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Abstract One of the challenges for transportation decision

makers is to identify capacity expansion in the network under

the constraint of budget such that various objectives of the

decision maker [such as total system travel time is mini-

mized, social welfare (consumer surplus) is maximized, or

total system emission is minimized], while accounting for

the route choice behavior of users. Such type of investment

decision making in the context of network design problems

can be solved using optimization techniques. This type of

optimization problem is particularly difficult to solve since

two hierarchical decision making entities are involved (de-

cision makers and road users). These two players have dif-

ferent objectives. The road users select routes such that their

individual travel costs are minimized while the decision

makers’ optimally seek to select capacity expansion projects

in the network in such a way that planning objectives are

achieved. The objective of this paper is to propose numerical

methods and application algorithms such that optimal

investment decisions are made in moderate and large trans-

portation networks. The problem is formulated as a bi-level

network design problem in which upper level determines the

optimal capacity expansions of links and the lower level

consist of the traditional Wardrop’s user equilibrium. The

upper level provides a trial capacity expansion vector with

additional network capacities. The lower level considers new

link capacities for user equilibrium. The output from the

lower level is a vector of link flowswhich is transferred to the

upper level. This process is iterated using kth best algorithm

till convergence. The upper level problem is solved using

PSWARM algorithm and the solution for the lower level is

obtained using an efficient static traffic assignment algo-

rithm. Adequacy of the model is examined by first con-

ducting numerical experiments using small networks from

the literature and then using moderate to large scale net-

works. Results of numerical experiments indicates that

proposed methodology from this study can be efficiently

used for real-world applications in practice for transportation

infrastructure capacity expansion decision making.

Keywords Network improvement � Investment decision �
Link capacity expansion � Network design

Introduction

One of the challenges for transportation decision makers is to

optimally allocate resources for capacity expansion projects

in a constrained budget scenario to achieve a certain
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performance measure (e.g. congestion reduction), simulta-

neously considering route choice behavior of network users.

Such type of decision making can be solved using bi-level

optimization with two sets of players: decision maker, and

road users. Both players have inherently different objectives.

The road users to their advantage select routes such that

individual travel costs are minimized while the decision

maker seek to optimally select capacity expansion of network

segments. It is well known in the literature that selecting

capacity expansions based on only flow pattern without

considering responses of user’s behavior may lead to situa-

tions of increased congestion [1]. Thus, the decision maker

has to model the users’ collective response for capacity

expansion of the existing network. Such type of modeling

framework is extensively analyzed in the literature [2–10].

There is consensus among researchers that such bi-level

optimization problems are non-linear in nature, and difficult

to solve. The difficulty of exactly solving this problem is due

to the fact that a user equilibrium or Nash equilibrium flow

pattern has to be calculated at each step of the optimization

search process. This is computationally demanding, and the

algorithms proposed to date are applicable only to problems

of modest size. Proposed solution algorithms are solved by

exact and heuristic methods. Because of the complex nature

of capacity expansion a variety of problem formulations are

proposed in the literature.

The purpose of this paper is three-fold. First, to develop

solution algorithm considering bi-level optimization model

for capacity expansion in a network design problem con-

text. Second, to assess the solution algorithm performance

in comparison with existing literature. Third, to test the

efficacy of the proposed algorithm in real world moderate

to large scale transportation networks for robustness and

flexibility. Remainder of the paper is organized as follows:

first a review of pertinent literature on related works is

presented; followed by a description of the model formu-

lation and solutions approach. Results of the model appli-

cation on two example problems and a large network is

discussed next. Conclusions and recommendation for

future research are presented in the final section.

Literature Review

Transportation agencies face the dilemma to select a lim-

ited number of road improvement projects for allocation of

resources among thousands of prospective choices given a

scarce budget. Finding optimum selection of projects from

a larger pool falls in the category of mixed integer knap-

sack problem. Recent literature focused extensively on

multilevel programming, a branch of mathematical pro-

gramming that can be viewed as either a generalization of

minimization–maximization problems or as a particular

class of Stackelberg games. The network design problem

with continuous decision variables, representing link

capacities, can be cast into such a framework. Marcotte

[11] gives a formal description of the problem and then

develops various suboptimal procedures to solve it. Gra-

dient based methods were used to solve a continuous net-

work design problem in a transportation network where

Wardrop’s first principle was used for traffic assignment

[12]. Bi-level optimization is a useful approach for prob-

lems with conflicting objectives within a hierarchical

structure. It originated from the fields of game theory and

decision making and describes a number of problems in

transportation planning and modeling.

The bi-level problem has hierarchal framework that

involves two separate optimization problems at different

levels. The first problem has a feasible solution set and is

called the upper-level problem which is also known as the

leader problem. The solution set is determined by the

second optimization problem. The second problem is the

lower-level problem or the follower problem. This concept

can be extended in order to define multi-level programs

with any number of levels [13]. The network design

problems are formulated as bilevel programming problem

that are non-convex and non-differentiable in nature.

Hence, obtaining global optimum solution for these prob-

lems is extremely difficult [14]. These problems are con-

sidered as NP-hard which not only consume time and

memory but also are extremely difficult to solve. In the

field of transportation engineering, proposing an efficient

algorithm as a solution approach for this problem is still

regarded as a major contribution [15]. Several solution

approaches have been proposed and developed over the

past few decades. Some of the initial approaches had used

heuristic algorithms, which gave near optimal or local

optimum solutions [16, 17]. Moreover, there are methods

such as equilibrium decomposed optimization (EDO) [6],

which is computationally robust but results in suboptimal

solutions. Gershwin and Tan [18] formulated the continu-

ous network design problem (CNDP) as a constrained

optimization problem in which the constrained set was

expressed in terms of the path flows and performed their

method on small networks. Marcotte [19] and Marcotte and

Marquis [20] presented heuristics for CNDP using system

optimal approach and obtained relatively better numerical

results. However, these heuristics have not been exten-

sively tested on large-scale networks. Regarding the sen-

sitivity based approach applied to bi-level optimization

problem, Falk and Liu [21] investigated theoretic analysis

for general non-linear bi-level optimization problem and

proposed a descent approach in terms of the bundle method

to solve the non-linear bi-level problem where the gradient

of the objective function can be obtained when the sub

gradient information of the lower level are available. Chiou
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[22] explored a mixed search procedure to solve an area

traffic control optimization problem confined to equilib-

rium network flows, where good local optima can be

effectively found via the gradient projection method.

However, very little information is available in the lit-

erature about the complete solution approach of the bi-level

model structure in NDP and its application on real world

networks. Further, only theoretical approaches have been

published without any significant applicability. In a

recently published paper, Mishra et al. [23] provided a

methodology for a decision making process tool for large-

scale transportation infrastructure investment consisting of

multiple entities. More recently, Jiang and Szeto [24]

proposed a bi-level optimization framework for time-de-

pendent discrete road network design that considers health

impacts where modified Sioux Falls network is adopted to

show the performance of the solution algorithm as well as

the effectiveness of the proposed repairing procedure but

does not provide any real world application.

Methodology

Bi-level Programming Problem (BLPP) Description

The NDP can be represented as a leader–follower game

where the transport planner makes network planning deci-

sions, which can influence, but cannot control the users’

route choice behavior. The users make their route choice

decisions in a user optimal manner. This game can be for-

mulated as a bi-level programming model, where the upper-

level problem determines the optimal capacity improvement

to each link in a given set of candidate links, minimizing the

total system travel time (TSTT), subject to a given budget

limit, and the lower-level problem represents a UE traffic

assignment problem that describes users’ route choice

behavior. The symbols used in the model are listed below:

Notation Explanation

A: Set of arc a

I: Set of trip origins, i 2 I

J: Set of trip destinations, j 2 j

IJ: Set of origin–destination pairs on the network, i; jð Þ 2 IJ

k: The complete set of available paths in the network

kij: The set of paths in the network between I–J pair

i; jð Þ;8 i; jð Þ 2 IJ

f
ij
k :

Flow on path r, connecting each origin–destination (O–D)

pair (i–j)

qij: Demand between each origin–destination (O–D) pair

8 i; jð Þ 2 IJ

ta xa; yað Þ: Travel cost on link a as a function of flow and capacity

expansion

xa: Flow for link a

aa: Constant, varying by facility type (BPR function)

ba: Constant, varying by facility type (BPR function)

dra;ij: Binary variable

1; if link a 2 A is on path k 2 kij : 0; otherwise
� �

da: Represents the monetary cost of capacity increments per

unit of enhancement

h: Denotes a user defined factor converting investments

costs to travel cost

ga yað Þ: Improvement cost function for link ‘a’

ya: Capacity expansion for link ‘a’ (nonnegative real value)

TSTT: Total system travel time

B: Budget (nonnegative real value)

Fig. 1 Flowchart of the

solution approach
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The Upper-level Optimization Problem (ULP)

The planner aims to minimize the total system travel time

in the NDP. Thus the upper-level problem can be formu-

lated as

MinimizeTSTT ¼
X

a2A
ðxataðxa; yaÞÞ: ð1Þ

Subject to:
X

a2A
ga yað Þ�B; ð2Þ

ya � 0 : 8a2A; ð3Þ

The objective function (1) represents the total system travel

time where xa is determined by the lower-level UE problem

which will be presented in the next section. Constraint (2)

guarantees that the total improvement cost does not exceed

the total given budget. Constraint (3) ensures that the

capacity improvement index ya for each candidate links are

positive.

The Lower-level User Equilibrium Traffic Assignment

Problem (LLP)

The upper level shown in Eqs. (1–3) provide a capacity

expansion vector ya and is added to existing capacities thus

forming new link capacities. Based on these updated

capacity values of the links, the link flows can be computed

by solving the following problem formulation:

MinimizeZ ¼
X

a2A

Zxa

0

ta xa; yað Þdx: ð4Þ

Subject to:

qij ¼
X

k2kij
f
ij
k ; 8 i; jð Þ 2 IJ; ð5Þ

xa ¼
X

i;jð Þ2IJ

X

k2Kij

dijakf
ij
k ; 8a 2 A; ð6Þ

f
ij
k � 0; 8k 2 kij; 8 i; jð Þ 2 IJ; ð7Þ

qij � 0; 8 i; jð Þ 2 IJ: ð8Þ

Equation (4) represents the objective function of UE

problem. Constraint (5) defines the demand conservation

condition. Constraint (6) defines the relation between link

flow and path flow. Constraints (7) and (8) requires non

negativity path flow and travel demand, respectively. An

important feature of this problem, and more generally of

bi-level programs, is the hierarchical relationship between

two autonomous, and possibly conflicting, decision mak-

ers. Mathematical program in Eqs. (1–3) and (4–8) are

connected through the use of common variables, namely

capacity improvement index ya and flows xa. Also, the

decision of the planner cannot be computed until flows are

known. These flows are not in the direct control of the

planner, but their decisions are reflected by the capacity

improvement vector ya. Here it is imperative to mention

two important limitations of this approach. First, it incor-

porates single objective at upper level (minimization of

TSTT) but decision makers may have other objectives such

as minimization of system level emissions. Second, this

formulation does not consider multiyear budget scenario.

Incorporation of these two factors can be interesting future

extension of this study.

Solution Approach

Figure 1 shows the flowchart describing the solution

approach. As evident from this figure the ULP and LLP are

solved in feedback loop alternatively till convergence. The

ULP was solved by PSWARM optimization algorithm in

MATLAB to obtain a trial capacity expansion vector (ya).

Then this vector is added to existing capacity vector to

form new network capacities. The new network properties

are transferred to the lower level. The LLP is solved using

slope-based path shift-propensity algorithm (SPSA) [25].

The SPSA yields a UE link flows with small solution noise.

The convergence of SPSA search algorithm is guaranteed

and it leads to efficient solution with moderate computa-

tional effort. The LLP provides new link flow (xa) vector

based on the capacity enhancement vector (ya). This link

flow vector is feed backed to the upper level. The upper

level objective function is maximized to obtain the new

trial capacity vector (y). This new trial capacity is trans-

ferred to the lower level again and this method is repeated

until convergence.

Implementation

This section presents the numerical experiments and dis-

cusses results to benchmark the proposed method covered

in the previous section. Numerical analysis has been con-

ducted in order to compare the results obtained with other

methods suggested previously in literatures [6, 15, 26].

Two example networks were chosen from literature to

perform the comparisons. Results are compared with

multiple algorithms from the literature e.g. MINOS [6],

Hooke–Jeeves [6] and EDO [6].

Test Network 1

As a simple example (see Fig. 2a), was used as a reference

to compare the results to the similar network from the
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literature. The network data, link attributes, and demand

are adopted from literature [6].

Table 1 shows the results of current procedure after 20

iterations. The MINOS, Hooke–Jeeves and EDO algo-

rithms came up with nearly identical solutions. The

objective values of current solution shows better results.

MINOS had the closest results to the current study. The

expansion for the link 3 in optimal solution should be zero.

However, the EDO and Mathew approach have some val-

ues, which can indicate the small gap to the convergence.

Test Network 2

The second test network analyzed is Sioux Falls (see

Fig. 2b). The network topology is adapted from the liter-

ature [6] which consists of 24 nodes, 76 links, and 576 O–D

pairs. The links highlighted are considered to be eligible

for capacity improvement. The purpose of selection of

these links is to compare the results with past literature.

Using the proposed methodology, the optimal capacity

expansion for the links and the total system travel time or

the system cost is calculated. These results were then

compared with other algorithms in the past [5] as shown in

Table 2. Table 2 displays the results of the link capacity

expansion and the objective function values from the above

past models as well as the current study methodology.

From the table, it can be observed that the SA and GA

produced relatively acceptable results. When compared

across all the models, it can be concluded that the approach

proposed in this study produced the best solution. It should

be noted that regardless of the relative closeness of

objective function values, there is inconsistency across the

link capacity expansion values. This suggests that the

problem has several optimal solutions. As mentioned by

Szeto and Lo [7] multiple local optimums exist due to the

non-convexity of CNDP and each method leads to a dif-

ferent solution.

In order to compare the performance of the proposed

solution approach with other models, sensitivity analysis is

conducted. First, several demand levels are computed by

multiplying the base demand with factors such as (0.8, 1.2,

1.4, 1.6). Then the network design is performed on these

newly formed demand levels using the proposed method.

Table 3 shows the total system cost and number of itera-

tions conducted for these demand levels. Although the

number of iterations by current study is much higher than

the other algorithms (except IOA and GA), the solution

provided by this algorithm yields the lowest objective

function value.

In current study, the results are close to the ones from

MINOS, H–J and EDO approach at bi-level iteration five.

However, with more bi-level iterations, the results become

more similar to numbers from the IOA study. The bi-level

convergence criterion is based on the flows. After about

thirty iterations for case one and twenty iterations for cases

two and three, users (flow of lower level) stopped

responding to improvements. It was concluded that the

MINOS, H–J and EDO approaches probably stopped after

about five iterations. In case one, link six had the highest

need for improvements until iteration four. However, this

trend changed when the flows converged and the entire

budget gradually allocated to link 16. Again the results

1

8

4 5 63

2

15 19

17

18

7

12 11 10 16

9

20

23 22

14

13 24 21

3
1

2

6
8 

9
11

5
15 
122313
21

16 19
17
20 18 5455
50

48
29
51 49 52

58

24
27
32

33
36

7 35

4034

41
44

57
45

72

70

46 67

69 65

25

28 43
53

59 61

56 60

66 62
68

637673

30

7142

647539
74

37 38

26

4 14

22 47

10 31

(a) Test network -1 (b)Test network -2

Fig. 2 Test network topology.

a Test network-1. b Test

network-2

Transp. in Dev. Econ. (2016) 2:18 Page 5 of 9 18

123



Table 1 Test network 1 after

20 iterations
Cases MINOS Hooke–Jeeves (H–J) EDO Mathew Current study

1. Demand = 100

y1 1.34 1.25 1.31 1.33 1.33

y2 1.21 1.20 1.19 1.22 1.21

y3 0.00 0.00 0.06 0.02 0.00

y4 0.97 0.95 0.94 0.96 0.96

y5 1.10 1.10 1.06 1.10 1.10

Z 1200.58 1200.61 1200.64 1200.58 1200.58

2. Demand = 150

y1 6.05 5.95 5.98 6.08 6.06

y2 5.47 5.64 5.52 5.51 5.46

y3 0.00 0.00 0.02 0.00 0.00

y4 4.64 4.60 4.61 4.65 4.64

y5 5.27 5.20 5.27 5.27 5.27

Z 3156.21 3156.38 3156.24 3156.23 3156.21

3. Demand = 200

y1 12.98 13.00 12.86 13.04 12.98

y2 11.73 11.75 12.02 11.73 11.73

y3 0.00 0.00 0.02 0.01 0.00

y4 10.34 10.25 10.33 10.33 10.34

y5 11.74 11.75 11.77 11.78 11.74

Z 7086.12 7086.21 7086.45 7086.16 7086.11

4. Demand = 300

y1 28.45 28.44 28.11 28.48 28.47

y2 25.73 25.75 26.03 25.82 25.71

y3 0.00 0.00 0.01 0.08 0.00

y4 23.40 23.44 23.39 23.39 23.41

y5 26.57 26.56 26.58 26.48 26.55

Z 21,209.90 21209.91 21,210.54 21,210.06 21,209.90

Table 2 Comparison of results

between test network 2 and

previous literatures

Cases H–J EDO SA SAB GP CG QNew PT GA Current study

y16 4.8 4.59 5.38 5.74 4.87 4.77 5.3 5.02 5.17 5.13

y17 1.2 1.52 2.26 5.72 4.89 4.86 5.05 5.22 2.94 1.35

y19 4.8 5.45 5.5 4.96 1.87 3.07 2.44 1.83 4.72 5.13

y20 0.8 2.33 2.01 4.96 1.53 2.68 2.54 1.57 1.76 1.32

y25 2 1.27 2.64 5.51 2.72 2.84 3.93 2.79 2.39 2.98

y26 2.6 2.33 2.47 5.52 2.71 2.98 4.09 2.66 2.91 2.98

y29 4.8 0.41 4.54 5.8 6.25 5.68 4.35 6.19 2.92 4.89

y39 4.4 4.59 4.45 5.59 5.03 4.27 5.24 4.96 5.99 4.45

y48 4.8 2.71 4.21 5.84 3.76 4.4 4.77 4.07 3.63 4.97

y74 4.4 2.71 4.67 5.87 3.57 5.52 4.02 3.92 4.43 4.4

Zy 82.5 84.5 81.89 84.38 84.15 84.86 83.19 84.19 81.74 80.99

H–J Hooke–Jeeves algorithm, EDO equilibrium decomposed optimization, SA simulated annealing, SAB

sensitivity analysis based, GP gradient projection method, CG conjugate gradient projection method, QNew

Quasi-NEWton projection method, PT PARTAN version of gradient projection method, GA genetic

algorithm
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from MINOS, H–J and EDO have the budget allocated to

link six. The current study and the three stated studies were

similar until iteration four.

Large Scale Network

The Chicago sketch network consists of 933 nodes, 2950

links and 93,135 origin destination pairs. Various budget

scenarios were analyzed to examine the robustness of the

proposed solution approach. Figure 3 shows capacity

expansion on scenarios ranging from budget of $300 to

$600 million. The cost of link expansion is assumed to be

$1 million per lane mile. In the optimization it was ensured

that no link is eligible to receive capacity expansion of

more than 100 %. As expected higher number of links are

selected with increasing budget. Figure 4 shows system

Table 3 Comparison of results for different demand level: Sioux falls network

Demand scenario SAB GP CG QNew PT EDO IOA GA Current study

0.8 51.76 48.38 48.78 48.84 48.81 49.51 53.58 48.92 48.15

Itr. 14 10 3 4 9 7 28 59 29

1 84.21 82.71 82.53 83.07 82.53 83.57 87.34 81.74 80.99

Itr. 11 9 6 4 7 12 31 77 35

1.2 144.86 141.53 141.04 141.62 142.27 149.39 150.99 137.92 135.8

Itr. 9 11 10 7 9 12 31 67 36

1.4 247.8 246.04 246.04 242.74 241.08 253.39 279.39 232.76 229.22

Itr. 15 9 6 5 7 17 16 78 36

1.6 452.01 433.64 408.45 409.04 431.11 427.56 475.08 390.54 380.91

Itr. 14 9 9 9 11 19 40 83 40

Fig. 3 Suggested capacity expansion in Chicago sketch network
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level performance measures for Chicago sketch network.

The UL objective function (TSTT) as expected decreased

with increased budget. However, after a certain budget the

network performance has not changed showing law of

diminishing return. Similarly, average speed is increased

with increased spending, and congested lane miles have

decreased. Average travel time per O–D pair have also

decreased with increasing budget. In summary, results of

the large network capacity expansion appears reasonable,

and budget sensitivity analysis appears intuitive.

Conclusion

Transportation agencies need a quantitative method for

allocating scarce resources for capacity expansion or net-

work improvements. In this paper a bi-level approach is

used for the capacity expansion and a solution approach is

proposed. The implementation of proposed approach is

demonstrated using small to large scale networks. The

novelty of the approach is that it uses kth best algorithm to

solve bi-level network design problem where the upper

level solution is provided using PSWARM optimization

algorithm and the lower level solution is provided using an

efficient traffic assignment algorithm SPSA. The method-

ology has been validated by comparing the results with

methods previously suggested in literatures using three test

networks. The proposed method provided a single optimal

solution and after several iterations, the users in all test

networks stopped responding to additional improvements

defined in the upper level objective function. This means

the flows, which are the convergence criteria within a bi-

level optimization problem, achieved convergence. The

insights from the numerical results suggest that method

proposed in this study lead improved results from other

studies. It was found that the bi-level method required

more iterations than several of the previous studies. Sen-

sitivity analysis is conducted by providing the networks

with various demand levels and results showed that the

current study provides better results compared to the other

methods in literature at all demand levels. This also con-

firms the resilience of the solution method especially at

high demand and congested network. The numerical results

also indicate that proposed approach is suitable for a large

network and can be used for practice. The possible

extensions of the approach will be to incorporate capacity

expansions with multi-objective formulation at upper level

and in multi-year network design framework.
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