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Abstract
We classify G-solid rational surfaces over the field of complex numbers for finite
group actions.
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1 Introduction

We are interested in the equivariant birational geometry of rational surfaces over the
field of complex numbers for finite group actions. Let S be a rational surface, and G
be a finite group acting faithfully and biregularly on S. Denote by ρG(S) the rank
of the G-invariant part of the Picard group of S. The G-equivariant Minimal Model
Program applied to a resolution of singularities of S implies that S is G-birational to
a G-Mori fibre space, i.e. a G-surface in one of the following two cases:

• A G-del Pezzo surface, namely a del Pezzo surface S such that −KS is ample and
ρG(S) = 1.

• A G-conic bundle, i.e. there is a G-equivariant morphism S → P
1 with general

fibre isomorphic to P
1, and such that ρG(S) = 2.

We say that S is G-solid if it is not G-birational to any G-conic bundle.

Main Theorem Let S be a G-del Pezzo surface of degree d = K 2
S . Then S is G-solid

if and only if:

• d � 3.
• d = 4 and G does not fix a point on S in general position.
• d = 5 and G is not isomorphic to Z5 or D5.
• d = 6 and G is not isomorphic to Z6, S3, or D6.
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• d = 8, S ∼= P
1×P

1, and, up to conjugation in Aut(S), either

– G has a subgroup isomorphic to A4, or
– G4 ⊂ G and G �⊂ G16, for two specific groups G4 and G16.

• S ∼= P
2, the group G does not fix a point on S, and is not isomorphic toS4 or A4.

A complete answer was already given for KS � 4 by Segre in [12], Manin in [10], Das
Dores–Mauri in [8], and Dolgachev–Iskovskikh in [7]. We will quickly recall these
results in Sect. 2. For S = P

2, we also prove the following result.

Theorem 1.1 Let G be a finite subgroup ofAut(P2) isomorphic toA4 orS4. The only
G-Mori fibre spaces G-birational to P

2 are P
2 and a del Pezzo surface of degree 5

with a G-conic bundle structure.

In particular, for G ∼= A4 and for G ∼= S4, the projective plane is not G-birational
to any Hirzebruch surface Fn .

A recent motivation for our work is given by Tschinkel, Yang, and Zhang in [13].
BothG-solid surfaces and surfaces which are notG-birational to a Hirzebruch surface
are classes of divisors on threefolds which give rise to Incompressible Divisorial Sym-
bols, a modern tool used in the formalism of Burnside groups to distinguish birational
types of group actions. An example of applications of these techniques by Cheltsov,
Tschinkel, and Zhang can be found in [6].

Finally, let us point out that the classification of G-solid Fano varieties is widely
open starting from dimension 3. Some work has been achieved in the case of toric
Fano threefolds, see for example [4–6].

2 Formalism and existing results

2.1 The Sarkisov program

Werecall a powerful tool for studying theG-equivariant birational geometry of rational
surfaces. Any G-birational map between G-Mori fibre spaces splits into a sequence
of elementary G-birational maps, called G-Sarkisov links.

Definition 2.1 A G-Sarkisov link, from S to S′, is a commutative diagram of one of
the following forms.

• Links of type I:

S′
σ

S P
1

where S is a G-del Pezzo surface, S′ → P
1 is a G-conic bundle, and σ is the

blow-up of a G-orbit.
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• Links of type II:

Z
σ σ ′

S

π

S′

π ′

B B ′

where either B = {pt}, in which case S and S′ areG-del Pezzo surfaces, or B ∼= P
1,

and π, π ′ are G-conic bundles. The maps σ and σ ′ are blow-ups of G-orbits.
• Links of type III. They are the inverses of the links of type I.
• Links of type IV. Here, S = S′ is a G-conic bundle, and any such link is the choice
of one conic bundle structure on S among the possible two.

In the following theorem,wegather the twomain results about the Sarkisov program
for surfaces, both taken from [9].

Theorem 2.2 Any G-birational map S ��� S′ between G-Mori fibre spaces splits
into finitely many G-links. Moreover, the G-links between G-Mori fibre spaces are
classified fully classified in [9].

We will not recall this classification here, but will carefully mention what we use
from it throughout the present note. Let us mention that a G-link of type I or II starting
from a surface S is always centered at an orbit of length lower than d = K 2

S .

2.2 Existing results

The case of G-del Pezzo surfaces S of canonical degree d � 3 is often referred to as
the Segre–Manin Theorem. Recall that a G-del Pezzo surface S is called G-rigid if
any G-birational map starting from S leads to a G-isomorphic surface. The surface S
is called G-superrigid if any G-birational map starting from S is a G-isomorphism.

Proposition 2.3 Let S be a smooth del Pezzo surface, and G be a finite subgroup of
Aut(S) such that ρG(S) = 1.

• If K 2
S = 1, S is G-superrigid.

• If K 2
S = 2 or K 2

S = 3, S is G-rigid.

In [8], Das Dores and Mauri also classified finite groups G for which a del Pezzo
surface of degree 2 or 3 is G-superrigid.

For K 2
S = 4, the result is essentially a corollary of the classification of G-links in

[9].
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Proposition 2.4 Let G be a subgroup of Aut(S) such that ρG(S) = 1, where S is a
del Pezzo surface of degree 4. The following conditions are equivalent.

• S is G-rigid.
• S is G-solid.
• G does not fix a point on S outside of the (−1)-curves.

Proof Using the classification of Sarkisov links in [9], we see that there are three
possible links starting from S. The first one is the blow-up of a point not lying on
a (−1)-curve, leading to a G-conic bundle. The second one is a Geiser involution,
centered at an orbit of length 2, and the last one is a Bertini involution, centered at
an orbit of length 3. But as mentioned in [15], Geiser and Bertini involutions lead to
G-isomorphic surfaces. ��

3 Del Pezzo surfaces of degree 5

Up to isomorphism, there is only one smooth del Pezzo surface S of degree 5, given
by the blow-up of P

2 in four points in general position. Its group of automorphisms is
isomorphic to S5, nicely described for example in [1].

Lemma 3.1 ([7]) Let G ⊂ Aut(S). Then ρG(S) = 1 if and only if G is isomorphic to
S5,A5,D5, Z5, or F5 = Z5�Z4.1

Let us recall the groups for which the G-solidity of S is known. The cases of A5
and S5 were solved by Cheltsov, and G = F5 by Wolter.

Proposition 3.2 ([2, 3]) If G ⊂ Aut(S) is isomorphic to A5 or S5, then S is G-
superrigid.

Proposition 3.3 ([14]) If G ⊂ Aut(S) is isomorphic to F5, then S is G-solid.

What remains to study is the G-solidity of S for G isomorphic to Z5 or D5. We will
manage to avoid studying the G-orbits on S, and only need to use the G-birational
geometry of P

2.

Proposition 3.4 If G is isomorphic to Z5 or D5, then S is not G-solid.

Proof Consider the matrices M =
(

1 0 0
0 μ5 0
0 0 μ−1

5

)
∈ PGL3(C), where μ5 is a primitive

fifth root of the unity, and N =
(
1 0 0
0 0 1
0 1 0

)
. We have H ..= 〈M〉 ∼= Z5, and H ′ ..=

〈M, N 〉 ∼= D5, under the action of both groups, the point (1 : 1 : 1) has an orbit of length
5 in general position. Blowing up this orbit and contracting the proper transform of
the conic passing through the five points gives a G-link from P

2 to a del Pezzo surface
of degree 5, for any G ∈ {H , H ′}. On the other hand, for any G ∈ {H , H ′}, the point
(1 : 0 : 0) ∈ P

2 is fixed under the action ofG. Hence, we can blow it up and get aG-link
to the Hirzebruch surface F1, with a G-conic bundle structure. Since Z5 and D5 are
unique in S5 up to conjugacy, we conclude that S is not G-solid for any subgroup G
of Aut(S) isomorphic either to Z5 or to D5. ��
1 This is the group of GAP ID (20, 3).
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4 Del Pezzo surfaces of degree 8

Let S = P
1×P

1. Recall that this is the only del Pezzo surface of degree 8 we have
to study, since the blow-up of P

2 at a point cannot be a G-del Pezzo surface. The
automorphism group of S is isomorphic to (PGL2(C)×PGL2(C))�Z2, where Z2
acts on the direct product PGL2(C)×PGL2(C) by permuting its factors. We will
use affine coordinates x and y and have the two PGL2(C) components act on them,
respectively. The action of Z2 is given by the permutation of x and y. For example,
an automorphism written (x0 : x1)×(y0 : y1) �→ (y1 u: y0)×(x0 : x1) will be denoted
as (1/y, x). To begin with, we will give an example of a group G ⊂ Aut(S) such that
the surface S is not G-solid.

Example 4.1 Let π1 and π2 be the two canonical projections from S to P
1. If two points

P and Q are such that πi (P) �= πi (Q) for i = 1 and i = 2, we say that they are
in general position. Assume that a subgroup G ⊂ Aut(S) fixes two points in general
position. Then there is a G-birational map from S to the G-conic bundle F1, which
decomposes into two G-links as follows:

Z7

σ1 σ2

F1

σ3

S P
2

P
1

where σ1, σ2 and σ3 are blow-ups at a point. Here is a list of explicit cases in which it
happens:

• If G = 〈s, tn〉, with s = (y, x) and t = (μnx, μ−1
n y), then G ∼= Dn .

• If G = 〈σ, τn〉, with σ = (y,−x) and τn = (i x, iy), then G ∼= Q8.

Remark 4.2 Let φ : S ��� S′ be a G-link centered at k points. Using the classification
of Sarkisov links in [9], we see that, if k � 6, then φ is either a Bertini or a Geiser
involution.Once again, asmentioned in [15], such link leads to aG-isomorphic surface.
It follows that if S′ is not G-isomorphic to S, then φ is of one of the following forms.

Z7

S P
2

Z6

S P
1

Z5

S Z6

k = 1 k = 2 k = 3

Z4

S S

Z3

S Z5

k = 4 k = 5

A surface denoted by Zk is a del Pezzo surface of degree k. We deduce that if G does
not have any orbit of length k � 5, then S is G-rigid. One can mention that every pair
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of points in the center of one of the links of Remark 4.2 must be in general position,
as defined in Example 4.1.

4.1 Toric subgroups of Aut(P1×P
1)

We can embed (C∗)2 as a dense torus in S by the map ι : (C∗)2 ↪→ S, (a, b) �→
(1 : a)×(1 : b), whose image will be called T. Moreover, any dense torus in S is equal
to T up to an automorphism of S. The action of (C∗)2 on itself by translation extends
to a faithful action on the whole variety S, by identifying (C∗)2 to the subgroup
T = {(ax, by), a, b ∈ C

∗} of Aut(S).

Lemma 4.3 There is an exact sequence

1 T N (T) D4 1.w

Proof First, notice that N (T) leaves T invariant. Indeed, the normalizer of T permutes
the T-orbits, and T is the only one which is dense in S. The complement of T in S is
the divisorC ..= π−1

1 (1 : 0)+π−1
1 (0 : 1)+π−1

2 (1 : 0)+π−1
2 (0 : 1), where π1 (resp. π2)

is the canonical projection from P
1×P

1 to the left (resp. right) factor P
1. Intersection

number being preserved by automorphisms, any element of N (T) induces a symmetry
of the square formed by C , thus giving a group homomorphism w : N (T) → D4.
Finally, the group T is the set of automorphisms which preserve each irreducible
curve of the divisor C . In other words, the kernel of w is T. Moreover, w is surjective,
hence the exact sequence. ��
Remark 4.4 Notice that N (T) is exactly the set of automorphismspreserving the square
C . This will be useful later on for proving that a subgroup G of Aut(S) is contained
in N (T).

Let G be a subgroup of N (T), and T = G ∩ T. The restriction of w to G induces
the exact sequence

1 T G W 1,w

for some subgroup W of D4.
Wewill call toric a subgroup ofAut(S) conjugated to a subgroup of N (T). Consider

the automorphisms r = (1/y, x), and s = (y, x). Both belong to N (T), and they
generate a group isomorphic to D4, on whichw restricts to an isomorphism. In [4], the
authors mention without proof that if G is a subgroup of N (T) such that ρG(S) = 1,
then its image W in D4 must contain Z4. We prove this result here, and state it in a
slightly stronger way, adding that an element mapped onto w(r), hence generating Z4
in D4, is equal to r up to conjugation by an element of the torus.

Lemma 4.5 Let G be a toric subgroup ofAut(S) such that ρG(S) = 1. If S is G solid,
then G is conjugated by an element of T to a subgroup of N (T) containing r .
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Proof Since G is toric, we may assume that it is a subgroup of N (T). The orbits of
the vertices of the square C under the action of D4 are of length 1, 2, or 4. If one of
them is fixed, the opposite vertex must be fixed as well, and we get the situation of
Example 4.1. In particular, the surface S is notG-solid. If no vertex is fixed, then either
the vertices are on the same orbit, or they form two orbits of length 2. Since ρG(S) = 1,
we cannot have two orbits of length 2, each of them consisting of two consecutive
vertices of C . So these two orbits must be formed by opposite vertices, and we deduce
that there are two orbits of length 2 in general position. We can blow up one of them
to get a G-link to a G-conic bundle. Hence, the only possibility for S to be G-solid is
that all the vertices are on the same orbit. In this case, since ρG(S) = 1, the vertices
must be cyclically permuted, so w(r) ∈ W . It remains to point out that if an element
g ∈ Aut(S) satisfies w(g) = w(r), then g is conjugated to r in N (T). Indeed, such
automorphism g is of the form (a/y, bx), for some a, b ∈ C

∗. Let t = (kx, ly) ∈ T,
with k, l ∈ C

∗. If l2 = 1/ab and k = bl, then we have tgt−1= r . ��
Lemma 4.6 Let G be a subgroup of N (T) containing r , and T = G ∩ T. If |T | > 5,
then S is G-rigid.

Proof The G-orbits of the points outside of the square C are of length at least T .
According to Remark 4.2, there is no link centered in such orbit leading to a non-
G-isomorphic surface. Moreover, the orbit of a point lying in the square C is not in
general position. ��

We will now start the exhaustive study of subgroups G of N (T) such that ρG(S) =
1, where |G ∩ T| � 5 and r ∈ T. Let G be such subgroup of Aut(S). First, we can
take off the cases where G ∼= Z3 or G ∼= Z4.

Lemma 4.7 Let G be a subgroup of N (T) containing r . Then the toric part T = G∩T

cannot be isomorphic to Z3 or to Z4.

Proof Assume that T is isomorphic to Z3 (resp. Z4). Then T is generated by an auto-
morphism t ∈ T of the form (μnx, μk

n y) or (μk
nx, μn y), where n = 3 (resp. 4),

and μn is a primitive n-th root of the unity. But by Lemma 5.1, we may assume
that G contains the element r = (1/y, x), acting on T by conjugation. Since
(r(μk

nx, μn y)r−1)−1 = (μnx, μ−k
n y), we may assume that t is of the first form,

namely we have T = 〈(μnx, μk
n y)〉. The automorphism r tr−1 = (μ−k

n x, μn y) ∈ T
must belong to T , so must be a power (μnx, μk

n y). It is impossible for n = 3 or
n = 4. ��
Proposition 4.8 If T is trivial, then S is not G-solid. The options for G are the follow-
ing.

• A group isomorphic to Z4, generated by r = (1/y, x).
• A group isomorphic to D4, generated by r and s = (y, x).
• A group isomorphic to D4, generated by r and (−y,−x).

Proof The toric part T is trivial, so the mapw restricts to an isomorphism on G. Since
r ∈ G, we either have G ∼= Z4, or G ∼= D4. Assume we are in the latter case. Then G
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is generated by r , and an element h such thatw(h) = w(s), or in other words such that
h = ts, for some t = (ax, by) ∈ T ∼= (C∗)2. Since w restricts to an isomorphism on
G, we can write hrh = w−1(srs) = w−1(r−1) = r−1. It yields r−1 = (a2y, 1/x),
so that a2 = 1. Finally, since h is of order 2, we get ab = 1. So the only two options
for h are h = s, or h = (−y,−x). If G is generated by r and s, the points (1, 1) and
(−1,−1) are fixed by the action, in which case S is not G-solid, as in Example 4.1.
If G is generated by r and (−y,−x), the points (1, 1) and (−1,−1) form an orbit
of length 2. We can G-equivariantly blow up these points and obtain a G-link to a
G-conic bundle. Finally, if Z4 ∼= G = 〈r〉, then G is a subgroup of 〈r , s〉, so that the
surface S is not G-solid. ��
Proposition 4.9 If T ∼= Z2, there are the following possibilities and only them.

• G = 〈t, r〉 ∼= Z4×Z2, with t = (−x,−y). The surface S is not G-solid.
• G = 〈t, r , s〉 ∼= Z2×D4. The surface S is not G-solid.
• G = 〈t, r , h〉 ∼= Z

2
2�Z4, with t and g as above, and h = (−y, x). The surface S

is G-solid.

Proof Assume that w(G) = D4. Then G is generated by r , an element t ∈ T , and an
element h such that w(h) = (ay, bx), for some a, b ∈ C

∗. Since T is of order 2, the
element t is either (−x,−y), (−x, y), or (x,−y). But the relation r tr−1 = t implies
that the only possibility is t = (−x,−y). The order of h can only be 2 or 4. If o(h) = 2,
then a = b−1. Sincew(hrh) = w(r−1), we have hrh = τr−1= τ ·(y, 1/x), for some
τ ∈ T , i.e. τ = id or τ = t . But hrh = τ ·(a2y, 1/x), which implies a = b = ±1.
But since t ∈ G, we may assume that a = b = 1. The points P1 = (1 : 1)×(1 : 1) and
P2 = (1 : − 1)×(1 : − 1) form an orbit of length 2, and blowing it up gives a G-link
to a G-conic bundle.

Assume o(h) = 4. Since h2 = (abx, aby), this implies that a2b2 = 1 and ab �= 1,
so that ab = −1 and h = (ax,−y/a). Using again the fact that r−1 = τhrh−1 =
τ ·(a2y, 1/x), for some τ ∈ T , we deduce that h = (−y, x) or h = (y,−x). Since
these possibilities only differ by t , we may assume that h = (−y, x). The group G is
generated by t , r , and h, and is isomorphic to G ∼= Z

2
2�Z4. There is no G-orbit of

length l � 5, hence S is G-solid.
Finally, if w(G) = Z4, then Z2×Z4 ∼= G = 〈t, r〉 ⊂ 〈t, r , s〉, so that the surface

S is not G-solid, as in the case where G = 〈t, r , s〉. ��
Proposition 4.10 If T ∼= Z

2
2, then S is G-solid. Moreover, there are the following

possibilities for G, and only them.

• G ∼= Z
2
2�Z4, generated by r and t = (−x, y).

• G ∼= Z
4
2�Z2, generated by r , t = (−x, y), and s = (y, x).2

• G ∼= Z
3
2�Z4, generated by r , t = (−x, y), and h = (iy, i x).3

Proof Assume that w(G) ∼= Z4, so that G = 〈T , r〉. Since T ⊂ (C∗)2 is isomorphic
to Z

2
2, it is generated by t1 = (−x, y) and t2 = (x,−y). The group G is isomorphic to

2 This semidirect product is the group of GAP ID (32, 27).
3 This semidirect product is the group of GAP ID (32, 6).
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Z
2
2�Z4. Notice that since r t1r−1 = t2, the group G is generated by r and t1. There is

no G-orbit of length l � 5. Hence, the surface S is G-solid. If w(G) = D4, the group
G contains 〈r , t1〉. Hence the surface S is also G-solid.

Let us complete the list of groups whose toric part is isomorphic to Z
2
2. Assume

that w(G) = D4, so that there exists an element h ∈ G such that w(h) = w(s). The
order of h is either 2 or 4. If o(h) = 2, we get h = (ay, x/a). But r−1 = τhrh−1 =
τ ·(a2y, 1/x), so τ = id and a = ±1, or τ = t1 = (−x, y) and a = ±i . Up to
composition by an element of T , we get h = s = (y, x) or h = (−i x, iy). In the
first case, we have that G = 〈t1, t, h〉 is isomorphic to a semidirect product of the
form Z

3
2�Z4, and in the second case to a semidirect product of the form Z

3
2�Z4. If

o(h) = 4, we get h = (ay,−x/a), which only differs from the previous case by an
element of T , so G is still either 〈t1, r , s〉, or 〈t1, r , (−i x, iy)〉. ��

The only remaining possibility is T ∼= Z5. We will use the results of [14] about the
G-solidity of the del Pezzo surface of degree 5.

Proposition 4.11 If T ∼= Z5, then G is isomorphic to the Fröbenius group F5 ∼=
Z5�Z4, generated by r and (μ5x, μl

5y) for l = 2 or l = 3, where μ5 is a primitive
fifth root of the unity.

Proof Assume T ∼= Z5. It is generated by an element t of the form t = (μ5x, μl
5y)

or t = (μk
5x, μ5y). Since r(μk

5x, μ5y)−1r−1 = (μ5x, μ
−k
5 y), we may assume that

t = (μ5x, μl
5y). But then r tr

−1 = (μ5x−l, μ5y), and this element is in 〈t〉 if and only
if l = 2 or l = 3. Assume that there is an element h ∈ G such thatw(h) = w(s). Such
element is of the form (ay, bx), for some a, b ∈ C

∗. But hth−1 = (μl
5x, μ5y), which

is not in T . Since this subgroup is normal in G, we get a contradiction. Hence, G is
generated by (μ5x, μl

5y) and r , with l = 2 or l = 3. In both cases, G is isomorphic to
the Fröbenius group F5 ∼= Z5�Z4. The points outside of C have orbits of length at
least 5, so that the only possible G-Sarkisov does not lead to a G-isomorphic surface
leads to a del Pezzo surface of degree 5 with invariant Picard rank 1. This surface is
G-solid, according to [14]. ��

4.2 Non-toric subgroups of Aut(P1×P
1)

Proposition 4.12 Let G be a subgroup of Aut(S) such that ρG(S) = 1. Up to conju-
gation of G in Aut(S), there is an exact sequence of the form

1 H ×D H G Z2 1.δ

where H is the projection of G onto the first and second PGL2(C) factor in
(PGL2(C)×PGL2(C))�Z2.

Before proving the above result, let us recall that the fibre product of two groups
H and H ′, over a group D, for the surjective group morphisms φ : H → D and
ψ : H ′ → D, is the subgroup {(h, h′), φ(h)= ψ(h′)} of H ×H ′. In some of our
proofs, we will have to be particularly careful about the surjective group morphisms φ
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and ψ , in which case we will use the notation H ×D,φ,ψ H , instead of H ×D H . The
following lemma gives the structure of the subgroups of a direct product, in terms of
fibre products.

Lemma 4.13 (Goursat’s Lemma) Let H and H ′ be groups, and p1 : H ×H ′ → H,
p2 : H ×H ′ → H ′ be the two canonical projections. Let R be a subgroup of H ×H ′
such that p1(R) = H and p2(R) = H ′. Then R is a fibre product of the form H ×D H ′.

We can now prove Proposition 4.12.

Proof of Proposition 4.12 Define the group morphism δ : Aut(S) → Z2 which sends
an element g to 1 if and only if g swaps the rulings of P

1×P
1. Since ρG(S) = 1,

there must be such element in G, hence the surjectivity of the restriction of δ to G.
The kernel of δ in Aut(S) is PGL2(C)×PGL2(C), hence the kernel of the restriction
of δ to G is a subgroup of PGL2(C)×PGL2(C). Applying Lemma 4.13, it is of the
form H ×D H ′, where H and H ′ are subgroups of PGL2(C). For the remaining of
this proof, we will denote elements of Aut(S) ∼= (PGL2(C)×PGL2(C))�Z2 as
triples (h, h′, a), where h, h′ ∈ PGL2(C), and a ∈ Z2. Let (h, h′, 0) ∈ ker δG , and let
g = (a, a′, 1) ∈ G. Then g(h, h′, 0)g−1 = (ah′a−1, a′ha′−1, 0), so that, ker δG being
normal in G, aH ′a−1 = H . Let α = (a, I , 0), and denote φ : H → D, ψ : H ′ → D
the morphisms of the fibre product. We have α(H ×D,φ,ψ H ′)α−1 = H ×D,φ,ξ H ,
where

ξ : H → D

h �→ ψ(a−1ha),

and we have ker(δαGα−1) = (H ×D,φ,ξ H)×{e}. ��
Let G be a finite subgroup of Aut(S) such that ρG(S) = 1, and H as in Proposi-

tion 4.12.

Lemma 4.14 If G is not toric, then H is isomorphic to A4,S4, or A5.

Proof Assume that H is isomorphic to Zn or Dn . Then there are points P1 and P2 of
P
1 which are either fixed by H or forming an orbit of length 2. Consider the divisors

L1 = {(P1, y), y ∈ P
1}, and L2 = {(P2, y), y ∈ P

1}. The divisor L1+ L2 is invariant
by H ×D H . Let g ∈ G such that G is generated by H ×D H and g. This elements
swaps the rulings of P

1×P
1, so that the divisor D = L1 + L2 + g(L1)+ g(L2) forms

a square. Let α ∈ G. Since H × DH is normal in G and g2 ∈ H ×D H , we can write
α = hgi = gi h′, for some h, h′ ∈ H ×D H and i ∈ {0, 1}. We get:

α(D) = gi h(L1 + L2) + gi hg(L1 + L2)

= gi (L1) + gi (L2) + gi+1h′(L1 + L2)

= gi (L1) + gi (L2) + gi+1(L1) + gi+1(L2)

= D.
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Finally, groups fixing such a square are conjugated in Aut(S) to a subgroup of N (T).
Indeed, there is an element ξ ∈ PGL2(C) sending P1 to (1 : 0) and P2 to (0 : 1). Let
g = (ξ, ξ, 0) ∈ (PGL2(C)×PGL2(C))×Z2 ∼= Aut(S). The image of D by g is the
square C as in the proof of Lemma 4.3. Moreover, gGg−1 fixes C , so that gGg−1 is
in N (T), as implied by Remark 4.4. ��
Proposition 4.15 If G is not toric, then there are no G-orbits of length l ∈ {1, 2, 3, 5}.
Proof Let P1, P2 ∈ P

1, and k1, k2 be the respective lengths of their H -orbits in P
1. The

length of the orbit of (P1, P2) in S under the action of H ×D H must be a common
multiple l of k1 and k2, and the length of its G-orbit is either l or 2l. Hence, by
Lemma 4.14, it is enough to show that there is no A4-orbit of length l ∈ {1, 2, 3, 5} in
P
1.
Assume that H � A4. Recall that A4 is unique up to conjugation in PGL2(C). A

simple way4 to see what the A4-orbits in P
1 are is to use the action of A4 in PGL3(C)

generated by thematrices
(
0 0 1
1 0 0
0 1 0

)
and

( −1 0 0
0 1 0
0 0 1

)
. It preserves the conic x2+y2+z2 = 0,

hence acts on P
1 faithfully. We see that there is no fixed point, and there is no orbit of

length 2 either since A4 does not have any subgroup of index 2. The only subgroup of

index 3 is Z
2
2, generated by the matrices

( −1 0 0
0 1 0
0 0 1

)
and

( 1 0 0
0 −1 0
0 0 1

)
. But it has no fixed

point on the conic, hence there is no H -orbit of length 3. Just considering the order of
A4, there is no H -orbit of length 5.

If H is isomorphic toS4 or A5, and since A4,S4, and A5 are unique in PGL2(C)

up to conjugation, the lengths H -orbits in P
1 must be multiples of the lengths of the

A4-orbits, namely amultiple of k /∈ {1, 2, 3, 5}. This implies that there is no H -orbit of
length k ∈ {1, 2, 3, 5} in P

1. Summing up what we mentioned in this proof, a G-orbit
can only be a multiple of k, for some positive integer k /∈ {1, 2, 3, 5}. ��
Remark 4.16 There is a non-toric subgroup of Aut(S) isomorphic to A4�Z2, which
has a G-orbit of length four in general position. Recall from Remark 4.2, that there is
a G-link centered in such orbit. It is of the following form:

Z4

(S,G) (S,G ′)

By Proposition 4.15, the only way for S not to be G-solid if G is a toric group with
ρG(S) = 1 would be to get the above diagram with G ′ non-toric. To exclude this
possibility, one could use a result of [15] stating that such link leads must lead to a
G-isomorphic surface. We will use another method based on general group theory.
It will have the advantage of giving a simple characterization of toric subgroups of
Aut(S), making the final result much easier to read. It turns out that a finite toric
subgroup G of Aut(S) with ρG = 1 cannot be isomorphic to a non-toric subgroup of
Aut(S) with ρG(S) = 1.

4 One could also generate A4 explicitly in PGL2(C), for example with the matrices
(
1 0
0 μ3

)
and

(
1 2
1 −1

)
,

where μ3 is a primitive cube root of the unity.
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Proposition 4.17 Let G be a subgroup of Aut(S) such that ρG(S) = 1. Then G is
toric if and only if is has no subgroup isomorphic to A4.

We will step back to some general group theory to achieve the above result. To
prove that a non-toric group contains A4, it is enough to show that H ×D H contains
a subgroup isomorphic to H . The fact that a fibre product of this form contains a
subgroup isomorphic to H is not always true if we consider any group H , even though
working on many cases may suggest it is. In the following example, the group H has
the smallest possible order such that there are surjective morphisms φ,ψ : H → D
making the H ×D H a group which does not contain any subgroup isomorphic to H .

Example 4.18 Let H � D4 = 〈a, b | a4 = b2 = (ab)2 = 1〉, take D = Z
2
2, and

φ : a �→ (0, 1)

b �→ (1, 0),

ψ : a �→ (1, 0)

b �→ (1, 1).

Then H ×D H is isomorphic to Z
2
2�Z4, and does not have any subgroup isomorphic

to H . This example exists in our context. Let H = 〈a, b〉, where a = (
1 0
0 i

)
and

b = (
0 1
1 0

)
, and define the morphisms φ and ψ as above. To have a subgroup G of

Aut(S) such that ρG(S) = 1 and G ∩ (PGL2(C)×PGL2(C)) = H ×
Z
2
2
H , we take

G = 〈H ×
Z
2
2
H , g〉, where g = (μ−1

8 y, μ8x), with μ8 a square root of i .

However, it is true that if a group H splits in a nice way, then a fibre product of the
form H ×D H will have a subgroup isomorphic to H . It will apply in particular for
the groups we need, namely A4,S4, and A5.

Lemma 4.19 Let H be a group of the form N�D, and φ,ψ : H → D be surjective
group morphisms such that ker(φ) = ker(ψ) = N. Then H ×D H has a subgroup
isomorphic to H.

Proof The subgroups N = ker(ψ) and D having trivial intersection in H means
that the restriction of ψ to D is an isomorphism. So we can define the set D̃ =
{(d, ψ−1◦φ(d)), d ∈ D}. It is a subgroup of H ×D H , isomorphic to D. Denote
Ñ the subgroup ker(φ)×{id} of H ×H . It is a subgroup of H ×D H , isomorphic
to ker(φ) = N . Consider the projection π from H ×H to the first factor H . Its
restriction to Ñ D̃ is surjective by construction of Ñ and D̃. If π(g, g′) = e, then
g = e. But since Ñ and D̃ have trivial intersection, e = e.e is the only decomposition
of e into a product of an element of N and an element of D. Hence, we get that
(g, g′) = (e.e, e.ψ−1 ◦φ(e)) = (e.e), so that π restricts to an isomorphism between
Ñ D̃ ⊂ H ×D H and H . ��

We get the following immediate consequence.

Corollary 4.20 In the following cases, a fibre product of the form H ×D H contains a
subgroup isomorphic to H.
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• H is simple.
• H is cyclic.
• H is isomorphic to An or Sn for some n.

We can now prove Proposition 4.17.

Proof of Proposition 4.17 Recall that the normalizer N (T) of the torus T in Aut(S)

satisfies this exact sequence:

1 T N (T) D4 1.w

But there is no subgroup of D4 isomorphic to a quotient of A4 by an abelian group.
Hence, if G is toric, it cannot have a subgroup isomorphic to A4. Conversely, assume
that G is a finite toric subgroup of Aut(S) with ρG(S) = 1. By Proposition 4.12, it
satisfies the exact sequence

1 H ×D H G Z2 1,

with H isomorphic to A4,S4, or A5. By Lemma 4.19, the group G has a subgroup
isomorphic to H . Hence, it has a subgroup isomorphic to A4. ��

Summing up the above results, we get the following.

Proposition 4.21 Let G be a finite non-toric subgroup of Aut(S). Then S is G-solid.

Finally, here is the classification of subgroups G of Aut(S) such that S is G-solid.

Theorem 4.22 Let G be a finite subgroup of Aut(S), such that ρG(S) = 1. Then S is
not G-solid if and only if G is toric, and in one of the following cases.

• The group G is not conjugated in Aut(S) to a group containing r = (1/y, x).
• G is conjugated in Aut(P1×P

1) to one of the following groups.

– Z4, generated by r = (1/y, x).
– D4, generated by r and (y, x).
– D4, generated by r and (−y,−x).
– Z4×Z2, generated by r and t = (−x,−y).
– Z2×D4, generated by t and r as above, and h = (y, x).

Once again, Proposition 4.17 not only allows us to conclude about theG-solidity of
the non-toric finite subgroups of Aut(S), but also gives a way to reformulate Theorem
4.22 without mentioning the toric structure of S, giving an equivalent statement which
is shorter and easier to read. Let G16 ∼= Z2×D4 be the subgroup of Aut(S) generated
by r = (1/y, x), s = (y, x), and t = (−x,−y).

Theorem 4.23 Let G be a finite subgroup of Aut(S), such that ρG(S) = 1. Then S is
G-solid if and only if, up to conjugation in Aut(S),

• either A4 ⊂ G, or
• r ∈ G and G �⊂ G16.
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5 Del Pezzo surfaces of degree 6

Up to isomorphism, there is only one smooth del Pezzo surface of degree 6. It is
obtained by blowing up P

2 in three points P1, P2 and P3 in general position. We will
denote by Ei the exceptional curve contracted to the point Pi , and by Di j the proper
transform of the line passing through Pi and Pj . Recall that there is a split exact
sequence

1 T Aut(S) D6 1,w

where w is given by the action of Aut(S) on the hexagon formed by the (−1)-curves
of S. The group T ∼= (C∗)2 is the lift in Aut(S) of the diagonal automorphisms of P

2,
which fixes P1, P2, and P3. This subgroup will be denoted by T.

We will use the embedding of S in P
2×P

2 given by xu = yv = zw, where
(x : y : z)×(u : v : w) stands for the coordinates in P

2×P
2. This model is presented

more extensively in [1]. Explicitly, an element (a, b) ∈ (C∗)2 corresponds to the map
(x : y : z)×(u : v : w) → (x : ay : bz)×(u : a−1v : b−1w). The maps

r : (x : y : z)×(u : v : w) �→ (w : u : v)×(z : x : y), and

s : (x : y : z)×(u : v : w) �→ (x : z : y)×(u : w : v)

generate a subgroup of Aut(S) isomorphic to D6, and the quotient Aut(S)/T ∼= D6 is
generated by the images of r and s. The automorphism r acts on the hexagon formed
by the (−1)-curves as an elementary rotation, and s acts as a reflection of the hexagon
which does not fix any vertex. We have the relations r6 = s2 = (rs)2 = id, giving the
classical presentation of D6.

Lemma 5.1 Any element r ′ ∈ Aut(S) such that w(r ′) = w(r) is equal to r up to
conjugation by an element of T.

Proof Let r ′ ∈ Aut(S) be such that w(r ′) = w(r). Since the kernel of w is the
normal subgroup T of Aut(S), we have r ′ = tr , for some t ∈ T. Explicitly, there exist
(a, b) ∈ (C∗)2 such that r ′ : (x : y : z)×(u : v : w) �→ (w : au : bv)× (z : a−1x : b−1y).
Let t : (x : y : z)×(u : v : w) �→ (x : cy : dz)×(u : c−1v : d−1w) ∈ T ∼= (C∗)2. We
have

tr ′t−1 : (x : y : z)×(u : v : w) �→ (w : acd−1u : bcv)× (z : a−1c−1dx : b−1c−1y).

Setting c = b−1 and d = ab−1, we get tr ′t−1 = r . ��
Let G be a subgroup of Aut(S), such that ρG(S) = 1. The classification of Sarksov

links in [9] and the fact that Bertini and Geiser involutions lead to G-isomorphic
surfaces imply the following.

Remark 5.2 There is no link of type I starting from S. Hence, for S not to be G-solid,
it has to be G-birational to a surface S′, not isomorphic to S. The only G-link S ��� S′
such that S′ is not isomorphic to S is the blow-up of a point P ∈ S which is not in
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the exceptional locus, followed by the contraction of three (−1)-curves. We obtain
S ∼= P

1×P
1. Hence, any G-birational map from S to a G-conic bundle S′′ → P

1 must
split in the following way:

S P
1×P

1 S′′.

We will often refer to the results of Sect. 4 to determine whether or not the surface S
is G-solid.

In particular, Remark 5.2 implies the following lemma.

Lemma 5.3 Let G be a subgroup of Aut(S) such that ρG(S) = 1, not isomorphic to
a subgroup of D6. Then S is G-solid.

Proof Assume that S is not G-solid. Then, by Remark 5.2, there exists a subgroup G ′
of Aut(S) birationally conjugated to G, which fixes a point P in general position. But
in this case, G ′∩ T = id, so that G ′ is mapped isomorphically by w to a subgroup of
D6. ��
Lemma 5.4 If S is a G-del Pezzo surface, then the image of G by w in D6 must
contain the subgroup of D6 isomorphic to Z6, or the subgroup isomorphic to S3
acting transitively on the (−1)-curves of S.

Proof Assume that G does not act transitively on the (−1)-curves of S. Just straight-
forwardly checking all the possible subgroups of D6, one can check that one of the
divisors E1 + E2 + E3, or D12 + D23 + D13, or Ei + E jk , with j, k �= i , is invari-
ant by G. In all those cases, by Castelnuovo’s contractibility criterion, there exists a
G-birational morphism either to P

2 or to P
1×P

1. ��
Corollary 5.5 Let G be a subgroup of Aut(S) such that ρG(S) = 1. Then G is not
isomorphic to any of the groups Z

2
2, Z3, Z2, {id}.

The only remaining groups of interest are D6, Z6, andS3. Let us start with the case
of S3.

Proposition 5.6 Let G be a subgroup of Aut(S) isomorphic to S3 and such that
ρG(S) = 1. Then, up to conjugation in Aut(S), the group G is generated by

(x : y : z)×(u : v : w) �→ (y : z : x)× (v : w : u) and

(x : y : z)×(u : v : w) �→ (w : v : u)×(z : y : x).

Moreover, the surface S is not G-solid.

Proof If the restriction of w to G is not injective, then the image of G by w

is either isomorphic to Z3, isomorphic to Z2, or trivial. By Lemma 5.4, it implies
that ρG(S) = 1, contradicting our assumption. Hence w(G) is isomorphic to
S3 and acts transitively on the (−1)-curves, by Lemma 5.4. We deduce that the
group G is generated by an element g such that w(g) = w(r2), and an element
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h such that w(h) = w(rs). Geometrically, rs acts on the hexagon formed by the
(−1)-curves as a reflection which fixes two opposite vertices. By Lemma 5.1, we have
g : (x : y : z)×(u : v : w) �→ (y : z : x)×(v : w : u) up to conjugation by an element
of the torus. Since ker(w) = T, h = trs for some t ∈ T. Explicitly, h is of the
form (x : y : z)×(u : v : w) �→ (w : av : bu)× (z : a−1y : b−1x), for some (a, b) ∈
(C∗)2. We get h2 : (x : y : z)×(u : v : w) �→ (b−1x : y : bz)×(bu : v : b−1w), and
knowing that o(h) = 2, we deduce that b = 1. Moreover, hgh : (x : y : z)×(u : v : w)

�→ (a−1y : az : x)×(av : a−1w : u), but relations in D6 imply that hgh = g−1 :
(x : y : z)×(u : v : w) �→ (y : z : x)×(v : w : u). Hence, a = 1, so that h : (x : y : z)
×(u : v : w) �→ (w : v : u)×(z : y : x). The three points of the form (1 : μ2k :μk)

×(1 : μk : μ2k) are in general position and fixed by the action of G. Blowing up one
of them, we get a G-link to the surface P

1×P
1 with two fixed points on it in general

position. Hence, we are in the case of Example 4.1, so that S is G-birational to the
G-conic bundle F1. ��
Proposition 5.7 If G is a subgroup of Aut(S) isomorphic to D6 such that ρG(S) = 1,
then, up to conjugation in Aut(S), the group G is generated by (x : y : z)×(u : v : w)

�→ (w : u : v)×(z : x : y) and (x : y : z)×(u : v : w) �→ (x : z : y)× (u : w : v). More-
over, the surface S is not G-solid.

Proof Assume that G ∼= D6. Going through the possible quotients of D6 and combin-
ing with Lemma 5.4, we see that either w(G) = D6, or w(G) = S3. Let us exclude
the latter case, in which G ∩ker(w) = T ∼= Z2. Since the only extension of the form

1 Z2 G S3 1

splits, and since Z2 acts trivially on the Picard group of S, we deduce that the group
G has a subgroup H isomorphic to S3 such that PicH (S) = 1. But such group is
given explicitly in Lemma 5.6, and we see that it cannot commute with a subgroup of
T isomorphic to Z2. Hence we get G ∼= w(G) = D6, and the group G is generated
by an element g such that w(g) = w(r), and an element h such that w(h) = w(s).
By Lemma 5.1, the automorphism g it conjugated to r by an element of T, and its
unique fixed point is P = (1 : 1 : 1)×(1 : 1 : 1). The isomorphism h is of the form
(x : y : z)×(u : v : w) �→ (x : az : bz)×(u : a−1w : b−1v). Since o(h) = 2, be get b =
a−1. Moreover, hr2 h : (x : y : z)×(u : v :w) �→ (az : x : a−2y)×(a−1w : u : a2v).
But the structure of D6 implies that hr2 h = r−2 : (x : y : z)×(u : v :w) �→ (z : x : y)
×(w : u : v), so that a = 1. Hence, h = s : (x : y : z)×(u : v :w) �→ (x : z : y)×
(u : w : v). This automorphism also fixes P , so that, as described in Remark 5.2, there
exists a G-link from S to P

1×P
1 centered at P . By Theorem 4.22, the surface P

1×P
1

is not G ′-solid for any subgroup G ′ ⊂ Aut(P1×P
1) isomorphic to D6. We conclude

that S is not G-solid. ��
Proposition 5.8 Let G be a subgroup of Aut(S) isomorphic to Z6 and such that
ρG(S) = 1. Then, up to conjugation in Aut(S), the group G is generated by
(x : y : z)×(u : v : w) �→ (w : u : v)×(z : x : y). Moreover,the surface S is not G-solid.
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Proof First, notice that the restriction of w to G is injective. Indeed, if not, then the
image of G by w is either isomorphic to Z3, isomorphic to Z2, or trivial. By Lemma
5.4, it implies that ρG(S) > 1, contradicting our assumption. The group G is then
generated by an element g such thatw(g) = w(r). ByLemma5.1, the automorphism g
is conjugated to up to r : (x : y : z)×(u : v : w) �→ (w : u : v)×(z : x : y) by an element
of T. The only fixed point of r on S is (1 : 1 : 1)×(1 : 1 : 1). In particular, there is a
subgroup G ′ of Aut(S) containing G and isomorphic to D6. Since S is not G ′-solid
by Proposition 5.7, the surface S is not G-solid either. ��

Summing up the results of this section, we get the following.

Theorem 5.9 Let G be a subgroup of Aut(S) such that ρG(S) = 1. Then S is G-solid
if and only if G is not isomorphic to Z6, S3, or D6.

6 The projective plane

The only remaining smooth del Pezzo surface is S = P
2, whose automorphism group

is PGL3(C). The G-rigidity of S has been studied by Sakovics in [11]. We will point
out how his results hold for the G-solidity of S, and describe the full G-birational
geometry of S for G ⊂ PGL3(C) isomorphic to A4 or S4. In other words, we are
going to list all the G-Mori fibre spaces S′ such that there exists a G-birational map
S ��� S′.

Theorem 6.1 ([11]) The projective plane is G-rigid if and only if G is transitive and
not isomorphic to S4 or A4.

Moreover, if G fixes a point on S, then we can G-equivariently blow up this point
and get a G-birational map to the G-conic bundle F1, so that S is not G-solid. Hence,
the only remaining cases to study are those of S4 and A4.

Lemma 6.2 The subgroups of PGL3(C) isomorphic to S4 or A4 are unique up to
conjugation in PGL3(C).

Proof The canonical projection π : GL3(C) → PGL3(C) induces a surjection
SL3(C) → PGL3(C). Let G ⊂ PGL3(C) be a subgroup of PGL3(C) isomorphic
to S4, and consider its lift G ′ ⊂ SL3(C) by the above projection. The kernel of π

restricted to SL3(C) is {I3, μI3, μ2 I3}, where μ is a primitive cube root of the unity.
Thus, we have an extension

1 Z3 G ′ G 1.

But {I3, μI3, μ2 I3} lies in the center of GL3(C). We deduce that G ′ is isomorphic
to Z3×S4, since this group is the only triple central extension of S4. Its subgroup
{id}×S4 is sent isomorphically to G by π . In particular, there exists a subgroup of
GL3(C) isomorphic toS4, whose projection in PGL3(C) isG. But the only irreducible
faithful linear representations of degree 3 ofS4, up to equivalence of representations,
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are the standard one and its product with the sign representation. Both are mapped by
π to the same subgroup of PGL3(C).

The group A4 has two triple central extensions, namely Z3×A4, and a non-split
extension. But in the second case, there is no irreducible faithful representation of
degree 3 whose image is in SL3(C). Hence, as in the case of S4, there is a subgroup
of GL3(C) mapped isomorphically by π onto G. Since there is only one equivalence
class of irreducible linear representations of A4 of degree 3, we conclude that A4 is
unique in PGL3(C), up to conjugation. ��
Proposition 6.3 Let G ∼= S4 be a subgroup ofAut(S). The only G-links starting from
S are:

• A link of type I of the form

Z5

σ
π

S P
1

(6.1)

where π : Z5 → P
1 is a G-conic bundle on a del Pezzo surface of degree 5.

• A link of type II of the form

Z6

σ τ

S
τ

S

where Z6 is a del Pezzo surface of degree 6, and τ is the standard Cremona
involution.

Moreover, the only G-link starting from Z5 is the inverse of (6.1), leading back to S.

Proof Let G be the subgroup of PGL3(C) generated by A =
( −1 0 0

0 1 0
0 0 1

)
, B =

(
0 0 1
1 0 0
0 1 0

)
,

and C =
(
1 0 0
0 0 1
0 1 0

)
. This group is isomorphic to S4. Recall that two isomorphic

subgroups ofS4 are always conjugated inS4, so that it is enough to find an occurrence
of each subgroup up to isomorphism in the study of the possible stabilizers.

• There is no fixed point under the above action.
• Notice that the subgroup of G generated by A and B is isomorphic to A4. It is the
only subgroup of G of index two and has no fixed point, so that G does not have
any orbit of length 2.

• The only subgroup of index three up to conjugation is D4, generated by
( −1 0 0

0 0 −1
0 1 0

)

and
(
1 0 0
0 0 1
0 1 0

)
. Its fixed points are O3

..= {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)}, and O3 is

the only orbit of length 3 under the action of G. It is the center of the link of type
II:
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Z6

σ τ

S
τ

S

where Z6 is a del Pezzo surface of degree 6, and τ is the standard Cremona
involution.

• The group G does have any orbit of length 4 in general position. Indeed, G has

a unique subgroup of index 4. It is isomorphic to S3, and generated by
(
0 0 1
1 0 0
0 1 0

)

and
(
1 0 0
0 0 1
0 1 0

)
. The only point fixed by S3 is (1 : 1 : 1), and its G-orbit is O4

..=
{(1 : 1 : 1), (−1 : 1 : 1), (1 : − 1 : 1), (1 : 1 : − 1)}. Hence, there is a G-link of type I
of the form:

F1

σ
π

S P
1

(6.2)

where π : X → P
1 is a G-conic bundle on a del Pezzo surface of degree 5, with

invariant Picard rank 2.
• There is an orbit of length 6, but not in general position. Indeed, there are two

subgroups of index 6 in G. The first one is Z
2
2, generated by A =

( −1 0 0
0 1 0
0 0 1

)
and

B =
( 1 0 0
0 −1 0
0 0 1

)
. Its only fixed point is (0 : 0 : 1), and its orbit is O3, which is of length

3. The other subgroup of index 6 ofG is Z4, generated by
( 1 0 0
0 0 1
0 −1 0

)
. Its fixed points

are (0 : − i : 1), (0 : i : 1), and (1 : 0 : 0). The orbit of the last one is O3, and the two
others have the orbit O6

..= {(0 : i : 1), (0 : − i : 1), (1 : 0 : i), (1 : 0 : − i), (i : 1 : 0),
(− i : 1 : 0) . These six points are not in general position, as they all lie on the
Fermat conic x2 + y2 + z2 = 0.

• There is no orbit of length 8 in general position. The only subgroup of index 8 isZ3,

generated by
(
0 0 1
1 0 0
0 1 0

)
. Its fixed points are (1 : 1 : 1), (1 : μ3 : μ2

3), and (1 : μ2
3 : μ3),

where μ3 is a primitive cube root of the unity. The orbit of (1 : 1 : 1) is of length
4, and (1 : μ3 : μ2

3) and (1 : μ2
3 :μ3) lie on the same orbit of length 8 : O8

..=
{(1 : μ3 : μ2

3), (1 : μ3 : μ2
3), (1 : μ3 : μ2

3), (1 : μ3 : μ2
3), (1 : μ2

3 : μ3),

(1 : μ2
3 : μ3), (1 : μ2

3 : μ3), (1 : μ2
3 : μ3)}. But these eight points are on the conic

x2 = yz.

It remains to show that there is no G-link starting from X , except the inverse of the
link (6.2). For this, we will show that all the orbits under the action of G lifted on
F1 have several points on the same fibre of the conic bundle. The birational map γ is
given by the linear system |C | of conics passing through all the points of the orbit O4.
The curves x2 − y2 = 0 and x2 − z2 = 0 form a basis of this linear system. Hence, up
to a change of basis, the map γ is of the form (x : y : z) �→ (x2 − y2 : x2 − z2). The
image of G by γ is isomorphic to S3. Hence the kernel N of the induced morphism
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G → Aut(P1) is isomorphic to Z
2
2, and generated by the matrices A =

( −1 0 0
0 1 0
0 0 1

)
, and

B =
( 1 0 0
0 −1 0
0 0 1

)
. The action of N on the smooth conics of this system is faithful, hence

N does not fix any point on the regular fibres of the conic bundle. ��
We get the following immediate consequences.

Corollary 6.4 Let G be a subgroup of Aut(S) isomorphic toS4. The projective plane
is not G-solid, but not G-birational to any Hirzebruch surface.

Corollary 6.5 Let G be a subgroup of Aut(S) isomorphic to S4. Then BirG(S) =
〈G, τ 〉 ∼= S4×Z2, where τ is the standard Cremona involution.

Proof The elements of G are the automorphisms of the form

(x : y : z) �→ σ(αx : β y : γ z),

where σ is a permutation of the coordinates, and α, β, γ ∈ {−1, 1}. The involution
τ : (x : y : z) ��� (yz : xz : xy) commutes with all these elements. ��

The remaining case to study is that of G ∼= A4.

Proposition 6.6 Let G ∼= A4 be a subgroup ofAut(S). The only G-links starting from
S are :

• Three links of type I of the form

Z5

σ
π

S P
1

(6.3)

where π : X → P
1 is a G-conic bundle on a del Pezzo surface of degree 5.

• A link of type II of the form

Z6

σ τ

S
τ

S

where Z6 is a del Pezzo surface of degree 6, and τ is the standard Cremona
involution.

• A one parameter family of links of type II of the form

Z
σ τ

S
ia

S
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where σ is the blow-up of an orbit of six points, τ is the G-equivariant contraction
of eight (−1)-curves, and ia is a birational involution.

The only G-link starting from X is the inverse of (6.3), leading back to S.

Proof Up to conjugation in PGL3(C), the group G is generated by the matrices

a :=
(
0 0 1
1 0 0
0 1 0

)
, and b :=

( −1 0 0
0 1 0
0 0 1

)
. Recall that any two isomorphic subgroups of

A4 are conjugated to each other in A4.

• There is no fixed point under the above action.
• There is no subgroup of index 2 in G.

• The only subgroup of index 3 is N = Z
2
2, generated by A =

( −1 0 0
0 1 0
0 0 1

)
and B =( 1 0 0

0 −1 0
0 0 1

)
. Its onlyfixedpoint is (0 : 0 : 1), whose orbit isO3 = {(1 : 0 : 0), (0 : 1 : 0),

(0 : 0 : 1)}. The only link centered at this orbit is- the link of type II of the form

Z
σ τ

S
τ

S

where τ is the standard Cremona involution.
• The only subgroup of G of index 4 is Z3, generated by

(
0 0 1
1 0 0
0 1 0

)
, and have three

independant fixed points : (1 : 1 : 1), (1 : μ3 : μ2
3), and (1 : μ2

3 : μ3). They give rise
to three distinct orbits of length 4 in general position:

O4
..= {(1 : 1 : 1), (− 1 : 1 : 1), (1 : − 1 : 1), (1 : 1 : − 1)},

O ′
4

..= {(1 : μ3 : μ2
3), (− 1 : μ3 : μ2

3), (1 : − μ3 :μ2
3), (1 : μ3 : − μ2

3)},
O ′′
4

..= {(1 : μ2
3 : μ3), (− 1 : μ2

3 : μ3), (1 : − μ2
3 : μ3), (− 1 : − μ2

3 : μ3)}.

In each case, the points are in general position, and blowing up one of them, we
get a G-link of type I of the form

Z5

σ

S P
1

(6.4)

where Z5 is a del Pezzo surface of degree 5.

• The unique subgroup of index 6 of G is isomorphic to Z2, generated by
( −1 0 0

0 1 0
0 0 1

)
.

Its fixed points are the points of O3, and those of the form (0 : 1 : a), with a �= 0.
They form orbits of length 6 of the form Oa

6
..= {(0 : 1 : a), (a : 0 : 1), (1 : a : 0),

(0 : − 1 : a), (a : 0 : −1), (−1 : a : 0)}. The only Sarkisov link centered at such orbit
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is the link of type II of the form

Z
σ τ

S
ia

S

where σ is the blow-up of Oa
6 , τ is the G-equivariant contraction of eight (−1)-

curves, and ia is the birational involution (x : y : z) �→ ( f1(x, y, z) : f2(x, y, z) :
f3(x, y, z)), where

f1(x, y, z) = (a12 + 1) x2y2z + a10(−y4) z

+ 2a8y2z3 − a6z5 + 2a4x2z3 − a2x4z,

f2(x, y, z) = (a12 + 1) x2yz2 − a10x4y + 2a8x2y3

− a6y5 + 2a4y3z2 − a2yz4, and

f3(x, y, z) = (a12 + 1) xy2z2 + a10(−x) z4 + 2a8x3z2

− a6x5 + 2a4x3y2 − a2xy4.

We will now show that there is no G-link starting from any of the G-conic bundles
X1, X2, and X3 of degree 5, except the inverse of the link (6.4). The G-conic bundle
X1 is the same as X in the proof of Proposition 6.3, and the proof is the same. The G-
conic bundle X2 is the blow-up of S in the points of O ′

4
..={(1 : μ3 : μ2

3), (−1 : μ3 : μ2
3),

(1 : −μ3 : μ2
3), (1 : μ3 : − μ2

3)}. The linear system of conics passing through these
points is generated byμx2 − z2 = 0 and (μ+1) x2 + y2 = 0. The G-conic bundle X3
is the blow-up of S in the points of O ′

4
..= {(1 : μ2

3 : μ3), (−1 : μ2
3 : μ3), (1 : −μ2

3 :μ3),

(1 : μ2
3 : −μ3)}. The linear system of conics passing through these points is generated

by μx2 − y2 = 0 and (μ + 1) x2 + z2 = 0. In both of these cases, and the subgroup
N ∼= Z

2
2 of G acts faithfully on each smooth conic of the system, hence does not fix

any point in the fibres of the conic bundle. ��
Once again, we get the following consequences.

Corollary 6.7 Let G be a subgroup of Aut(S) isomorphic to A4. The projective plane
is not G-solid, but not G-birational to any Hirzebruch surface.

Corollary 6.8 Let G be a subgroup of Aut(S) isomorphic to A4. Then BirG(S) =
〈G, τ, ia | a ∈ C

∗〉, where τ is the standard Cremona involution.

Summing up the results of this section, we can conclude about the G-solidity of
the projective plane.

Theorem 6.9 Let G be a finite subgroup of PGL3(C). The following assertions are
equivalent.

• The projective plane is G-rigid.
• The projective plane is G-solid.
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• The group G is transitive and not isomorphic to S4 or A4.
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