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Abstract

We prove that the finite W-algebra U (05p 2, fprin) associated to ospjjp, and its
principal nilpotent element fiyin is isomorphic to Gorelik’s ghost center of 0sp5,,. It
is an analogue for 0sp |, of a theorem of Kostant (Invent Math 48(2):101-184, 1978).
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1 Introduction

The Lie superalgebra 0sp |y, is the finite-dimensional simple Lie superalgebra whose
Dynkin diagram is the same as the one of type B,, except for a unique simple short root,
which is replaced by a non-isotropic odd simple root in 0spy,,. The Lie superalgebra
08P}, is not a Lie algebra but it has properties similar to simple Lie algebras. For
example, the category of finite-dimensional 0sp|,,-modules is semisimple and the
Harish—Chandra isomorphism Z(0spy|p,) =~ C[h]" holds, where Z(g) denotes the
center of the universal enveloping algebra U(g), b is a Cartan subalgebra of 0sp o,
and W is the Weyl group. However, an analogue of Duflo’s theorem [7] does not hold
for 0sp;y,, that is the annihilating ideals of Verma modules in U (0sp;p,) are not
generated by their intersections with the center Z(0sp,). This problem was noticed
by Musson [25] and solved by Gorelik and Lantzmann [17] by replacing Z(0spy2,)
with a larger algebra, called the ghost center Z (08p112,)-

For a Lie superalgebra g = g5 @ g7 with g; # 0, the ghost center 4 (g) was intro-
duced by Gorelik in [14] as the direct sum Z(g) ©.A(g), where A(g) is the anticenter
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defined by A(g) = {a € U(g) |.ua — (—=1)?@WP@+Dgy — 0 for all u € g}, where
p(-) denotes the parity. If g is a finite-dimensional simple basic classical Lie super-
algebra, it is known [14] that Z(g) coincides with the center of U(g)s and thus is
a purely even subalgebra of U(g). Moreover, in the case g = ospy,, there exists
T € U(g)j such that A(ospyp,) = Z(08pyp,) T by [2, 17, 25]. The element T is
called the Casimir’s ghost [2] since T?2e 7 (05py)2,). When n = 1, in particular, T
can be expressed as 4Q — 4C + 1/2 by using [27] and then T? = 4C + 1/4, where C
is the Casimir element in U (0sp|») and Q is the one in U (s12).

The finite W-algebra U (g, f) is an associative superalgebra over C defined from
a simple finite-dimensional basic classical Lie superalgebra g and an even nilpotent
element f [3, 11, 23,24, 30-32]. In the case when g is a simple Lie algebra and f is a
principal nilpotent element fjyin, it was proven by Kostant [23] that the corresponding
finite W-algebra U (g, fprin) is isomorphic to the center Z(g) of U (g).

The W-algebra WX (g, f) is a vertex superalgebra defined by the Drinfeld—Sokolov
reduction associated to g, f and a complex number k € C, called the level [9, 20].
In general, (Ramond-twisted) positive-energy simple modules of a %Z-graded vertex
superalgebra V with a Hamiltonian operator H are classified in terms of an associated
superalgebra called the (H-twisted) Zhu algebra of V. See Sect. 2 for the definition of
Ramond-twisted modules. It was proven by De Sole and Kac [6] that the Zhu algebra
of WX(g, f) is isomorphic to the finite W-algebra U (g, f). In particular, there exists a
one-to-one correspondence between simple modules of U (g, f) and Ramond-twisted
positive-energy simple modules of WX (g, f). The W-algebra associated to a principal
nilpotent element f = fpi, is called the principal W-algebra of g, which we denote

by W(g) = W (g, forin)-

Theorem A (Theorem 6.5) U (05p 1|2, fprin) is isomorphic to Z (05py)2,) as associa-
tive algebras.

The finite W-algebra U (05pyp,, fprin) associated to 0spy, and its principal nilpo-
tent element prrin is an associative superalgebra with its non-trivial odd part, while the
ghost center Z(0spy,) is not. However, we prove an isomorphism between them.

To prove Theorem A, we use the Miura map u and its injectivity and relationship
with the Harish-Chandra homomorphism of osp;,,. See Sect.4 for the definition
of w. The map p was originally introduced in [24]. The injectivity of © was only
known for non-super cases, but has been recently proved by [26] for super cases.
As a corollary of Theorem A, it follows that Ramond-twisted positive-energy simple
modules of principal W-algebras W* (05py)2,,) are classified by simple modules of the
ghost center Z (05p1,) (Corollary 6.7). We note that the definition of U (05p 12, fprin)
in the paper comes from the theory of vertex superalgebras (Remark 4.4).

We will prove in the next paper that the untwisted Zhu algebra of Wk(osp1|2n)
is isomorphic to the center of U(sp,,). This is only known in the case n = 1
due to [22]. Thus, by Theorem A, the untwisted Zhu algebra is isomorphic to the
even part of U(0spjj,, fprin). It is also proven in (6.1) that the Zhu functor is
compatible with the Miura map, and hence with the Harish—Chandra homomor-
phism. Since simple modules of Z(sp,,) can be described in terms of the central
characters and the Harish—Chandra homomorphism, we may apply this to construct
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Finite W-algebras of 0spy 2, Page3of18 31

simple modules of Wk(osp”z”) inside tensor products of Fock modules and the
free fermion F. This allows us to analyze the coset construction of Wk(osp”zn) ~~
Com (VE(502,41), VI (502,41) @ F2"t1), where V(s0,41) is the affine vertex
algebra of 505,41 at some level £. We intend to address this issue in sequels to this
paper in our joint work with Thomas Creutzig.

Let us remark that a super analog of the Soergel Struktursatz for a suitable Whit-
taker functor from the integral BGG category O of any basic classical simple Lie
superalgebra g to the category of finite-dimensional modules of U (g, fprin) has been
established in [4]. We also hope to clarify the relationship between the ghost center of
gand U(g, fprin) in general g to apply to the Soergel Struktursatz in our future works.

The paper is organized as follows. In Sect. 2, we introduce H -twisted Zhu algebras.
In Sect. 3, we recall the definitions of W-algebras Wk(g, f). In Sect.4, we give two
definitions U (g, f)1 and U (g, f)n of finite W-algebras and show the equivalence of
the definitions, thatis, U (g, f)1 = U(g, f)u. The proofis similar to [5]. In Sect. 5, we
recall the principal W-algebra W¥ (0sp, [2n) Of 08P, In Sect. 6, we prove Theorem A.

2 H-twisted Zhu algebras

Let V be a vertex superalgebra. Denote by |0) the vacuum vector, by 9 the translation
operator, by p(A) the parity of A € V,andby Y(A,2) = A(z) = ),z Az !
the field on V corresponding to A € V. Let

00 An
[AxB] = EOHA(,,)B € C[A]@V
n=l

be the A-bracket of A and B for A, B € V. A Hamiltonian operator H on V is a
semisimple operator on V satisfying that [H, Y (A, z)] = z0,Y (A, z2) + Y(H(A), 2)
for all A € V. The eigenvalue of H is called the conformal weight. If V' is conformal
and L(z) = ),z L,z"? is the field corresponding to the conformal vector of V,
we may choose H = L as the Hamiltonian operator.

Suppose that V is a %Z-graded vertex superalgebra with respect to a Hamiltonian
operator H. Denote by A 4 the conformal weight of A € V. Define the *-product and
o-product of V by

(A (A
A*B:Z( .A)A(j_l)B, AoB:Z( .A)A(j_Q)B, A,BeV.
o\ J o\ J
J Jj=
Then the quotient space
ZhugV =V /VoV

has a structure of associative superalgebra with respect to the product induced from x,
and is called the H-twisted Zhu algebra of V. Here VoV = Spanc-{AoB|A, Be V}.
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The vacuum vector |0) defines a unit of Zhugy V. A superspace M is called a Ramond-
twisted V-module if M is equipped with a parity-preserving linear map

Vit M3 A V(A= Y AY e End M2 2]
nezZ+Ay

such that (1) for each C € M, A%C =0ifn >0, (2) Y (|0), z) = idp and (3) for
anyA,BeV,CeM,neZ meZ+ Apandl € Z + Ap,

o

i(n M M (A)p(B) pM M
Z(_l)j<j)(A(m+n—j)B(£+j)_(_l)p P B(£+n—j)A(m+j) ¢
j=0

00 m "
= ;‘) (j)(A(,,H)B)(mH_j) C.
J=

Hence the Ramond-twisted module is a twisted module of V for the automor-
phism e*"'#_ In particular, M is just a V-module if V is Z-graded. Define AQ’[ by
Yu(A,2) =3 ez Aﬁ’lz_"_AA for A € V. A Ramond-twisted V-module M is called
positive-energy if M has an R-grading M = P jer Mj with Mo 7 0 such that
AMM; C Mjy, forall A € V,n € Zand j € R. Then My is called the top
space. By [6, Lemma 2.22], a linear map V > A +— A(])"IIMO € End Mj induces a
homomorphism Zhuy V' — End Mj. Thus we have a functor M +— M from the
category of positive-energy Ramond-twisted V-modules to the category of Z,-graded
Zhu g V-modules. By [6, Theorem 2.30], these functors establish a bijection (up to iso-
morphisms) between simple positive-energy Ramond-twisted V-modules and simple
Z»-graded Zhupy V-modules.

3 W-algebras

Let g be a finite-dimensional simple Lie superalgebra with the normalized even super-
symmetric invariant bilinear form (- |-) and f be a nilpotent element in the even part
of g. Then there exists a %Z-grading on g that is good for f. See [20] for the defini-
tions of good gradings and [8, 18] for the classifications. Let g; be the homogeneous
subspace of g with degree j. The good grading g = P jelz8i for f on g satisfies the
following properties:

lgi: 81 C i)

feg-1

ad(f): g; — gj—1 is injective for j > 1/2 and surjective for j < 1/2,
(gilg)) =0ifi 4+ j #0,

dim g/ = dim gg + dim g1/2, where g/ is the centralizer of f in g.

Then we can choose a set of simple roots IT of g for a Cartan subalgebra ) C go
such that all positive root vectors lie in g>o. Denote A; = {a¢ € A|gy Cg;} and
IT; =MNAjforj e %Z.Wehavel‘[ = ITouIl; puUll;. Let x : g — Cbealinear map
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defined by x (u) = (f|u). Since ad(f): g1/2 — g—1/2 is an isomorphism of vector
spaces, the super skew-symmetric bilinear form gy,2 < g1/2 3 (u, v) = x([u,v]) € C
is non-degenerate. We fix a root vector u, and denote by p(«) the parity of u, for
o€ A.

Let V¥(g) be the affine vertex superalgebra associated to g at level k € C, which is
generated by u(z) (1 € g) whose parity is the same as u, satisfying that

[pv] = [u, vl +k(u|v)A, u,veg.

Let F(g1/2) be the neutral vertex superalgebra associated to gi,2, which is strongly
generated by ¢y (z) (@ € Ay/2) whose parity is equal to p(«), satisfying that

[bar®pl = x(uq,ug), o, B € Aip.
Let F°M(g- ) be the charged fermion vertex superalgebra associated to g- o, which is
strongly generated by ¢y (2), @5 (z) (o € A~o) whose parities are equal to p(«) + 1,
satisfying that

[‘pak(pz] = 80{,,3’ [(ﬂaxfﬂﬁ] = [<P;;L<PE] =0, o, BecA.

Let C¥(g, ) = VK(9) ® F(g1/2) ® FM(g-0) and d be an odd element in C*(g, f)
defined by

1
d = Z (—l)p(a)ua(p; -3 Z (_1)17(0!)[7()/)65’/3 390;/(/7;(,0;3

a€A~ a,B,y€A~0
+ ) bawit D x(a) @}
a€A|n acA-

Then (C*(g, f), d()) defines a cochain complex with respect to the charged degree:
chargegp, = —chargegp) = 1 (0« € A.p) and chargeA = O for all A €
Vk(g)®F(gl/2). The (affine) W-algebra W¥ (g, f) associated to g, f at level k is
defined by

WH(g, £) = H(C (g, f), d)).

Let Ck(g, f)+ be a subcomplex generated by ¢, (z) (@ € Ay2), ¢;(2) (@ € Asp)
and

T2 = u@+ Y. ¢, 0p@ea): U € g<o.
o,BeAg

Then we have [21]

WH(g, £) = H(C*(g, f), do)) = H(C*(g, f)+,d)).
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Thus, W¥(g, f) is a vertex subalgebra of C¥(g, f). Using the fact that

[J4 0% = JW 4 cu|v)r, u,ve 9<0,

1 1
T(u|v) =k(u|v) + EKQ(I/”U) - §Kgo(u|v), U, v € g<os

where k4 denotes the Killing form on g, it follows that the vertex algebra generated by
J"(z) (u € ggo) is isomorphic to the affine vertex superalgebra associated to g<( and
7, which we denote by V*(g<o). Therefore the homogeneous subspace of C kg, e
with charged degree 0 is isomorphic to V7 (g<o) ® F(g1/2). The projection g<o —
go induces a vertex superalgebra surjective homomorphism V7 (g<o) ® F(g12) —
V™(g0) ® F(g1/2) so that we have

T: W, £) — V¥(g0) ® F(g1)2)

by the restriction. The map Y is called the Miura map and is injective thanks to [1,
10, 26].

4 Finite W-algebras

Recall the definitions of finite W-algebras U (g, f), following [5]. We give two def-
initions in (4.1), (4.2) denoted by U(g, f)1, U(g, f)m, respectively, and prove the
isomorphism U (g, f)1 =~ U(g, f)n in Theorem 4.2.

Let @ be an associative C-superalgebra generated by ®, (a € Aj,2) that has the
same parity as u, satisfying that

[P, Ppl = x([ua,upl), o, B € Aqp.

Here [A, B] denotes AB — (—1)?) P(B) B A, We extend the definition of @ for all
a € Asogby &y =0fora € Axy.Let A(g~o) be the Clifford superalgebra associated
to g-0, which is an associative C-superalgebra generated by ¥y, ¥ (@ € A~o) with
the opposite parity to that of u,, satisfying that

[Weo W51 = Sape [War Yipl = V2, Y51 =0, a.f € Asp.

The Clifford superalgebra A(g-¢) has the charged degree defined by deg(yy) = 1 =
—deg(y}) forallar € Ag. Set

Ci=U(@@P®A(g>0), di=ad(Q),
0= Z(_I)P(a)xawa _ % Z (_I)P(a)P(V)CZ’ﬂwywé wg’

a€A~g a,B,y€A~0

Xy = g + (_1)[7(01)(@& + x(uy)), a€ Ay,
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where ¢, 4 is the structure constant defined by [uq, ug]l = Y, ca_, Ch gity- Then a

pair (Cy, d 1) forms a cochain complex with respect to the charged degree on A (g~o)
and the cohomology

U(g, f/Hir=H*(Cr,dp) 4.1

has a structure of an associative C-superalgebra inherited from that of Cy. Let

J=ut ) g ViV, ueg.

a,feA~0

Then

ad(Q) Yo = j'+ (=) (g + X () = Xo + Y § ¥} Vur @ € Asg.

C{,ﬂEA>0

Let C_ be the subalgebra of C| generated by ¥, ad(Q) ¥y (@ € A~g) and Cy be
the subalgebra of Cy generated by j* (1 € g<o), Po (@ € Aqyp) and ¥} (@ € Asp).
Then (C4, di) form subcomplexes and C; >~ C_ ® C4 as vector superspaces. Since
H(C_, dy) = C, we have

H(Cr,dy) =~ H(C_,d)®H(Cy,dy) = H(Cy, dy).

Using the same argument as in [21], it follows that H"(C+,dy) = 0 for n # O.
Therefore U (g, f)1 is a subalgebra of C?, which is generated by j* (u € g<o) and
&, (a € Aypp). Since [, j'] = v foru, v e 9<0, there exists an isomorphism
Cg =~ U(g<o) ® ® as associative C-superalgebras. The projection g<o — go induces
an associative C-superalgebra surjective homomorphism U (g<0) @  — U(go) ®
so that we have

w:U(g, FHi— U(go) @D

by the restriction. The map p is called the Miura map for the finite W-algebras and it
is injective by [13, 24, 26]. Let C_, be the one-dimensional g>-module defined by
g>1 3 u > —x(u) € Cand My be the induced left g-module

g1
where I_, is aleft U (g)-module generated by u+ x (u) forallu € g . Then M hasa

structure of the ad (g-.¢)-module inherited from that of U (g). Set the ad (g~ ¢)-invariant
subspace

U(g, fHn = (My)™(@=0), (4.2)
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Then U(g, f)i also has a structure of an associative C-superalgebra inherited from
that of U (g). We may also define U (g, f )11 as the Chevalley cohomology H (g-¢, Mir)
of the left g-o-module M;:

Lemma4.1 ([11, 26])
H(g~0. M) = H (g0, Myp) = (My)*®-0).

Proof Though the assertion is proved in [11] for Lie algebras g, the same proof together
with [26, Corollary 2.6] applies. O

Theorem 4.2 ([5, Theorem A.6]) There exists an isomorphism U(g, f)1 =~ U(g, f)u
as associative C-superalgebras.

Proof Though the assertion is proved in [5] for Lie algebras g, the same proof applies
as follows. Let C; = A(g-0). ® Mjp be the Chevalley cohomology complex of the
left g-.o-module My, where A(go). is the subalgebra of A(g-o) generated by v for
all @ € A, and dyj be the derivation of the cochain complex Cyy. Let U(g-o)—, =
U(g-0) ® C_, be a left g>1-module defined by the diagonal action, where U (g~)
is considered as a left g>1-module by the left multiplication, and My be the induced
left g-module

My =1Indg., U(g=0)—x =U(@) ® U(g=0)—4.

(g>1

Let C, be the one-dimensional g>1-module defined by g>1 > u +— x(u) € C and
U(g)y = U(g) ®@C, be aright g>;-module defined by the diagonal action, where
U (g) is considered as a right g>-module by the right multiplication. Then we have

M >~ U(E)XU ® U(g>o)

g>1

so that My is a left g- right g.o-bimodule. Note that there is an isomorphism
A(g=0) = A(g=0)r @ A(g=0). of vector superspaces, where A(g~o)s is the sub-
algebra of A(g-o) generated by v, for all @ € A-g. Let dj be the derivation of the
Chevalley homology complex My ® A(gso); of the right g-o-module Myy. Then
Mm ® A(g=o)y is clearly a left g-o-module with respect to the adjoint g-o-action.
Now, let d, be the derivation of the Chevalley cohomology complex A (g=0)c ® M
Q@ A(g=0)n of the left g-o-module My ® A(g=o)n. Then, as in [5], we get a new
cochain complex (Cryp, dip) defined by

Cimr = Ag=0)e @ M @ A(g=0)n, dm = de + (=1)°"'®d,

where § denotes the parity of the part of elements in A(g-¢).. Then it is easy to check
that the following linear map

im: Cmr 3 !ﬁgl"'lﬂgi@)(v]-“vs ® ua.“'ua,)@”/fy]"'l/fyj
U(g>1)
— lﬁgl"'lﬁgi'Ul"'Us'Xal"'Xat'Wyl"'WyjGFI
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with vy, ..., v € g, a1, ..., 0, B1, ..., Bi, V1, ..., ¥j € Asg is well defined and
induces an isomorphism of complexes (Cy, dii1) — (Cq, d) since ifj—jodn =
dioiq—i. Now

Hy(Cur, dp) = A(g-0)e ® Hy (Mt ® A(g=0)n, dn)
= A(g>0)c® U(g)XU ® Hyp(g-0, U(g=0))

g>1

= Sn,OA(g>O)c® U(g)x ® C~ 8)1,0 CII-

(g>1
Thus, since d, and (—1)°~! ® d, commute, we have
H(Cny, dw) ~ H(H(Cyy, dp), de) ~ H(Cyy, dyp).

The above argument together with the isomorphism iyjj—.1 of complexes shows that
(C1, dy) and (Cyp, dyp) are quasi-isomorphic via the following quasi-isomorphism

i1 C12 Yp, - Wp -1 V- Xay -+ Xoy -y - Uy,

) ’ 4.3)
= 81,08j.0 Vg, - Vg - v1---vs € Cn,

which preserves the associative superalgebra structures on the cohomologies. O

Definition 4.3 The finite W-algebra U (g, f) associated to g, f is defined to be the
superalgebra U (g, f)1, which is isomorphic to U (g, f)i1 due to Theorem 4.2.

Remark 4.4 The same result as Theorem 4.2 for Poisson superalgebra versions has
been studied in [33]. Also remark that our definitions of the finite W-algebra U (g, f)
are not necessarily equivalent to the definitions in some literature [28, 29, 34]. In fact, in
casethatg = 0spyp, and f = fprin its principal nilpotent element, we have dim g 2 =
dimg, ;= landthusg>1 G g-o. Then U(g, f) = U(g, fHn = (U(g)/1-)*!@0)
is a proper subalgebra of (U (g)/I_,)%#>1) = Endy ) U(g)/1—.

The vertex superalgebra C¥(g, f) has a conformal vector w if k % —h", which
defines the conformal weights on C¥(g, f) by Lo, where w(z) = Y onez L,z7" 2. See
[20] for the details. Then H = Lg defines a Hamiltonian operator on C*(g, f), the
vertex subalgebra C* (g, f)4, and the corresponding W-algebra W (g, f). Moreover
the Hamiltonian operator L is well defined for all k € C. Recall that Zhug V is the
H-twisted Zhu algebra of V, see Sect.2. Letx € b be such that [x, u] = juforu € g;.
Then by [1, 6],

ZhupgCMg, [y = Coy J" > j*+1(x (1), ¢o > Do, @h > Vi (44)
for u € g<o, @ € A~ and Zhuy HO(C*(g, f)+, d)) = H*(C4, dy) so that

ZhuyWr(g, )~ U(g, f). (4.5)
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Let Vi, V, be any %Z;o-graded vertex superalgebras with the Hamiltonian operators
and g: Vi — V; any vertex superalgebra homomorphism preserving the conformal
weights. Since g(Vio V) = g(V1)og(V]) C Va0V, the map g induces an algebra
homomorphism

Zhuy(g): Zhuy Vi — Zhuy V.
Apply for g = Y. Then we get
Zhuy (Y) = p

by construction.

5 Principal W-algebras of osp,3,
Consider the case that
a,b,c € Matc(n xn),

€ glyp, | X,y € Matc(n x 1), i
b="b, c='c

g=05Ppp, = yu=

where 'A denotes the transpose of A. Let {e; ;};, jcs be the standard basis of gl;,, with
theindex set I = {0,1,...,n,—1,...,—n}and h; = ¢;; —e_; —; (i = 1,...,n).
Then h = Spang{h;};_, is a Cartan subalgebra of 0sp,|,,. Define ¢; € h* by €;(h;) =
i, j- Then Ay = {e;,2¢;}! | U{e; — €, € +€j}1<i<j<n forms a set of positive roots
with simple roots I1T = {¢;}i=1, 0 = € —€j41 (. = 1,...,n — 1) and o, = €,
and €1, ..., €, are the (non-isotropic) odd roots in Ay.Set A_ = —A; and (u|v) =
— str(uv) foru, v € 0sp;p,. We may identify h* with h throughv: h* 3 A = v(}) €
b defined by A(h) = (h|v(A)) for h € b, which induces a non-degenerate bilinear
form on h* by (A|u) = (v(A)|v(n)) so that (¢;|€;) = §; j/2. Then h; corresponds
to2¢ =23 _; a; by v. We have

1 1
(ajlai) =1, (Oliloti+1)=—§, i=1,...,n—1; (an|0‘n)=§~

Note that the dual Coxeter number of 0spy,, is equal to n + 1/2. Let

n—1

fprin = Z U_q; +U_2q,

i=1

be a principal nilpotent element in the even part of 0spy,, where u, denotes some
root vector for o € A. Then there exists a unique good grading on 0sp, such that
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M = {o;}'Z) and IT} 2 = {e}. Thus

go0=b go=n=@CP g go=n =P g

aeAy aeA_

Let
WH(0spy12,) == W* (059112, fprin)
be the principal W-algebra of 0spy|y, at level k. The Miura map for Wk (05py)2,) 18
T: WH(ospypp,) = T®F,

where 7 is the Heisenberg vertex algebra generated by even fields «; (z),i = 1, ..., n,
satisfying that

[aiyaj] = <k+n+ )(a,|a])k i,j=1,...,n,

and F is the free fermion vertex superalgebra generated by an odd field ¢ (z) satisfying
that

[Pr0] = 1.

By [12, Theorem 6.4], Wk(osp1|2n) is strongly generated by G, Wa, Wy, ..., Wy,
for odd G and even W», Wy, ..., Wy, elements of conformal weights n + 1/2 and
2.4, ...,2n such that

T(G)(2)=:Q2k+n)d+hi(2) - Qk+n)d+h,(2)e):,

YW@= Y h@-h5@: (mod (T @F)), 5.1)
11 << ji<n

CrRF)={A—)B| A, BenQF},
and

2i

2!

)\'Zn
Way— 21) + Vo (52)

)\'Zl 1
[G,.G] = W2n+2)/z< Wangit1 + o

for some Wy € Wk(osp”z,,), where
hi@) =2 @), vi=(D[]QQj—Dk+n —D@jk+n) +1),

j=i j=1

@ Springer



31  Page120f18 N. Genra

which satisfy that
(hiphjl=Qk+2n+1)8; jA, i,j=1,...,n.

Ifk+n+1/2 #0,

L= Wa
2k +2n+1)

is a unique conformal vector of W* (05py)p,) with the central charge

_ @n+ 1)@=k +n) — D@nk+n) + 1)

c(k) = 20k +2n+ 1)

6 Zhu algebras of W (0sp;,)
By (4.5), we have an isomorphism

0 ZhuHWk(osp”zn) = U(05p1\2n’ fprin)‘
Then ¢ is induced by (4.4):

Zhuy C* (05 s fprin) —> Ct,
T U Qk 421 4 1) (posp 1), o > Doy @5 > VL,

where

1
Posp =5 D (="

Ol€A+

Let C[h*] = U (h) and set an isomorphism

lr: Zhugw ®Zhuy F —> C[h*1® @,

1
hi— hi +2n —2i + 1)<k +n+ 5), @a, — Dg,-
Then we have a commutative diagram of Miura maps

Zhug (Y
ZhUHWk(Uﬁpllzn) L()' ZhUHT[ ®ZhuHF

Lll lzz 6.1)
m

U (05p 1255 fprin) Clh*]® o.
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By [6], ZhuHWk(05p1|2n) has a PBW basis generated by G, W, Wy, ..., Wa,. By
abuse of notation, we shall use the same notation for the generators of U (0sp 20 Sprin)
corresponding to G, Wp, Wy, ..., Wa, by (1.

Lemma 6.1 w1(G) = (h1 + posp(h1))(ha + posp (h2)) - -+ (hn + Posp (hn)) @ Py,
Proof We have
Y(G)=:Q2k+n)od+hy) - 2k+n)o+h,)¢:

=(—QCn—-Dk+n) +h)x(—=2n—=3)k+n)+hy)
ok (= (k+n) +hy)x¢  (mod WE(ospyp,) o WE(0spy)p,))-

Thus
w(G) = Lz((— 2n—1)(k+n)+h)x(—Q2n—3)k+n)+ hy)
cok (—(k+n) + ha) %)
1 1 1
= <h1+n— 1 —I—§>(h2+n—2+§>"-<hn+5>®fban.
Therefore the assertion follows from the fact that pgsp(h;) =n —i +1/2. m]

For a basic classical Lie superalgebra g such that g7 # 0, denote by

Z(g) ={z e U@ |uz — ()PP zy = 0 forall u € g},
Ag) = {a € Ug) | ua — (=1)?@P@+ gy — 0 forall u € g},
Z(g) = Z(@) ®A(@).

called the center, the anticenter and the ghost center of U (g), respectively due to [14].
Then the ghost center Z(g) coincides with the center of U (g)g by [14, Corollary 4.4.4].
In case that g = osp,,, there exists T € U(g)j [2, 17, 25] such that
A(0spyp,) = Z(0spip,) T, (oon)(T) = hihy---hy,
where
n: Ulospyp,) — U(h) = C[H*]
is the projection induced by the decomposition
U(ospyyp,) = n_U(0spyp,) @ U (h) & U (0spypp,)n

and o is an isomorphism defined by

o: Clh*1 = ClH™], f > (@(NH): A fh— posp)).
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The element T is called the Casimir’s ghost [2] since T? € Z (0spyp2,) is such that
(oon)(T?) = h% . -h%, and is studied for general g in [14]. It is well known [15, 19]
that the restriction of oo to Z(g) is injective and maps onto C[h*]", where W is
the Weyl group of sp,,,, called the Harish—Chandra homomorphism of ospy,,. Recall
that

U(05p1\2n7 fprin) s U(05P1|2n, fprin)ll = (U(05P1|2n)/Lx)adn,

where I_, is a left U(o0sp;p,)-module generated by ug + (fprin|ue) for all o €
A4\ {,}. Define the projections g1, g2 by

q1: U(ospyp,) — U(ospypn) /1,
q2: U(ospyp,)/I-x =n_U(0sp12,)/1—x ®UH) B U (h) ue, — U((h) U (h) ug,

and a linear map g3 by
q3: U(h)®U(h)ua,1 - C[h*]®(b1 (fl, f- Mocn) = fl 1+ f2®(boz,,-
Then, using the quasi-isomorphism i_.yj in (4.3), the Miura map u can be identified

with the restriction of the composition map gzoga to U (08Pj2,, fprin)11 SinCe g, =
Xq, + Oq, .-

Lemma 6.2 q(Tug,) is the element of U (052, fprin)11 corresponding to G.
Proof First of all, we show that g1 (Tu,,) € U (05pyj2,> fprin)1- It is enough to show
that [uy, Tug,] =0 (modI_) foralla € Ay Let A, ; = {a € Ay |p(ug) =i}
Since [uy, T] =0 fora € A 5, we have
[ug, Tug,] = Tlug, te,] =0 (modI_y), o€ A+,()~

Next, for a € A+,i \{on}, since uq T + Tuy = 0, we also have

[ug, Tug,l = — Tlug, g, +2Tug,ue =0 (modI_,), «ac A_i_,f\{ot,,}.
Finally, in case that @ = «,,

[ta,, Tug,] = (Ua, T + Tugy,) uy, = 0.

Therefore, g1 (T uy,) belongs to U(ospmn, Sprin) . Now po = q3oq2|U(05p1\2nvfprin)II
and by definition,

((c®1D)ou)(qi1(Tug,)) = ((c®1)ogzogaoqi)(Tuq,)
= (UOW)(T)®<Da,l = hy "'hn®q)an~

By Lemma6.1, (c ® 1)ou)(G) = hy -+ h, ® Dg,. Since (o @ 1)o u is injective, we
have ¢1(Tuy,) = G. O
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Theorem 6.3 U (05p|)2,» fprin)g == Z(05P)2,)-

Proof Since U (05P112,> fprin) has a PBW basis generated by G, Wy, Wy, ..., Wy,
and G is a unique odd generator, U (08P, fprin)g has a PBW basis generated
by Wy, Wy, ..., Wp,. Now & is a superalgebra generated by ®,, with the rela-
tion 2<I>§n = X(uq,,Uq,). Thus p maps U(ospip,, fprin)g to C[H*]. By (5.1),
w(Woy;) for i = 1,...,n are algebraically independent in C[h*] with degree 2i
(but not necessary homogeneous). Now, by definition, g2oq; = 1 on Z(0spjp,).
Hence ¢204q; |Z(05pl|2n) is injective. In particular, ¢ |Z(05p”2n) is injective. Clearly,
q1(Z(08py,)) is ad n-invariant. Thus, U (0sP1)2,, fprin) = U (08P1j2,, fprin)um cON-
tains Z(0spyy,) through g;. Moreover

1(Z(05p1 ) = (g30g20q1)(Z(05py ) = 1(Z(05p1,)) = o (C[H*I™).

Since C[h*]V is a symmetric algebra of A7, ..., h%, u(Z(0spy)p,)) must contain all
w(Woi) fori =1, ..., n. Therefore

U (05p 120> fprin)g = Z(05P1)2,)-
This completes the proof. O
Corollary 6.4 (ZhuHW"(ospl‘z,,))(—) ~ Z(05P1)20)-

Proof The assertion is immediate from Theorem 6.3 and the fact that

Zhug WX (0spy12,) = U (08P 2+ fprin)- o

Consider a linear isomorphism

£: Z(0spy1p,) = Z(08pypp,) DA(05py)2,) — Z(osp1pn) ®A(08pP1,) U,

defined by &(z, a) = (z, a ug,). Then by Lemma 6.2 and the fact that A(osp;)p,) =
Z(08p112,) T, we have (g108)(Z(0spy)2,)) C U (08P, fprin)1-

Theorem 6.5 The map q10é&: 2(05;3”2,1) — U(08p1)n> fprin) Is an isomorphism of
associative algebras.

Proof By definition and Lemma 6.2, (g30¢g20¢10&)(zT) = (q3092041)(zTuy,) =
n(z)G forall z € Z(05p1|2n). Thus, g30g204q1 o$|A(05p”2n) is injective. In particular,
q1 o§|A(05p”2n) is injective. Using the fact that U(0sp;2,, fprin) has a PBW basis
generated by G, Wy, Wy, ..., Wy, and Theorem 6.3, it follows that gj0& is a lin-
ear isomorphism. Now, we may suppose that x (ug,, Us,) = 2. Then Cbin =1so0
that ,u(Tz) =g ! (h% .. h%) = M(Gz). Therefore gj o0& defines an isomorphism of
associative algebras. O
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Let L(2) be the simple highest weight 0sp|,,-module with the highest weight A.
Then there exists x;.: Z(0spjp,) — C such that z acts on x;(z) on L(1) for all
z € Z(0spjpn)- The map ;. is called a central character of 0sp |, and is induced by
n and one-dimensional C[h*]-module C,, defined by f +— f(1). Using the Harish—
Chandra homomorphism, it follows that x;, = x, if and only if A2 = w(A| + Posp)
— Posp for some w € W. Let

=o}.

Denote by x, € Dif A € D. Since w(Aj) C Ajforallw € W, we have A € D =
w(A + Posp) — Posp € D for any w e Wso that x5, € D is well defined.

From now on, we will identify Z(05p1 jon) With U (08p1)2,,, fprin) by Theorem 6.5.
Then Z(uspm,,) is a superalgebra such that Z(ospmn)1 = A(ospyjp,). Let E be a
finite-dimensional Z;-graded simple Z (05py}2,)-module. Then Z(osp;p,) acts on £
as x; for some A € h*. For a non-zero parity-homogeneous element v € E, Tv has
an opposite parity to v such that T2v = x,(T?)v. Recall that the set {h, ..., h,} is
identified with 2A |1 by b ~ b*. Then, using the fact that n(T?) = o~ (h---h}),
it follows that

D={Aeh*

D(EAT

n

1T = [T(0-+ posp) i) = T (- posy | 2a)?.

i=1 o€, 4

Hence XA(TZ) = 0 if and only if x;, € D. Since E is simple, E = Cv if x, € D and
E =Cv®CTvif x; ¢ D, which we denote by E,, . Here we identify E,, with the
parity change of E,, if x.(T?) = 0. Therefore we obtain the following results:

Proposition 6.6 A finite-dimensional Z-graded simple U(0spy2,, fprin)-module is
isomorphic to E, for some . € h*. In particular, there exists one-to-one correspon-
dence between isomorphism classes (up to the parity change) of finite-dimensional
Zn-graded simple U (08P 1|2y, fprin)-modules and central characters of 0spy|p,-

Corollary 6.7 There exists a bijective correspondence between central characters of
05P1|2, and isomorphism classes (up to the parity change) of simple positive-energy
Ramond-twisted Wk(osp”zn)—modules with finite-dimensional top spaces.

Proof The assertion is immediate from ZhuHWk(ospmn) >~ U(0sPyjns fprin)s
Proposition 6.6 and [6, Theorem 2.30]. O

Corollary 6.7 implies that dimensions of the top spaces E,, of simple positive-
energy Ramond-twisted Wk(OBp”Zn)-modules are equal to 2 if and only if
(A + posp @) # O for all @ € Aj. We remark that this condition is equivalent to
one that the annihilator of the Verma module M (A) is generated by its intersection
with the center Z(ospy|2,) by [16].
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