bility and refreshed again if needed before it goes through

GA operators. This process is repeated for predefined

maximum number of generations. The operators used in

GA process are discussed below:

The main computational steps for the roulette wheel

selection method are as follows:

1. Fitness of each chromosome, fti, and their sum
PNP

i¼1 fti
are calculated, where the population size is NP.

2. A real random number, rand(), within the range [0, 1] is

generated for each chromosome and s is set to be equal

to the multiplication of this random number by the sum

of the fitness values, i.e., s = randðÞ�
PNP

i¼1 fti.

3. The kth chromosome is selected for the next genera-

tion, determining the value of k such that s is less than

or equal to the cumulative sum of finesses up to kth

chromosome, that is, s�
Pk

i¼1 fti.

4. Steps 2 and 3 are repeated until the number of selected

chromosomes becomes equal to the population size,

NP.

Crossover

Crossover operator can significantly influence the perfor-

mance of real coded genetic algorithms as the exploration

and exploitation of the search space is governed by cross-

over operator being applied. Generally, BLX-a crossover

gives good results (Michalewicz 1996; Hinçal et al. 2011).

BLX-a crossover

Two offspring y1 ¼ y1
1; y

1
2; . . .; y

1
n

� �
and y2 ¼ y2

1; y
2
2; . . .; y

2
n

� �

are generated.

where, yki is a randomly uniformly chosen number from

the interval Xmin � Ia;Xmax þ Ia½ �
and Xmax, Xmin and I are defined as below

Xmax ¼ max x1
i ; x

2
i

� �
; ð11Þ

Xmin ¼ min x1
i ; x

2
i

� �
; and ð12Þ

I ¼ Xmax � Xmin ð13Þ

Higher value of a results in a better solution. As a is

increased, the exploration level increases, since the relaxed

exploitation zones spread over exploration zones, thereby,

increasing the diversity levels in the population (Herrera

et al. 1998).

Mutation

Random mutation is performed using a mutation probability

which was fixed during sensitivity analysis of the parameters.

In random mutation, the mutated gene is replaced with a new

randomly generated gene within the specified search space.

Study area

The Mula project (Awchi 2004) envisages a major multi-

purpose reservoir across the river Mula, a sub tributary of
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the river Pravara in the Godavari river basin in the State of

Maharashtra in India. It was initially constructed to serve

the irrigation water needs of the system only. Subse-

quently, a provision for water supplies to Ahmednagar city,

industries and villages were made. The total annual water

requirements are 748 9 106 m3 out of which the annual

irrigation water demand is 674 9 106 m3 and annual water

supply requirements are 74 9 106 m3. A data series of

18-years-monthly inflow to the reservoir is available. The

mean annual and the 75 % water year dependable inflows

to the reservoir are 825 9 106 and 688 9 106 m3, respec-

tively. Based on the historical data set, the estimates of the

mean and the 75 % water year dependable inflows to the

reservoir were obtained from the flow duration curve

analysis. The gross reservoir capacity is 736 9 106 m3,

active and dead storage capacities are 608 9 106 and

127 9 106 m3, respectively. There is no provision for flood

storage at the project.

Results and discussion

The operation of the single reservoir Mula was taken as the

case study to evaluate the performance of the DP–GA

approach. The operation was done for an average year

using the 18 years historical data. The average monthly

flow and average monthly target demands are shown in

Fig. 3. The DP–GA optimization results were compared

with the DP and the simple GA. For DP model solution a

computer code developed in FORTRAN was used. The DP

model was solved to find an optimal policy with discrete

state increment equal to 8 9 106 m3.

(1) The release policy using DP for an average year is

shown in Fig. 4. Variations in the releases from target

demands can be seen from this figure. The value of

objective function is 70.31, which is the minimum squared

deviation from target demands. For an average flow, there

should not be any deficit as sufficient water is available for

release, and this variation in releases is mainly due to the

increment used in the DP. The DP underestimates or

overestimates the decisions because of increment size used

to discrete the storages or state variables. For large size

reservoirs increment size is usually taken larger so as to

contend computational difficulty of DP and the variation in

releases may be more in such cases. Therefore, the results

obtained are optimal for given increment but are not

actually optimal as these results are further refined through

simulation in practice. This can be done by using another

approach which can search for the actual optimal within

this space already searched by DP. In this study such an

attempt is made by using the GA to refine the results

obtained by the DP. The GA searches for the optimal in the

space bounded by upper limit as Qt
* ? d and lower limits

as Qt
* - d. The Fig. 4 shows the search space facilitated by

the DP for the DP–GA approach.

This space can be decreased or increased depending on

the problem. In present study, the search space was further

refined as {Qt
* - d, Dt}, as release should not be bigger

than the target demand.

(2) GA and DP–GA approaches were also implemented

through FORTRAN programs for solving the reservoir

operation model. The code was first developed for simple

GA and tested for some standard problems. It was further

modified for reservoir operation problem to be solved using

the simple GA and the DP–GA.

Sensitivity analysis of the GA parameters, e.g., popu-

lation size, probability of crossover and mutation, etc., for

fixing their best values, has been a common practice used

by researchers in this kind of studies, e.g., Cheng et al.

2008; Chang et al. 2010; Li et al. 2012; Hidalgo et al. 2015

etc. Some recent studies have shown use of fine tuning of

GA parameters in reservoir operation studies (Lerma et al.

2013; Scola et al. 2014), by incorporating routines for

mutation and crossover probability optimization in GA

code. Fine tuning of parameters may enhance the perfor-

mance of GAs in general, but it requires long computer
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runs. In this study sensitivity analysis was followed and

since the main aim was to examine the effectiveness of the

hybrid approach and results were found worthy with the

chosen values of crossover and mutation probabilities, fine

tuning was not considered for optimizing GA parameters.

For the BLX-a crossover operator the value of a was fixed

at 0.5 after few trials. Crossover and mutation probabilities

were also fixed after a few numbers of trials. For fixing the

probability of crossover, a range 0.2, 0.4, 0.5, 0.6, 0.8, 0.9

of probabilities was tested and it was seen that better results

were obtained for larger value of crossover probability, as

suggested by many researchers too. Figure 5 shows the

effect of crossover probability on performance of the GA

for population size 50. Finally the probability of crossover

was set to be 0.8. Different mutation probabilities were

tried for population size 50, see Fig. 6. The mutation

probability was found best as inverse of the population

size. However, for present study it was taken as 0.01 in

each case. In this study, however, no further sensitivity

analysis was made on type of crossover or mutation

operators and most commonly used selection, crossover

and mutation methods were used to show the efficacy of

the proposed hybrid approach.

(3) Population sizes and number of generations were

varied to see their effect on optimization approach since

large population size and large number of functions eval-

uations increases the computational requirement of the GA

and make convergence slower. The limits on decision

variables which was 0 to Dt for the simple GA and

{Qt
* - d, Dt}, for the DP–GA while all other parameters

were kept same for the simple GA and the DP–GA to make

a comparison.
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Table 1 Performance evaluation of simple GA and DP–GA

Population size Max. no. of generations Generation no. when optimum reached Value of objective function Computation time (s)

GA DP–GA GA DP–GA GA DP–GA

10 500 400 301 162.156 30.473 2–3 1–2

1000 990 997 86.742 4.934 2–3 1–2

5000 3753 1746 8.873 0.449 8–9 8

20 500 500 473 24.142 0.969 3–4 2–3

1000 999 666 4.033 0.120 5 5

5000 4217 2245 1.020 0.065 25 23–24

50 500 500 419 2.095 0.120 13 12

1000 930 999 0.224 0.036 24 22–23

5000 4208 1215 0.208 0.017 115 102

100 500 498 497 0.826 0.043 45 41–42

1000 980 518 0.241 0.009 87 85

5000 4179 2099 0.017 0.008 345 343

150 500 487 365 0.184 0.041 83 86

1000 876 888 0.018 0.007 192 176

5000 3155 2387 0.005 0.005 950 956
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Results were obtained for population sizes 10, 20, 50,

100 and 150 using both the DP–GA and the simple GA. For

each population size results were obtained for 500, 1000

and 5000 generations. Table 1 presents the value of

objective function, number of generation where the opti-

mum was found and computation time taken in each case.

Convergence of the DP–GA and the simple GA is shown in

Fig. 7a–e for different population sizes for 5000 functions

evaluations. These figures clearly explain the difference in

the performance of the two approaches. The DP–GA starts

to converge towards optimum faster than the simple GA.

Figure 8 shows that the optimal results for 100 population

size for 5000 generations using the simple GA are equiv-

alent to the optimal results for population size 20 for the

DP–GA for equal number of generations. The computation

time for each case is 24 and 345 s, respectively. This shows

that the DP–GA reaches to the same optimal more than 10

times faster. Likewise, it can be seen that similar results

were obtained with population size 50 in 1000 generations

or with a population size 100 in 500 generations (see

Table 1; Fig. 8). In each case, it was observed that the DP–

GA may possibly reach to optimal approximately 10 times

faster as compared to the simple GA, either with small

population size and larger number of generations or with
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bigger population size and less number of generations

(Fig. 9). In every case the computational requirement can

be reduced approximately 10 times as compared to the

simple GA. The DP–GA with less computational efforts

gives better results as compared to the simple GA or the

DP, as shown in Fig. 9. Similar results have been reported

in literature by Li et al. 2012, who used IDP and GA

together for a cascaded hydropower system.

The optimal release policies obtained for the two cases

from Fig. 9, that is, case 1. for population size 20, 5000

generations and case 2. population size 100, 500 generation

using both the simple GA and the DP–GA are presented in

Figs. 10 and 11, respectively. The monthly operation

policies derived using both the DP–GA and the simple GA

are very similar and better as compared to the DP. But, the

computational requirement is considerably lessened using

the DP–GA as compared to the GA. Since initial popula-

tion is generated randomly, a number of solutions are

obtained and the best solution is picked. Statistical per-

formances of simple GA and DP–GA have been compared

for ten different runs. The results are shown in Table 2 for

the latter case, that is, population size 100 and 500 gen-

erations, for both simple GA and DP–GA. Results show

that, the average values of the objective function obtained

using GA and DP–GA are 0.951 and 0.056, respectively.

The standard deviation of the solution in 10 different runs

of the DP–GA algorithm is 0.011. The standard deviation

of the objective function value calculated with GA was

equal to 0.068, which is 6.4 times larger than that of DP–

GA in 10 runs. Objective function values achieved using

simple GA and DP–GA are of different scales and solutions

with lesser value of objective function will give higher

value of coefficient of variation, therefore, comparing their

coefficient of variation is not worthy in this case.

Conclusions

The results of the combined DP–GA approach used to

derive optimal reservoir operation policy of the Mula

reservoir seems to be encouraging. The approach helped in
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reducing the computational requirements of the simple GA.

The convergence of the DP-GA is approximately 10 times

faster than the simple GA. Simple GA may achieve results

equivalent to the DP–GA either by using a large population

size and/or large number of generations. However, the

convergence becomes quite slower in both the cases. In

other words, the GA could achieve results comparable to

DP–GA but at the cost of computational requirement. It

can be said, therefore, that DP–GA outperforms the simple

GA and DP in giving more precise results with less com-

putational requirement. This approach is more useful for

large size reservoirs where the decision space for the

variables under consideration is large in size. In such cases

a coarse increment size may be used to discrete state

variables for the DP, while the GA may be used further for

finding optimum within the narrowed space which has been

considerably reduced as compared to the entire search

space. The proposed method shall be applicable to the

problems which can be fitted into the DP framework. The

operation policies derived using both the DP-GA and the

simple GA are similar. But, the computational requirement

is considerably lessened using the DP–GA as compared to

the GA.
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