Skip to main content
Log in

Monocyte Modulation by Liposomal Alendronate Improves Cardiac Healing in a Rat Model of Myocardial Infarction

  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

The ischemic injury in acute myocardial infarction (AMI) activates the innate immunity response in two consecutive phases. Classical monocytes (CM) accumulate in the inflammatory phase (first 3 days), and non-classical monocytes (NCM) accumulate in the reparatory phase (4–7 days). We hypothesized that inhibition of monocytes at the second phase post-AMI will lead to better healing by reducing myocardial damage and consequently improve heart function. We examined the effect of monocyte modulation on cardiac healing following MI injury in rats by nano-sized alendronate liposomes (LipAln) treatment. Rats were treated with intravenous (IV) LipAln, on days 5, 7, and 9 after ligation of the left anterior descending artery (LAD). Circulating monocyte levels were reduced after the first LipAln injection, and two peripheral blood monocyte subsets, CM and NCM, were sequentially mobilized after MI. Two weeks after MI, a reduction in infarct size was observed and cardiac function was improved in LipAln-treated rats (fractional shortening of 32.2% ± 1.9% and 26.0% ± 1.3%, for LipAln and saline treated rats, respectively, p < 0.05). This improvement was further corroborated by increased cardiac anti-inflammatory cytokine expression and reduced levels of pro-inflammatory cytokines. In conclusion, LipAln treatment during the second phase after MI improves cardiac healing.

Lay Abstract

Myocardial infarction (MI) occurs when coronary blood flow decreases, causing damage to the heart muscle. Consequently, the body sends cells called monocytes/macrophages as part of a reparatory-inflammatory response. We hypothesized that altering a specific step in the inflammatory process, which the heart utilizes to heal itself, could result in improved heart function. Using a unique drug delivery system of nano-sized particles called liposomes, in which a molecule (bisphosphonate) that is toxic to monocytes is embedded, we successfully altered the inflammatory process, in a rat model of MI. resulting in improved heart function.

The novel technology reported in this issue celebrating Robert Langer’s birthday is directly linked to my previous work with Bob. As Bob’s postdoc at MIT (1984–1986), our group developed heart valve anti-calcification implantable drug delivery systems, which contain a bisphosphonate. His guidance and mentorship then, and to this day, are of great importance. I am forever grateful for his continued contribution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Daskalopoulos EP, Hermans KC, Blankesteijn WM. Cardiac (myo)fibroblast: novel strategies for its targeting following myocardial infarction. Curr Pharm Des. 2014;20(12):1987–2002.

    Article  CAS  Google Scholar 

  2. Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol. 2015;5(4):1841–75.

    Article  Google Scholar 

  3. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11:255–65.

    Article  CAS  Google Scholar 

  4. Nahrendorf M, Swirski FK. Innate immune cells in ischaemic heart disease: does myocardial infarction beget myocardial infarction? Eur Heart J. 2016;37(11):868–72.

    Article  Google Scholar 

  5. Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91–112.

    Article  CAS  Google Scholar 

  6. Maekawa Y, Anzai T, Yoshikawa T, Asakura Y, Takahashi T, Ishikawa S, et al. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling. J Am Coll Cardiol. 2002;39(2):241–6.

    Article  Google Scholar 

  7. Tsujioka H, Imanishi T, Ikejima H, Kuroi A, Takarada S, Tanimoto T, et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol. 2009;54(2):130–8.

    Article  Google Scholar 

  8. Ruparelia N, Godec J, Lee R, Chai JT, Dall'Armellina E, McAndrew D, et al. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. Eur Heart J. 2015;36(29):1923–34.

    Article  CAS  Google Scholar 

  9. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.

    Article  CAS  Google Scholar 

  10. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121(22):2437–45.

    Article  Google Scholar 

  11. Danenberg HD, Fishbein I, Gao J, Monkkonen J, Reich R, Gati I, et al. Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation. 2002;106(5):599–605.

    Article  CAS  Google Scholar 

  12. Danenberg HD, Golomb G, Groothuis A, Gao J, Epstein H, Swaminathan RV, et al. Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation. 2003;108(22):2798–804.

    Article  CAS  Google Scholar 

  13. Epstein-Barash H, Gutman D, Markovsky E, Mishan-Eisenberg G, Koroukhov N, Szebeni J, et al. Physicochemical parameters affecting liposomal bisphosphonates bioactivity for restenosis therapy: internalization, cell inhibition, activation of cytokines and complement, and mechanism of cell death. J Control Release. 2010;146(2):182–95.

    Article  CAS  Google Scholar 

  14. Gutman D, Golomb G. Liposomal alendronate for the treatment of restenosis. J Control Release. 2012;161(2):619–27.

    Article  CAS  Google Scholar 

  15. Grad E, Zolotarevsky K, Danenberg HD, Nordling-David MM, Gutman D, Golomb G. The role of monocyte subpopulations in vascular injury following partial and transient depletion. Drug Deliv Transl Res. 2018;8(4):945–53.

    Article  CAS  Google Scholar 

  16. Aizik G, Grad E, Golomb G. Monocyte-mediated drug delivery systems for the treatment of cardiovascular diseases. Drug Deliv Transl Res. 2018;8(4):868–82.

    Article  CAS  Google Scholar 

  17. Eriksen EF, Díez-Pérez A, Boonen S. Update on long-term treatment with bisphosphonates for postmenopausal osteoporosis: a systematic review. Bone. 2014;58:126–35.

    Article  CAS  Google Scholar 

  18. Rogers MJ, Crockett JC, Coxon FP, Monkkonen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49(1):34–41.

    Article  CAS  Google Scholar 

  19. van Rooijen N, Sanders A, van den Berg TK. Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Method. 1996;193(1):93–9.

    Article  Google Scholar 

  20. Danenberg HD, Fishbein I, Epstein H, Waltenberger J, Moerman E, Monkkonen J, et al. Systemic depletion of macrophages by liposomal bisphosphonates reduces neointimal formation following balloon-injury in the rat carotid artery. J Cardiovasc Pharmacol. 2003;42(5):671–9.

    Article  CAS  Google Scholar 

  21. Epstein H, Berger V, Levi I, Eisenberg G, Koroukhov N, Gao J, et al. Nanosuspensions of alendronate with gallium or gadolinium attenuate neointimal hyperplasia in rats. J Control Release. 2007;117(3):322–32.

    Article  CAS  Google Scholar 

  22. Epstein H, Gutman D, Cohen-Sela E, Haber E, Elmalak O, Koroukhov N, et al. Preparation of alendronate liposomes for enhanced stability and bioactivity: in vitro and in vivo characterization. AAPS J. 2008;10(4):505–15.

    Article  CAS  Google Scholar 

  23. Banai S, Finkelstein A, Almagor Y, Assali A, Hasin Y, Rosenschein U, et al. Targeted anti-inflammatory systemic therapy for restenosis: the biorest liposomal alendronate with stenting sTudy (BLAST)-a double blind, randomized clinical trial. Am Heart J. 2013;165(2):234–40 e1.

    Article  CAS  Google Scholar 

  24. ClinicalTrials.gov. Phase IIb liposomal alendronate study (blade). 2018. https://clinicaltrials.gov/ct2/show/NCT02645799. Accessed Jan 2019.

  25. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol. 2007;170(3):818–29.

    Article  CAS  Google Scholar 

  26. Lang JK. Quantitative determination of cholesterol in liposome drug products and raw materials by high-performance liquid chromatography. J Chromatogr. 1990;507:157–63.

    Article  CAS  Google Scholar 

  27. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2(5):358–67.

    Article  CAS  Google Scholar 

  28. Takagawa J, Zhang Y, Wong ML, Sievers RE, Kapasi NK, Wang Y, et al. Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. J Appl Physiol (1985). 2007;102(6):2104–11.

    Article  Google Scholar 

  29. Chow A, Stuckey DJ, Kidher E, Rocco M, Jabbour RJ, Mansfield CA, et al. Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction. Stem Cell Rep. 2017;9(5):1415–22.

    Article  CAS  Google Scholar 

  30. Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation. 2013;127(20):2038–46.

    Article  CAS  Google Scholar 

  31. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–6.

    Article  CAS  Google Scholar 

  32. Hofmann U, Frantz S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ Res. 2015;116(2):354–67.

    Article  CAS  Google Scholar 

  33. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.

    Article  CAS  Google Scholar 

  34. Ziegler-Heitbrock L. Reprint of: monocyte subsets in man and other species. Cell Immunol. 2014;291(1–2):11–5.

    Article  CAS  Google Scholar 

  35. Vlacil AK, Schuett J, Schieffer B, Grote K. Variety matters: diverse functions of monocyte subtypes in vascular inflammation and atherogenesis. Vasc Pharmacol. 2019;113:9–19.

    Article  CAS  Google Scholar 

  36. Yrlid U, Jenkins CD, MacPherson GG. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions. J Immunol. 2006;176(7):4155–62.

    Article  CAS  Google Scholar 

  37. Leor J, Rozen L, Zuloff-Shani A, Feinberg MS, Amsalem Y, Barbash IM, et al. Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation. 2006;114:I94–100.

    Article  Google Scholar 

  38. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med. 2012;209(1):123–37.

    Article  CAS  Google Scholar 

  39. Shantsila E, Lip GY. Monocytes in acute coronary syndromes. Arterioscler Thromb Vasc Biol. 2009;29(10):1433–8.

    Article  CAS  Google Scholar 

  40. Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110(1):159–73.

    Article  CAS  Google Scholar 

  41. Chen B, Frangogiannis NG. Immune cells in repair of the infarcted myocardium. Microcirculation. 2017;24:1–10.

    Google Scholar 

  42. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53(1):31–47.

    Article  CAS  Google Scholar 

  43. Jung M, Ma Y, Iyer RP, DeLeon-Pennell KY, Yabluchanskiy A, Garrett MR, et al. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res Cardiol. 2017;112(3):33.

    Article  CAS  Google Scholar 

  44. Wan E, Yeap XY, Dehn S, Terry R, Novak M, Zhang S, et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res. 2013;113(8):1004–12.

    Article  CAS  Google Scholar 

  45. Ryu JC, Davidson BP, Xie A, Qi Y, Zha D, Belcik JT, et al. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia. Circulation. 2013;127(6):710–9.

    Article  CAS  Google Scholar 

  46. Thomas G, Tacke R, Hedrick CC, Hanna RN. Nonclassical patrolling monocyte function in the vasculature. Arterioscler Thromb Vasc Biol. 2015;35(6):1306–16.

    Article  CAS  Google Scholar 

  47. Hilgendorf I, Gerhardt LM, Tan TC, Winter C, Holderried TA, Chousterman BG, et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res. 2014;114(10):1611–22.

    Article  CAS  Google Scholar 

  48. Frantz S, Hofmann U, Fraccarollo D, Schafer A, Kranepuhl S, Hagedorn I, et al. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J. 2013;27(3):871–81.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported in part by Biorest Ltd., Tel Aviv, Israel (GG and HD). GG is grateful to the Woll Sisters and Brothers Chair in Cardiovascular Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gershon Golomb.

Ethics declarations

Conflict of Interest

GG, HD, and IR have a financial stake in Biorest Ltd.; EG, MG, AE, and AO declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PPTX 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grad, E., Gutman, D., Golomb, M. et al. Monocyte Modulation by Liposomal Alendronate Improves Cardiac Healing in a Rat Model of Myocardial Infarction. Regen. Eng. Transl. Med. 5, 280–289 (2019). https://doi.org/10.1007/s40883-019-00103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-019-00103-8

Keywords

Navigation