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Abstract
Organ or cell transplantation is medically evaluated for end-stage failure saving or extending the lives of thousands of patients
who are suffering from organ failure disorders. The unavailability of adequate organs for transplantation to meet the existing
demand is a major challenge in the medical field. This led to day-day-increase in the number of patients on transplant waiting lists
as well as in the number of patients dying while on the queue. Recently, technological advancements in the field of biogenerative
engineering have the potential to regenerate tissues and, in some cases, create new tissues and organs. In this context, major
advances and innovations are being made in the fields of tissue engineering and regenerative medicine which have a huge impact
on the scientific community is three-dimensional bioprinting (3D bioprinting) of tissues and organs. Besides this, the
decellularization of organs and using this as a scaffold for generating new organs through the recellularization process shows
promising results. This review discussed about current approaches for tissue and organ engineering including methods of scaffold
designing, recent advances in 3D bioprinting, organs regenerated successfully using 3D printing, and extended application of 3D
bioprinting technique in the field of medicine. Besides this, information about commercially available 3D printers has also been
included in this article.

Lay Summary
Today’s need for organs for the transplantation process in order to save a patient’s life or to enhance the survival rate of diseased
one is the prime concern among the scientific community. Recent, advances in the field of biogenerative engineering have the
potential to regenerate tissues and create organs compatible with the patient’s body. In this context, major advances and
innovations are being made in the fields of tissue engineering and regenerative medicine which have a huge impact on the
scientific community is three-dimensional bioprinting (3D bioprinting) of tissues and organs. Besides this, the decellularization
of organs and using this as a scaffold for generating new organs through the recellularization process shows promising results.
This review dealt with the current approaches for tissue and organ engineering including methods of scaffold designing, recent
advances in 3D bioprinting, organs regenerated successfully using 3D printing, and extended application of 3D bioprinting
technique in the field of medicine. Furthermore, information about commercially available 3D printers has also been included in
this article.
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Introduction

In this world, half of a million patients are estimated on the
waiting list for an organ transplant, and due to the inaccessi-
bility of organs, mortality rates increase due to the failure of a
vital organ. A deceased donor or a living donor can donate 25
different organs or tissues which can save as many lives as
possible [1–3]. Organs such as the kidney, liver, pancreas,
lungs and heart, eyes, skin, bone, bone marrow, nerves, brain,
heart valves, eardrum, ear bones, and blood can be donated
[4–7]. The organ transplantation process seems too easy but
identifying a perfect match of the organ is very difficult. Apart
from the ethical approval–related hurdles and lack of aware-
ness, organ donation comes with a bag of challenges which
include red-tapism and king-sized paperwork. Another chal-
lenge is to convince family members for organ donation of
their loved ones who are on life support due to deceased or
brain-dead situations. Besides this, there are very few hospi-
tals that have equipment for organ preservation and transplan-
tation which further limits the usage of organs of brain-dead
patients [8, 9]. Furthermore, the cost of organ transplantation
and medication followed by surgery cannot be afforded by
people belonging to low socioeconomic groups or middle-
income countries.

Recent advances in the field of tissue engineering and re-
generativemedicine not only open new avenues to replace and
regenerate tissues and organs but also have the potential to
correct some birth defects via lab-grown organs and tissue,
bioartificial organs, or using xenogeneic organs. Since cells
used in regenerative medicine and tissue engineering are taken
from the same patient (autologous), therefore the rejection of
transplanted tissue/organ via patients’ immune system can be
avoided, while cells/tissues from another individual
(allogeneic) can elicit an immune reaction, which limits their
application. However, the immune response can be sup-
pressed by immunosuppressant drugs, but these medicines
have several unavoidable side effects. The alternative types
of cells from other species known as xenogeneic cells can also
be used in regenerative medicine [10, 11].

Tissue engineering is the process of creating specific or-
gans by constructing a scaffold out of biomaterials, stem cells,
and specific growth factors, which can be implemented using
3D bioprinting, an additive manufacturing technique. This
technology is used to create 3D structures by adding material
on a layer-by-layer process. This is an industrial fabrication
technology that offers rapid and mass production of compo-
nents [12, 13].

In 3D printing technology tissue or organ, drafting is done
by computer-aided software using the specific program which
specifically provides instruction to a machine for the genera-
tion of 3D scaffolds [13]. However, one of the utmost favor-
able scaffold designing method is decellularization of organ
retaining extracellular matrix (ECM) then recellularization by

autologous or stem cells which led to growth and development
of the more mature fully personalized organ. The
decellularization method removes immune cells, maintaining
ECM, and offers equally physical and mechanical microenvi-
ronment required by cells to endure and multiply [14–19].
Recently, Alperen Abaci et al. have shown applications of
both 3D bioprinting and decellularization technology in de-
veloping the appropriate bioink formulation to fabricate 3D
constructs and developing the tissue or organ decellularization
methods [16]. Similarly, Kabirian et al. have elaborated the
applications of dECM-based bioinks for 3D printing technol-
ogy [17]. The recent reviews presented the designing dECM-
based bioinks [18, 19] and their application in 3D printing
techniques with limited focus. The present review dealt with
the advances in the fields of 3D bioprinting which includes the
3D bioprinters, their types and specification, process of
decellularization, bioink formulation, biomaterial selection,
and clinically synthesized and developed 3D organs and tis-
sue. Besides, this current approach for 3D printing technology
along with information about commercially available 3D
printers has also been discussed.

Current Approach Towards the Tissue
and Organ Engineering

The end-stage organ failure demands the functionally active
organ and tissues which are different in structure and function;
however, the engineered material could have a similar com-
position and morphology as the targeted ones. In this context,
for developing a functionally transplantable bioartificial or-
gan, certain factors such as type of organ scaffold and method
of its sterilization, designing and maintaining of the vascular
network of the scaffold, assessment of immunological bar-
riers, type of cells/tissue to regenerate and cells for infusion,
functional aspects of the regenerated organ, and route of cell
delivery are crucial factors to be considered. Apart from this,
assessment of long-term cell survival and engraftment and
need for induction factors must be taken into account cau-
tiously [20, 21].

Scaffold Designing Approaches

Scaffolds are used to restore, replace, or regenerate the dam-
aged tissue or organ. Scaffold designing was introduced in the
mid-1980s in the field of tissue engineering and since then it
continues to grow and evolve as a multidisciplinary field.
Scaffolds are mainly made from biomaterials such as poly-
mers, biocomposites, and bioceramics [22, 23] which provide
the framework for cell attachment and tissue development,
cell proliferation, host integration, and vascularization [21].
The successful strategy for designing the scaffolds which in-
cludes all features such as biological, mechanical, and
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architectural [24, 25] is described in Fig. 1. The scaffolds,
which were created using computer-aided design software,
must have biomedically relevant design features. As the scaf-
fold provides supporting frame to cells for proliferation and
differentiation, therefore, it should be biocompatible and does
not provoke immune responses resulting in minimal cell
cytotoxicity.

The scaffolds provide mechanical strength and shape to
bioengineered tissue. Therefore, biomaterials used for scaffold
fabrication should possess good mechanical strength and
should be compatible with the shape of the organ to be re-
placed. Furthermore, the design for the scaffold should be
capable of providing enough space for the vascular networks
and regeneration of the new tissues. The structure of scaffold
shouldmimic the properties of original body organ and should
allow efficient transport of metabolites and nutrients to grow-
ing cells/tissues. At the time of implantation, the biomaterial
shall be biodegradable at an equal rate to that of a matrix
manufacturing by developing tissue. The biomaterial bioink
chosen for the fabrication of scaffolds must be biologically
active and compatible with the host system; thereby, the
engineered tissue actively facilitates and regulates its function.
The scaffold may regulate signaling pathways such as the
formation of growth factors to speed up the process of regen-
eration. There are numerous 3D bioprinting approaches, tools,
and biomaterials available to fabricate porous scaffolds with
organized porosity and pore sizes such as stereolithography
and robocasting [26, 27].

Scaffolds are biodegradable, mechanically robust struc-
tures that are effective at transporting metabolites and nutri-
ents. As explained in the previous section, there are various
technological approaches to fabricate the scaffolds. The two of
them are dece l lu la r iza t ion and 3D biopr in t ing .
Decellularization is an alternative way to customize an organ
and transplant it without having the host versus graft rejection
of an organ [28] which was first described in 2008. The 3D
bioprinting is advanced manufacturing technology applied for

scaffold production for the generation of complex structures
which is used to regenerate damaged tissue. The regenerated
tissue via 3D bioprinting has enhanced features such as better
permeability, physical and mechanical properties, and fine
cellular linkage thereby providing numerous improvements
over the established methods [29]. The process of
decellularization and 3D bioprinting has been discussed in
detail in the following section.

Decellularization: Methods of Whole-Organ
Decellularization

Decellularization is a process of removal of the DNA, lipids,
soluble protein, sugars, and other cellular components from
tissue. It is a promising and reliable technique that can be
applied to any cadaveric solid organ. The schematic process
of decellularization is shown in Fig. 2. This process begins
with a harvested organ which is recently derived from the
brain-dead patient and is placed into a specialized vessel to
generate the pale white matrix, i.e., extracellular matrix
(ECM) with a complex mixture of structural and functional
proteins to preserve structural entities, such as collagen, elas-
tin, glycosaminoglycan (GAG), and fibronectin which func-
tion as the scaffold. The matrix can be obtained by employing
the decellularization agents which include chemical, enzymat-
ic, and physical methods [30–43].

Decellularization technique has proven potential for organ
synthesis in tissue engineering as it keeps alive the 3D struc-
ture of organs and ECM (in between which cells are entrapped
and are difficult to manufacture). Stripping away the donor’s
cells causes the removal of antigens that may elicit an immune
response and this potentially eliminates the use of corticoste-
roid treatment.

To build the structural and functional organ, the process of
decellularization starts with the procurement of the ECM
which can be done in two ways [44, 45]. Firstly, by culturing
the cell in vitro conditions to build the scaffold and secondly,

Fig. 1 Flowchart showing steps of scaffold designing: (a) computer sim-
ulation and modelling using CAD software. (b) MRI scanning of organ.
(c) and (d) Anatomical and geometric designing of 3D structure according

to tomographic information. (e) Scaffold fabrication and biomaterial and
cell suspension selection (f) print the model
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via surgery. While getting scaffold surgically, one should
keep in mind some important aspects such as organ age, organ
source, sterilization and storage, pressure and temperature,
and enzyma t i c ac t i v i t i e s . The commonly used
decellularization methods are described in Table 1. These
methods include the use of detergents, acids, and bases that
remove all the native cells and enzymes that can cause rejec-
t ion dur ing t ransp lan ta t ion . Fur thermore , a f t e r
decellularization, i.e., stripping away the donor’s cells, the
process of recellularization of the decellularized ECM started
to produce the structurally and functionally activated organ
[45, 47].

Recellularization

The process of recellularization involves repopulating the
decellularized ECMwith stem cells. Certain factors are crucial
for repopulation such as the number of cells, route of infusion,
method of infusion, pressure, growth factors, and oxygen sup-
ply [47]. As the organ has been recellularized and is ready for
the transplantation process, the assessment of recellularized
organs is being done which includes steps like determining
the functional characteristics, types of cells generated, and
most importantly survival rate of cells. After the assessment
and repopulation of cells with the recipient’s very own stem

Fig. 2 Process of
decellularization: bioartificial
organ development using
decellularization and
recellularization approach and its
probable application

Table 1 Techniques used to
decellularized tissues and organs Decellularization methods

S.
no.

Types of methods References

1 Enzymes Trypsin Endonucleases Exonuclease [32–34, 38]

2 Physical Mechanical
Agitation

Freeze/Thaw Sonication [28, 32, 36, 38,
40]

3 Chemical Alkaline/acid Hypertonic/Hypotonic EDTA

EGTA

[37, 39, 42, 43]

4 Detergents Non ionic

•Triton X-100

Ionic

•Sodium Dodecyl
Sulfate

•Triton X-200

Zwitterionic

•CHAPS

•Tri (n-butyl) phos-
phate

[28, 30, 46]
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cells, the generated bioartificial organs have a little or no
chance of rejection. The recellularization comprises twomajor
steps: (1) cell seeding in which cells are incorporated into
decellularized organ mimicking the in vivo configuration
and (2) perfusion culture which involves the preparation of
organ or tissue infused with cells for in vivo functions. Cells
are repopulated with an acceptable mixture of cells inserted
into the scaffold to balance the in vivo cellular structure while
cell seeding [48–51]. This method involves either direct infu-
sion of cells into the organ via injection or infusion of cells
into the circulation with the expectation that the cells will
reach the injury site. Continuous perfusion is performed after
the intramural injection of cells or infusion of cells into the
vasculature [46, 52]; however, thrombosis limits the cellular
repopulation in the ECM scaffolds. In contrast to this, in the
perfusion culture method after repopulating the cells, the or-
gan is ready to the perfusate. The perfusate has been selected
based on the culture media used in the cell culture of the
constituent cell types. By employing this approach, primary
goal of viable organ culture can be achieved within few weeks
[53–55]. However, certain factors such as difficulty in the
procurement of all ECM, immunogenicity, inhomogeneous
distribution of cells, organ viability, and age after repopulating
it with stem cells, organ structural complexity, and high cost
limit the application of this method.

3D Bioprinting

Bioprinting is a layer-by-layer additive fabrication process
that uses living cell suspension instead of thermoplastic or
resin to create three-dimensional structures. In the pharmaceu-
tical industries and tissue engineering, to construct 3D struc-
ture, the bioink or biomaterials which contain cells and growth
factors is layered from bottom to top [56]. Recent advances in
3D bioprinting have the potential to meet the demands of
tissues and organs for transplant by printing them. The steps
involved in the 3D bioprinting process are presented in the
schematic shown in Fig. 3. The first step is to model the 3D
structure of tissue or organ using a computer modelling

program followed by printing with bioink producing 3D struc-
tures. Subsequently, post-processing and assessment of the
physical, mechanical, and biological function of 3D-printed
tissue have been carried out before transplanting the printed
organs or tissue in the patients. The 3D bioprinting can be
used as potential approach to meet the demand of organs for
critical human organ transplantation cases [57].

The 3D printing technique was first developed in the 1980s
using computer-aided software (CAD) to develop 3D struc-
tures; however, the organ and tissue printing evolved in later
stage. More recently, the 3D bioprinting method has grown as
multidisciplinary technology converging various areas such as
bioinformatics, chemistry, mathematics, computer sciences,
medicine, material sciences, biological sciences, and industri-
al designer which makes this widely applicable. 3D
bioprinting is rapid and a manufacturing technology that is
used to fabricate the complex shape with precision and this
process builds this architecture layer by layer [58]. 3D printing
involves complex protocol to be processed as it includes the
additional planning for printing multiple cells, including the
printing of vasculature and neural network for actually devel-
oping the fully functional 3D bioprinted organ [59, 60].

In this technique, bioprinter-type, bioink selection, cell-
type, nozzle-type, 2D, and 3D imaging of the organ, model-
ing, and designing of organ/tissue and microenvironment for
culture must be chosen properly for better printing of tissue
[56]. The biofabrication of tissues and organs in a stratified
manner is divided into three steps: (a) pre-bioprinting (model-
ing), (b) bioprinting, (c) post-bioprinting (maturation and as-
sessment), which is shown in Fig. 4.

In the pre-bioprinting process, the appropriate biomaterial
has to be selected first for the organ that the printer is supposed
to be created. For this, the 3D imaging and biopsy of the
targeted organ or tissue have been performed using technolo-
gies like 3D scanners, CT, and MRI. This 3D imaging pro-
vides tomographic and architectural information. Based on
these 3D images, computer-aided software generates a 3D
structure of the organ. Followed by this, the specific bioink
(biomaterial) was selected based upon the type of bioprinter
and the properties of the targeted tissue [61]. Selecting the

Computer 
Modelling Printing Post 

Processing

•Assessment 

of Scaffold

•Biological 

Functions

•Proper  

Maturation In 

Bioreactors

• Elasticity/ 

Strength 

Fig. 3 Hierarchical procedure of
designing, printing, and post-
printing assessment
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cost-effective suitable biomaterial that could provide both
physical and mechanical strength is a crucial step.
Furthermore, the bioprinting process requires a 3D design of
the organ, cells specific to the patient, and an appropriate
bioink. Initially, the 3D design, cells, and bioink are directly
loaded to the printer which is followed by layer-by-layer de-
position of the cells. The printer gradually deposited layers of
liquid, cells, and other required material to create the 3D struc-
ture of the organ as per command given by the software which
generally recognized “STL” file format. The printer is
equipped with nozzles consisting of multiple biomaterials
inks, at adjustable angles [56–63]. Bioprinting can be divided
into two parts: cellular bioprinting and acellular bioprinting.
Cellular bioprinting is a technique that involves the fabrication
of tissue with living cells. Based on printing, i.e., deposition of
bioink the cellular bioprinting is further divided into 3types:
droplet-based, extrusion-based, and stereolithography. In the
case of the acellular bioprinting method choice of various
types of bioink for a bioreactor to obtain the cells, seeding is
available. This is further divided into two types: extrusion-
based acellular bioprinting (EAB) and laser-based acellular
bioprinting (LAB). The types of cellular and acellular
bioprinters have been discussed in the subsequent section of
this review.

The post-bioprinting stage involves the maturation of
printed organs which includes the development of the neural
networks, extracellular matrix (support mechanically), and
natural functions. After this, the bioprinted organ is further
assessed through bioreactors that are required for creating
higher mechanical elasticity of the tissue, assessing biological
functions, and an accurate scaffold that is completely ready for
in vitro usage [56, 57]. Post-processing steps are performed on
the final product that includes removing the unconsumed

fragments, cooling, drilling, cutting, polishing, and steriliza-
tion. Also, the end products are being tested to make sure the
product has appropriate characteristics or traits that include all
its functional properties and strength [64, 65].

Type of 3D Printers

Asmentioned in previous section, 3D printing is an automated
method that can be explored for modelling and designing
complex 3D structures (outer geometry, pore, and internal
connecting vessels) by using 3D bioprinters. The scaffolds
and extracellular matrix along with specific biomaterials are
used as precursors for printing organ. In this technique, in vivo
environment under in vitro conditions has been provided by
simply mimicking the situations [66]. The schematic in Fig. 5
shows types of 3D printers. In this article, we will discuss
commonly used 3D printers which include microextrusion
printers, laser-based printers, and inkjet printers. The specific
features such as resolution, speed, volume, stability, the vis-
cosity of bioink, bioink type, cell density, and cost of five
different types of bioprinting techniques are discussed in
Table 2.

Extrusion-Based Bioprinting

This technology is rapidly expanding and has made significant
growth in the last few decades. In this method, 3D printing is
done by exerting the mechanical pressure, and the bioink is
extruded out through the heated nozzle onto the printing bed
[66, 67]. These types of printers are used for printing various
structures including cells, tissues, tissue constructs, modules,
and microfluidic devices. Despite of several advantages and

Post -Processing (Post-bioprinting)  

Maturation/organ developement in 
Bioreactor Bioprinted Tissue

Processing ( Steps of Bioprinting)
Additives

harvesting cells   via   
cell culture

Cellular Materials
bioink and bio paper     bioprinter

Scaffolds  
adjust printing parameters

construct printing 

Pre-processing (Pre-bioprinting)

Imaging - CT scan
CAD

CT-image        3D model       stl file

Fig. 4 Steps In 3D bioprinting:
different steps and stages that lead
to the production of bioprinted
constructs for implantation or
in vitro testing
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great versatility in printing the various 3D structures, many
questions and restrictions are being raised such as organ fab-
rication and low resolution of printed features [68, 69].

Microextrusion Printing

This printing technique is based upon the principle of
extrusion, i.e., it uses force to selectively divide the bio-
material and cells via nozzles and needles with the appli-
cation of heat [67]. Microextrusion bioprinters usually
consist of a temperature-controlled biomaterial dispensing
system which generates a constant string of bioink rather
than many droplets of bioink by applying pressure (pneu-
matically or mechanically). A microextrusion printer con-
sists of numerous nozzles for each material to be used for
designing the architecture, but certain factors should keep
in mind such as enough space between the nozzles,
speeds, diameter of the nozzle, and the mechanical force
to inject material via the piston. Furthermore, the

viscosity of bioinks used in the printer must be appropri-
ate, as it maintains the architecture of the scaffold and
prevents it from collapsing while maintaining the high-
resolution printing Fig. 6.

Inkjet Printers

This technique is based on the working of general 2D printers.
This printing technique involves the heating principle. In this,
a piezoelectric actuator vaporizes the cell suspended liquid
into bubbles which can escape through a nozzle in droplet
form from chosen position [70]. It has high printing speed
but due to the use of a piezoelectric actuator, the cells come
in direct contact with the heat, which results in cell membrane
damage and cell lysis. However, the inkjet bioprinting tech-
nology can hasten the study of tissue biofabrication [71].
There is remarkable success in the invention of bioinks and
biopapers that are appropriate for inkjet bioprinters. This tech-
nology allows the printing of complicated organs and tissue

Table 2 Specific features such as resolution, speed, volume, stability, the viscosity of bioink, bioink type, cell density, and cost of five different types of
bioprinting techniques

Characteristics Inkjet Extrusion Laser-assisted Stereolithography Fused deposition
modelling

Reference

Resolution 50-300 μm Wide range Microscale
resolution

High Low [21, 23]

Speed Fast
(1-10,000 droplets s-1)

Slow (5mm
s-1)

Medium (100
droplets s-1)

Slow Fast [32]

Volume (capacity of
bioink storage)

ml range ml range ˃500ml Up to 300 x 335 x
200 mm

Up to ~200 x 200 x
300 mm

[23, 31]

Stability Poor Good Fair Good Fair [35, 36]

Viscosity of bioink 3.5–12 mPa/s up to above
6×107 mPa/s

1–300 mPa/s No limitation 5 mPa/s [32, 35,
36]

Bioink type Cell suspension Viscous
materials

Cell suspension,
Viscous materials

Photosensitive
Resins

Thermoplastics such
as PLA, PLLA,

Nylon, PCL, PLGA

[37, 38]

Cell density Low (<106 cells ml-1) High (cell
spheroids)

Medium Medium / no lim-
itation

low [31]

Cost Low Medium High High Low [28, 29]

Specific characteristic Materials used are low cost;
contactless sterile printing

Commercially
available

Compatible Limited material Limited material [25, 26,
31, 32]

3D Bioprinting

Acellular 
bioprinting

Micro-extrusion based 
printers

Laser assisted printers

Cellular  
bioprinting

Micro-extrusion based
printers

Steriolithography 

Droplet based

Fig. 5 Hierarchy chart of
bioprinting techniques: (A) First
division shows the types of
bioprinting techniques. (B)
Second division depicts the type
of printers
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with accuracy by using the cells as bioinks, although it has
limitations such as large organs cannot be printed properly and
the droplet size cannot be controlled. However, it is a much-
preferred technique over microextrusion technique as it pro-
vides enhanced resolution of droplets and exhibits great cell
viability [72].

Laser-Based Printers

This printing technique uses lasers for designing the architec-
ture of the tissue. The use of lasers provides the droplets with
high resolution. Initially, the laser is focused and bioink is cast
on the substrate or printing bed. The laser beam gets activated
immediately after striking the absorbing layer, the laser im-
pacted area evaporates and the high gas pressure induces the
bioink onto the printing bed, and finally, the scaffold is made
layer by layer. The laser printers are advantageous when com-
pared to microextrusion and inkjet printers as it uses less force
and minimum heating while printing the tissue [73].

Stereolithography Bioprinting

This is the oldest approach for bioprinting 3D structures with
high resolution and precision [74]. This bioprinting technique
produces complex 3D structures by frequently layering on
2D-lined layers afterwards the photo-polymerization of 2D
patterned layers is considered to be the most crucial step in
this bioprinting [75]. The models and fabricates made with
this technique are well-built and can be used to make master
models for various metal casting processes [75–77]. This

technique is costly and the photopolymers used in this tech-
nique need to be handled with care as they are more viscous
[78, 79].

Droplet-Based Bioprinting

Droplet-based bioprinting technology is all-purpose technology
as it offers higher resolution and allows the better regulation of
geometry and size of bioprinted 3D structures. This technology
possesses greater resourcefulness in various fields of studies that
attracted many researchers to use this technology in the field of
bioprinting [80, 81]. Its affordable commercial availability and
versatility [82]make it the technique of choice. However, a small
diameter of the orifice of this printer causes the clogging of the
orifice during the bioprinting and the bioink keeps accumulating
within the orifice and results in obstruction of flow which limits
its application. Due to this reason, instead of bioinks, hydrogels
and other biomaterials are used for constructing the structures
[83]. Besides this, droplet-based bioprinter fails to assemble me-
chanically strong and structurally unified constructs due to the
restricted selection of biomaterials [84]. Moreover, despite the
high resolution of droplet-based bioprinter, it is a much time-
consuming technique that sometimes results in swelling of the
tissue structure [85, 86]. Among all the 3D bioprinters described
above, laser-assisted or laser-based bioprinters are more success-
ful and widely used to fabricate organs and tissues [73]. Unlike
extrusion, microextrusion, and inkjet printers, these 3D
bioprinters do not use a nozzle to dispense ink; instead of this,
they use a direct UV light on the printing bed of bioink which
gets hard when exposed to light.

Fig. 6 Type of bioprinting approaches and their working methods. (a)
Workflow of designing the bioink for printers involves the living cell
suspension and biomaterials. (b) Inkjet-based printing extrudes out the
fractions of molecules of bioink. (c) Laser-based bioprinting involves the
use of laser focused on absorbing layer, high gas pressure generated by

affected area induces the bioink onto the printing bed; (d) Extrusion-
based bioprinting uses mechanical pressure to frequently extrude out
bioink (cell-polymer solution).finally, the scaffold is made layer by layer.
(e) The medicinal approach in tissue engineering, drug testing, and de-
signing for in vitro study model for disease diagnosis
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Bioinks: the Building Material

Additive manufacturing technologies–based 3D bioprinting
techniques have made significant progress in recent years for
the development of complex geometry. In this process, selec-
tion of appropriate bioink, cells, and biomaterials for the ef-
fective fabrication of targeted tissue plays crucial role. The
successfulness of the fabrication depends upon properties
such as solidifying kinetics of the biomaterials and the native,
chemically, or environmentally induced material properties
[87]. A suitable bioink material should provide the growth
factors, adhesion factors, signaling proteins, and mechanical
and structural properties of ECM. These are the progressive
events that promote a suitable environment for cell survival,
viability, and differentiation [88]. The conventional tech-
niques used were not able to build structures with the expected
interest and desires. While modeling organs and tissues,
bioink, biomaterial, and cells should be selected appropriately
that resemble the tissue intended to be reconstructed to devel-
op inevitably correct biological structure. The major types of
bioink materials used for printing are cell-scaffold-based
bioprinting and scaffold-free bioprinting. In the cell-based
bioprinting approach, the bioink consists of biomaterials in-
corporated with the cell suspension to build the 3D construct
of tissues and organs. Furthermore, the scaffold gets degraded
and cells proliferate and occupy the space to form predesigned
tissue structures whereas in scaffold-free bioprinting, the
bioink only consists of cell suspension. Here, the cells are
programmed to behave like embryonic stem cells, which fur-
ther get arranged in a specific manner to perform some spe-
cialized functions [89–93].

Biomaterial Selection

The biomaterial selected for 3D printing of tissue construct
should be affordable, commercially available, and convenient
for clinical purposes. Furthermore, it should be biocompatible
with the biological system; therefore, it cannot elicit the im-
mune response and provide an environment for cell survival,
motility, and differentiation. Besides this, biomaterial must
have suitable physicochemical properties which should meet
the demands of the printer [94–96]. The hydrogel, ceramic,
polymers, and composites are some excellent examples of
currently used biomaterials for 3D printing. Hydrogels are
the most widely used biomaterial ink for the bioprinting of
the organ as it provides temporary support to cells while they
produce their own ECM. These are water-swollen, cross-
linked polymeric structures produced by the simple reaction
of one or two monomers. The hydrogen bonds and Vander
Waal interaction are generally involving in cross-linking be-
tween the chains. Hydrogel is suitable for all types of printer
inkjet, laser-based, microextrusion. Hydrogels can be formed
using three types of polymers: natural such as cellulose,

fibrinogen, gelatine, collagen, and agar; synthetics such as
polyethylene glycol, and polyacrylamide; or synthetic-
natural mixture. Hydrogels are commonly used for bone re-
generation or bone defects coating with hydroxyapatite, car-
bon nanotubes [94, 95]. Ceramics are also used frequently as
biomaterials for printing because of their unique properties
such as hardness, brittleness, and chemical inertness. Most
importantly, ceramics are biocompatible and have a similar
composition as bones. Ceramics are generally used in inkjet-
and particle-based bioprinters which convert the powder into
suspension form. In powder bed-based printers, the ceramic
powder of appropriate size (diameter 10–150 μm) and proper
particle flow within the bed is used. However, for inkjet
printers, apart from particle size, viscosity, and solid content
of ceramics, biomaterials should be appropriate. Ceramics are
used for the replacement of hips, knees, teeth, tendons, and
ligaments. Also, it is commonly used by doctors for facial and
maxillofacial reconstruction [97, 98]. Hydroxyapatite-based
ceramics are highly bioactive and biocompatible materials
and have a similar composition as bones. Certain polymers
are also used in bioprinters due to their low cost and other
suitable properties such as biodegradability, flexibility, good
mechanics, and biocompatibility. Polymers are easily
manufactured by printers and can be transformed into any
desired shape. Generally, polymers are used by dentists and
pharmacologists for drug delivery and targeting sites of in-
flammation or tumors [91, 92]. Some composites are also used
as bioinks due to their excellent properties such as bioactive,
stiffness, and printer compatibility. The most commonly used
composites for the printers are biomolecules, carbon nano-
tubes, and some metal and alloys [97].

Selection of Cell Lines

Multiple cell types which are structurally and functionally
specific generally constitute an organ or tissue and all these
cells exhibit regenerative capacity. Therefore, while selecting
the cells for the organ printing, certain factors should be kept
in mind such as the cells must have appropriate proliferation
and differentiation capacity in printed scaffolds along with the
ability to involve in the signaling cascade. Furthermore, the
cell survival and viability during and after the printing proce-
dure are crucial factors; hence, enough cells should be cul-
tured and taken for the printing process. Cellular functions
should be checked and maintained in in vitro as well as
in vivo environments [98].

For 3D printing of desired tissue construct and organ,
bioink, biomaterials, and cells should be chosen wisely
keeping all the above-mentioned crucial factors in mind.
Several organs have been successfully printed and
transplanted in patients listed in Table 3. Table 3 dis-
cusses the organs printed by a different type of 3D print-
ing technique and the types of bioink used for the printing
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process. Printed tissues can be of two types: soft tissue
such as muscles, tendons, ligaments, nerves, blood ves-
sels, synovial membrane, skin, and fascia, and hard tissue
such as bones, tooth, cartilage, and enamel. The hard or-
gans for instance artificial limb, bladder, brain, testis, eye,
lungs, ovaries, pancreas, trachea, thymus, heart, kidney,
liver, and ear can also be printed successfully using this
technology.

Applications of 3D Printing Techniques

Organs generated by 3D printing technologies enable patient’s
recovery faster and more efficiently. Recent advances in the
field of 3D printing have gained considerable attention as it
can suffice the need for organs that cannot only improve the
quality of life of patients but also save lives in many cases.
Besides organ printing, the 3D printing technology offers

Table 3 Different 3D printing
technique for bioprinting of
various organ and tissues

Target organ/
tissue

Printing technique Bioink References

Skin Droplet/inkjet i Cell suspended media for printing cells

ii Collagen solution for printing the supportive layer

iii Hydrogel

[99–102]

Laser assisted Matriderm

Liver Inkjet i Cell suspended media for printing cells

ii Fibronectin gelatine solution for printing adhesive
film between monolayer

[103–105]

Stereolithography Gelatine methacrylate for printing hiPSC [106]

Extrusion Hepatocyte aggregates [107]

Bone Extrusion-based rapid

EBM

Prototyping (RP)

Natural and synthetic polymers solution [108]

Fused deposition
modelling (FDM)

Synthetic polymers, such as acrylonitrile butadiene
styrene (ABS), polylactic acid (PLA),

Polyvinyl alcohol (PVA)

[109]

SLA/SLM

Binderjetting, EBM

PPF/DEF-HA, PDLLA/HA, β-tricalcium phosphate
(β-TCP)

[108–112]

Laser-assisted
bioprinting

HA, Zirconia, HA/MG63 osteoblast-like cell, nano
HA, human osteoprogenitor cell, Human umbilical
vein endothelial cell

[112]

Cartilage Pneumatic

Extrusion based

Natural polymer solutions, such as alginate and
proteins, cells, and growth factors can be
incorporated

[113, 114]

Ear Extrusion-Based -Rp Natural or synthetic polymers solution [115]

craniofacial Direct write RP A concentrated colloidal gel (typically 50% of HA in
an aqueous medium)

[116]

Stereolithography Polypropylene [116, 117]

Inkjet PEEK, PLA, PLGA. [117]

Extrusion (EBM) Fibrinogen, Gelatin, Alginate [117, 118]

FDM Titanium, PCL [118]

Trochlea
(rabbit)

Indirect
microstereolithogra-
phy

Poly- (L-Lactide-co-ε-

caprolactone)/gelatine, heparin,

transforming growth factor beta 1, chondrocytes

[119]

Bone defects FDM (fused deposition
modelling)

Binderjetting, EBM

Hydroxyapatite incorporated polycaprolactone [111, 120]

Endothelial
progenitor
cells

Thermal inkjet-based
AM

Collagen solutions [121]

Breast cancer Extrusion i Breast cancer cell aggregates

ii Stromal cell aggregates

[122]

Cervical
cancer

Extrusion Gelatine -alginate-fibrinogen solution for printing
cells

[123]
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extended medical applications such as synthesis of prosthet-
ics, drug screening, testing, and manufacturing of good-
quality cosmetics. Notably, this technology can help generate
personalized medicine for the cure of specific disorders in
patients. Personalized medicine reduces the possibility of ad-
verse effects due to these dosages outside the therapeutic win-
dow or subtherapeutic benefits.

Clinical Application for Organ/Tissue Printing

The bioprinting process utilizes the patient’s cell for construct-
ing the fully functional three-dimensional tissue construct by
assembling cells layer-by-layer by using biocompatible scaf-
folds which when incorporated with living cells regenerate
functional tissue.

The computer-aided design software has been used for ef-
fective 3D bioprinting to build the 3D constructs. All the pro-
cesses in this technique such as position and speed of printing
nozzles, and deposition of cells and materials are strictly con-
trolled by the software. Some of the examples of organs gen-
erated by the 3D printing technique are listed in Table 3.
However, this technology can be used to create all types of
organs or tissue and some of the successful 3D printed organs
are as follows

Skin Bioprinting The imminent solution to burn wound recon-
struction is the utilization of artificial skin which can cure
the skin of third-degree burns [124, 125]. The third-degree
burns or secondary burn injuries required surgical ablation
of damaged skin and replacing it with the traditional and
accepted skin which can be successfully achieved by strat-
ified 3D bioprinting technique. In this process, desired
scaffolds are incorporated with living cells over the burn
parts, which heals the burn via the formation of healthy
skin tissue. In this regard, clinically convenient broad-
spectrum skin substitutes are available, e.g., Matriderm®,
Integra®, Dermagraft®, and OrCel®) [126, 127]. To con-
struct the bioprinted skin, multiple cell types and biomate-
rials are preferred. Initially, the scaffold of dermal and
epidermal skin is incorporated with keratinocytes and fi-
broblast; after that, they are cultured at a liquid interface
that gives rise to the skin appearance. The melanocytes are
generally printed between the layers to have a complete
biometric skin [99–103, 128]. In a recent study, bioink is
prepared by mixing silk protein with gelatine and then
blended with specific skin-forming cells [102]. However,
certain skin appendages like sweat glands, melanocytes,
endothelial cells, hair follicles, and sebaceous glands in
the skin are still troublesome to create. Despite this fact,
artificial skin developed by the 3D printing technology has
proven effective in wound healing and is also used in var-
ious pharmaceutical companies and chemical testing re-
searches [103].

Hepatic Tissue Bioprinting Liver injury and hepatic diseases
such as fatty liver and hepatitis have increased the demand of
hepatic tissue bioprinting [104]. Nguyen et al. have bioprinted
3D primary liver tissues that facilitate the evaluation and test-
ing of organ level response of drug [105]. In another study,
Chang et al. biofabricated micro-3D liver organ, which can be
explored as in vitro drug testing and to study metabolism
[129]. A simple one step fabrication approach of an organ-
on-a-chip using 3D printing has been described by Lee et al.
[106]. A liver-on-a-chip platform with bioprinted hepatic
spheroids has been demonstrated in another study [107].

Cartilage Bioprinting Cartilage tissue is a type of elastic con-
nective tissue; if it gets damaged, it is incompetent to recon-
struct on its own and therefore it is surgically restored by a
substitute. However, artificial substitutes failed to heal natu-
rally which causes cartilage lesions [113, 114, 130–132]. In
3D printing, cartilaginous tissue scaffolds are incorporated
with bioink such as chondrocytes, mesenchymal stem cells,
and bone marrow cells which led to the generation of desired
tissue [113, 132]. Certain limitations like weak mechanical
strength and firmness of the implanted cartilage tissue raised
concern. Nevertheless, 3D bioprinting shows great applica-
tions in cartilage tissue repair as it promises to mimic the exact
in vivo environment of cartilage tissue. A group of researchers
in Sweden successfully introduced 3D printed human carti-
lage into mice [132]. They printed a hydrogel of nanocellulose
mixed with human-derived cartilage cells, then surgically im-
planted the structures into mice. Once implanted, new blood
vessels formed within the printed cartilage.

Kidney The kidney is one of the most difficult organs to be
constructed by 3D printed technology because of its complex
structure [133, 134]. The bioinks consisting of kidney cells
and surrounding materials for printing kidneys have been used
in this context. The bioink has the thickness of a toothpaste
that can be expelled at room temperature and enables the
building of complex structures. This research group has been
able to rejuvenate the nephron, the operational unit of the
kidney which can conduct filtration and reabsorption of useful
components. Besides this, several alternative organs also
named grafts, prostheses, implants, analogs, and precursors,
and these are clinically part of regenerative medicine and are
successfully generated using this technology.

There are several case studies in which 3D printed organs
were transplanted successfully. A patient with spina bifida (a
condition where a part of the spinal cord has grown outside the
spinal column) had bladder outgrowth which results in urine
leakage that affects the kidney. In this case, the patient’s
healthy cells were used to make up the urinary tract and blad-
der [134]. In another case, 3D printed medical model compa-
ny along with surgeons at Belfast City Hospital in Northern
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Ireland created a 3D printed replica of the kidney which works
fine [135].

The Heart The heart is the easiest organ to be printed as it does
not have a complex structure and its primary function is to
pump blood [136, 137]. For heart tissue printing, initially, the
donor’s heart is scanned with CT and MRI machines which
find out the structure and size of the heart. Afterward, the
patients’ blood cells are collected and converted into stem
cells under the influence of growth factors which regenerates
the heart cells using bioinkmixed with hydrogel in 3D printers
[136–139]. Here, the bioink is being stratified onto a scaffold
that provides mechanical support and the exact shape of the
patient heart where cells grow and proliferate. After a few
days, cells start to join and begin to beat like an original heart.
The scaffold is now removed and the heart is ready to implant.
The person’s stem cells are used to reconstruct the organ
which reduces the chances of host versus graft disease and
there would be no need for immunosuppressant drugs. A bio-
tech start-up company BioLife4D constructed a miniature
heart for testing in small animals [138]. A group of researchers
from Carnegie Mellon University developed a new method
for 3D bioprinted tissue scaffolds out of collagen and this
new technique allows to 3D print a full-sized, adult human
heart [140]. In another report, when the 3D bioprinted heart
incorporated with human cells, the heart does not beat as it
was too small; it was only about the size of a rabbit’s heart, too
small for a human [141].

Bones The new method “Nanokicking” was developed to
grow 3D constructs of mineralized bones by researchers of
the University of Glasgow. They used stem cells from the
human donor and turning them into the 3D bone graft and this
bone graft was implanted into the dog’s leg. It is expected that
this 3D bone graft work would be ready to transplant in
humans by the end of 2020 [108, 110].

In a similar report, based on a CT scan of the patient,
engineers design the 3D printed bone implants together with
the surgeon which can fit perfectly in place. The process
showed promising results but it is still in the testing phase
[109]. The pre-clinical study showed that, within 24 weeks,
the implant fused with the patient’s bone started rejuvenating
and marrow was beginning to form in the transplant [112].
Moreover, 3D printing of bone tissue using different compat-
ible biomaterials has been carried out successfully [116–121].

Drug Screening and Testing

3D printing enables the quick production of customized
models and manufacturing of complex structures with differ-
ent geometries. The technology offers drug production and
customization that is personalized-dose medicines, sophisti-
cated and complex dosage forms, on-demand manufacturing,

and the development of drug delivery systems with non-
traditional geometries for pharmaceutical drug testing appli-
cations (e.g., drug-eluding implants) [122, 123, 142–146].
The first time 3D printed tablets gained US FDA approval
was in 2015; since then, 3D printing of drugs is expected to
increase in the pharmaceutical industry and pharmacy practice
[147]. The in vivo assessment through bioprinting is quick
and easy. Furthermore, the customization of the drug can be
regulated as the matrix properties, porosity, and shape could
easily be manipulated by using different material choices used
for printing the scaffold that affects cell adhesion. Therefore,
bioprinting demonstrated huge potential in drug discovery and
preclinical testing due to its high speed, precision, and consis-
tent reproducibility [148].

Recently, researchers have successfully used mini tissue,
organ-on-chip, and tissue constructs for in vitro drug screen-
ing [149–151]. 3D mini-tissue models can be constructed
through common 3D bioprinting techniques based on various
cell sources and biomaterials [152–154]. 3D mini-tissue
models facilitate high-throughput testing in case of cancer
disease which can provide predictive or prognostic informa-
tion. However, the drug screening in 2D cell culture models
are easy to manipulate but it lacks the in vivo microenviron-
ment and therefore one cannot predict its full efficacy. In this
context, the 3D printed tissue models and organ-on-a-chip
mimic the complex microenvironment of human tissues and
therefore drug testing efficacy can be predicted more accurate-
ly [155, 156]. Jalili-Firoozinezhad et al. investigated the effi-
cacy of radiation countermeasure drugs by using a gut-on-a-
chip model. This model consists of epithelial and endothelial
cells and cyclic suction was applied to mimic the stress felt
during physiological peristalsis movement by cells. Under
controlled conditions, epithelial cells undergo villus differen-
tiation, similar to that inside the human body [156]. However,
a more personalized approach is needed for drug screening
and testing with strict standardization and quantification re-
quirements [157–160] which can be resolved by introducing
ECM mimicking materials in tissue/organ construct. The
organ-on-a-chip models produced using a tissue engineering
approach have the potential to be perfect models for drug
testing. It involves incorporating the cells into scaffolds and
allowed to grow which created a functional construct that can
be used to replace/repair damaged tissues or organs [158].
These models have the potential to replace animal models that
are used for drug response and toxicology screening. By re-
ducing the number of animals used in preclinical studies, the
cost of drug development can be reduced, and also the ethical
issues regarding laboratory animal usage for drug testing and
screening can be compensated.

Recently, several efforts have been made to construct the
tumor microenvironment of various cancers including cervical
cancer and triple-negative breast cancer with fibroblasts using
3D bioprinting technologies [158–160]. The tumor
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microenvironment thus created was used to study the effect of
drugs on the stromal cells in cancer [160]. Langer et al.
bioprinted a heterotypic tumor microenvironment that
consisted of patient-derived cancer cells, fibroblasts, and en-
dothelial cells, which closely mimic in vivo tumor microenvi-
ronment [161].

COVID-19 Testing and Shortage Supply

COVID-19 was first detected in China on December 19 caus-
ing an expanding and accelerating health crisis around the
world. This pandemic has placed massive stress and a huge
gap in demand and supply chains in terms of diagnostic kits,
reagents, drugs, face masks, and PPE kits [161–164]. The 3D
bioprinting-based additive manufacturing appears to be an
attractive solution and holds promise to combat the shortage
of these supplies. Using 3D printing, the fabrication of com-
plex structures can be done and the printing can be adjustable
for the production of the respiratory mask, face shields, ven-
tilator valves, testing kits, and other equipment that are desir-
able during this pandemic [162]. However, standard safety
and quality measures of medical devices should be regulated
and taken care of in 3D printing labs to ensure the goodness of
fit of the bioprinted materials for human use [159] which can
be improved through education, monitoring, and quality test-
ing of procedures.

In the current pandemic, 3D printers have been used for
rapid design and development of the equipment and testing
kits which include a nasopharyngeal swab, personal protective
equipment, and face shields. Moreover, an alternative ap-
proach for drug production and validation was done by
multi-compartment and multi-layer 3D printing which was
used for developing variable or fixed-dose combinations of
two or more anti-viral therapeutics [164, 165]. The cost-
effective nasal swabs were designed and printed using poly-
ethylene terephthalate glycol (PETG) filament by major type
of filament-based printer at the Department of Pathology and
Microbiology, University of Nebraska Medical Centre,
Omaha, NE, USA. These swabs are durable, chemically inert,
and well suited for structural applications [165]. Similarly, an
inkjet-powder bed printer was used for drug loading as it dis-
solves drugs quickly and easily therefore can lower the drug
administration burden for critically ill patients. This enhance-
ment of drug solubility using FDM filaments which are creat-
ed with ASD formulations is done by locking the active drug
compounds into a formulated filament. This reduces the po-
tential misuse of drug treatment during the panic of an ongo-
ing crisis [164, 166]. Furthermore, 3D printing has already
been used to produce respirator valves for the ventilators in
Italy [167]. The 3D printable medical resources substantially
reduce the morbidity and mortality in patients during the
COVID-19 challenge. However, the cost of 3D printers and
synthetic bioinks, and the low viability of cells with a lack of

vascular networks are certain drawbacks of 3D printing tech-
niques that need to be resolved. Another limitation of this
technique is the use of a synthetic scaffold that does not mimic
the cells’ environment; however, this can be overcome by
using the naturally derived extracellular matrix (ECM)
through the process of decellularization.

Future Perspective
The 3D bioprinting technique is a boon to patients having

end-stage organ failure. These techniques can also be used for
regenerating amputee organs and help the person to live a
normal lifestyle who lost the organ or limbs accidentally.
Apart from this, it can be successfully implemented in the field
of personalized regenerative medicine and tissue engineering.
The advances in the designing of bioengineered scaffold/
extracellular matrix such as biocompatible biomaterial with
minimum toxicity in the patients, angiogenesis promoting
growth factors, biosensors in bioengineered scaffold which
provide a timely update before perfusion of scaffold or extra-
cellular matrix the cells and the ability of genetic manipulation
of cells to prevent the disease have made these techniques
most attractive and feasible to use. However, 3D tissue con-
struct with precisely defined structures and geometries can be
achieved using 3D printing techniques but these structures are
not much stimulus-responsive which limits its application.
Recently, 4D bioprinting and xenotransplantation have gained
considerable attention in this regard. 4D bioprinting was first
introduced in 2013 and since then it is rapidly growing. 4D
printing technology offers a great ability to fabricate complex
and stimuli-responsive 4D structures. In this technology, the
3D structure of an organ self-transforms immediately after
printing when it is exposed to ultraviolet light, current, heat,
or other energy sources or the predetermined stimulus, includ-
ing osmotic pressure and exposure [168]. Skylar Tibbets in
2014 at the Massachusetts Institute of Technology (MIT)
demonstrated multi-material printing that can change from
one shape to another using 4D printing technology [169].
The homogenized tissue developed by 3D printing technology
can be transformed into a fourth dimension using 4D
bioprinting [170]. The five important factors taken in to ac-
count in the process of 4D printing are (1) mathematical
modeling of the material transformation, (2) type of stimulus,
(3) type of responsive material, (4) type of additive
manufacturing process, and (5) interaction mechanism be-
tween stimulus and the material [171].

For successful 4D printing of tissue, numerical and theo-
retical models are mainly used. These models predict the time
required for the structure to reflect the response by making
links between material and stimulus properties, sequence of
stimuli structure, and the desired final shape [172]. 4D print-
ing technology involves multi-material printing that is stimuli-
responsive materials, the shape of the material changes over
time due to the reaction to temperature, pH, humidity, elec-
tricity, magnetic field, light, acoustics, or a combination of
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these stimuli [173, 174]. 4D bioprinting has diverse applica-
tion in various fields which includes biomedical, tissue engi-
neering, biosensors, robotics, and bioactuators. The fabrica-
tion of smart and multifunctional materials of biological rele-
vance using 4D printing technology has been reported in re-
cent studies [175, 176]. The in vitro synthesis of biomimetic
blood vessels using self-folding polymers which help blood
vessels to incorporate into various cell types are successfully
constructed using 4D printing [177]. Besides this, 4D
bioprinting enables the allocation of distinct elements that
can self-fold or self-unfold to encapsulate and release drugs
or cells in a programmable manner to the target organ [178].
Another interesting application of 4D bioprinting technology
is to cure wounds. For this, human adipose-derived stem cells
are infused into shape memory polymer scaffolds, in which
cells upon injury in scaffolds produced mineral deposition,
protein production, and gene expression thereby healing the
damaged tissue. The feasibility of printed shape memory scaf-
folds for bone repair has been proven experimentally [179].

Another advance in the field of tissue engineering is xeno-
transplantation [180–184]. A recent study done by Vunjak-
Novakovic and her colleagues is the classic example of xeno-
transplantation. They had revived the donor lung (human) using
pig (circulatory system) as a recipient. They obtained lungs that
had been rejected for transplantation from six human donors,
both single lungs and pairs. The team united each lung to the
circulatory system of an anesthetized pig with tubes nourishing
the blood vessels of the human lung from those in the neck of
the pig. The circulatory system was inserted with immunosup-
pressant drugs which infiltrate both the pig and the human lung.
After 24 h, the team observes the lungs are modified. This study
also stated that the process will not protect potentially harmful
pathogens diffused to people. Furthermore, it was observed that
the lungs are wholly free of pig cells. However, the lungs were
noticed to have lymphocytes from the pigs. The outcome of this
study provides a hope that lung recipient uses their blood sup-
ply to revive donated lungs that they will receive which could
increase the number of lungs available for donation to patients
by three times [184].

Currently, clinical xenotransplantation trials are in progress
to detect the inherently engineered finest pig either as a single
organ donor or multiple organ donor. However, it is uncertain
whether a specific genetically engineered pig would be ideal
as a source of numerous different complex organs or it would
be necessary to have organ-specific genetically engineered
pigs since organ-specific heterogeneity and immunogenicity
play important role in the acceptance of transplanted organ
[182]. In this regard, 3D bioprinting in combination with bio-
informatics and computational biology can be proven less
expensive and a quick way to get desired tissue or organ.
However, there are several persisting pathobiological and
physiological obstacles that must be conquered before world-
wide acceptance of this technology [183].

Commercially Available 3D Bioprinters

Technological advancements are projected rapidly owing to
the growing use of 3D bioprinting not only in the field of mass
production of organs and tissues to overcome the organ short-
age but this is also exploited in cosmetic surgeries and praises
a lot in pharmaceutical industries. Currently, the 3D
bioprinting global market is in its developing phase and has
a huge opportunity to spread in developing countries. So far,
only a handful of companies enlisted in Table 4 are in the
market. 3D bioprinting technologies are still in their early
stages in the field of biomedical research and development.

Conclusion

This review focused on additive manufacturing techniques spe-
cifically 3D bioprinting and decellularization followed by
recellularization which hold promise to combat shortage of or-
gans and can efficiently deal with several problems in the med-
ical field. These techniques can be exploited for generation of
customized organs for the patients facing end-stage organ failure.
These approaches can be successfully implemented for person-
alized and regenerative medicine and thus can be boon for soci-
ety and human welfare. The 3D bioprinting working principle is
similar to 2D printers in which instead of using paper and colored
ink, specific material such as hydrogels, biomaterials, stem cells,
or patient-derived cells have been used alongwith file in the STL
format to create a tissue or organ. The most common bioprinters
in the field of tissue engineering and 3D printing technology are
laser-assisted printer, microextrusion, and inkjet printers which
basically use different biomaterial and bioink. These biomaterials
are compatible with printers and specialized to properly fabricate
the tissue/organ construct. In contrast to this, decellularization is
used to customize or personalize the donor organ for the patient
via removing all the cellular components and the geneticmaterial
to get the naturally derived extracellular matrix called scaffold.
The more personalized and natural extracellular matrix can be
obtained using 3D bioprinting and decellularization approaches
that can be adapted to body without eliciting much immune
response in contrast to synthetic matrix where chances of rejec-
tion are higher. However, stability and natural shape of organ
along with cost of techniques are few factors which limit the
applicability of these techniques. Besides, the ethical approval
of governing bodies of countries in terms of human organ culture
and usages would be another major challenge in this regard.
Nevertheless, recent advances in 4D bioprinting have ability to
enhance the structural stability and shape of the tissue/organ
construct. Moreover, xenotransplantation has potential to revive
the donor organ without transmitting the xenogeneic disease in
human recipient. Taken together, these techniques if exploited
precisely and appropriately can deal with the problem of shortage
of organs in the field of medical sciences.
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