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Abstract
We develop the Darboux theory of integrability for polynomial vector fields in the
n-dimensional torus Tn . We also provide the maximum number of invariant parallels
andmeridians that a polynomial vector field X onTn can have in function of its degree.
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1 Introduction and statement of main results

Real nonlinear ordinary differential systems are used to model a wide range of
processes practically in all fields of science, from biology and chemistry to econ-
omy, physics and engineering. The existence of first integrals of differential systems
defined onRn is important for two main reasons. First, they make easier the character-
ization of the phase portrait of the system. Secondly, their existence allows reducing
the dimension of the system by its number of independent first integrals, which in
many cases makes easier the analysis. In our terminology, a system is integrable if it
has n−1 independent first integrals if the space has dimension n. Therefore the meth-
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ods to detect the presence of first integrals and find their explicit form are extremely
important in the qualitative theory of differential equations.

InR2 first integrals are easily found for Hamiltonians vector fields. If the integrable
vector fields in R

2 are not Hamiltonian, various techniques have been developed for
analysing the existence of first integrals, such as the Noether symmetries [32], gener-
alized symmetries [25], Darboux theory of integrability [7], or the Lie symmetries [12,
26], these techniques have been extended to R

n. In fact, Emmy Noether’s theorems
represent a relevant example of the interdisciplinary character acquired by the problem
of finding first integrals. Roughly speaking stating that any physical conservation law
has its associated symmetry, one establishes a connection between mechanics, Lie
algebra and differential equations. Other contributions to this problem are represented
by the Painlevé analysis [1], the use of Lax pairs [15], or the direct method [10, 11],
to cite only few of them.

We are especially interested in the Darboux theory of integrability for real poly-
nomial vector fields. This theory provides a method of constructing first integrals of
polynomial vector fields, based on the number of invariant algebraic hypersurfaces
that they have. Since its publication in 1878, the method originally developed by Dar-
boux, has been extended and/or refined by many authors both in R2 [2–5, 7, 9, 14, 16,
23, 28–31, 33–36] and R

n [17, 18, 20–22, 24]. The first objective of this paper is to
extend the Darboux theory of integrability of the real polynomial vector fields in the
n-dimensional torus Tn, and to study the maximum number of invariant parallels and
meridians that such polynomial vector fields can have in function of their degree.

Before stating our results, we need some preliminary definitions for the hypersur-
faces that we are dealing with. First we give the general introductory notions valid for
the application of the Darboux theory of integrability on any smooth hypersurfaces;
then we will focus on the n-dimensional torus Tn and on its invariant meridians and
parallels.

Let G : Rn+1 → R be a C1 map. A hypersurface

� = {
(x1, . . . , xn+1) ∈ R

n+1 : G(x1, . . . , xn+1) = 0
}

is regular if the gradient ∇G of G is not equal to zero on �. Of course, if � is regular,
then it is smooth. We say that a hypersurface � is algebraic if G is an irreducible
polynomial. If the degree of the polynomial G is d, then we say that the hypersurface
� is algebraic of degree d.

A polynomial vector field X = (P1, . . . , Pn+1) on a regular hypersurface � (or
simply a polynomial vector field on�) is a polynomial vector field X inRn+1 satisfying
the following properties:

(P1, . . . , Pn+1) ·∇G = 0 on the points of �,

where the dot denotes the inner product of two vectors in R
n+1. If the polynomial

vector field X in Rn+1 has degree m = max{deg P1, . . . , deg Pn+1}, then we say that
the vector field X on � is of degree m.
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Let f = f (x1, . . . , xn+1) ∈ C[x1, . . . , xn+1]. We say that the algebraic hypersur-
face { f = 0} ∩ � ⊂ R

n+1 is invariant by the polynomial vector field X on � (or
simply an invariant algebraic hypersurface on �) if it satisfies

(a) There exists a polynomial k ∈ C[x1, . . . , xn+1] such that

X f =
n+1∑

i=1

Pi
∂ f

∂xi
= k f on �.

The polynomial k = k(x1, . . . , xn+1) ∈ C[x1, . . . , xn+1] is called the cofactor of
f = 0 on �.

(b) The two hypersurfaces f = 0 and � have transversal intersection, i.e. the vectors
∇G and ∇ f are independent in all the points of the hypersurface { f = 0} ∩ �.

Clearly a vector field X on� for which f = 0 is an invariant algebraic hypersurface
is tangent to the algebraic hypersurface { f = 0}∩�. So the hypersurface { f = 0}∩�

is formed by orbits of the vector field X . This explains why we say that the algebraic
hypersurface { f = 0} ∩ � is invariant by the flow of the vector field X .

An exponential factor F = F(x1, . . . , xn+1) of a polynomial vector field X of
degreem on the regular hypersurface� is an exponential function of the formexp(g/h)

with g and h polynomials in C[x1, . . . , xn+1] satisfying XF = LF on � for some
L ∈ Cm−1[x1, . . . , xn+1] of degree at most m − 1.

Let f and g be two polynomials of Cm[x1, . . . , xn+1] and let � = {G = 0} be a
regular algebraic hypersurface in R

n+1 of degree d. We say that f and g are related,
f ∼ g, if either f /g = constant or f − g = hG for some polynomial h. That
is, ∼ is an equivalence relation in Cm[x1, . . . , xn+1]; it splits Cm[x1, . . . , xn+1] into
equivalence classes defined in the following way. Given the set Cm[x1, x2, . . . , xn+1]
of all the polynomials of C[x1, . . . , xn+1] of the degree less than or equal to m and
the equivalence relation ∼ on Cm[x1, . . . , xn+1], the equivalence class of an element
g in Cm[x1, . . . , xn+1] is the set { f ∈Cm[x1, . . . , xn+1] : f ∼ g}.

In both cases mentioned in the previous paragraph { f = 0} ∩ � = {g = 0} ∩
�. The result of the partition of Cm[x1, . . . , xn+1] by the equivalence relation ∼
into equivalence classes yields the quotient space Cm[x1, . . . , xn+1]/∼; we denote
its dimension by d(m), called the dimension of Cm[x1, . . . , xn+1] on �. In [20] it is
proved that the dimension of Cm[x1, . . . , xn+1]/∼ is

d(m) =
(
n + 1 + m

n + 1

)
−

(
n + 1 + m − d

n + 1

)
. (1)

LetU ∈ R
n+1 be an open set. A real function H(x1, . . . , xn+1, t) : Rn+1×R → R is

an invariant of the polynomial vector field X on � ∩U if H(x1(t), . . . , xn+1(t), t) =
constant for all the values of t forwhich the orbit (x1(t), . . . , xn+1(t)) of X is contained
in � ∩U .

If an invariant H is independent on t , then H is a first integral. If a first integral
H is a rational function in its variables, then it is called a rational first integral of the
vector field X on � ∩U .
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Now we present the extension of the Darboux theory of integrability to polynomial
vector fields on Tn . The next theorem characterizes the dimension of the linear space
Cm[x1, . . . , xn+1] on Tn .

Theorem 1.1 The dimension d(m) of Cm[x1, . . . , xn+1] on T
n is

d(m) =
(
n + 1 + m

n + 1

)
−

(
n + 1 + m − 2n

n + 1

)
.

Theorem 1.1 is proved in Sect. 2. This result follows from a general statement about
the dimension of the linear space Cm[x1, . . . , xn+1] on � ⊂ R

n+1 regular algebraic
hypersurface proved in [20] and the explicit polynomial expression of Tn .

Note that for an n-dimensional torus Tn we must have m � 2n. The following
theorem is merging of two known results [20, Theorem 5] and [17, Theorem 2].

Theorem 1.2 Assume that X is a polynomial vector field on T
n of degree m =

(m1, . . . ,mn+1) having p invariant algebraic hypersurfaces { fi = 0}∩T
n with cofac-

tors Ki for i = 1, . . . , p and q exponential factors F1, . . . , Fq with Fj = exp(g j/h j )

with cofactors L j f or j = 1, . . . , q. Then the following statements hold:

(a) There exist λi , μ j ∈ C not all zero such that
∑p

i=1 λi Ki + ∑q
j=1 μ j L j = 0

on T
n if and only if the real (multi-valued) function of Darboux type f λ1

1 · · · f λp
p

Fμ1
1 · · · Fμq

q substituting f λi
i by | fi |λi if λi ∈ R is a first integral of the vector field

X on T
n.

(b) If p+q � d(m)+1 then there exist λi , μ j ∈ C not all zero such that
∑p

i=1 λi Ki +∑q
j=1 μ j L j = 0 on Tn.

(c) There exist λi , μ j ∈ C not all zero such that
∑p

i=1 λi Ki + ∑q
j=1 μ j L j = −σ on

T
n for some σ ∈ R\{0} if and only if the real (multi-valued) function of Darboux

type f λ1
1 · · · f λp

p Fμ1
1 · · · Fμq

q eσ t substituting f λi
i by | fi |λi if λi ∈ R is an invariant

of the vector field X on T
n.

(d) The vector field X onTn has a rational first integral if and only if p+q � d(m)+n.
Moreover, all the trajectories are contained in invariant algebraic hypersurfaces.

The proof of statements (a), (b) and (c) of Theorem 1.2 was done in [20], and the
proof of statement (d) was given in [17].

In statement (a) of Theorem 1.2 we claim that the function of Darboux type is real.
This is due to the following fact. Since the vector field X is real, it is well known that
if a complex invariant algebraic hypersurface or exponential factor appears, then its
conjugate has to appear simultaneously. If among the invariant algebraic hypersurfaces
of X a complex conjugate pair f = 0 and f = 0 occurs, then the first integral of
Darboux type has a real factor of the form f λ f λ, which is the multi-valued real
function

[
(Re f )2 + (Im f )2

]Re λ exp

(
2Re

(
μ
h

g

))
.
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The parallels of the n-dimensional torus Tn are the intersections of Tn with hyper-
planes x1 = constant. A parallel is an (n− 1)-dimensional torus Tn−1. An interesting
question is to know how many invariant parallels a polynomial vector field in Tn can
have in function of its degree m. The answer is given in the next theorem.

Theorem 1.3 For n � 2 assume that X is a polynomial vector field on T
n of degree

m = (m1, . . . ,mn+1) having finitely many invariant parallels. Then the number of
invariant parallels of X is at most min{m1, deg X − 2}.

Theorem 1.3 is proved in Sect. 3. In particular if m1 � m2 � · · · � mn+1 we have
that deg X = m1 and so the maximum number of invariant parallels is m1 − 2.

In the following theorem we provide the most general form of all the polynomial
vector fields of degree four having T

2 as an invariant algebraic surface.

Theorem 1.4 Any polynomial vector field of degree 4 on T
2 is written in the form

X = (P1, P2, P3) with P1, P2, P3 given in (10), (11) and (12), respectively.

The proof of Theorem 1.4 is given in Sect. 4.
While for the 2-dimensional torus the upper bound on the maximum number of

invariant parallels is 2, this upper bound is not reached, we prove that the reached
upper bound is 1. This is the result of the following theorem.

Theorem 1.5 There are no polynomial vector fields of degree 4 on T
2 having the

maximum number of 2 of invariant parallels. A polynomial vector field of degree 4 on
T
2 having one invariant parallel is X = (P1, P2, P3) with

P1 = 4(b2c0 − a2d0)(x1 − κ) x3(r
2
1 − r22 − x21 − x22 − x23 ),

P2 = 4x3
(
b1b2c0κ − a1b2d0κ

+ (a2b1d0 − b1b2c0 + a2b1d1κ − a1b2d1κ) x1
+ (a2b1d2κ − a1b2d2)κx2

+ (a2b1d3κ − a1b2d3κ) x3
)
(x21 + x22 + x23 − r21 + r22 ),

and

P3 = b2(a2b1 − a1b2)κ(r21 − r22 )2 − 4b2(b2c0 − a2d0)κ(r21 + r22 ) x1

+ 2b2(2b2c0 − 2a2d0 − a2b1κ + a1b2κ)(r21 + r22 ) x21

+ 4b2(b2c0 − a2d0)κx
3
1 + b2(4a2d0 − 4b2c0 + a2b1κ − a1b2κ) x41

+ 4b2(b1c0 − a1d0)κ(r21 + r22 ) x2

− 4
(
a1b2d1κ + b1(b2c0 − a2(d0 + d1κ))

)
(r21 + r22 ) x1x2

+ 4b2(a1d0 − b1c0)κx
2
1 x2

+ 4
(
a1b2d1κ + b1(b2c0 − a2(d0 + d1κ))

)
x31 x2

− 2(a2b1 − a1b2)(b2 − 2d2)κ(r21 + r22 ) x22

+ 4b2(b2c0 − a2d0)κx1x
2
2
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− 2
(
2a2b1d2κ + b22(2c0 + a1κ) − b2(2a2d0 + a2b1κ + 2a1d2κ)

)
x21 x

2
2

+ 4b2(a1d0 − b1c0)κx
3
2 + 4

(
a1b2d1κ + b1(b2c0 − a2(d0 + d1κ))

)
x1x

3
2

+ (a2b1 − a1b2)(b2 − 4d2)κx
4
2 + 4(a2b1 − a1b2)d3κ(r21 + r22 ) x2x3

+ 4(a1b2 − a2b1)d3κx
2
1 x2x3 + 4(a1b2 − a2b1)d3κx

3
2 x3

+ 2b2(a1b2 − a2b1)κ(r21 − r22 ) x23 + 4b2(b2c0 − a2d0)κx1x
2
3

+ 2b2(2a2d0 − 2b2c0 + a2b1κ − a1b2κ) x21 x
2
3 + 4b2(a1d0 − b1c0)κx2x

2
3

+ 4
(
a1b2d1κ + b1(b2c0 − a2(d0 + d1κ))

)
x1x2x

2
3

+ 2(a2b1 − a1b2)(b2 − 2d2)κx
2
2 x

2
3

+ 4(a1b2 − a2b1)d3κx2x
3
3 + b2(a2b1 − a1b2)κx

4
3 .

for any κ, a1, a2, b1, b2, c0, d0, d1, d2, d3 ∈ R with κb2 �= 0.

The proof of Theorem 1.5 is given in Sect. 5.

2 Proof of Theorem 1.1

We first introduce some preliminary results that will be used to prove Theorem 1.1.
Let Tn = (S1)n be an n-dimensional torus in R

n+1. We first define an embedding
from T

n to Rn+1. For this we consider the following map �(n) : (S1)n → R
n+1 given

by �
(n)
r1,...,rn (α1, . . . , αn) 	→ (x1, . . . , xn+1) defined by

x1 = r1 sin α1,

x j =
(
r j + x j−1

sin α j−1
cosα j−1

)
sin α j for j = 2, . . . , n,

xn+1 = xn
sin αn

cosαn

with

r1 > 1 and r j >

j−1∑

i=1

ri for j = 2, . . . , n.

Lemma 2.1 The map � = �
(n)
r1,...,rn (α1, . . . , αn) is injective.

Proof Let�(n−1)
r1,...,rn−1(α1, . . . , αn−1) = (x̄1, . . . , x̄n) denote the embedding of the torus

T
n−1 into R

n . Note that we can write �
(n)
r1,...,rn (α1, . . . , αn) = (x1, . . . , xn+1) the

embedding of Tn into Rn+1 as follows:
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x j = x̄ j , j = 1, . . . , n − 1,

xn =
(
rn + x̄n

sin αn−1
cosαn−1

)
sin αn,

xn+1 =
(
rn + x̄n

sin αn−1
cosαn−1

)
cosαn .

Now we shall prove the injectivity of �
(n)
r1,...,rn (α1, . . . , αn). We proceed by induction.

For n = 2 assume that �
(2)
r1,r2(α1, α2) = �

(2)
r1,r2(α

′
1, α

′
2) with α1, α2, α

′
1, α

′
2 ∈

[0, 2π). Taking into account that

�(2)
r1,r2(α1, α2) = (

r1 sin α1, (r2 + r1 cosα1) sin α2, (r2 + r1 cosα1) cosα2
)
,

imposing �
(2)
r1,r2(α1, α2) = �

(2)
r1,r2(α

′
1, α

′
2) we get

r1 sin α1 = r1 sin α′
1,

(r2 + r1 cosα1) sin α2 = (r2 + r1 cosα′
1) sin α′

2,

(r2 + r1 cosα1) cosα2 = (r2 + r1 cosα′
1) cosα′

2.

(2)

From the first equation in (2) we get sin α1 = sin α′
1. From the second and third

equations in (2) we get

(r2 + r1 cosα1)
2 = (r2 + r1 cosα′

1)
2.

Since r2 > r1 we have

cosα′
1 = cosα1,

and so α′
1 = α1, because sin α1 = sin α′

1. Therefore from the second and third equa-
tions of (2) we get sin α2 = sin α′

2 and cosα′
2 = cosα2, respectively. Consequently,

α2 = α′
2 which proves the claim for n = 2.

Now assume it is true until n − 1 and we will prove it for n. Assume that

�(n)
r1,...,rn (α1, . . . , αn) = �(n)

r1,...,rn (α
′
1, . . . , α

′
n)

with α1, . . . , αn, α
′
1, . . . , α

′
n ∈ [0, 2π). Then by the induction process and the

construction of �
(n)
r1,...,rn (α1, . . . , αn) in terms of �

(n−1)
r1,...,rn−1(α1, . . . , αn−1), we get

α′
1 = α1, . . . , α

′
n−2 = αn−2 and

x̄n
sin αn−1

sin αn−1 = x̄n
sin α′

n−1
sin α′

n−1,

(
rn + x̄n

sin αn−1
cosαn−1

)
sin αn =

(
rn + x̄n

sin α′
n−1

cosα′
n−1

)
sin α′

n,

(
rn + x̄n

sin αn−1
cosαn−1

)
cosαn =

(
rn + x̄n

sin α′
n−1

cosα′
n−1

)
cosα′

n .

(3)
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Note that since α j = α′
j for j = 1, . . . , n − 2 and x̄n/sin αn−1 only depends on

α1, . . . , αn−2 we have that

x̄n
sin αn−1

= x̄n
sin α′

n−1
. (4)

From the second and third relations in (3) we get

(
rn + x̄n

sin αn−1
cosαn−1

)2
=

(
rn + x̄n

sin α′
n−1

cosα′
n−1

)2
,

and since rn >
∑n−1

j=1 r j , we readily obtain that

x̄n
sin αn−1

cosαn−1 = x̄n
sin α′

n−1
cosα′

n−1,

which together with the first relation in (3) and (4) gives

cosα′
n−1 = cosαn−1 and sin α′

n−1 = sin αn−1,

which yields αn−1 = α′
n−1. Now from the last two identities in (3) we obtain that

αn = α′
n as we wanted to prove. ��

Lemma 2.2 For each n � 2 the map � = �
(n)
r1,...,rn is a homeomorphism from T

n to
�(Tn) ⊂ R

n+1.

Proof Since Tn is compact and � is continuous, it follows from the following result:
A continuous function f : U → V from a compact spaceU into a Hausdorff space V
is always a homeomorphism, see for instance [13, p. 23]. So � is a homeomorphism
from T

n to �(Tn) ⊂ R
n+1. ��

It follows from Lemmas 2.1 and 2.2 that �(n)
r1,...,rn defines a parameterization of the

n-dimensional torus Tn .
Now we continue with the proof of the theorem.
Using the parameterization �(n)(α1, . . . , αn) = (x1, . . . , xn+1), we obtain that the

n-dimensional torus in Cartesian coordinates can be expressed as follows:

y2n+1 + ϕ2
n = R2

n+1, y j = xn+2− j , R j = rn+2− j , j = 1, . . . , n + 1, (5)

and

ϕ j =
√
y2j + ϕ2

j−1 − R j , j = 2, . . . , n + 1, and ϕ1 = y1. (6)

We have the following lemma.
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Lemma 2.3 For each n � 2 there exists a polynomial Q2n ∈ C2n [x1, . . . , xn+1] of
degree 2n such that (5) can be written as

Q2n (x1, . . . , xn+1) = 0.

Proof We proceed by induction. If n = 2 then

y23 +
(√

y22 + y21 − R2

)2 = R2
3,

that can be written as

2R2

√
y22 + y21 = R2

3 − y23 − y22 − y21 − R2
2 .

which yields

4R2
2(y

2
1 + y22 ) = (

R2
3 − y23 − y22 − y21 − R2

2

)2

or in other words

Q4(y1, y2, y3) = Q4(x1, x2, x3) = 0,

as we wanted to prove.
Assume it is true until n − 1 and we want to prove it for n. By the induction

hypothesis we have that

y2n + ϕ2
n−1 − R2

n = Q2n−1(y1, . . . , yn).

It follows from (5) and (6) that

y2n+1 + y2n + ϕ2
n−1 + R2

n − 2Rn

√
y2n + ϕ2

n−1 = R2
n+1,

and so

y2n+1 + Q2n−1(y1, . . . , yn) + 2R2
n − R2

n+1 = 2Rn

√
y2n + ϕ2

n−1.

Taking squares we get

(
y2n+1 + Q2n−1(y1, . . . , yn) + 2R2

n − R2
n+1

)2= 4R2
n(y

2
n + ϕ2

n−1)

= 4R2
n

(
Q2n−1(y1, . . . , yn) + R2

n

)
,

or in other words

Q2n (y1, . . . , yn+1) = 0 that is Q2n (x1, . . . , xn+1) = 0,

because Q2n−1(y1, . . . , yn)2 is a polynomial of degree 2n. ��
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It follows from Lemma 2.3 that Tn is regular and that we can rewrite it as

Q2n (x1, . . . , xn+1) = 0 for some polynomialQ2nof degree2
n .

So we have that d = 2n. Hence from (1) we have that Cm[x1, . . . , xn+1] on the
n-dimensional torus Tn is a C-linear space of dimension

d(m) =
(
m + n + 1

n + 1

)
−

(
m + n + 1 − 2n

n + 1

)
.

This completes the proof of the theorem.

3 Proof of Theorem 1.3

One of the best tools for searching invariant algebraic hypersurfaces is the extactic
polynomial of X associated to W , where W a finitely generated vector subspace of
the vector space C[x1, . . . , xd ] with basis {v1, . . . , vl}, being l its dimension (see for
instance [8, 16, 27]). The extactic polynomial of X associated to W is

EW (X) = E{v1,...,vl }(X) = det

⎛

⎜⎜⎜
⎝

v1 v2 · · · vl
X(v1) X(v2) · · · X(vl)

...
...

...

Xl−1(v1) Xl−1(v2) · · · Xl−1(vl)

⎞

⎟⎟⎟
⎠

= 0

Note that X j (vk) = X j−1(X(vk)). In view of the properties of the determinants, the
extactic polynomial does not depend on the chosen basis of W . The next proposition
is proved in [6].

Proposition 3.1 Let X be a polynomial vector field in C
d and let W be a finitely

generated vector subspace of C[x1, . . . , xd ] with dim(W ) > 1. Then every algebraic
invariant hypersurface f = 0 for the vector field X, with f ∈ W, is a factor of the
polynomial EW (X).

From Proposition 3.1 it follows that f = 0 is an invariant hyperplane of the poly-
nomial vector field X if the polynomial f is a factor of the polynomial EW (X), where
W is generated by {1, x1, . . . , xd}.
Proof of Theorem 1.3 By definition an invariant parallel is the intersection of an invari-
ant hyperplane of the form x1 = κ , where κ ∈ R, with the n-dimensional torus Tn .
Thus this intersection is a Tn−1 (n − 1)-dimensional torus. From Proposition 3.1 we
know that if x1 − κ = 0 is an invariant hyperplane of polynomial vector field X , then
x1 − κ is a factor of the extactic polynomial. So the maximum number of factors of
the form x1 − κ of the extactic polynomial E{1,xn+1}(X) gives an upper bound for the
number of invariant planes {x1 − κ = 0} of X , and this allows to obtain an upper
bound for the number of its invariant parallels.
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From the definition of extactic polynomial we get

det

(
1 x1

X(1) X(x1)

)
= det

(
1 x1
0 P1(x1, . . . , xn+1)

)
= P1 = P1(x1, . . . , xn+1).

Since the degree of P1 is m1 this polynomial can have at most m1 linear factors of the
form x1 − κ and so the number of invariant parallels of X on T

n is at most m1.
However this bound can be improved after imposing that the n-dimensional torus

T
n is an invariant algebraic hypersurface of the vector field X = (P1, . . . , Pn+1). First

we recall that in view of Theorem 1.1 and its proof, we can write Tn as F = 0 being

F(x1, . . . , xn+1) = F̃(x21 , . . . , x
2
n+1) = F̃(z1, . . . , zn+1),

and it has degree 2n. Moreover it follows also from that theorem and its proof that

F(x1, 0, . . . , 0, 0) = x21 +
(
rn+1 −

n∑

i=2

ri

)2
− r1

and rn+1 >
∑n

i=2 ri + r1 with r1 > 1. Note that this implies

F̃(x21 , 0, . . . , 0, 0) = F̃(z1, 0, . . . , 0, 0) = z1 +
(
rn+1 −

n∑

i=2

ri

)2
− r1.

Then

2x1
∂ F̃

∂z1
P1 + · · · + 2xn+1

∂ F̃

∂zn+1
Pn+1 = K F̃ (7)

for all (x1, . . . , xn+1) ∈ R
n+1 and where K = K (x1, . . . , xn−1) is a polynomial of

degree m − 1 being m = deg X .
We write

P1 = h(x1, . . . , xn+1)

l∏

i=1

(x1 − κi ),

in such a way that x1 − κi for all κi ∈ R is not a factor of the polynomial h, eventually
some of the κi ’s can be the same. Then

E{1,x1} = h(x1, . . . , xn+1)

l∏

i=1

(x1 − κi ).
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Since (7) holds for all x1, . . . , xn+1 ∈ R, in particular it must hold for x2 = · · · =
xn+1 = 0 and so,

2x1h(x1, 0, . . . , 0)
l∏

i=1

(x1 − κi ) =
(m−1∑

i=0

ki x
i
1

)(
x21 +

(
rn+1 −

n∑

i=2

ri

)2
− r1

)
,

where ki = ki (x2, . . . , xn+1) is a polynomial for i = 0, . . . ,m−1. From this equation
we have that k0 = 0 and consequently

2x1h(x1, 0, . . . , 0)
l∏

i=1

(x1 − κi ) = x1

(m−2∑

i=0

ki x
i
1

)(
x21 +

(
rn+1 −

n∑

i=2

ri

)2
− r1

)
.

Taking into account that rn+1 >
∑n

i=2 ri + r1 and r1 > 1, we see that

x21 +
(
rn+1 −

n∑

i=2

ri

)2
− r1 > x21 + r21 − r1 > 0,

and consequently it does not factorize in R[x1]. This assertion together with the fact
that h(x1, . . . , xn+1) has no factor of the form x1 − κ we get that l � m − 2. So
E{1,x1}(X) has at most m − 2 factors of the form x1 = κ with κ ∈ R. Hence X has at
most m − 2 invariant hyperplanes of the form x1 = κ with κ ∈ R, and consequently
X has at most m − 2 invariant parallels.

Therefore we have that the maximum number of invariant parallels that X can have
is

min{m1,m − 2} = min{m1, deg X − 2}.

This completes the proof of the theorem. ��

4 Proof of Theorem 1.4

In view of Theorem 1.1 the n-dimensional torus T2 in Cartesian coordinates can be
written as the surface

g1 = (
x21 + x22 + x23 + r21 − r22

)2 − 4r22 (x21 + x22 ) = 0, (8)

which is the surface Q4(x1, x2, x3) = 0 of Lemma 2.3.
It follows from [19, Theorem 1.3.1] that any polynomial differential system in

R
3 having g1 = 0 as an invariant algebraic surface must be written in the form

X = (P1, P2, P3) where
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P1 = φ{x1, g2, g3} + λ1{g1, x1, g3} + λ2{g1, g2, x1},
P2 = φ{x2, g2, g3} + λ1{g1, x2, g3} + λ2{g1, g2, x2},
P3 = φ{x3, g2, g3} + λ1{g1, x3, g3} + λ2{g1, g2, x3},

(9)

where φ is a polynomial in the variables x1, x2, x3 satisfying φ|g1=0 = 0 and λi for
i = 1, 2 are arbitrary polynomials in the variables (x1, x2, x3). Moreover, { f , g, h}
denotes the Nambu bracket of the polynomials f = f (x1, x2, x3), g = g(x1, x2, x3),
h = h(x1, x2, x3) which is defined as

{ f , g, h} = det

⎛

⎝
fx1 fx2 fx3
gx1 gx2 gx3
hx1 hx2 hx3

⎞

⎠ .

Since we are looking for polynomial vector fields of degree four and g1 is a poly-
nomial of degree four, without loss of generality we can take φ = φ(x1, x2, x3) =
g1(x1, x2, x3) (because rescaling the time if necessary any constant can be passed to
one). Moreover since deg g1 = 4 we have that the degrees of g2, g3, λ1, λ2 must be
one. So we take them as follows:

g2(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x3,

g3(x1, x2, x3) = b0 + b1x1 + b2x2 + b3x3,

λ1(x1, x2, x3) = c0 + c1x1 + c2x2 + c3x3,

λ2(x1, x2, x3) = d0 + d1x1 + d2x2 + d3x3,

for any ai , bi , ci , di ∈ R for i = 0, . . . , 3.
It follows from (9) that P1 is equal to

− (a3b2 − a2b3)(r
2
1 − r22 )2 + 4(b3c0 − a3d0)(r

2
1 + r22 ) x2

− 4(b2c0 − a2d0)(r
2
1 − r22 ) x3 + 2(a3b2 − a2b3)(r

2
1 + r22 ) x21

+ 4(b3c1 − a3d1)(r
2
1 + r22 ) x1x2 − 4(b2c1 − a2d1)(r

2
1 − r22 ) x1x3

+ 2(a3b2 − a2b3 + 2b3c2 − 2a3d2)(r
2
1 + r22 ) x22

+ 4
(
a2d2r

2
1 − a3d3r

2
1 − a2d2r

2
2 − a3d3r

2
2 + b2c2(r

2
2 − r21 ) + b3c3(r

2
1 + r22 )

)
x2x3

+ 2(a3b2 − a2b3 − 2b2c3 + 2a2d3)(r
2
1 − r22 ) x23

+ 4(a3d0 − b3c0) x
2
1 x2 + 4(b2c0 − a2d0) x

2
1 x3 + 4(a3d0 − b3c0) x

3
2

+ 4(b2c0 − a2d0) x
2
2 x3 + 4(a3d0 − b3c0) x2x

2
3 + 4(b2c0 − a2d0) x

3
3

+ (a2b3 − a3b2) x
4
1 + 4(a3d1 − b3c1) x

3
1 x2 + 4(b2c1 − a2d1) x

3
1 x3

− 2(a3b2 − a2b3 + 2b3c2 − 2a3d2) x
2
1 x

2
2

+ 4(b2c2 − b3c3 − a2d2 + a3d3) x
2
1 x2x3

+ 2(−a3b2 + 2b2c3 + a2(b3 − 2d3)) x
2
1 x

2
3

+ 4(a3d1 − b3c1) x1x
3
2 + 4(b2c1 − a2d1) x1x

2
2 x3 + 4(a3d1 − b3c1) x1x2x

2
3
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+ 4(b2c1 − a2d1) x1x
3
3 − (a3b2 − a2b3 + 4b3c2 − 4a3d2) x

4
2

+ 4(b2c2 − b3c3 − a2d2 + a3d3) x
3
2 x3

+ 2(−a3b2 + a2b3 − 2b3c2 + 2b2c3 + 2a3d2 − 2a2d3) x
2
2 x

2
3

+ 4(b2c2 − b3c3 − a2d2 + a3d3) x2x
3
3

− (a3b2 − 4b2c3 − a2(b3 − 4d3)) x
4
3 , (10)

P2 is equal to

(a3b1 − a1b3)(r
2
1 − r22 )2 − 4(b3c0 − a3d0)(r

2
1 + r22 ) x1

+ 4(b1c0 − a1d0)(r
2
1 − r22 ) x3 − 2(a3b1 − a1b3 + 2b3c1 − 2a3d1)(r

2
1 + r22 ) x21

− 4(b3c2 − a3d2)(r
2
1 + r22 ) x1x2

− 4
(
a1d1r

2
1 − a3d3r

2
1 − a1d1r

2
2 − a3d3r

2
2 + b1c1(r

2
2 − r21 ) + b3c3(r

2
1 + r22 )

)
x1x3

− 2(a3b1 − a1b3)(r
2
1 + r22 ) x22 + 4(b1c2 − a1d2)(r

2
1 − r22 ) x2x3

− 2(a3b1 − a1b3 − 2b1c3 + 2a1d3)(r
2
1 − r22 ) x23

+ 4(b3c0 − a3d0) x
3
1 + 4(a1d0 − b1c0) x

2
1 x3 + 4(b3c0 − a3d0) x1x

2
2

+ 4(b3c0 − a3d0) x1x
2
3 + 4(a1d0 − b1c0) x

2
2 x3 + 4(a1d0 − b1c0) x

3
3

+ (a3b1 − a1b3 + 4b3c1 − 4a3d1) x
4
1

+ 4(b3c2 − a3d2) x
3
1 x2 − 4(b1c1 − b3c3 − a1d1 + a3d3) x

3
1 x3

+ 2(a3b1 − a1b3 + 2b3c1 − 2a3d1) x
2
1 x

2
2 + 4(a1d2 − b1c2) x

2
1 x2x3

+ 2
(
2b3c1 − a1b3 − 2b1c3 + a3(b1 − 2d1) + 2a1d3

)
x21 x

2
3

+ 4(b3c2 − a3d2) x1x
3
2 + 4(b3c3 − b1c1 + a1d1 − a3d3) x1x

2
2 x3

+ 4(b3c2 − a3d2) x1x2x
2
3 + 4(b3c3 − b1c1 + a1d1 − a3d3) x1x

3
3

+ (a3b1 − a1b3) x
4
2 + 4(a1d2 − b1c2) x

3
2 x3

+ 2(a3b1 − a1b3 − 2b1c3 + 2a1d3) x
2
2 x

2
3 + 4(a1d2 − b1c2) x2x

3
3

+ (a3b1 − a1b3 − 4b1c3 + 4a1d3) x
4
3 , (11)

and P3 is equal to

− (a2b1 − a1b2)(r
2
1 − r22 )2 + 4(b2c0 − a2d0)(r

2
1 + r22 ) x1

− 4(b1c0 − a1d0)(r
2
1 + r22 ) x2 + 2(a2b1 − a1b2 + 2b2c1 − 2a2d1)(r

2
1 + r22 ) x21

− 4(b1c1 − b2c2 − a1d1 + a2d2)(r
2
1 + r22 ) x1x2 + 4(b2c3 − a2d3)(r

2
1 + r22 ) x1x3

+ 2(a2b1 − a1b2 − 2b1c2 + 2a1d2)(r
2
1 + r22 ) x22 − 4(b1c3 − a1d3)(r

2
1 + r22 ) x2x3

+ 2(a2b1 − a1b2)(r
2
1 − r22 ) x23 + 4(a2d0 − b2c0) x

3
1 + 4(b1c0 − a1d0) x

2
1 x2

+ 4(a2d0 − b2c0) x1x
2
2 + 4(a2d0 − b2c0) x1x

2
3 + 4(b1c0 − a1d0) x

3
2

+ 4(b1c0 − a1d0) x2x
2
3 + (a1b2 − a2b1 − 4b2c1 + 4a2d1) x

4
1
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+ 4(b1c1 − b2c2 − a1d1 + a2d2) x
3
1 x2 + 4(a2d3 − b2c3) x

3
1 x3

+ 2(a1b2 − a2b1 − 2b2c1 + 2b1c2 + 2a2d1 − 2a1d2) x
2
1 x

2
2

+ 4(b1c3 − a1d3) x
2
1 x2x3 + 2(a1b2 − a2b1 − 2b2c1 + 2a2d1) x

2
1 x

2
3

+ 4(b1c1 − b2c2 − a1d1 + a2d2) x1x
3
2 + 4(a2d3 − b2c3) x1x

2
2 x3

+ 4(b1c1 − b2c2 − a1d1 + a2d2) x1x2x
2
3 + 4(a2d3 − b2c3) x1x

3
3

− (a2b1 − 4b1c2 − a1(b2 − 4d2)) x
4
2 + 4(b1c3 − a1d3) x

3
2 x3

+ 2(2b1c2 − a2b1 + a1(b2 − 2d2)) x
2
2 x

2
3

+ 4(b1c3 − a1d3) x2x
3
3 − (a2b1 − a1b2) x

4
3 . (12)

5 Proof of Theorem 1.5

In view of Theorem 1.1 the 2-dimensional torus T2 in Cartesian coordinates can be
written as the surface g1 = 0 with g1 as in (8). It follows from the proof of Theorem
1.4 that any polynomial vector field X = (P1, P2, P3) of degree 4 having T

2 as an
invariant surface must be written as in (10)–(12). Now it follows from the proof of
Theorem 1.3 and the definition of invariant parallel that in order to obtain the most
general polynomial vector fields having the maximum number of parallels (which is
at most two) we must have that the polynomial P1 in (10) must be of the form

P1 = (x1 − κ1)(x1 − κ2)

· (
s0 + s1x1 + s2x2 + s3x3 + s4x

2
1

+ s5x1x2 + s6x1x3 + s7x
2
2 + s8x2x3 + s9x

2
3

)
,

for some κ1, κ2, si ∈ R for i = 0, . . . , 9. Solving this equation for any κ1, κ2, si with
we get that the unique possible solution is s0 = · · · = s9 = 0 which is not possible
because then P1 = 0. So, there are no polynomial vector fields on T

2 of degree 4
having two invariant parallels. The most general form for a polynomial vector filed on
T
2 of degree 4 having one parallel is

P1 = (x1 − κ)
(
s0 + s1x1 + s2x2 + s3x3 + s4x

2
1 + s5x1x2 + s6x1x3 + s7x

2
2

+ s8x2x3 + s9x
2
3 + s10x

3
1 + s11x

2
1 x2 + s12x

2
1 z + s13x1x

2
2

+ s14x1x2x3 + s15x1x
2
3 + s16x

3
2 + s17x

2
2 x3 + s18x2x

2
3 + s19x

3
3

)
,

for some κ, si ∈ R for i = 0, . . . , 19 with (s0, . . . , s19) �= (0, . . . , 0). Solving this
equation we obtain many solutions. One of these solutions is the solution provided in
the statement of the theorem.

Author Contributions Both authors have contribute equally to this paper.

Funding Open Access Funding provided by Universitat Autonoma de Barcelona.

123



   26 Page 16 of 17 J. Llibre, C. Valls

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bountis, T.C., Ramani, A., Grammaticos, B., Dorizzi, B.: On the complete and partial integrability of
non-Hamiltonian systems. Phys. A 128(1–2), 268–288 (1984)

2. Chavarriga, J., Llibre, J., Sotomayor, J.: Algebraic solutions for polynomial systems with emphasis in
the quadratic case. Exposition. Math. 15(2), 161–173 (1997)

3. Christopher, C.J.: Invariant algebraic curves and conditions for a centre. Proc. R. Soc. Edinburgh.
124(6), 1209–1229 (1994)

4. Christopher, C., Llibre, J.: Algebraic aspects of integrability for polynomial systems. Qual. Theory
Dyn. Syst. 1(1), 71–95 (1999)

5. Christopher, C., Llibre, J.: Integrability via invariant algebraic curves for planar polynomial differential
systems. Ann. Differ. Equ. 16(1), 5–19 (2000)

6. Christopher, C., Llibre, J., Pereira, J.V.: Multiplicity of invariant algebraic curves in polynomial vector
fields. Pacific J. Math. 229(1), 63–117 (2007)

7. Darboux, G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier
degré (Mélanges). Bull. Sci. Math. Série 2 2(1), 60–96; 123–144; 151–200 (1878)

8. Dobrovol’skii, V.A., Lokot, N.V., Strelcyn, J.-M.: Mikhail Nikolaevich Lagutinskii (1871–1915): un
mathématicien méconnu. Historia Math. 25(3), 245–264 (1998)

9. Giacomini, H., Giné, J.: An algorithmic method to determine integrability for polynomial planar vector
fields. Eur. J. Appl. Math. 17(2), 161–170 (2006)

10. Giacomini, H.J., Repetto, C.E., Zandron, O.P.: Integrals of motion of three-dimensional non-
Hamiltonian dynamical systems. J. Phys. A 24(19), 4567–4574 (1991)

11. Hietarinta, J.: Direct methods for the search of the second invariant. Phys. Rep. 147(2), 87–154 (1987)
12. Hojman, S.A.: A new conservation law constructed without either Lagrangians or Hamiltonians. J.

Phys. A 25(7), L291–L295 (1992)
13. Jänich, K.: Topology. Undergraduate Texts in Mathematics. Springer, New York (1984)
14. Jouanolou, J.P.: Équations de Pfaff Algébriques. Lectures Notes in Mathematics, vol. 708. Springer,

Berlin (1979)
15. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math.

21, 467–490 (1968)
16. Llibre, J.: Integrability of polynomial differential systems. In: Cañada, A., et al. (eds.) Handbook of

Differential Equations, vol. I, pp. 437–533. Elsevier, Amsterdam (2004)
17. Llibre, J., Bolaños, Y.: Rational first integrals for polynomial vector fields on algebraic hypersurfaces

of Rn+1. Int. J. Bifur. Chaos Appl. Sci. Eng. 22(11), 1250270 (2012)
18. Llibre, J., Medrado, J.C.: On the invariant hyperplanes for d-dimensional polynomial vector fields. J.

Phys. A 40(29), 8385–8391 (2007)
19. Llibre, J., Ramírez, R.: Inverse Problems inOrdinaryDifferential Equations andApplications. Progress

in Mathematics, vol. 313. Birkhäuser, Cham (2016)
20. Llibre, J., Zhang, X.: Darboux integrability of real polynomial vector fields on regular algebraic hyper-

surfaces. Rend. Circ. Mat. Palermo 51(1), 109–126 (2002)
21. Llibre, J., Zhang, X.: Darboux theory of integrability in C

n taking into account the multiplicity. J.
Differ. Equ. 246(2), 541–551 (2009)

123

http://creativecommons.org/licenses/by/4.0/


Darboux theory of integrability in T
n Page 17 of 17    26 

22. Llibre, J., Zhang, X.: Rational first integrals in the Darboux theory of integrability in C
n . Bull. Sci.

Math. 134(2), 189–195 (2010)
23. Llibre, J., Zhang, X.: On theDarboux integrability of the polynomial differential systems. Qual. Theory

Dyn. Syst. 11(1), 129–144 (2012)
24. Llibre, J., Zhang, X.: Darboux theory of integrability for polynomial vector fields in R

n taking into
account the multiplicity at infinity. Bull. Sci. Math. 133(7), 765–778 (2009)

25. Noether, E.: Invariante variations probleme. Gött. Nachr. 1918, 235–257 (1918)
26. Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics, vol.

107. Springer, New York (1986)
27. Pereira, J.V.: Vector fields, invariant varieties and linear systems. Ann. Inst. Fourier (Grenoble) 51(5),

1385–1405 (2001)
28. Pereira, J.V.: Integrabilidade de Equações Diferenciais no Plano Complexo. Monografias del IMCA,

vol. 25. Instituto de Matemática y Ciencias Afines, Lima (2002)
29. Poincaré, H.: Sur l’intégration algébrique des équations différentielles du premier ordre et du premier

degré. Rend. Circ. Mat. Palermo 5(1), 161–191 (1891)
30. Poincaré, H.: Sur l’intégration algébrique des équations différentielles du premier ordre et du premier

degré. Rend. Circ. Mat. Palermo 11(1), 193–239 (1897)
31. Prelle, M.J., Singer, M.F.: Elementary first integrals of differential equations. Trans. Amer. Math. Soc.

279(1), 215–229 (1983)
32. Sarlet,W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics. SIAMRev. 23(4),

467–494 (1981)
33. Schlomiuk, D.: Elementary first integrals and algebraic invariant curves of differential equations.

Exposition. Math. 11(5), 433–454 (1993)
34. Schlomiuk, D.: Algebraic and geometric aspects of the theory of polynomial vector fields. In:

Schlomiuk, D. (ed.) Bifurcations and Periodic Orbits of Vector Fields. NATO Advanced Science
Institutes Series C, vol. 408, pp. 429–467. Kluwer, Dordrecht (1993)

35. Schlomiuk, D.: Algebraic particular integrals, integrability and the problem of the center. Trans. Amer.
Math. Soc. 338(2), 799–841 (1993)

36. Singer, M.F.: Liouvillian first integrals of differential equations. Trans. Am. Math. Soc. 333(2), 673–
688 (1992)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Darboux theory of integrability in mathbbTn
	Abstract
	1 Introduction and statement of main results
	2 Proof of Theorem 1.1
	3 Proof of Theorem 1.3
	4 Proof of Theorem 1.4
	5 Proof of Theorem 1.5
	References


