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Abstract
We prove that the finite W-algebra U (osp1|2n, fprin) associated to osp1|2n and its
principal nilpotent element fprin is isomorphic to Gorelik’s ghost center of osp1|2n . It
is an analogue for osp1|2n of a theorem of Kostant (InventMath 48(2):101–184, 1978).
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1 Introduction

The Lie superalgebra osp1|2n is the finite-dimensional simple Lie superalgebra whose
Dynkin diagram is the same as the one of type Bn except for a unique simple short root,
which is replaced by a non-isotropic odd simple root in osp1|2n . The Lie superalgebra
osp1|2n is not a Lie algebra but it has properties similar to simple Lie algebras. For
example, the category of finite-dimensional osp1|2n-modules is semisimple and the
Harish–Chandra isomorphism Z(osp1|2n) � C[h]W holds, where Z(g) denotes the
center of the universal enveloping algebra U (g), h is a Cartan subalgebra of osp1|2n
and W is the Weyl group. However, an analogue of Duflo’s theorem [7] does not hold
for osp1|2n , that is the annihilating ideals of Verma modules in U (osp1|2n) are not
generated by their intersections with the center Z(osp1|2n). This problem was noticed
by Musson [25] and solved by Gorelik and Lantzmann [17] by replacing Z(osp1|2n)
with a larger algebra, called the ghost center ˜Z(osp1|2n).

For a Lie superalgebra g = g0̄⊕g1̄ with g1̄ �= 0, the ghost center ˜Z(g) was intro-
duced by Gorelik in [14] as the direct sum Z(g)⊕A(g), where A(g) is the anticenter

The author is supported by the World Premier International Research Center Initiative (WPI), MEXT,
Japan and JSPS KAKENHI Grant Number JP21K20317.

B Naoki Genra
genra@ms.u-tokyo.ac.jp

1 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo
153-8914, Japan

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40879-024-00743-3&domain=pdf


   31 Page 2 of 18 N. Genra

defined by A(g) = {a ∈U (g) |.ua − (−1)p(u)(p(a)+1̄)au = 0 for all u ∈ g}, where
p( ·) denotes the parity. If g is a finite-dimensional simple basic classical Lie super-
algebra, it is known [14] that ˜Z(g) coincides with the center of U (g)0̄ and thus is
a purely even subalgebra of U (g). Moreover, in the case g = osp1|2n , there exists
T ∈ U (g)0̄ such that A(osp1|2n) = Z(osp1|2n)T by [2, 17, 25]. The element T is
called the Casimir’s ghost [2] since T 2 ∈ Z(osp1|2n). When n = 1, in particular, T
can be expressed as 4Q − 4C + 1/2 by using [27] and then T 2= 4C + 1/4, where C
is the Casimir element in U (osp1|2) and Q is the one in U (sl2).

The finite W-algebra U (g, f ) is an associative superalgebra over C defined from
a simple finite-dimensional basic classical Lie superalgebra g and an even nilpotent
element f [3, 11, 23, 24, 30–32]. In the case when g is a simple Lie algebra and f is a
principal nilpotent element fprin, it was proven by Kostant [23] that the corresponding
finiteW-algebra U (g, fprin) is isomorphic to the center Z(g) of U (g).

TheW-algebraWk(g, f ) is a vertex superalgebra defined by the Drinfeld–Sokolov
reduction associated to g, f and a complex number k ∈ C, called the level [9, 20].
In general, (Ramond-twisted) positive-energy simple modules of a 1

2Z-graded vertex
superalgebra V with a Hamiltonian operator H are classified in terms of an associated
superalgebra called the (H -twisted) Zhu algebra of V . See Sect. 2 for the definition of
Ramond-twisted modules. It was proven by De Sole and Kac [6] that the Zhu algebra
ofWk(g, f ) is isomorphic to the finiteW-algebraU (g, f ). In particular, there exists a
one-to-one correspondence between simple modules ofU (g, f ) and Ramond-twisted
positive-energy simple modules ofWk(g, f ). TheW-algebra associated to a principal
nilpotent element f = fprin is called the principal W-algebra of g, which we denote
byWk(g) = Wk(g, fprin).

Theorem A (Theorem 6.5) U (osp1|2n, fprin) is isomorphic to ˜Z(osp1|2n) as associa-
tive algebras.

The finiteW-algebraU (osp1|2n, fprin) associated to osp1|2n and its principal nilpo-
tent element fprin is an associative superalgebra with its non-trivial odd part, while the
ghost center ˜Z(osp1|2n) is not. However, we prove an isomorphism between them.

To prove Theorem A, we use the Miura map μ and its injectivity and relationship
with the Harish–Chandra homomorphism of osp1|2n . See Sect. 4 for the definition
of μ. The map μ was originally introduced in [24]. The injectivity of μ was only
known for non-super cases, but has been recently proved by [26] for super cases.
As a corollary of Theorem A, it follows that Ramond-twisted positive-energy simple
modules of principalW-algebrasWk(osp1|2n) are classified by simple modules of the
ghost center˜Z(osp1|2n) (Corollary 6.7).Wenote that the definition ofU (osp1|2n, fprin)
in the paper comes from the theory of vertex superalgebras (Remark 4.4).

We will prove in the next paper that the untwisted Zhu algebra of Wk(osp1|2n)
is isomorphic to the center of U (sp2n). This is only known in the case n = 1
due to [22]. Thus, by Theorem A, the untwisted Zhu algebra is isomorphic to the
even part of U (osp1|2n, fprin). It is also proven in (6.1) that the Zhu functor is
compatible with the Miura map, and hence with the Harish–Chandra homomor-
phism. Since simple modules of Z(sp2n) can be described in terms of the central
characters and the Harish–Chandra homomorphism, we may apply this to construct
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simple modules of Wk(osp1|2n) inside tensor products of Fock modules and the
free fermion F . This allows us to analyze the coset construction of Wk(osp1|2n) �
Com(V �(so2n+1), V �−1(so2n+1)⊗F2n+1), where V �(so2n+1) is the affine vertex
algebra of so2n+1 at some level �. We intend to address this issue in sequels to this
paper in our joint work with Thomas Creutzig.

Let us remark that a super analog of the Soergel Struktursatz for a suitable Whit-
taker functor from the integral BGG category O of any basic classical simple Lie
superalgebra g to the category of finite-dimensional modules of U (g, fprin) has been
established in [4]. We also hope to clarify the relationship between the ghost center of
g andU (g, fprin) in general g to apply to the Soergel Struktursatz in our future works.

The paper is organized as follows. In Sect. 2, we introduce H -twisted Zhu algebras.
In Sect. 3, we recall the definitions of W-algebras Wk(g, f ). In Sect. 4, we give two
definitions U (g, f )I and U (g, f )II of finite W-algebras and show the equivalence of
the definitions, that is,U (g, f )I � U (g, f )II. The proof is similar to [5]. In Sect. 5, we
recall the principalW-algebraWk(osp1|2n) of osp1|2n . In Sect. 6,we proveTheoremA.

2 H-twisted Zhu algebras

Let V be a vertex superalgebra. Denote by |0〉 the vacuum vector, by ∂ the translation
operator, by p(A) the parity of A ∈ V , and by Y (A, z) = A(z) = ∑

n∈Z A(n)z−n−1

the field on V corresponding to A ∈ V . Let

[AλB] =
∞
∑

n=0

λn

n! A(n)B ∈ C[λ]⊗V

be the λ-bracket of A and B for A, B ∈ V . A Hamiltonian operator H on V is a
semisimple operator on V satisfying that [H ,Y (A, z)] = z∂zY (A, z) + Y (H(A), z)
for all A ∈ V . The eigenvalue of H is called the conformal weight. If V is conformal
and L(z) = ∑

n∈Z Lnz−n−2 is the field corresponding to the conformal vector of V ,
we may choose H = L0 as the Hamiltonian operator.

Suppose that V is a 1
2Z-graded vertex superalgebra with respect to a Hamiltonian

operator H . Denote by �A the conformal weight of A ∈ V . Define the ∗-product and
◦ -product of V by

A∗ B =
∞
∑

j=0

(

�A

j

)

A( j−1)B, A◦ B =
∞
∑

j=0

(

�A

j

)

A( j−2)B, A, B ∈ V .

Then the quotient space

ZhuHV = V /V ◦V

has a structure of associative superalgebra with respect to the product induced from ∗,
and is called the H -twisted Zhu algebra of V . Here V ◦V = SpanC{A◦B | A, B ∈ V }.
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The vacuum vector |0〉 defines a unit of ZhuHV . A superspace M is called a Ramond-
twisted V -module if M is equipped with a parity-preserving linear map

YM : M � A → YM (A, z) =
∑

n∈Z+�A

AM
(n)z

−n−1 ∈ (End M)
[[

z1/2, z−1/2]]

such that (1) for each C ∈ M , AM
(n)C = 0 if n  0, (2) YM (|0〉, z) = idM and (3) for

any A, B ∈ V , C ∈ M , n ∈ Z, m ∈ Z + �A and � ∈ Z + �B ,

∞
∑

j=0

(−1) j
(

n

j

)

(

AM
(m+n− j)B

M
(�+ j) − (−1)p(A)p(B)BM

(�+n− j)A
M
(m+ j)

)

C

=
∞
∑

j=0

(

m

j

)

(

A(n+ j)B
)M
(m+�− j)C .

Hence the Ramond-twisted module is a twisted module of V for the automor-
phism e2π i H . In particular, M is just a V -module if V is Z-graded. Define AM

n by
YM (A, z) = ∑

n∈Z AM
n z−n−�A for A ∈ V . A Ramond-twisted V -module M is called

positive-energy if M has an R-grading M = ⊕

j∈R Mj with M0 �= 0 such that

AM
n Mj ⊂ Mj+n for all A ∈ V , n ∈ Z and j ∈ R. Then M0 is called the top

space. By [6, Lemma 2.22], a linear map V � A �→ AM
0 |M0 ∈ End M0 induces a

homomorphism ZhuHV → End M0. Thus we have a functor M �→ M0 from the
category of positive-energy Ramond-twisted V -modules to the category of Z2-graded
ZhuHV -modules. By [6, Theorem 2.30], these functors establish a bijection (up to iso-
morphisms) between simple positive-energy Ramond-twisted V -modules and simple
Z2-graded ZhuHV -modules.

3 W-algebras

Let g be a finite-dimensional simple Lie superalgebra with the normalized even super-
symmetric invariant bilinear form ( · | ·) and f be a nilpotent element in the even part
of g. Then there exists a 1

2Z-grading on g that is good for f . See [20] for the defini-
tions of good gradings and [8, 18] for the classifications. Let g j be the homogeneous
subspace of gwith degree j . The good grading g = ⊕

j∈ 1
2Z

g j for f on g satisfies the
following properties:

• [gi , g j ] ⊂ gi+ j ,
• f ∈ g−1,
• ad( f ) : g j → g j−1 is injective for j � 1/2 and surjective for j � 1/2,
• (gi |g j ) = 0 if i + j �= 0,
• dim g f = dim g0 + dim g1/2, where g f is the centralizer of f in g.

Then we can choose a set of simple roots � of g for a Cartan subalgebra h ⊂ g0
such that all positive root vectors lie in g�0. Denote � j = {α ∈ � | gα ⊂ g j } and
� j = �∩� j for j ∈ 1

2Z.Wehave� = �0��1/2��1. Letχ : g → Cbe a linearmap
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defined by χ(u) = ( f |u). Since ad( f ) : g1/2 → g−1/2 is an isomorphism of vector
spaces, the super skew-symmetric bilinear form g1/2×g1/2 � (u, v) �→ χ([u, v]) ∈ C

is non-degenerate. We fix a root vector uα and denote by p(α) the parity of uα for
α ∈ �.

Let V k(g) be the affine vertex superalgebra associated to g at level k ∈ C, which is
generated by u(z) (u ∈ g) whose parity is the same as u, satisfying that

[uλv] = [u, v] + k(u |v)λ, u, v ∈ g.

Let F(g1/2) be the neutral vertex superalgebra associated to g1/2, which is strongly
generated by φα(z) (α ∈ �1/2) whose parity is equal to p(α), satisfying that

[φαλφβ ] = χ(uα, uβ), α, β ∈ �1/2.

Let Fch(g>0) be the charged fermion vertex superalgebra associated to g>0, which is
strongly generated by ϕα(z), ϕ∗

α(z) (α ∈ �>0) whose parities are equal to p(α) + 1̄,
satisfying that

[ϕαλϕ
∗
β ] = δα,β, [ϕαλϕβ ] = [ϕ∗

αλϕ
∗
β ] = 0, α, β ∈ �>0.

Let Ck(g, f ) = V k(g)⊗F(g1/2)⊗Fch(g>0) and d be an odd element in Ck(g, f )
defined by

d =
∑

α∈�>0

(−1)p(α)uαϕ∗
α − 1

2

∑

α,β,γ∈�>0

(−1)p(α)p(γ )cγ
α,β :ϕγ ϕ∗

αϕ∗
β :

+
∑

α∈�1/2

φαϕ∗
α +

∑

α∈�>0

χ(uα)ϕ∗
α.

Then (Ck(g, f ), d(0)) defines a cochain complex with respect to the charged degree:
charge ϕα = − charge ϕ∗

α = 1 (α ∈ �>0) and charge A = 0 for all A ∈
V k(g)⊗F(g1/2). The (affine) W-algebra Wk(g, f ) associated to g, f at level k is
defined by

Wk(g, f ) = H(Ck(g, f ), d(0)).

Let Ck(g, f )+ be a subcomplex generated by φα(z) (α ∈ �1/2), ϕ∗
α(z) (α ∈ �>0)

and

Ju(z) = u(z) +
∑

α,β∈�>0

cα
β,u :ϕ∗

β(z)ϕα(z) :, u ∈ g�0.

Then we have [21]

Wk(g, f ) = H(Ck(g, f ), d(0)) = H0(Ck(g, f )+, d(0)).
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Thus, Wk(g, f ) is a vertex subalgebra of Ck(g, f )+. Using the fact that

[Juλ J
v] = J [u,v] + τ(u |v)λ, u, v ∈ g�0,

τ (u |v) = k(u |v) + 1

2
κg(u |v) − 1

2
κg0(u |v), u, v ∈ g�0,

where κg denotes the Killing form on g, it follows that the vertex algebra generated by
Ju(z) (u ∈ g�0) is isomorphic to the affine vertex superalgebra associated to g�0 and
τ , which we denote by V τ (g�0). Therefore the homogeneous subspace of Ck(g, f )+
with charged degree 0 is isomorphic to V τ (g�0)⊗F(g1/2). The projection g�0 �
g0 induces a vertex superalgebra surjective homomorphism V τ (g�0)⊗F(g1/2) �
V τ (g0)⊗F(g1/2) so that we have

ϒ : Wk(g, f ) → V τ (g0)⊗F(g1/2)

by the restriction. The map ϒ is called the Miura map and is injective thanks to [1,
10, 26].

4 FiniteW-algebras

Recall the definitions of finite W-algebras U (g, f ), following [5]. We give two def-
initions in (4.1), (4.2) denoted by U (g, f )I, U (g, f )II, respectively, and prove the
isomorphism U (g, f )I � U (g, f )II in Theorem 4.2.

Let � be an associative C-superalgebra generated by �α (α ∈ �1/2) that has the
same parity as uα , satisfying that

[�α,�β ] = χ([uα, uβ ]), α, β ∈ �1/2.

Here [A, B] denotes AB − (−1)p(A) p(B)BA. We extend the definition of �α for all
α ∈ �>0 by�α = 0 for α ∈ ��1. Let�(g>0) be the Clifford superalgebra associated
to g>0, which is an associative C-superalgebra generated by ψα,ψ∗

α (α ∈ �>0) with
the opposite parity to that of uα , satisfying that

[ψα,ψ∗
β ] = δα,β, [ψα,ψβ ] = [ψ∗

α, ψ∗
β ] = 0, α, β ∈ �>0.

The Clifford superalgebra �(g>0) has the charged degree defined by deg(ψα) = 1 =
− deg(ψ∗

α) for all α ∈ �>0. Set

C I = U (g)⊗�⊗�(g>0), d I = ad(Q),

Q =
∑

α∈�>0

(−1)p(α)Xαψα − 1

2

∑

α,β,γ∈�>0

(−1)p(α)p(γ )cγ
α,βψγ ψ∗

α ψ∗
β,

Xα = uα + (−1)p(α)(�α + χ(uα)), α ∈ �>0,
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where cγ
α,β is the structure constant defined by [uα, uβ ] = ∑

γ∈�>0
cγ
α,βuγ . Then a

pair (C I, d I) forms a cochain complex with respect to the charged degree on �(g>0)

and the cohomology

U (g, f )I = H•(C I, d I) (4.1)

has a structure of an associative C-superalgebra inherited from that of C I. Let

ju = u +
∑

α,β∈�>0

cα
β,uψ

∗
β ψα, u ∈ g.

Then

ad(Q) ·ψα = juα + (−1)p(α)(�α + χ(uα)) = Xα +
∑

α,β∈�>0

cα
β,uψ

∗
β ψα, α ∈ �>0.

Let C− be the subalgebra of CI generated by ψα , ad(Q) ·ψα (α ∈ �>0) and C+ be
the subalgebra of C I generated by ju (u ∈ g�0), �α (α ∈ �1/2) and ψ∗

α (α ∈ �>0).
Then (C±, d I) form subcomplexes and C I � C− ⊗C+ as vector superspaces. Since
H(C−, d I) = C, we have

H(CI, d I) � H(C−, d I)⊗H(C+, d I) = H(C+, d I).

Using the same argument as in [21], it follows that Hn(C+, d I) = 0 for n �= 0.
Therefore U (g, f )I is a subalgebra of C0+, which is generated by ju (u ∈ g�0) and
�α (α ∈ �1/2). Since [ ju, jv] = j [u,v] for u, v ∈ g�0, there exists an isomorphism
C0+ � U (g�0)⊗� as associative C-superalgebras. The projection g�0 � g0 induces
an associative C-superalgebra surjective homomorphism U (g�0)⊗� � U (g0)⊗�

so that we have

μ : U (g, f )I → U (g0)⊗�

by the restriction. The map μ is called the Miura map for the finiteW-algebras and it
is injective by [13, 24, 26]. Let C−χ be the one-dimensional g�1-module defined by
g�1 � u �→ −χ(u) ∈ C and MII be the induced left g-module

MII = Indgg�1 C−χ = U (g) ⊗
U (g�1)

C−χ � U (g)/I−χ ,

where I−χ is a leftU (g)-module generated by u+χ(u) for all u ∈ g�1. ThenMII has a
structure of the ad(g>0)-module inherited from that ofU (g). Set the ad(g>0)-invariant
subspace

U (g, f )II = (MII)
ad(g>0). (4.2)
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Then U (g, f )II also has a structure of an associative C-superalgebra inherited from
that ofU (g).Wemay also defineU (g, f )II as the Chevalley cohomology H(g>0, MII)

of the left g>0-module MII:

Lemma 4.1 ([11, 26])

H(g>0, MII) = H0(g>0, MII) = (MII)
ad(g>0).

Proof Though the assertion is proved in [11] for Lie algebras g, the same proof together
with [26, Corollary 2.6] applies. ��
Theorem 4.2 ([5, Theorem A.6]) There exists an isomorphism U (g, f )I � U (g, f )II
as associative C-superalgebras.

Proof Though the assertion is proved in [5] for Lie algebras g, the same proof applies
as follows. Let CII = �(g>0)c⊗MII be the Chevalley cohomology complex of the
left g>0-module MII, where�(g>0)c is the subalgebra of�(g>0) generated byψ∗

α for
all α ∈ �>0, and d II be the derivation of the cochain complex CII. Let U (g>0)−χ =
U (g>0)⊗C−χ be a left g�1-module defined by the diagonal action, where U (g>0)

is considered as a left g�1-module by the left multiplication, and MIII be the induced
left g-module

MIII = Indgg�1 U (g>0)−χ = U (g) ⊗
U (g�1)

U (g>0)−χ .

Let Cχ be the one-dimensional g�1-module defined by g�1 � u �→ χ(u) ∈ C and
U (g)χ = U (g)⊗Cχ be a right g�1-module defined by the diagonal action, where
U (g) is considered as a right g�1-module by the right multiplication. Then we have

MIII � U (g)χ ⊗
U (g�1)

U (g>0)

so that MIII is a left g- right g>0-bimodule. Note that there is an isomorphism
�(g>0) � �(g>0)h ⊗�(g>0)c of vector superspaces, where �(g>0)h is the sub-
algebra of �(g>0) generated by ψα for all α ∈ �>0. Let dh be the derivation of the
Chevalley homology complex MIII⊗�(g>0)h of the right g>0-module MIII. Then
MIII⊗�(g>0)h is clearly a left g>0-module with respect to the adjoint g>0-action.
Now, let dc be the derivation of the Chevalley cohomology complex �(g>0)c⊗MIII
⊗�(g>0)h of the left g>0-module MIII⊗�(g>0)h . Then, as in [5], we get a new
cochain complex (CIII, d III) defined by

CIII = �(g>0)c⊗MIII⊗�(g>0)h, d III = dc + (−1)δ−1⊗dh,

where δ denotes the parity of the part of elements in �(g>0)c. Then it is easy to check
that the following linear map

i III : CIII � ψ∗
β1

· · · ψ∗
βi

⊗(

v1 · · · vs ⊗
U (g�1)

uα1 · · · uαt

)⊗ψγ1 · · ·ψγ j

�→ ψ∗
β1

· · · ψ∗
βi

· v1 · · · vs · Xα1 · · · Xαt · ψγ1 · · ·ψγ j ∈ C I
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with v1, . . . , vs ∈ g, α1, . . . , αt , β1, . . . , βi , γ1, . . . , γ j ∈ �>0 is well defined and
induces an isomorphism of complexes (CIII, d III) → (C I, d I) since i III→I◦d III =
d I◦ i III→I. Now

Hn(CIII, dh) = �(g>0)c⊗Hn
(

MIII⊗�(g>0)h, dh
)

= �(g>0)c⊗U (g)χ ⊗
U (g�1)

Hn(g>0,U (g>0))

= δn,0�(g>0)c⊗U (g)χ ⊗
U (g�1)

C � δn,0 CII.

Thus, since dc and (−1)δ−1⊗dh commute, we have

H(CIII, d III) � H(H(CIII, dh), dc) � H(CII, d II).

The above argument together with the isomorphism iIII→I of complexes shows that
(CI, d I) and (CII, d II) are quasi-isomorphic via the following quasi-isomorphism

i I→II : C I � ψ∗
β1

· · · ψ∗
βi

· v1 · · · vs · Xα1 · · · Xαt · ψγ1 · · ·ψγ j

�→ δt,0 δ j,0 ψ∗
β1

· · · ψ∗
βi

· v1 · · · vs ∈ CII,
(4.3)

which preserves the associative superalgebra structures on the cohomologies. ��
Definition 4.3 The finite W-algebra U (g, f ) associated to g, f is defined to be the
superalgebra U (g, f )I, which is isomorphic to U (g, f )II due to Theorem 4.2.

Remark 4.4 The same result as Theorem 4.2 for Poisson superalgebra versions has
been studied in [33]. Also remark that our definitions of the finiteW-algebraU (g, f )
are not necessarily equivalent to the definitions in some literature [28, 29, 34]. In fact, in
case thatg = osp1|2n and f = fprin its principal nilpotent element,we have dim g1/2 =
dim g1/2,1̄ = 1 and thus g�1 � g>0. ThenU (g, f ) � U (g, f )II = (U (g)/I−χ )ad(g>0)

is a proper subalgebra of (U (g)/I−χ )ad(g�1) = EndU (g) U (g)/I−χ .

The vertex superalgebra Ck(g, f ) has a conformal vector ω if k �= −h∨, which
defines the conformal weights onCk(g, f ) by L0, whereω(z) = ∑

n∈Z Lnz−n−2. See
[20] for the details. Then H = L0 defines a Hamiltonian operator on Ck(g, f ), the
vertex subalgebra Ck(g, f )+, and the correspondingW-algebraWk(g, f ). Moreover
the Hamiltonian operator L0 is well defined for all k ∈ C. Recall that ZhuHV is the
H -twisted Zhu algebra of V , see Sect. 2. Let x ∈ h be such that [x, u] = ju for u ∈ g j .
Then by [1, 6],

ZhuHC
k(g, f )+ � C+, Ju �→ ju + τ(x |u), φα �→ �α, ϕ∗

α �→ ψ∗
α (4.4)

for u ∈ g�0, α ∈ �>0 and ZhuH H0(Ck(g, f )+, d(0)) � H0(C+, d I) so that

ZhuHW
k(g, f ) � U (g, f ). (4.5)
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Let V1, V2 be any 1
2Z�0-graded vertex superalgebras with the Hamiltonian operators

and g : V1 → V2 any vertex superalgebra homomorphism preserving the conformal
weights. Since g(V1◦V1) = g(V1)◦g(V1) ⊂ V2◦V2, the map g induces an algebra
homomorphism

ZhuH (g) : ZhuHV1 → ZhuHV2.

Apply for g = ϒ . Then we get

ZhuH (ϒ) = μ

by construction.

5 PrincipalW-algebras of osp1|2n

Consider the case that

g = osp1|2n =
⎧

⎨

⎩

u =
⎛

⎝

0 ty − tx
x a b
y c − ta

⎞

⎠ ∈ gl1|2n

∣

∣

∣

∣

∣

∣

a, b, c ∈ MatC(n×n),

x, y ∈ MatC(n×1),
b = tb, c = tc

⎫

⎬

⎭

,

where tA denotes the transpose of A. Let {ei, j }i, j∈I be the standard basis of gl1|2n with
the index set I = {0, 1, . . . , n,−1, . . . ,−n} and hi = ei,i − e−i,−i (i = 1, . . . , n).
Then h = SpanC{hi }ni=1 is a Cartan subalgebra of osp1|2n . Define εi ∈ h∗ by εi (h j ) =
δi, j . Then �+ = {εi , 2εi }ni=1 � {εi − ε j , εi + ε j }1�i< j�n forms a set of positive roots
with simple roots � = {αi }i=1, αi = εi − εi+1 (i = 1, . . . , n − 1) and αn = εn ,
and ε1, . . . , εn are the (non-isotropic) odd roots in �+. Set �− = −�+ and (u |v) =
− str(uv) for u, v ∈ osp1|2n . We may identify h∗ with h through ν : h∗ � λ �→ ν(λ) ∈
h defined by λ(h) = (h |ν(λ)) for h ∈ h, which induces a non-degenerate bilinear
form on h∗ by (λ |μ) = (ν(λ) |ν(μ)) so that (εi |ε j ) = δi, j/2. Then hi corresponds
to 2εi = 2

∑n
j=i α j by ν. We have

(αi |αi ) = 1, (αi |αi+1) = −1

2
, i = 1, . . . , n − 1; (αn | αn) = 1

2
.

Note that the dual Coxeter number of osp1|2n is equal to n + 1/2. Let

fprin =
n−1
∑

i=1

u−αi + u−2αn

be a principal nilpotent element in the even part of osp1|2n , where uα denotes some
root vector for α ∈ �. Then there exists a unique good grading on osp1|2n such that
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�1 = {αi }n−1
i=1 and �1/2 = {αn}. Thus

g0 = h, g>0 = n ..=
⊕

α∈�+
gα, g<0 = n− ..=

⊕

α∈�−
gα.

Let

Wk(osp1|2n) ..= Wk(osp1|2n, fprin)

be the principal W-algebra of osp1|2n at level k. The Miura map for Wk(osp1|2n) is

ϒ : Wk(osp1|2n) → π ⊗F,

where π is the Heisenberg vertex algebra generated by even fields αi (z), i = 1, . . . , n,
satisfying that

[αiλα j ] =
(

k + n + 1

2

)

(αi |α j )λ, i, j = 1, . . . , n,

and F is the free fermion vertex superalgebra generated by an odd field φ(z) satisfying
that

[φλφ] = 1.

By [12, Theorem 6.4], Wk(osp1|2n) is strongly generated by G,W2,W4, . . . ,W2n
for odd G and even W2,W4, . . . ,W2n elements of conformal weights n + 1/2 and
2, 4, . . . , 2n such that

ϒ(G)(z) = :(2(k + n)∂ + h1(z)) · · · (2(k + n)∂ + hn(z))φ(z) :,
ϒ(W2i )(z) ≡

∑

1� j1<···< ji�n

:h2j1(z) · · · h2ji (z) : (mod C2(π ⊗F)),

C2(π ⊗F) = {A(−2)B | A, B ∈ π ⊗F},
(5.1)

and

[GλG] = W2n +
n−1
∑

i=1

γi

(

λ2i−1

(2i − 1)! W2n−2i+1 + λ2i

(2i)! W2n−2i

)

+ γn
λ2n

(2n)! (5.2)

for some W2 j+1 ∈ Wk(osp1|2n), where

hi (z) = 2
n

∑

j=i

α j (z), γi = (−1)i
i

∏

j=1

(2(2 j − 1)(k + n) − 1)(4 j(k + n) + 1),
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which satisfy that

[hiλh j ] = (2k + 2n + 1)δi, jλ, i, j = 1, . . . , n.

If k + n + 1/2 �= 0,

L = W2

2(2k + 2n + 1)

is a unique conformal vector ofWk(osp1|2n) with the central charge

c(k) = − (2n + 1)(2(2n − 1)(k + n) − 1)(4n(k + n) + 1)

2(2k + 2n + 1)
.

6 Zhu algebras ofWk(osp1|2n)

By (4.5), we have an isomorphism

ι1 : ZhuHWk(osp1|2n)
�−−→ U (osp1|2n, fprin).

Then ι1 is induced by (4.4):

ZhuHC
k(osp1|2n, fprin)

�−−→ C+,

Ju �→ ju + (2k + 2n + 1)(ρosp |u), φα �→ �α, ϕ∗
α �→ ψ∗

α,

where

ρosp = 1

2

∑

α∈�+
(−1)p(α)α.

Let C[h∗] = U (h) and set an isomorphism

ι2 : ZhuHπ ⊗ZhuH F
�−−→ C[h∗]⊗�,

hi �→ hi + (2n − 2i + 1)

(

k + n + 1

2

)

, φαn �→ �αn .

Then we have a commutative diagram of Miura maps

ZhuHWk(osp1|2n)
ZhuH (ϒ)

ι1

ZhuHπ ⊗ZhuH F

ι2

U (osp1|2n, fprin)
μ

C[h∗]⊗�.

(6.1)
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By [6], ZhuHWk(osp1|2n) has a PBW basis generated by G,W2,W4, . . . ,W2n . By
abuse of notation, we shall use the same notation for the generators ofU (osp1|2n, fprin)
corresponding to G,W2,W4, . . . ,W2n by ι1.

Lemma 6.1 μ(G) = (h1 + ρosp(h1))(h2 + ρosp(h2)) · · · (hn + ρosp(hn))⊗�αn .

Proof We have

ϒ(G) = :(2(k + n)∂ + h1) · · · (2(k + n)∂ + hn)φ :
≡ (− (2n − 1)(k + n) + h1)∗(− (2n − 3)(k + n) + h2)

· · · ∗ (− (k + n) + hn)∗φ
(

mod Wk(osp1|2n)◦Wk(osp1|2n)
)

.

Thus

μ(G) = ι2
(

(− (2n − 1)(k + n) + h1)∗(− (2n − 3)(k + n) + h2)

· · · ∗ (−(k + n) + hn)∗φ
)

=
(

h1 + n − 1 + 1

2

)(

h2 + n − 2 + 1

2

)

· · ·
(

hn + 1

2

)

⊗�αn .

Therefore the assertion follows from the fact that ρosp(hi ) = n − i + 1/2. ��
For a basic classical Lie superalgebra g such that g1̄ �= 0, denote by

Z(g) = {

z ∈ U (g) | uz − (−1)p(u)p(z)zu = 0 for all u ∈ g
}

,

A(g) = {

a ∈ U (g) | ua − (−1)p(u)(p(a)+1̄)au = 0 for all u ∈ g
}

,

˜Z(g) = Z(g)⊕A(g),

called the center, the anticenter and the ghost center ofU (g), respectively due to [14].
Then the ghost center ˜Z(g) coincides with the center ofU (g)0̄ by [14, Corollary 4.4.4].
In case that g = osp1|2n , there exists T ∈ U (g)0̄ [2, 17, 25] such that

A(osp1|2n) = Z(osp1|2n)T , (σ ◦η)(T ) = h1h2 · · · hn,

where

η : U (osp1|2n) � U (h) = C[h∗]

is the projection induced by the decomposition

U (osp1|2n) � n−U (osp1|2n)⊕U (h)⊕U (osp1|2n)n

and σ is an isomorphism defined by

σ : C[h∗] → C[h∗], f �→ (σ ( f ) : λ �→ f (λ − ρosp)).
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The element T is called the Casimir’s ghost [2] since T 2 ∈ Z(osp1|2n) is such that
(σ ◦η)(T 2) = h21 · · · h2n , and is studied for general g in [14]. It is well known [15, 19]
that the restriction of σ ◦η to Z(g) is injective and maps onto C[h∗]W , where W is
the Weyl group of sp2n , called the Harish–Chandra homomorphism of osp1|2n . Recall
that

U (osp1|2n, fprin) � U (osp1|2n, fprin)II = (U (osp1|2n)/I−χ )adn,

where I−χ is a left U (osp1|2n)-module generated by uα + ( fprin |uα) for all α ∈
�+ \{αn}. Define the projections q1, q2 by

q1 : U (osp1|2n) � U (osp1|2n)/I−χ ,

q2 : U (osp1|2n)/I−χ � n−U (osp1|2n)/I−χ ⊕U (h)⊕U (h)uαn � U (h)⊕U (h)uαn

and a linear map q3 by

q3 : U (h)⊕U (h)uαn → C[h∗]⊗�, ( f1, f2 · uαn ) �→ f1⊗1 + f2⊗�αn .

Then, using the quasi-isomorphism i I→II in (4.3), the Miura map μ can be identified
with the restriction of the composition map q3◦q2 to U (osp1|2n, fprin)II since uαn =
Xαn + �αn .

Lemma 6.2 q1(Tuαn ) is the element of U (osp1|2n, fprin)II corresponding to G.

Proof First of all, we show that q1(Tuαn ) ∈ U (osp1|2n, fprin)II. It is enough to show
that [uα, Tuαn ] ≡ 0 (mod I−χ ) for all α ∈ �+. Let �+, ī = {α ∈ �+ | p(uα) = ī}.
Since [uα, T ] = 0 for α ∈ �+,0̄, we have

[uα, Tuαn ] = T [uα, uαn ] ≡ 0 (mod I−χ ), α ∈ �+,0̄.

Next, for α ∈ �+,1̄ \{αn}, since uαT + Tuα = 0, we also have

[uα, Tuαn ] = − T [uα, uαn ] + 2Tuαn uα ≡ 0 (mod I−χ ), α ∈ �+,1̄ \{αn}.

Finally, in case that α = αn ,

[uαn , Tuαn ] = (uαn T + Tuαn )uαn = 0.

Therefore, q1(Tuαn ) belongs to U (osp1|2n, fprin)II. Now μ = q3◦q2|U (osp1|2n , fprin)II
and by definition,

((σ ⊗1)◦μ)(q1(Tuαn )) = ((σ ⊗1)◦q3◦q2◦q1)(Tuαn )

= (σ ◦η)(T )⊗�αn = h1 · · · hn ⊗�αn .

By Lemma 6.1, ((σ ⊗1)◦μ)(G) = h1 · · · hn ⊗�αn . Since (σ ⊗1)◦μ is injective, we
have q1(Tuαn ) = G. ��
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Theorem 6.3 U (osp1|2n, fprin)0̄ � Z(osp1|2n).

Proof Since U (osp1|2n, fprin) has a PBW basis generated by G,W2,W4, . . . ,W2n
and G is a unique odd generator, U (osp1|2n, fprin)0̄ has a PBW basis generated
by W2,W4, . . . ,W2n . Now � is a superalgebra generated by �αn with the rela-
tion 2�2

αn
= χ(uαn , uαn ). Thus μ maps U (osp1|2n, fprin)0̄ to C[h∗]. By (5.1),

μ(W2i ) for i = 1, . . . , n are algebraically independent in C[h∗] with degree 2i
(but not necessary homogeneous). Now, by definition, q2◦q1 = η on Z(osp1|2n).
Hence q2◦q1|Z(osp1|2n) is injective. In particular, q1|Z(osp1|2n) is injective. Clearly,
q1(Z(osp1|2n)) is ad n-invariant. Thus, U (osp1|2n, fprin) � U (osp1|2n, fprin)II con-
tains Z(osp1|2n) through q1. Moreover

μ(Z(osp1|2n)) = (q3◦q2◦q1)(Z(osp1|2n)) = η(Z(osp1|2n)) = σ−1(C[h∗]W ).

Since C[h∗]W is a symmetric algebra of h21, . . . , h
2
n , μ(Z(osp1|2n)) must contain all

μ(W2i ) for i = 1, . . . , n. Therefore

U (osp1|2n, fprin)0̄ � Z(osp1|2n).

This completes the proof. ��

Corollary 6.4 (ZhuHWk(osp1|2n))0̄ � Z(osp1|2n).

Proof The assertion is immediate from Theorem 6.3 and the fact that

ZhuHW
k(osp1|2n) � U (osp1|2n, fprin). ��

Consider a linear isomorphism

ξ : ˜Z(osp1|2n) = Z(osp1|2n)⊕A(osp1|2n)
�−−→ Z(osp1|2n)⊕A(osp1|2n)uαn

defined by ξ(z, a) = (z, a uαn ). Then by Lemma 6.2 and the fact that A(osp1|2n) =
Z(osp1|2n)T , we have (q1◦ξ)(˜Z(osp1|2n)) ⊂ U (osp1|2n, fprin)II.

Theorem 6.5 The map q1◦ξ : ˜Z(osp1|2n) → U (osp1|2n, fprin) is an isomorphism of
associative algebras.

Proof By definition and Lemma 6.2, (q3◦q2◦q1◦ξ)(zT ) = (q3◦q2◦q1)(zT uαn ) =
η(z)G for all z ∈ Z(osp1|2n). Thus, q3◦q2◦q1◦ξ |A(osp1|2n) is injective. In particular,
q1◦ξ |A(osp1|2n) is injective. Using the fact that U (osp1|2n, fprin) has a PBW basis
generated by G,W2,W4, . . . ,W2n and Theorem 6.3, it follows that q1◦ξ is a lin-
ear isomorphism. Now, we may suppose that χ(uαn , uαn ) = 2. Then �2

αn
= 1 so

that μ(T 2) = σ−1(h21 · · · h2n) = μ(G2). Therefore q1◦ξ defines an isomorphism of
associative algebras. ��
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Let L(λ) be the simple highest weight osp1|2n-module with the highest weight λ.
Then there exists χλ : Z(osp1|2n) → C such that z acts on χλ(z) on L(λ) for all
z ∈ Z(osp1|2N ). The map χλ is called a central character of osp1|2n and is induced by
η and one-dimensional C[h∗]-module Cλ defined by f �→ f (λ). Using the Harish–
Chandra homomorphism, it follows that χλ1 = χλ2 if and only if λ2 = w(λ1 + ρosp)

− ρosp for some w ∈ W . Let

D =
{

λ ∈ h∗
∣

∣

∣

∏

α∈�1̄

(λ + ρosp |α) = 0
}

.

Denote by χλ ∈ D if λ ∈ D. Since w(�1̄) ⊂ �1̄ for all w ∈ W , we have λ ∈ D ⇒
w(λ + ρosp) − ρosp ∈ D for any w ∈ W so that χλ ∈ D is well defined.

From now on, we will identify ˜Z(osp1|2n) with U (osp1|2n, fprin) by Theorem 6.5.
Then ˜Z(osp1|2n) is a superalgebra such that ˜Z(osp1|2n)1̄ = A(osp1|2n). Let E be a
finite-dimensional Z2-graded simple ˜Z(osp1|2n)-module. Then Z(osp1|2n) acts on E
as χλ for some λ ∈ h∗. For a non-zero parity-homogeneous element v ∈ E , T v has
an opposite parity to v such that T 2v = χλ(T 2)v. Recall that the set {h1, . . . , hn} is
identified with 2�+,1̄ by h � h∗. Then, using the fact that η(T 2) = σ−1(h21 · · · h2n),
it follows that

χλ(T
2) =

n
∏

i=1

(

(λ + ρosp)(hi )
)2 =

∏

α∈�+,1̄

(λ + ρosp |2α)2.

Hence χλ(T 2) = 0 if and only if χλ ∈ D. Since E is simple, E = Cv if χλ ∈ D and
E = Cv⊕CT v if χλ /∈ D, which we denote by Eχλ . Here we identify Eχλ with the
parity change of Eχλ if χλ(T 2) = 0. Therefore we obtain the following results:

Proposition 6.6 A finite-dimensional Z2-graded simple U (osp1|2n, fprin)-module is
isomorphic to Eχλ for some λ ∈ h∗. In particular, there exists one-to-one correspon-
dence between isomorphism classes (up to the parity change) of finite-dimensional
Z2-graded simple U (osp1|2n, fprin)-modules and central characters of osp1|2n.

Corollary 6.7 There exists a bijective correspondence between central characters of
osp1|2n and isomorphism classes (up to the parity change) of simple positive-energy
Ramond-twisted Wk(osp1|2n)-modules with finite-dimensional top spaces.

Proof The assertion is immediate from ZhuHWk(osp1|2n) � U (osp1|2n, fprin),
Proposition 6.6 and [6, Theorem 2.30]. ��

Corollary 6.7 implies that dimensions of the top spaces Eχλ of simple positive-
energy Ramond-twisted Wk(osp1|2n)-modules are equal to 2 if and only if
(λ + ρosp | α) �= 0 for all α ∈ �1̄. We remark that this condition is equivalent to
one that the annihilator of the Verma module M(λ) is generated by its intersection
with the center Z(osp1|2n) by [16].
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