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Abstract Computational modeling is usually employed for

simulation, design and manufacturing of tissue scaffolds,

specially focused on macroscopic and microscopic prop-

erties, relying on anatomy and geometrical constraints.

However, these models typically require to take into

account the effects of cell-matrix interaction due to its

crucial influence on a range of cellular processes including

cell adhesion, differentiation and tissue formation among

others. Computational mechano-chemo-biology is a

numerical approach that aims to consider this interaction

by means of a multiphysics and/or a multiscale computer

framework. This article reviews some of the recent pro-

gress made in modeling bone regeneration induced by

scaffolds, taking into account cell-matrix interactions. The

issues covered in this work include different kind of

numerical models at different length scales that go from

cell-matrix interaction to tissue mechanics. The review

concludes summarizing the main challenges that

researchers face to consolidate modeling as a final design

tool for tissue engineering.

Keywords Computer-aided tissue engineering �
Computational mechano-biology � Cell-material

interaction � Scaffold manufacturing

Introduction

Currently, computational modeling is one of the tools that

is being recognized as an important partner of experimental

work in biology [51] and biomedical engineering sciences

in different applications like cancer [19], cardiovascular

[89], bone [21] and wound healing [86].

One of the computing technologies that is widely used in

biomedical applications is CAD (Computer Aided Design),

ranging from construction of patient-specific models to

customized implant design [58]. 3D anatomy based on

computed tomography (CT) or magnetic resonance imag-

ing (MRI) data provides the required technology to create

specific models in cardiovascular [31, 39, 83], bone [44] or

other applications [61]. For example, Bah et al. [3] recently

developed a framework to model the geometric variability

of the anatomic structures within a large population of

femurs. Vahdati et al. [66] combined gait analysis and a

subject-specific musculoskeletal model with subject-

specific bone geometry in a computational bone remodel-

ing methodology to predict bone density distribution.

González-Carbonell et al. [26] used the patient-specific

geometry and material properties to study tibial torsion.

Dao and Pouletaut [18] created integrated contact models

for the simulation of knee replacement implants. Also,

Carey et al. [12] created subject-specific FE models of the

tibiofemoral joint using dynamic stereoradiography data

and kinematic analysis. Therefore, it is clear that CAD is a

tool especially adequate for the personalized modeling of

anatomies and subject-specific geometries. This circum-

stance has been possible largely thanks to the develop-

ments made in imaging technologies and analysis.

Computer-aided technologies are also especially useful

for advanced modeling and simulation in regenerative

medicine, where subject-specific characteristics of the
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injury have to be taken into account. Indeed, one particular

strategy in regenerative medicine is tissue engineering,

where biomaterials are used in combination with cells and

other stimuli to promote self-repair of injured tissues.

Hence, the design of these biomaterials, normally known as

scaffolds, is fundamental to induce an adequate healing.

These scaffolds, present an specific 3D architecture that

aims to mimic the complex behaviour of extracellular

matrix in healthy tissues [81]. Their design is defined by

the properties of the biomaterial itself and the architecture

characteristics. Recently, tissue engineering (TE) has ben-

efited from the development of additive manufacturing

(AM) techniques in combination with computer-aided

technologies in a novel field known as Computer-Aided

Tissue Engineering (CATE), which have led to the design

and fabrication of porous scaffolds with custom-tailored

architectures [25, 46, 79]. CATE combines different tech-

nologies [81], like computer-aided design (CAD), medical

image processing, computer-aided manufacturing (CAM),

and solid freeform fabrication (SFF) for three major

applications in tissue engineering:

1. computer-aided tissue modeling, including 3D ana-

tomic visualization, 3D reconstruction, CAD-based

tissue modeling, and bio-physical modeling for surgi-

cal planning and simulation;

2 tissue scaffold modeling and biomimetic design,

including computer-aided scaffold design and applica-

tion for virtual scaffold characterization, biomimetic

design under multi-constraints, and multi-scale mod-

eling of biological systems incorporating interaction

with scaffolds;

3. bio-manufacturing for tissue and organ regeneration,

including computer-aided manufacturing of tissue

scaffolds, bio-manufacturing of tissue constructs, bio-

blueprint modeling for 3D cell and organ printing.

One of the applications where CATE is being successfully

applied is Bone Tissue Engineering [32, 80]. These com-

puter-based works mainly focus on the control and design

of the overall shape of the scaffold to match patient-

specific anatomical constraints and the internal architecture

of the scaffold (pore size, porosity, permeability). There-

fore, a heterogeneous scaffold can be designed according to

the specifications of each patient and of their injuries.

However, these computational works are mainly based on

the most adequate scaffold design and preoperative plans,

but do not analyze the impact of one specific design on the

biological response of cells at the cellular level. As the

structural and functional unit of life, cells actively sense the

surrounding mechano-chemical microenvironment and

respond accordingly to regulate tissue formation and

healing [9, 15, 54, 85]. Actually, the cell-scaffold interplay

exerts an essential role during bone regeneration as cells

adhere to the scaffold surface, differentiate and secrete new

tissue (see Fig. 1). Therefore, it is fundamental to advance

in the understanding of how scaffold properties (biomate-

rial and architecture) may regulate cell response at scaffold

level and how it can affect to the macroscopic properties of

bone tissue, is fundamental. In fact, to understand how

different mechano-chemical conditions may also regulate

this cell response is a topic of relevant interest. Both

aspects are normally studied by the field of Computational

Mechano-Chemo-Biology, being its main purpose to pre-

dict the long term response of cells for a specific scaffold

design and for specific local mechano-chemical microen-

vironment. This aspect has not been thoroughly studied by

CATE, although it is clearly in the spirit of this technology.

Therefore, this article aims to review some of the recent

progress made in modeling cell-scaffold interactions at

multiple length scales and involving multiple fields of

physics. Although many different and diverse methodolo-

gies have been used for computational modelling in Tissue

Engineering, our review focuses on the multiphysics and

multiscale analysis. Hence, the first section presents the

multiphysics modeling approach. Next, we show a review

of multiscale approaches in tissue engineering. And finally,

a more detailed description of models that aim to simulate

cell-scaffold interactions is presented. The review con-

cludes with a look at future opportunities and challenges to

be faced in computational modeling of tissue regeneration.

Multiphysics modeling in tissue engineering

Due to the wide variety of physic fields involved (solid

mechanics, fluid flow, mass transfer or biochemistry among

others), many different works based on computational

Fig. 1 Interplay between cells and scaffold. When the scaffold is

implanted, cells adhere to it to produce matrix. Matrix production is

determined by the scaffold properties (material and architecture)

which subsequently evolve due to cellular activity
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modeling of tissue engineering phenomena can be found in

literature [23]. One possible classification is to divide them

into three main categories (see Fig. 2) according to the

biophysical stimuli that regulates tissue differentiation and

formation: solid mechanics, fluid mechanics and mass

transport. Certainly, these stimuli are not used in an iso-

lated way, but as a combination of stimuli that establish

regulatory theories in function of these stimuli.

Mechanistic-based models normally establish hypothe-

ses of tissue differentiation and/or tissue formation

depending on the solid mechanics variables that describe

the macroscopic or microscopic deformation of the scaf-

folds. Several authors evaluate the strain energy density to

quantify bone tissue formation [1, 53] like in common bone

remodeling theories [17]. For example, Adachi et al. [1]

simulated bone tissue regeneration and scaffold degrada-

tion within a scaffold unit cell based on a voxel finite

element approach, optimizing the scaffold microstructure

that provides the desired mechanical function during and

after the bone regeneration process. They used the change

in total strain energy as fundamental mechanical variable to

regulate bone formation. Meanwhile scaffold degradation

was due to hydrolysis, which was simply assumed to

depend on the water content diffused from the surface to

the bulk material, also taking into account the decrease of

the mechanical properties of the scaffold. Sanz-Herrera

et al. [68, 71] also proposed mechanical stimuli to regulate

bone formation inside a specific type of scaffold, although

they also included cell invasion within the scaffold, which

was modeled as a diffusion process based on Fick’s law.

Bone formation was predicted within idealized or theoret-

ical scaffold geometries and submitted to external

mechanical loading. Then, the effects of scaffold material

properties such as porosity, stiffness, permeability or

degradation rate were analyzed.

However, there exist other biophysics-based theories

that hypothesize that fluid shear stress can be the key

variable determining cell differentiation in bone [48]. All

biological tissues are porous media [36], which means that

they contain pores filled with a fluid. These characteristic

materials produce exceptional mechanical properties to our

biological tissues, like impact absorption, lubrication at

joints, adequate transport (diffusion and convection) of

ions, nutrients and waste products by means of fluid flow,

and finally, promoting mechano-sensing mechanims at cell

level. Actually, fluid mechanics mainly based on Navier–

Stokes equations, has also been widely used in tissue

engineering to estimate wall shear stress magnitudes

(WSS) [62], only considering the influence of the scaffold

architecture. For instance, several works determined that

the distribution of WSS is strongly dependent on scaffold

architecture [38, 59].

All these models assume that there exists no interaction

between the mechanics of the scaffold and the movement

of the fluid within the scaffold pores. However, the

mechanical deformation of the scaffold may induce the

movement of the fluid inside the scaffold, or equivalently,

the fluid flow can generate strains on the scaffold. There-

fore, a coupled formulation is required where fluid-solid

interaction is considered. Two main numerical approaches

have been used to model this phenomenon. The first one is

based on the use of fluid-structure interaction (FSI) models,

where fluid is simulated by means of Navier–Stokes

equations combined with the corresponding equations of

solid mechanics and the solid-fluid interface. The second

one is known as Darcy’s law which describes the flow of a

fluid through a porous deformable medium. Actually, the

Darcy’s law has been derived from the Navier–Stokes

equations via homogenization [90].

Fluid-structure interaction (FSI) approaches have been

applied to understand the role of scaffold stiffness and

architecture on the wall shear stress distribution. In fact,

McCoy et al. [50] determined that he applied flow rate

dominated themechanical stimulationwhen compared to the

pore size in collagen-GAG scaffolds. More recently, Zhao

et al. [93] also applied this method to investigate the role of

scaffold geometry (architecture, pore size and porosity) on

pore wall shear stress (WSS) under a range of different

loading scenarios (namely: fluid perfusion, mechanical

compression and a combination of perfusion and compres-

sion), finding that scaffold geometry (spherical and cubical

pores), and in particular the pore size, has a significant

influence on the stimulation within the scaffolds. In addition,

they concluded that the combination of loading conditions

would allow amplifying these wall shear stresses.

In addition, fluid-structure interaction has also been used

to simulate how the fluid movement deforms the cell body,

modeling the cell as a solid in many different applications

of tissue engineering. Vaughan et al. [87] developed a

fluid-structure interaction model to characterise the defor-

mation of integrin and primary cilia-based mechanosensors

in bone cells under fluid flow stimulation. Actually, fluid

flow through a channel region of a pressure-driven parallel-
Fig. 2 Classification of multiphysics models according to the

involved fields
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plate flow chamber was interacting with a single bone cell

which was adhered to the bottom wall of the channel region

and simulated as a solid. There are many models [47] that

investigate the role played by fluid flow on the primary

cilia deflection and how this deflection is involved in the

mechanotransduction process whereby fluid flow indirectly

induces strains on the internal cell components.

Other authors have, on the other hand, focused on

understanding how fluid flow can deform cells when they

are moving inside the bioreactor, helping to determine the

fluid flow conditions in the inside. With this purpose in

mind, Ruberg and Garcı́a-Aznar [64] presented an

immersed finite element method that allowed the simula-

tion of solid-fluid interactions specially focused on highly

deformable elastic bodies in a Stokes flow environment.

The method was based on a global balance equation which

combined the solid and fluid momentum balances, the fluid

mass balance and, in weak form, the interface conditions.

The method resulted in a full coupling of the solid-fluid

system which is solved by an exact Newton method. This

kind of models are very useful because they allow esti-

mating the stresses and strains that cells are bearing inside

the scaffold in different conditions both during cell culture

and when this scaffold is implanted.

Nevertheless, different approaches are possible, for

instance, considering that our tissues and scaffolds are por-

ous media. In fact, Prendergast and Huiskes et al. [35] pre-

sented a biphasic approach based on the Darcy’s equation to

define a mechanoregulatory phenomenological law, which

proposes a combination of solid and fluid mechanics stim-

ulus to define tissue differentiation and formation. They

assumed that the relative velocity betweenfluid and solid and

shear strain are the main mechano-fluid stimuli. Indeed, this

law has been widely used to simulate bone fracture healing

conditions in Finite Element-based models [27, 30] and also

to simulate bone tissue formation and cell differentiation

[11, 40, 53]. For instance, Kelly and Prendergast [40]

determined the influence of scaffold material properties on

chondrogenesis in a finite elementmodel of an osteochondral

defect, predicting that increasing the stiffness of the scaffold

increases the amount of cartilage formation and reduces the

amount of fibrous tissue formation in the defect. Byrne et al.

[11] developed a fully three-dimensional model for the

computer simulation of tissue differentiation and bone

regeneration in a regular scaffold as a function of porosity,

Young’smodulus, and dissolution rate, all of this done under

both low and high loading conditions. Milan et al. [53],

predicted homogeneous mature bone tissue formation under

strain levels of 0.5–1 % at strain rates of 0.0025–0.005 s�1,

finding that, under higher levels of strain and strain rates, the

scaffold shows heterogeneous mechanical behavior which

leads to the formation of a heterogeneous tissue with a

mixture of mature bone and fibrous tissue.

More recently, Guyot et al. [29] proposed a combination

of numerical methods to solve the fluid-solid interaction

problem in a scaffold where bone is growing. They proposed

to divide the whole domain of the scaffold in three parts:

biomaterial, neotissue and void. Hence, the fluid flow profile

is treated differently in each domain using respectively the

Brinkman’s law, Darcy’s law and Stokes, aiming to deter-

mine an accurate estimation of the shear stress profile.

The third main category of multiphysics models are

based on mass transport by diffusion phenomenon. Actu-

ally, there are many macroscopic models that use the dif-

fusion of growth factors as regulatory elements for

mediating cellular processes in regenerative process in

bone healing [4] and bone regeneration [24]. However,

most of these models are not based on pure diffusion

transport approaches, but involve convection too, also

regulating the transport of these growth factors by means of

fluid flow. The production of these growth factors is nor-

mally associated to the cells but mediated by the

mechanical stimuli that cells are bearing. Therefore,

mechano-chemical relations have to be defined. In a recent

work, Nava et al. [57] proposed that bone growth was

regulated by shear stress and oxygen concentration, but

also including the volume occupied by the cell and the

tissue growth by using a moving boundary formulation.

Therefore, this approach allows not only estimating the

fluid shear stress for the initial scaffold geometry, but also

predicting the dynamical evolution of the tissue growth

within the scaffold, guided by the combination of a fluid-

based stimulus and oxygen concentration.

Finally, we should show the application of mechano-

chemical models to perform simulations in tissue engi-

neering. Despite the wide use of mechano-chemical models

for the simulation of bone healing or wound healing

[4, 24, 37, 85], there are not many computational works

assessing the use of growth factor delivery devices in tissue

engineering. Ribeiro et al. [65] recently developed a

mechanochemical regulatory model to study the effect of

bone morphogenetic protein-2 (BMP-2) on bone regener-

ation. In particular, they did a comparative study of the

impact of different strategies to induce healing to a bone

large defect, comparing: natural healing, an empty hydro-

gel implanted in the defect, and a hydrogel soaked with

BMP-2 implanted in the defect. The proposed mechano-

chemical model successfully predicted the positive effect

of BMP-2 on the evolution of healing in large bone defects.

Multiscale modeling in tissue engineering

Multiscale modeling is a technology inherent to all the

biological systems, and Tissue Engineering is not an

exception. The overall purpose of this methodology is to
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understand material behaviors from a fundamental per-

spective taking into account all relevant length and time

scales, ranging from the atomic scale to the macroscopic

continuum viewpoint. Multiscale modeling has to take into

account the fine scale requirements, such as allowing par-

ticle flow, and at the same time guarantee the large scale

functionality and support. There are many computational

multiscale models in the literature that describe different

mathematical approaches to recreate biological processes

that occur in tissue engineering or tissue regeneration

[13, 33, 78, 82, 88].

Despite the variety of different methods, in this work we

focus on those approaches in which there exists a separation

of the length scales, based on the asymptotic homogenization

theory (AHT) [34, 72, 84]. Normally, at scaffold or micro-

scopic level, a representative volume element (RVE) is

chosen to recreate the geometry of the scaffold and involve

most of the cellular processes, however, at macroscopic

level, the whole organ is simulated. See Fig. 3 showing one

example of how both scales can be linked [69]. The funda-

mental idea is to decompose each fundamental variable into a

macroscopic VðxÞ and microscopic variable V
0 ðyÞ:

VTðx; yÞ ¼ VðxÞ þ V
0 ðyÞ ð1Þ

where y represents the space description at tissue level and

x at macroscopic level. Actually, V
0 ðyÞ describes the evo-

lution of the variable at the fine scale considering that their

average on the RVE is zero.

In order to connect both scales, homogenization and

localization numerical techniques have been widely

developed based on different multi-scale approaches

[34, 63, 84] for multiple applications. In particular, in the

case of bone tissue engineering, in the work of Sanz-Her-

rera et al. [69], a solid mechanics problem and a transport

problem are solved to simulate bone regeneration.

Therefore, they use this technique in order to homogenize

stiffness and diffusion tensor, and they use localization in

order to determine locally the cell concentration and strain

field. This numerical approach represents a promising

strategy for the design and optimization of scaffolds,

because it allows to developing a multiphysics approach

taking into account solid mechanics, fluid mechanics and

transport phenomena. Fundamental scaffold design

parameters are considered in the model including porosity,

pore size, interconnectivity and mechanical properties.

Actually, it is worth noting that there exist multiple evi-

dences linking the bone formation process with the scaffold

design parameters: pore size [92], pore shape [43], pore

interconnectivity [42] and local curvature [29].

Traditionally, many different models in tissue engi-

neering have been working only at the Scaffold level, in

order to understand how different mechano-chemical con-

ditions modify the cell response updating the local archi-

tecture of the scaffold [1, 14, 75]. However, these models

do not link the evolution of the neotissue bone formation

within the local scaffold properties with the macroscopic/

organ scale properties.

Computational multiscale modeling has made possible

the design andmanufacturing ofmultiple scaffolds in the last

years [77]. In fact, multiscale scaffolds have been success-

fully incorporated into different biological tissues such as

heart valves[16], tympanic membrane [56], or cartilage [45].

Modeling cell-material interactions for tissue
engineering applications

To achieve a controlled and reproducible tissue regenera-

tion under multiple different conditions, it is fundamental

to understand cell-material interactions [22, 74]. It is

Fig. 3 Multiscale model of a

scaffold (tissue level) implanted

into the organ level
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currently accepted that many different kind of biophysical

and chemical factors stimulate cells regulating their

response. Actually, it is recognized that cells actively sense

the mechanical properties of the material in which they are

adhered, such as, rigidity, geometry or deformation

[15, 54, 73].

There are many mathematical and computational mod-

els in the literature that have focused on modeling the

active mechanosensing behaviour in cell-matrix interac-

tions (see [15] for a review). In fact, most of these works

have focused on modeling directional cell migration reg-

ulated by mechanical properties, such as, durotaxis and

tensotaxis [7, 10, 54].

With respect to tissue engineering applications, com-

putational models have been focused on mechanical vari-

ables representing the different components of the cell

body. For instance, by using a simple model, Garcı́a-Aznar

et al. [22] showed that cell forces increase with stiffness of

the material until saturation, orienting the actin stress fibers

in this direction. Furthermore, this work also predicts that

external mechanical loads may affect cell forces and ori-

entation. The proposed model [8, 54] consists on two

parallel springs representing the stiffness of the passive

mechanical components of the cell and the actin filaments

in series with the myosin contractile system (see Fig. 4) .

This approach was purely mechanical and static, so that the

contractile system exerted a specific force depending on the

cell strain, and thus depending on the material stiffness.

Additionally, a discrete approach including actin filaments,

actin cross-linking proteins (ACPs) and molecular motors,

was proposed by Borau et al. [9] to study the

mechanosensing phenomenon at the microscopic level.

This model evaluated the network contraction and reorga-

nization using different ranges of ECM stiffnesses and

actin, ACP and molecular motor concentrations, finding

that actin-myosin contractility is one plausible stand-alone

mechanism capable of contributing directly to cell

mechanosensing.

Topographical cues mimicking the extracellular matrix

(ECM), such as curvature, have demonstrated to play a

relevant role over a diverse range of cellular behaviours

including: initial adhesion, migration, cell growth, differ-

entiation and death [6, 60, 91]. This fact has motivated a

high interest in understanding the role of curvature on cell

mechanics, thus, several numerical models have been

developed to evaluate the stress distribution on the cell

body. For example, [22, 73] obtained that substrate cur-

vature determines the stress distribution over the cell,

concluding that cell forces are higher in the direction of

minimal curvature. Moreover, it showed that stresses

become larger at peripheral locations of the cell, since

curvature decreases as you move away from the cell centre.

This dependence of cell stresses on the scaffold local

curvature also helps to understand the phenomenon by

which cells tend to align with the direction of minimum

principal curvature [76].

Different numerical and theoretical models have postu-

lated the dependence of tissue growth on geometrical fea-

tures due to the local mechanical forces based on

continuum growth theories [5, 20, 67]. More recently, in-

vitro experiments showed that local scaffold topography

(curvature) [2, 28, 29, 49, 52] enhances cell growth and

neotissue formation. As a consequence, most of these

recent numerical models [28, 29] propose phenomenolog-

ical local growth laws of this neotissue formation,

depending on the local mean curvature. From our point of

view, this is an indirect way to consider the mechano-

sensing mechanism that cells use to sense their local

mechanical microenvironment.

Future challenges

There are many challenges that computational mechano-

chemo-biology needs to face for the optimal design of

scaffolds, as recently reviewed in [25]. But, in our opinion,

Fig. 4 Cell-material interaction

model of a scaffold (tissue

level) implanted into the organ

level
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the consideration of the multiple specificities that charac-

terize the tissue that has to be replaced by the scaffold is

probably the most crucial aspect. Tissue-specific

microenvironment is relevant, but macroscopic patient-

specific characteristics, such as geometry, material prop-

erties or loads are significant too. In addition, the full

integration of the scaffold into the replaced tissue is fun-

damental, being critical to reduce the relative movement

between tissue and scaffold to enhance regeneration at the

damaged tissue [55].

To achieve this, it would be desirable to integrate mul-

tiple fields (involving mechanical, chemical and biological

factors) at different length and time scales that allow linking

phenomena that occur at organ, tissue and cell scales.

The coordinatedmechanical cell-material interaction (with

adequate biochemical conditions) may help to define a local

favorable mechano-chemical microenvironment for tissue

regeneration, allowing to control the preferential movement

of cells, their regulated proliferation and differentiation and

the corresponding matrix formation. Therefore, one of the

most relevant challenges in tissue engineering is the

mechanical design of tissue replacements (scaffolds) with

sufficient mechanical integrity to bear loads during tissue

regeneration that, at the same time, allows the creation of a

local favorable mechanical environment to regulate cell

behavior. Moreover, we have to keep in mind that to over-

come these challenges, the design of scaffolds presents some

relevant constrains that need to be taken into account. Firstly,

the porous architecture of the scaffold should allow an ade-

quate mass transport and vascularization in order to facilitate

the movement of nutrients and the removal of wastes. Scaf-

fold degradation properties must be precisely adjusted to

avoid excessive mechanical forces if the material is removed

quickly, or to avoid porosity decrease and reduction of mass

transport if thematerial disappears very slowly [70]. Finally, it

is necessary to create scaffolds with non-homogeneous

properties and combining different kind of materials, which

were called by Giannitelli [25] as hybrid scaffolds. These

scaffolds would help to achieve adequate local microstruc-

tural properties to activatemechano-sensing cell response, but

as well, to keep the macroscopic mechanical role that our

organs are playing. Additionally, more steps should be given

to achieve the clinical translation of this tissue engineering

technology. For this aim, it is essential to improve the

robustness of this technology, increasing the repeatability in

the results of its clinical application. With this idea in mind,

Kerckhofs et al. [41] developed recently an innovative

approach for robust screening of scaffolds by means of the

combination of microCT characterization with empirical

modeling. It is, therefore apparent that, computational models

have to be designed in order to facilitate the clinical transla-

tion of these scaffolds.

Conclusions

In this article we have presented some recent modeling

works in Tissue Engineering, aiming to show the possi-

bilities that computational modeling offers to scaffold

design. It is clear that tissue regeneration by means of

Tissue Engineering techniques is a complex process that

occurs at different length scales regulated through different

mechanical, chemical and biological factors.

As we have shown, computational design of scaffolds is

not a novel technique, and has been widely used in CATE

[25, 80]. However, as many authors postulate it is still in an

early stage [80]. In the future, CATE should provide the use

of multiscale and multiphysics modeling techniques to

achieve the integration of the macroscopic design of tissue

scaffolds with sufficient mechanical integrity to bear loads

during tissue regeneration. At the same time, it should allow

the simulation of the local mechano-chemical microenvi-

ronment that favors the cell activity to produce new matrix.

Therefore, the computational design of scaffolds requires

both the optimization of macroscopic properties (to support

the tissue- and patient-specific conditions) and microar-

chitecture (to precisely regulate cell behavior).
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