The degree of commutativity of wreath products with infinite cyclic top group

Iker de las Heras ${ }^{1,2}$ • Benjamin Klopsch ${ }^{1}$. Andoni Zozaya ${ }^{2}$

Received: 31 August 2022 / Revised: 9 October 2023 / Accepted: 13 February 2024
© The Author(s) 2024

Abstract

The degree of commutativity of a finite group is the probability that two uniformly and randomly chosen elements commute. This notion extends naturally to finitely generated groups G : the degree of commutativity $\operatorname{dc}_{S}(G)$, with respect to a given finite generating set S, results from considering the fractions of commuting pairs of elements in increasing balls around 1_{G} in the Cayley graph $\mathcal{C}(G, S)$. We focus on restricted wreath products of the form $G=H_{2}\langle t\rangle$, where $H \neq 1$ is finitely generated and the top group $\langle t\rangle$ is infinite cyclic. In accordance with a more general conjecture, we show that $\operatorname{dc}_{S}(G)=0$ for such groups G, regardless of the choice of S. This extends results of Cox who considered lamplighter groups with respect to certain kinds of generating sets. We also derive a generalisation of Cox's main auxiliary result: in 'reasonably large' homomorphic images of wreath products G as above, the image of the base group has density zero, with respect to certain types of generating sets.

Keywords Degree of commutativity • Wreath products • Density • Word growth
Mathematics Subject Classification 20P05 • 20E22 • 20F65 • 20F69 • 20F05

[^0]
1 Introduction

Let G be a finitely generated group, with finite generating set S. For $n \in \mathbb{N}_{0}$, let $B_{S}(n)=B_{G, S}(n)$ denote the ball of radius n in the Cayley graph $\mathcal{C}(G, S)$ of G with respect to S. Following Antolín, Martino and Ventura [1], we define the degree of commutativity of G with respect to S as

$$
\operatorname{dc}_{S}(G)=\limsup _{n \rightarrow \infty} \frac{\left|\left\{(g, h) \in B_{S}(n) \times B_{S}(n) \mid g h=h g\right\}\right|}{\left|B_{S}(n)\right|^{2}}
$$

We remark that this notion can be viewed as a special instance of a more general concept, where the degree of commutativity is defined with respect to 'reasonable' sequences of probability measures on G, as discussed in a preliminary arXiv-version of [1] or, in more detail, by Tointon in [13].

If G is finite, the invariant $\operatorname{dc}_{S}(G)$ does not depend on the particular choice of S, as the balls stabilise and $\operatorname{dc}(G)=\operatorname{dc}_{S}(G)$ simply gives the probability that two uniformly and randomly chosen elements of G commute. This situation was studied already by Erdős and Turán [4], and further results were obtained by various authors over the years; for example, see [5, 6, 8, 9, 11]. For infinite groups G, it is generally not known whether $\operatorname{dc}_{S}(G)$ is independent of the particular choice of S.

The degree of commutativity is naturally linked to the following concept of density, which is employed, for instance, in [2]. The density of a subset $X \subseteq G$ with respect to S is

$$
\delta_{S}(X)=\delta_{G, S}(X)=\limsup _{n \rightarrow \infty} \frac{\left|X \cap B_{S}(n)\right|}{\left|B_{S}(n)\right|} .
$$

If the group G has sub-exponential word growth, then the density function δ_{S} is biinvariant; compare with [2, Proposition 2.3]. Based on this fact, the following can be proved, initially for residually finite groups and then without this additional restriction, even in the more general context of suitable sequences of probability measures; see [1, Theorem 1.3] and [13, Theorems 1.6 and 1.17].

Theorem 1.1 (Antolín, Martino and Ventura [1]; Tointon [13]) Let G be a finitely generated group of sub-exponential word growth, and let S be a finite generating set of G. Then $\operatorname{dc}_{S}(G)>0$ if and only if G is virtually abelian. Moreover, $\operatorname{dc}_{S}(G)$ does not depend on the particular choice of S.

The situation is far less clear for groups of exponential word growth. In this context, the following conjecture was raised in [1].

Conjecture 1.2 (Antolín, Martino and Ventura [1]) Let G be a finitely generated group of exponential word growth and let S be a finite generating set of G. Then, $\operatorname{dc}_{S}(G)=0$, irrespective of the choice of S.

In [1] the conjecture was already confirmed for non-elementary hyperbolic groups, and Valiunas [14] confirmed it for right-angled Artin groups (and more general graph
products of groups) with respect to certain generating sets. Furthermore, Cox [3] showed that the conjecture holds, with respect to selected generating sets, for (generalised) lamplighter groups, that is for restricted standard wreath products of the form $G=F \imath\langle t\rangle$, where $F \neq 1$ is finite and $\langle t\rangle$ is an infinite cyclic group. Wreath products of such a shape are basic examples of groups of exponential word growth; in Sect. 2 we briefly recall the wreath product construction, here we recall that $G=N \rtimes\langle t\rangle$ with base group $N=\bigoplus_{i \in \mathbb{Z}} F^{t^{l}}$. In the present paper, we make a significant step forward in two directions, by confirming Conjecture 1.2 for an even wider class of restricted standard wreath products and with respect to arbitrary generating sets.

Theorem A Let $G=H_{2}\langle t\rangle$ be the restricted wreath product of a finitely generated group $H \neq 1$ and an infinite cyclic group $\langle t\rangle \cong C_{\infty}$. Then G has degree of commutativity $\operatorname{dc}_{S}(G)=0$, for every finite generating set S of G.

One of the key ideas in [3] is to reduce the desired conclusion $\operatorname{dc}_{S}(G)=0$, for the wreath products $G=N \rtimes\langle t\rangle$ under consideration, to the claim that the base group N has density $\delta_{S}(N)=0$ in G. We proceed in a similar way and derive Theorem A from the following density result, which constitutes our main contribution.

Theorem B Let $G=H z\langle t\rangle$ be the restricted wreath product of a finitely generated group H and an infinite cyclic group $\langle t\rangle \cong C_{\infty}$. Then the base group $N=\bigoplus_{i \in \mathbb{Z}} H^{t^{i}}$ has density $\delta_{S}(N)=0$ in G, for every finite generating set S of G.

The limitation in [3] to special generating sets S of lamplighter groups G is due to the fact that the arguments used there rely on explicit minimal length expressions for elements $g \in G$ with respect to S. If one restricts to generating sets which allow control over minimal length expressions in a similar, but somewhat weaker way, it is, in fact, possible to simplify and generalise the analysis considerably. In this way we arrive at the following improvement of the results in [3, Section 2.2], for homomorphic images of wreath products.

Theorem C Let G be a finitely generated group of exponential word growth of the form $G=N \rtimes\langle t\rangle$, where
(a) the subgroup $\langle t\rangle$ is infinite cyclic;
(b) the normal subgroup $N=\left\langle\bigcup\left\{H^{t^{i}} \mid i \in \mathbb{Z}\right\}\right\rangle$ is generated by the $\langle t\rangle$-conjugates of a finitely generated subgroup H of N;
(c) the $\langle t\rangle$-conjugates of this group H commute elementwise: $\left[H^{t^{i}}, H^{t^{j}}\right]=1$ for all $i, j \in \mathbb{Z}$ with $H^{t^{i}} \neq H^{t^{j}}$.

Suppose further that S_{0} is a finite generating set for H and that the exponential growth rates of H with respect to S_{0} and of G with respect to $S=S_{0} \cup\{t\}$ satisfy

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt[n]{\left|B_{H, S_{0}}(n)\right|}<\lim _{n \rightarrow \infty} \sqrt[n]{\left|B_{G, S}(n)\right|} . \tag{1.1}
\end{equation*}
$$

Then N has density $\delta_{S}(N)=0$ in G with respect to S.

For finitely generated groups G of sub-exponential word growth, the density of a subgroup of infinite index, such as N in $G=N \rtimes\langle t\rangle$ with $\langle t\rangle \cong C_{\infty}$, is always 0 ; see [2]. Thus Theorem C has the following consequence.

Corollary 1.3 Let $G=A \rtimes\langle t\rangle$ be a finitely generated group, where A is abelian and $\langle t\rangle \cong C_{\infty}$. Then A has density $\delta_{S}(A)=0$ in G, with respect to any finite generating set of G that takes the form $S=S_{0} \cup\{t\}$ with $S_{0} \subseteq A$.

Next we give a very simple concrete example to illustrate that the technical condition (1.1) in Theorem C is not redundant: the situation truly differs from the one for groups of sub-exponential word growth. It is not difficult to craft more complex examples.

Example 1.4 Let $G=F \times\langle t\rangle$, where $F=\langle x, y\rangle$ is the free group on two generators and $\langle t\rangle \cong C_{\infty}$. Then F has density $\delta_{S}(F)=1 / 2>0$ in G for the 'obvious' generating set $S=\{x, y, t\}$.

Indeed, for every $i \in \mathbb{Z}$ we have

$$
B_{G, S}(n) \cap F t^{i}= \begin{cases}B_{F,\{x, y\}}(n-|i|) t^{i} & \text { if } n \in \mathbb{N} \text { with } n \geqslant|i|, \\ \varnothing & \text { otherwise }\end{cases}
$$

and hence, for all $n \in \mathbb{N}$,

$$
\left|B_{G, S}(n) \cap F\right|=\left|B_{F,\{x, y\}}(n)\right|
$$

and

$$
\left|B_{G, S}(n)\right|=\left|B_{F,\{x, y\}}(n)\right|+2 \sum_{i=1}^{n}\left|B_{F,\{x, y\}}(n-i)\right| .
$$

This yields

$$
\begin{aligned}
\frac{\left|B_{G, S}(n) \cap F\right|}{\left|B_{G, S}(n)\right|} & =\frac{2 \cdot 3^{n}-1}{2 \cdot 3^{n}-1+2 \sum_{i=1}^{n}\left(2 \cdot 3^{n-i}-1\right)} \\
& =\frac{2 \cdot 3^{n}-1}{4 \cdot 3^{n}-2 n-3} \rightarrow \frac{1}{2} \text { as } n \rightarrow \infty .
\end{aligned}
$$

We remark that in this example F and G have the same exponential growth rates:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|B_{F,\{x, y\}}(n)\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|B_{G, S}(G)\right|}=3
$$

Furthermore, the argument carries through without any obstacles with any finite generating set S_{0} of F in place of $\{x, y\}$.

Finally, we record an open question that suggests itself rather naturally.

Question 1.5 Let G be a finitely generated group such that $\operatorname{dc}_{S}(G)>0$ with respect to a finite generating set S. Does it follow that there exists an abelian subgroup $A \leqslant G$ such that $\delta_{S}(A)>0$?

For groups G of sub-exponential word growth the answer is "yes", as one can see by an easy argument from Theorem 1.1. An affirmative answer for groups of exponential word growth could be a step towards establishing Conjecture 1.2 or provide a pathway to a possible alternative outcome. At a heuristic level, an affirmative answer to Question 1.5 would fit well with the results in [12, 13].

Notation Our notation is mostly standard. For a set X, we denote by $\mathcal{P}(X)$ its power set. For elements g, h of a group G, we write $g^{h}=h^{-1} g h$ and $[g, h]=g^{-1} g^{h}$ in line with our preferred use of right actions. For a finite generating set S of G, we denote by $l_{S}(g)$ the length of g with respect to S, i.e., the distance between g and 1 in the corresponding Cayley graph $\mathcal{C}(G, S)$ so that

$$
B_{S}(n)=B_{G, S}(n)=\left\{g \in G \mid l_{S}(g) \leqslant n\right\} \text { for } n \in \mathbb{N}_{0} .
$$

Given $a, b \in \mathbb{R}$ and $T \subseteq \mathbb{R}$, we write $[a, b]_{T}=\{x \in T \mid a \leqslant x \leqslant b\}$; for instance, $[-2, \sqrt{2}]_{\mathbb{Z}}=\{-2,-1,0,1\}$. We repeatedly compare the limiting behaviour of realvalued functions defined on cofinite subsets of \mathbb{N}_{0} which are eventually non-decreasing and take positive values. For this purpose we employ the conventional Landau symbols; specifically we write, for functions f, g of the described type,

$$
f \in o(g), \quad \text { or } g \in \omega(f), \quad \text { if } \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0, \text { equivalently } \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\infty
$$

As customary, we use suggestive short notation such as, for instance, $f \in o(\log n)$ in place of $f \in o(g)$ for $g: \mathbb{N} \geqslant 2 \rightarrow \mathbb{R}, n \mapsto \log n$.

2 Preliminaries

In this section, we collect preliminary and auxiliary results. Furthermore, we briefly recall the wreath product construction and establish basic notation.

2.1 Groups of exponential word growth

We concern ourselves with groups of exponential word growth. These are finitely generated groups G such that for any finite generating set S of G, the exponential growth rate

$$
\begin{equation*}
\lambda_{S}(G)=\lim _{n \rightarrow \infty} \sqrt[n]{\left|B_{S}(n)\right|}=\inf \left\{\sqrt[n]{\left|B_{S}(n)\right|} \mid n \in \mathbb{N}_{0}\right\} \tag{2.1}
\end{equation*}
$$

of G with respect to S satisfies $\lambda_{S}(G)>1$. Since the word growth sequence $\left|B_{S}(n)\right|$, $n \in \mathbb{N}$, is submultiplicative, i.e.,

$$
\left|B_{S}(n+m)\right| \leqslant\left|B_{S}(n)\right|\left|B_{S}(m)\right| \text { for all } n, m \in \mathbb{N},
$$

the limit in (2.1) exists and is equal to the infimum as stated, by Fekete's lemma [7, Corollary VI.57]. We will use the following basic estimates:

$$
\lambda_{S}(G)^{n} \leqslant\left|B_{S}(n)\right| \text { for all } n \in \mathbb{N}_{0},
$$

and, for each $\varepsilon \in \mathbb{R}_{>0}$,

$$
\left|B_{S}(n)\right| \leqslant\left(\lambda_{S}(G)+\varepsilon\right)^{n} \quad \text { for all sufficiently large } n \in \mathbb{N} \text {. }
$$

In the proof of Theorem C, the following two auxiliary results are used.
Lemma 2.1 For each $\alpha \in[0,1]_{\mathbb{R}}$, the sequences $\sqrt[n]{\binom{n+\lceil\alpha n\rceil}{\lceil\alpha n\rceil}}$ and $\sqrt[n]{\binom{n}{\lceil\alpha n\rceil}}, n \in \mathbb{N}$, converge, and furthermore

$$
\lim _{\alpha \rightarrow 0^{+}}\left(\lim _{n \rightarrow \infty} \sqrt[n]{\binom{n+\lceil\alpha n\rceil}{\lceil\alpha n\rceil}}\right)=\lim _{\alpha \rightarrow 0^{+}}\left(\lim _{n \rightarrow \infty} \sqrt[n]{\binom{n}{\lceil\alpha n\rceil}}\right)=1 .
$$

Consequently, if $f: \mathbb{N} \rightarrow \mathbb{R}_{>0}$ satisfies $f \in o(n)$, then the sequence $\binom{n+\lceil f(n)\rceil}{\lceil f(n)\rceil}, n \in \mathbb{N}$, grows sub-exponentially in n, viz. $\sqrt[n]{\binom{n+\lceil f(n)\rceil}{\lceil f(n)\rceil}} \rightarrow 1$ as $n \rightarrow \infty$.

Proof For each $\alpha \in[0,1]_{\mathbb{R}}$, Stirling's approximation for factorials yields

$$
\begin{aligned}
\binom{n+\lceil\alpha n\rceil}{\lceil\alpha n\rceil} & \sim \frac{\sqrt{2 \pi(n+\lceil\alpha n\rceil)}((n+\lceil\alpha n\rceil) / e)^{(n+\lceil\alpha n\rceil)}}{\sqrt{2 \pi\lceil\alpha n\rceil}(\lceil\alpha n\rceil / e)^{\lceil\alpha n\rceil} \sqrt{2 \pi n}(n / e)^{n}} \\
& =\frac{\sqrt{n+\lceil\alpha n\rceil}}{\sqrt{2 \pi n\lceil\alpha n\rceil}} \cdot \frac{\lceil n+\alpha n\rceil^{\lceil n+\alpha n\rceil}}{\lceil\alpha n\rceil^{\lceil\alpha n\rceil n^{n}}}, \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

i.e., the ratio of the left-hand term to the right-hand term tends to 1 as n tends to infinity. Moreover, for all $n \in \mathbb{N}$,

$$
\frac{\lceil n+\alpha n\rceil^{\lceil n+\alpha n\rceil}}{\lceil\alpha n\rceil^{\lceil\alpha n\rceil} n^{n}} \geqslant \frac{(n+\alpha n)^{n+\alpha n}}{(\alpha n+1)^{\alpha n+1} n^{n}}=n^{-1}\left(\frac{(1+\alpha)^{1+\alpha}}{(\alpha+1 / n)^{(\alpha+1 / n)}}\right)^{n}
$$

and similarly

$$
\frac{\lceil n+\alpha n\rceil^{\lceil n+\alpha n\rceil}}{\lceil\alpha n\rceil^{\lceil\alpha n\rceil} n^{n}} \leqslant \frac{(n+\alpha n+1)^{n+\alpha n+1}}{(\alpha n)^{\alpha n} n^{n}}=n\left(\frac{(1+\alpha+1 / n)^{(1+\alpha+1 / n)}}{\alpha^{\alpha}}\right)^{n} .
$$

This shows that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\binom{n+\lceil\alpha n\rceil}{\lceil\alpha n\rceil}}=\frac{(1+\alpha)^{1+\alpha}}{\alpha^{\alpha}}
$$

Since $\lim _{\alpha \rightarrow 0^{+}} \alpha^{\alpha}=1$, we conclude that

$$
\lim _{\alpha \rightarrow 0^{+}}\left(\lim _{n \rightarrow \infty} \sqrt[n]{\binom{n+\lceil\alpha n\rceil}{\lceil\alpha n\rceil}}\right)=1
$$

A similar computation yields that the second sequence $\sqrt[n]{\binom{n}{\lceil\alpha n\rceil}}, n \in \mathbb{N}$, converges. Again directly, or by virtue of

$$
1 \leqslant \sqrt[n]{\binom{n}{\lceil\alpha n\rceil}} \leqslant \sqrt[n]{\binom{n+\lceil\alpha n\rceil}{\lceil\alpha n\rceil}}
$$

we conclude that also the second limit, for $\alpha \rightarrow 0^{+}$, is equal to 1 .
Proposition 2.2 Let G be a finitely generated group of exponential word growth, with finite generating set S. Then there exists a non-decreasing unboundedfunction $q: \mathbb{N} \rightarrow$ $\mathbb{R} \geqslant 0$ such that $q \in o(n)$ and

$$
\frac{\left|B_{S}(n)\right|}{\left|B_{S}(n-q(n))\right|} \rightarrow \infty \text { as } n \rightarrow \infty .
$$

Proof We put $\lambda=\lambda_{S}(G)>1$ and write $\left|B_{S}(n)\right|=\lambda^{\sum_{i=1}^{n} b_{i}}$, with $b_{i} \in \mathbb{R} \geqslant 0$ for $i \in \mathbb{N}$, so that the sequence $\sum_{i=1}^{n} b_{i}, n \in \mathbb{N}$, is subadditive and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} b_{i}=1
$$

In this notation, we seek a non-decreasing unbounded function $q: \mathbb{N} \rightarrow \mathbb{R} \geqslant 0$ such that, simultaneously,

$$
\begin{equation*}
\frac{q(n)}{n} \rightarrow 0 \text { and } \sum_{i=n-\lfloor q(n)\rfloor+1}^{n} b_{i} \rightarrow \infty \text { as } n \rightarrow \infty \tag{2.2}
\end{equation*}
$$

We show below that for every $m \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{i=n-\lfloor n / m\rfloor+1}^{n} b_{i} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

From this we see that there is an increasing sequence of non-positive integers $c(m)$, $m \in \mathbb{N}$, such that, for each m,

$$
c(m) \geqslant m^{2} \text { and for all } n \in \mathbb{N}_{\geqslant c(m)}: \sum_{i=n-\lfloor n / m\rfloor+1}^{n} b_{i} \geqslant m .
$$

Setting $q_{1}(n)=\lfloor n / m\rfloor$ for $n \in \mathbb{N}$ with $c(m) \leqslant n<c(m+1)$ and

$$
q(n)=\max \left\{q_{1}(k) \mid k \in[1, n]_{\mathbb{Z}}\right\}
$$

we arrive at a function $q: \mathbb{N} \rightarrow \mathbb{R}_{\geqslant 1}$ meeting the requirements (2.2).
It remains to establish (2.3). Let $m \in \mathbb{N}$ and put $\varepsilon=\varepsilon_{m}=(6 m)^{-1} \in \mathbb{R}_{>0}$. We choose $N=N_{\varepsilon} \in \mathbb{N}$ minimal subject to

$$
1-\varepsilon \leqslant \frac{1}{n} \sum_{i=1}^{n} b_{i} \leqslant 1+\varepsilon \text { for all } n \in \mathbb{N} \geqslant N
$$

In the following we deal repeatedly with sums of the form

$$
\beta(k)=\sum_{i=k N+1}^{k N+N} b_{i}
$$

for $k \in \mathbb{N}$, and using subadditivity, we obtain

$$
\beta(k) \leqslant \beta(0) \leqslant(1+\varepsilon) N \text { for all } k \in \mathbb{N} .
$$

We consider $n \in \mathbb{N}$ with $n \geqslant(1+\varepsilon) \varepsilon^{-1} N \geqslant N$ and write $n=l N+r$ with $l=l_{n} \in \mathbb{N}$ and $r=r_{n} \in[0, N-1]_{\mathbb{Z}}$. Furthermore, we set

$$
t=t_{n}=\frac{\left|\left\{k \in[0, l-1]_{\mathbb{Z}} \mid \beta(k)>\varepsilon N\right\}\right|}{l} \in[0,1]_{\mathbb{R}}
$$

From our set-up, we deduce that

$$
\begin{aligned}
1-\varepsilon \leqslant \frac{1}{n} \sum_{i=1}^{n} b_{i} & \leqslant \frac{1}{l N}\left(\left(\sum_{k=0}^{l-1} \beta(k)\right)+\beta(l)\right) \\
& \leqslant(t(1+\varepsilon)+(1-t) \varepsilon)+\frac{1+\varepsilon}{l} \leqslant t+2 \varepsilon
\end{aligned}
$$

hence $t \geqslant 1-3 \varepsilon$ and consequently

$$
\begin{aligned}
& \left|\left\{k \in[0, l-1]_{\mathbb{Z}} \mid \beta(k)>\varepsilon N\right\} \cap\left\{k \in[0, l-1]_{\mathbb{Z}} \mid\lceil(1-6 \varepsilon) l\rceil+1 \leqslant k\right\}\right| \\
& \quad \geqslant t l+(l-\lceil(1-6 \varepsilon) l\rceil-1)-l \geqslant(1-3 \varepsilon-(1-6 \varepsilon)) l-2=3 \varepsilon l-2 .
\end{aligned}
$$

Since

$$
n-\lfloor n / m\rfloor=\lceil(1-6 \varepsilon) n\rceil \leqslant\lceil(1-6 \varepsilon)(l+1)\rceil N \leqslant(\lceil(1-6 \varepsilon) l\rceil+1) N,
$$

this gives

$$
\sum_{i=n-\lfloor n / m\rfloor+1}^{n} b_{i} \geqslant \sum_{k=\lceil(1-6 \varepsilon) l\rceil+1}^{l-1} \beta(k) \geqslant(3 \varepsilon l-2) \varepsilon N
$$

which tends to infinity as $l \rightarrow \infty$. This proves (2.3).
In [10, Lemma 2.2], Pittet seems to claim that

$$
\liminf _{n \rightarrow \infty} \frac{\left|B_{S}(n)\right|}{\left|B_{S}(n-1)\right|}>1,
$$

from which Proposition 2.2 could be derived much more easily. However, we found the explanations in [10] not fully conclusive and thus opted to work out an independent argument. Naturally, it would be interesting to establish a more effective version of Proposition 2.2, if possible.

2.2 Wreath products

We recall that a group $G=H$ ¿ K is the restricted standard wreath product of two subgroups H and K, if it decomposes as a semidirect product $G=N \rtimes K$, where the normal closure of H is the direct sum $N=\bigoplus_{k \in K} H^{k}$ of the various conjugates of H by elements of K; the groups N and K are referred to as the base group and the top group of the wreath product G, respectively. Since we do not consider complete standard wreath products or more general types of permutational wreath products, we shall drop the terms "restricted" and "standard" from now on.

Throughout the rest of this section, let

$$
\begin{equation*}
G=H \imath\langle t\rangle=N \rtimes\langle t\rangle \text { with base group } N=\bigoplus_{i \in \mathbb{Z}} H^{t^{i}} \tag{2.4}
\end{equation*}
$$

be the wreath product of a finitely generated subgroup H and an infinite cyclic subgroup $\langle t\rangle \cong C_{\infty}$. Every element $g \in G$ can be written uniquely in the form

$$
g=\widetilde{g} t^{\rho(g)}
$$

where $\rho(g) \in \mathbb{Z}$ and $\widetilde{g}=\prod_{i \in \mathbb{Z}}\left(g_{\mid i}\right)^{t^{i}} \in N$ with 'coordinates' $g_{\mid i} \in H$. The support of the product decomposition of \tilde{g} is finite and we write

$$
\operatorname{supp}(g)=\left\{i \in \mathbb{Z} \mid g_{\mid i} \neq 1\right\} .
$$

Furthermore, it is convenient to fix a finite symmetric generating set S of G; thus $G=\langle S\rangle$, and $g \in S$ implies $g^{-1} \in S$. We put $d=|S|$ and fix an ordering of the elements of S :

$$
\begin{equation*}
S=\left\{s_{1}, \ldots, s_{d}\right\}, \quad \text { with } s_{j}=\widetilde{s_{j}} t^{\rho\left(s_{j}\right)} \text { for } j \in[1, d]_{\mathbb{Z}} \tag{2.5}
\end{equation*}
$$

where $\widetilde{s_{1}}, \ldots, \tilde{d_{d}} \in N$. We write $r_{S}=\max \left\{\rho\left(s_{j}\right) \mid j \in[1, d]_{\mathbb{Z}}\right\} \in \mathbb{N}$.
Definition 2.3 An S-expression of an element $g \in G$ is (induced by) a word $W=$ $\prod_{k=1}^{l} X_{l(k)}$ in the free semigroup $\left\langle X_{1}, \ldots, X_{d}\right\rangle$ such that

$$
\begin{equation*}
g=W\left(s_{1}, \ldots, s_{d}\right)=\prod_{k=1}^{l} s_{l(k)} \tag{2.6}
\end{equation*}
$$

here W determines and is determined by the function $\iota=\iota_{W}:[1, l]_{\mathbb{Z}} \rightarrow[1, d]_{\mathbb{Z}}$. In this situation the standard process of collecting powers of t to the right yields

$$
\begin{equation*}
g=\tilde{g} t^{-\sigma(l)} \quad \text { with } \quad \tilde{g}=\prod_{k=1}^{l}{\widetilde{s_{l(k)}}}^{t^{\sigma(k-1)}}, \tag{2.7}
\end{equation*}
$$

where $\sigma=\sigma_{S, W}$ is short for the negative ${ }^{1}$ cumulative exponent function

$$
\sigma_{S, W}:[0, l]_{\mathbb{Z}} \rightarrow \mathbb{Z}, \quad k \mapsto-\sum_{j=1}^{k} \rho\left(s_{l(j)}\right)
$$

We define the itinerary of g associated to the S-expression (2.6) as the pair

$$
\operatorname{It}(S, W)=\left(\iota_{W}, \sigma_{S, W}\right)
$$

and we say that $\operatorname{It}(S, W)$ has length l, viz. the length of the word W. For the purpose of concrete calculations it is helpful to depict the functions ι_{W} and $\sigma_{S, W}$ as finite sequences. The term 'itinerary' refers to (2.7), which indicates how g can be built stepwise from the sequences ι_{W} and $\sigma_{S, W}$; see Example 2.4 below. In particular, g is uniquely determined by the itinerary $\operatorname{It}(S, W)=(\iota, \sigma)$ and, accordingly, we refer to g as the element corresponding to that itinerary. But unless G is trivial and S is empty, the element g has, of course, infinitely many S-expressions which in turn give rise to infinitely many distinct itineraries of one and the same element.

For discussing features of the exponent function $\sigma_{S, W}$, we call

$$
\operatorname{maxi}(\operatorname{It}(S, W))=\max \left(\sigma_{S, W}\right) \quad \text { and } \quad \operatorname{mini}(\operatorname{It}(S, W))=\min \left(\sigma_{S, W}\right)
$$

the maximal and minimal itinerary points of $\operatorname{It}(S, W)$. Later we fix a representative function $\mathcal{W}: G \rightarrow\left\langle X_{1}, \ldots, X_{d}\right\rangle, g \mapsto W_{g}$ which yields for each element of G an

[^1]

Fig. 1 An illustration of the itinerary of g in (2.9) associated to the S-expression in (2.8); the support of \tilde{g} is also indicated
S-expression of shortest possible length. In that situation we suppress the reference to S and refer to
$\operatorname{It}_{\mathcal{W}}(g)=\operatorname{It}\left(S, W_{g}\right), \operatorname{maxi} \mathcal{W}(g)=\operatorname{maxi}\left(\operatorname{It}_{\mathcal{W}}(g)\right), \quad \operatorname{mini}_{\mathcal{W}}(g)=\operatorname{mini}_{\left(\operatorname{It}_{\mathcal{W}}(g)\right)}$
as the \mathcal{W}-itinerary, the maximal \mathcal{W}-itinerary point and the minimal \mathcal{W}-itinerary point of any given element g.

To illustrate the terminology we discuss a concrete example.
Example 2.4 A typical example of the wreath products that we consider is the lamplighter group

$$
\left.G=\langle a, t| a^{2}=1,\left[a, a^{t^{i}}\right]=1 \text { for } i \in \mathbb{Z}\right\rangle=\bigoplus_{i \in \mathbb{Z}}\left\langle a_{i}\right\rangle \rtimes\langle t\rangle \cong C_{2} \imath C_{\infty}
$$

where $a_{i}=t^{-i} a t^{i}$ for $i \in \mathbb{Z}$. We consider the finite symmetric generating set

$$
S=\left\{s_{1}, \ldots, s_{5}\right\}
$$

with

$$
s_{1}=a_{4} t^{-3}, \quad s_{2}=t^{-2}, \quad s_{3}=s_{1}^{-1}=a_{1} t^{3}, \quad s_{4}=s_{2}^{-1}=t^{2}, \quad s_{5}=a_{0}=s_{5}^{-1}
$$

Let $g=\widetilde{g} t^{3}$ be such that $g_{\mid i}=a$ for $i \in\{-1,1,2,6\}$ and $g_{\mid i}=1$ otherwise. Then we have $\rho(g)=3, \operatorname{supp}(g)=\{-1,1,2,6\}$, and

$$
\begin{equation*}
g=t^{-2} \cdot a_{0} \cdot a_{4} t^{-3} \cdot\left(t^{2}\right)^{2} \cdot a_{0} \cdot t^{2} \cdot a_{0} \cdot t^{2}=s_{2} s_{5} s_{1} s_{4}^{2} s_{5} s_{4} s_{5} s_{4} \tag{2.8}
\end{equation*}
$$

is an S-expression for g of length 9 , based on $W=X_{2} X_{5} X_{1} X_{4}^{2} X_{5} X_{4} X_{5} X_{4}$. The itinerary $I=\operatorname{It}(S, W)$ associated to this S-expression for g is

$$
\begin{equation*}
I=(\iota, \sigma)=((2,5,1,4,4,5,4,5,4),(0,2,2,5,3,1,1,-1,-1,-3)) \tag{2.9}
\end{equation*}
$$

where we have written the maps ι and σ in sequence notation. Furthermore, we see that $\operatorname{maxi}(I)=5$ and $\operatorname{mini}(I)=-3$. Figure 1 gives a pictorial description of part of the information contained in I.

An alternative S-expression for the same element g is

$$
\begin{align*}
g & =a_{4} t^{-3} \cdot\left(t^{2}\right)^{2} \cdot a_{0} \cdot a_{1} t^{3} \cdot\left(t^{-2}\right)^{3} \cdot a_{0} \cdot t^{-2} \cdot a_{0} \cdot t^{-2} \cdot a_{0} \cdot\left(t^{2}\right)^{3} \cdot a_{0} \cdot a_{1} t^{3} \\
& =s_{1} s_{4}^{2} s_{5} s_{3} s_{2}^{3} s_{5} s_{2} s_{5} s_{2} s_{5} s_{4}^{3} s_{5} s_{3} . \tag{2.10}
\end{align*}
$$

It has length 18 and is based on the semigroup word

$$
W^{\prime}=X_{1} X_{4}^{2} X_{5} X_{3} X_{2}^{3} X_{5} X_{2} X_{5} X_{2} X_{5} X_{4}^{3} X_{5} X_{3}
$$

In this case, the itinerary associated to the S-expression (2.10) is

$$
\begin{aligned}
I^{\prime}=\left(\iota^{\prime}, \sigma^{\prime}\right)= & ((1,4,4,5,3,2,2,2,5,2,5,2,5,4,4,4,5,3), \\
& (0,3,1,-1,-1,-4,-2,0,2,2,4,4,6,6,4,2,0,0,-3))
\end{aligned}
$$

and we observe that maxi $\left(I^{\prime}\right)=6$ and $\operatorname{mini}\left(I^{\prime}\right)=-4$.
There is a natural notion of a product of two itineraries, and it has the expected properties. We collect the precise details in a lemma.

Lemma and Definition 2.5 In the general set-up described above, suppose that $I_{1}=$ $\left(\iota_{1}, \sigma_{1}\right)$ and $I_{2}=\left(\iota_{2}, \sigma_{2}\right)$ are itineraries, of lengths l_{1} and l_{2}, associated to S expressions W_{1}, W_{2} for elements $g_{1}, g_{2} \in G$. Then $W=W_{1} W_{2}$ is an S-expression for $g=g_{1} g_{2}$; the associated itinerary

$$
I=\operatorname{It}(S, W)=(\iota, \sigma)
$$

has length $l=l_{1}+l_{2}$ and its components are given by

$$
\begin{aligned}
\iota(k) & = \begin{cases}\iota_{1}(k) & \text { if } k \in\left[1, l_{1}\right]_{\mathbb{Z}}, \\
\iota_{2}\left(k-l_{1}\right) & \text { if } k \in\left[l_{1}+1, l\right]_{\mathbb{Z}},\end{cases} \\
\sigma(k) & = \begin{cases}\sigma_{1}(k) & \text { if } k \in\left[0, l_{1}\right]_{\mathbb{Z}}, \\
\sigma_{1}\left(l_{1}\right)+\sigma_{2}\left(k-l_{1}\right) & \text { if } k \in\left[l_{1}+1,\right]_{\mathbb{Z}} .\end{cases}
\end{aligned}
$$

We refer to I as the product itinerary and write $I=I_{1} * I_{2}$.
Conversely, if I is the itinerary of some element $g \in G$ associated to some S expression of length l and if $l_{1} \in[0, l]_{\mathbb{Z}}$, there is a unique decomposition $I=I_{1} * I_{2}$ for itineraries I_{1} of length l_{1} and I_{2} of length $l_{2}=l-l_{1}$; the corresponding elements $g_{1}, g_{2} \in G$ satisfy $g=g_{1} g_{2}$.

Proof The assertions in the first paragraph are easy to verify from

$$
W=W_{1} W_{2}=\prod_{k=1}^{l_{1}} X_{\iota_{1}(k)} \prod_{k=1}^{l_{2}} X_{\iota_{2}(k)}=\prod_{k=1}^{l_{1}} X_{\iota_{1}(k)} \prod_{k=l_{1}+1}^{l_{1}+l_{2}} X_{\iota_{2}\left(k-l_{1}\right)}
$$

and the observation that, for $k \in[0, l]_{\mathbb{Z}}$,

$$
\begin{aligned}
& \sigma(k)=-\sum_{j=1}^{k} \rho\left(s_{l(k)}\right) \\
& \quad= \begin{cases}-\sum_{j=1}^{k} \rho\left(s_{l_{1}(k)}\right)=\sigma_{1}(k) & \text { if } k \leqslant l_{1}, \\
-\sum_{j=1}^{l_{1}} \rho\left(s_{l_{1}(k)}\right)-\sum_{j=l_{1}+1}^{k} \rho\left(s_{l_{2}\left(k-l_{1}\right)}\right)=\sigma_{1}\left(l_{1}\right)+\sigma_{2}\left(k-l_{1}\right) & \text { if } k>l_{1} .\end{cases}
\end{aligned}
$$

Conversely, let I be the itinerary of an element g, associated to some S-expression $W=\prod_{k=1}^{l} X_{l(k)}$ of length l, and let $l_{1} \in[0, l]_{\mathbb{Z}}$. Then W decomposes uniquely as a product $W_{1} W_{2}$ of semigroup words of lengths l_{1} and $l-l_{2}$, namely for $W_{1}=$ $\prod_{k=1}^{l_{1}} X_{\iota(k)}$ and $W_{2}=\prod_{k=l_{1}+1}^{l} X_{l(k)}$. These are S-expressions for elements g_{1}, g_{2} and $g=g_{1} g_{2}$. Moreover, W_{1} and W_{2} give rise to itineraries I_{1}, I_{2} such that $I=$ $I_{1} * I_{2}$. Since W_{1} and I_{1}, respectively W_{2} and I_{2}, determine one another uniquely, the decomposition $I=I_{1} * I_{2}$ is unique.

For a representative function $\mathcal{W}: G \rightarrow\left\langle X_{1}, \ldots, X_{d}\right\rangle, g \mapsto W_{g}$, as discussed in Definition 2.3, it is typically not the case that $W_{g h}=W_{g} W_{h}$ for $g, h \in G$. Consequently, it is typically not true that $\operatorname{It}_{\mathcal{W}}(g h)=\operatorname{It}_{\mathcal{W}}(g) * \operatorname{It}_{\mathcal{W}}(h)$.

Lemma 2.6 Let $G=H_{2}\langle t\rangle$ be a wreath product as in (2.4), with generating set S as in (2.5). Put

$$
C=C(S)=1+\max \{|i| \mid i \in \operatorname{supp}(s) \text { for some } s \in S\} \in \mathbb{N} .
$$

Then the following hold:
(i) For every $g \in G$ with itinerary I,

$$
\operatorname{mini}(I)-C<\min (\operatorname{supp}(g)) \text { and } \max (\operatorname{supp}(g))<\operatorname{maxi}(I)+C .
$$

(ii) Let $u \in H$. Put $m_{S}=\max \left\{C, r_{S}\right\} \in \mathbb{N}$ and

$$
D=D(S, u)=l_{S}(u)+2 \max \left\{l_{S}\left(t^{j}\right) \mid 0 \leqslant j \leqslant m_{S}+r_{S}\right\} \in \mathbb{N} .
$$

Let $g \in G$ with itinerary I, associated to an S-expression of length $l_{S}(g)$. Then, for every $j \in \mathbb{Z}$ with $\operatorname{mini}(I)-m_{S} \leqslant j \leqslant \operatorname{maxi}(I)+m_{S}$, the elements $h=g u^{t^{j+\rho(g)}}$, $\hbar=u^{t^{j}} g \in G$ satisfy $\rho(h)=\rho(\hbar)=\rho(g)$ and the 'coordinates' of h, \hbar are given by

$$
h_{\mid i}=\left\{\begin{array}{ll}
g_{\mid i} & \text { if } i \neq j, \\
g_{\mid j} u & \text { if } i=j,
\end{array} \quad \hbar_{\mid i}=\left\{\begin{array}{ll}
g_{\mid i} & \text { if } i \neq j, \\
u g_{\mid j} & \text { if } i=j
\end{array} \quad \text { for } i \in \mathbb{Z} .\right.\right.
$$

Furthermore,

$$
l_{S}(h) \leqslant l_{S}(g)+D \quad \text { and } \quad l_{S}(\hbar) \leqslant l_{S}(g)+D
$$

Proof We write $I=(\iota, \sigma)$ for the given itinerary of g, and l denotes the length of I.
(i) From (2.7) it follows that

$$
\begin{aligned}
\operatorname{supp}(g) & \subseteq \bigcup_{1 \leqslant k \leqslant l}\left(\sigma(k-1)+\operatorname{supp}\left(s_{l(k)}\right)\right) \\
& \subseteq \bigcup_{1 \leqslant k \leqslant l}[\sigma(k-1)-C+1, \sigma(k-1)+C-1]_{\mathbb{Z}}
\end{aligned}
$$

from this inclusion the two inequalities follow readily.
(ii) In addition we now have $l=l_{S}(g)$. The first assertions are very easy to verify. We justify the upper bound for $l_{S}(h)$; the bound for $l_{S}(\hbar)$ is derived similarly.

Since $\operatorname{mini}(I)-m_{S} \leqslant j \leqslant \operatorname{maxi}(I)+m_{S}$ and since itineraries proceed, in the second coordinate, by steps of length at most $r_{S} \leqslant m_{S}$, there exists $k \in[0, l]_{\mathbb{Z}}$ such that $|j-\sigma(k)| \leqslant m_{S}$. If $|j-\sigma(l)| \leqslant m_{S}$ we put $k=l-1$; otherwise we choose k maximal with $|j-\sigma(k)| \leqslant m_{S}$. Next we decompose the itinerary I as the product $I=I_{1} * I_{2}$ of itineraries I_{1} of length $l_{1}=k+1$ and I_{2} of length $l_{2}=l-k-1$; compare with Lemma 2.5.

We denote by $g_{1}=\widetilde{g_{1}} t^{-\sigma(k+1)}$ and $g_{2}=\widetilde{g}_{2} t^{\sigma(k+1)+\rho(g)}$ the elements corresponding to I_{1} and I_{2} so that $g=g_{1} g_{2}=\widetilde{g}_{1} \widetilde{g}_{2}{ }^{\sigma(k+1)} t^{\rho(g)}$. Moreover, we observe from $|j-\sigma(k+1)| \leqslant m_{S}+r_{S}$ that

$$
g_{3}=u^{t j-\sigma(k+1)}=t^{-j+\sigma(k+1)} u t^{j-\sigma(k+1)}
$$

has length $l_{3} \leqslant l_{S}(u)+2 l_{S}\left(t^{j-\sigma(k+1)}\right) \leqslant D$. Our choice of k guarantees that the support of $\widetilde{g_{2}}{ }^{t^{\sigma(k+1)}}$ does not overlap with $\{j\}=\operatorname{supp}\left(u^{t^{j}}\right)$; compare with (i). Thus $\tilde{g}_{2}{ }^{\sigma(k+1)}$ and $u^{t^{j}}$, both in the base group, commute with one another. This gives

$$
\begin{aligned}
h=g u^{t^{j+\rho(g)}} & =\tilde{g}_{1} \tilde{g}_{2}{ }^{\sigma^{\sigma(k+1)}} u^{t^{j}} t^{\rho(g)}=\tilde{g}_{1} u^{t^{j}} \tilde{g}_{2} t^{\sigma(k+1)} t^{\rho(g)} \\
& =g_{1} t^{-j+\sigma(k+1)} u t^{j-\sigma(k+1)} g_{2}=g_{1} g_{3} g_{2},
\end{aligned}
$$

and we conclude that $l_{S}(h) \leqslant l_{1}+l_{2}+l_{3} \leqslant l+D=l_{S}(g)+D$.

3 Proofs of Theorems A and B

First we explain how Theorem A follows from Theorem B. The first ingredient is the following general lemma.

Lemma 3.1 (Antolín, Martino and Ventura [1, Lemma 3.1]) Let $G=\langle S\rangle$ be a group, with finite generating set S. Suppose that there exists a subset $X \subseteq G$ satisfying
(a) $\delta_{S}(X)=0$;
(b) $\sup \left\{\left.\frac{\left|C_{G}(g) \cap B_{S}(n)\right|}{\left|B_{S}(n)\right|} \right\rvert\, g \in G \backslash X\right\} \rightarrow 0$ as $n \rightarrow \infty$.

Then G has degree of commutativity $\operatorname{dc}_{S}(G)=0$.

The second ingredient comes from [3, Section 2.1], where Cox shows the following. If $G=H_{2}\langle t\rangle$ is the wreath product of a finitely generated group $H \neq 1$ and an infinite cyclic group $\langle t\rangle$, with base group N, and if S is any finite generating set for G, then

$$
\sup \left\{\left.\frac{\left|C_{G}(g) \cap B_{S}(n)\right|}{\left|B_{S}(n)\right|} \right\rvert\, g \in G \backslash N\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

The idea behind Cox' proof is as follows. For $g \in G \backslash N$, the centraliser $C_{G}(g)$ is cyclic and the 'translation length' of g with respect to S is uniformly bounded away from 0 . The latter means that there exists $\tau_{S}>0$ such that

$$
\inf _{n \in \mathbb{N}}\left\{\left.\frac{l_{S}\left(g^{n}\right)}{n} \right\rvert\, g \in G \backslash N\right\} \geqslant \tau_{S}
$$

Consequently, for $g \in G \backslash N$ the function $n \mapsto\left|C_{G}(g) \cap B_{S}(n)\right|$ is bounded uniformly by a linear function, while G has exponential word growth.

Thus, Theorem B implies Theorem A, and it remains to establish Theorem B. Throughout the rest of this section, let

$$
G=H \imath\langle t\rangle=N \rtimes\langle t\rangle \quad \text { with base group } N=\bigoplus_{i \in \mathbb{Z}} H^{t^{i}}
$$

be the wreath product of a finitely generated subgroup H and an infinite cyclic subgroup $\langle t\rangle$, just as in (2.4). The exceptional case $H=1$ poses no obstacle, hence we assume $H \neq 1$. We fix a finite symmetric generating set $S=\left\{s_{1}, \ldots, s_{d}\right\}$ for G and employ the notation established around (2.5). Finally, we recall that G has exponential word growth and we write

$$
\lambda=\lambda_{S}(G)>1
$$

for the exponential growth rate of G with respect to S; see (2.1).
We start by showing that the subset of N consisting of all elements with suitably bounded support is negligible in the computation of the density of N.

Proposition 3.2 Fix a representative function \mathcal{W} which yields for each element of G an S-expression of shortest possible length and let $q: \mathbb{N} \rightarrow \mathbb{R} \geqslant 1$ be a non-decreasing unbounded function such that $q \in o(\log n)$.

Then the sequence of sets

$$
R_{q}(n)=R_{\mathcal{W}, q}(n)=\left\{g \in N \cap B_{S}(n) \mid \operatorname{maxi}_{\mathcal{W}}(g)-\operatorname{mini}_{\mathcal{W}}(g) \leqslant q(n)\right\},
$$

indexed by $n \in \mathbb{N}$, satisfies

$$
\lim _{n \rightarrow \infty} \frac{\left|R_{q}(n)\right|}{\left|B_{S}(n)\right|}=0 .
$$

The proof of Proposition 3.2 is preceded by some preparations and two auxiliary lemmata. We keep in place the set-up from Proposition 3.2. For $i \in \mathbb{Z}$, we write $H_{i}=H^{t^{i}}$. Using the notation established in Sect. 2.2, we accumulate the 'coordinates' of elements of S in a set

$$
S_{0}=\left\{s_{\mid i} \mid s \in S, i \in \mathbb{Z}\right\}=\left\{\left(s_{j}\right)_{\mid i} \mid 1 \leqslant j \leqslant d \text { and } i \in \mathbb{Z}\right\} \subseteq H=H_{0}
$$

we set $S_{i}=S_{0}^{t^{i}} \subseteq H_{i}$ for $i \in \mathbb{Z}$. Then S_{i} is a finite symmetric generating set of H_{i} for each $i \in \mathbb{Z}$. Indeed, every element $h \in H$ satisfies $h=\widetilde{h}=h_{\mid 0}$ and can thus be written in the form

$$
h=\left.\left(\prod_{k=1}^{l}{\widetilde{s_{l(k)}}}^{t^{\sigma(k-1)}}\right)\right|_{0}=\prod_{k=1}^{l}\left(\widetilde{s_{l(k) \mid}-\sigma(k-1)}\right)
$$

based upon a suitable itinerary $I=(\iota, \sigma)$ of length l. We conclude that $H=\left\langle S_{0}\right\rangle$ and consequently $H_{i}=\left\langle S_{i}\right\rangle$ for $i \in \mathbb{Z}$; the generating systems inherit from S the property of being symmetric.

Moreover, we have $\left|B_{H_{i}, S_{i}}(n)\right|=\left|B_{H, S_{0}}(n)\right|$ for all $n \in \mathbb{N}$; consequently,

$$
\lambda_{S_{0}}(H)=\lambda_{S_{i}}\left(H_{i}\right) \text { for all } i \in \mathbb{Z}
$$

It is convenient to split the analysis of the set $R_{q}(n)$ from Proposition 3.2 into two parts. First we take care of elements whose 'coordinates' fall within sufficiently small balls around 1 in H, with respect to the generating set S_{0}.

Lemma 3.3 In addition to the set-up above, let $f: \mathbb{N} \rightarrow \mathbb{R}_{>0}$ be a non-decreasing unbounded function such that $f \in o(n / q(n))$.

Then the sequence of subsets

$$
R_{q}^{f}(n)=R_{\mathcal{W}, q}^{f}(n)=\left\{g \in R_{q}(n) \mid g_{\mid i} \in B_{H, S_{0}}(f(n)) \text { for all } i \in \mathbb{Z}\right\} \subseteq R_{q}(n),
$$

indexed by $n \in \mathbb{N}$, satisfies

$$
\lim _{n \rightarrow \infty} \frac{\left|R_{q}^{f}(n)\right|}{\left|B_{S}(n)\right|}=0
$$

Proof Let $C=C(S) \in \mathbb{N}$ be as is in Lemma 2.6(i) and choose $C^{\prime} \in \mathbb{N}$ such that $\lambda^{C^{\prime}}>\lambda_{S_{0}}(H)$. Then we have, for all sufficiently large $n \in \mathbb{N}$,

$$
\left|R_{q}^{f}(n)\right| \leqslant\left|B_{H, S_{0}}(f(n))\right|^{2 q(n)+2 C} \leqslant \lambda^{2 C^{\prime} q(n) f(n)+2 C^{\prime} C f(n)} \leqslant \lambda^{4 C^{\prime} C q(n) f(n)} .
$$

From $f \in o(n / q(n))$ we obtain

$$
4 C^{\prime} C q(n) f(n)-n \rightarrow-\infty \text { as } n \rightarrow \infty
$$

and hence

$$
\frac{\left|R_{q}^{f}(n)\right|}{\left|B_{S}(n)\right|} \leqslant \lambda^{4 C^{\prime} C q(n) f(n)-n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Next we consider $R_{q}(n) \backslash R_{q}^{f}(n)$, for a function f as in Lemma 3.3 and $n \in \mathbb{N}$. For every $g \in R_{q}(n) \backslash R_{q}^{f}(n)$, we pick $i(g) \in \mathbb{Z}$ with

$$
\operatorname{mini}_{\mathcal{W}}(g)-C<i(g)<\operatorname{maxi}_{\mathcal{W}}(g)+C \quad \text { and } \quad g_{\mid i(g)} \notin B_{S_{0}}(f(n)),
$$

where $C=C(S) \in \mathbb{N}$ continues to denote the constant from Lemma 2.6(i). Let $I=(\iota, \sigma)$, viz. $I_{g}=\left(\iota_{g}, \sigma_{g}\right)$, denote the \mathcal{W}-itinerary of g. Then

$$
g_{\mid i(g)}=\prod_{k=1}^{l_{S}(g)}\left(s_{l(k)}\right)_{\mid i(g)-\sigma(k-1)} .
$$

By successively cancelling sub-products of adjacent factors that evaluate to 1 and have maximal length with this property (in an orderly fashion, from left to right, say), we arrive at a 'reduced' product expression

$$
\begin{equation*}
g_{\mid i(g)}=\prod_{j=1}^{\ell}\left(s_{l(\kappa(j))}\right)_{\mid i(g)-\sigma(\kappa(j)-1)}, \tag{3.1}
\end{equation*}
$$

for some $\ell=\ell_{g} \in\left[1, l_{S}(g)\right]_{\mathbb{Z}}$ and an increasing function $\kappa=\kappa_{g}:[1, \ell]_{\mathbb{Z}} \rightarrow$ $\left[1, l_{S}(g)\right]_{\mathbb{Z}}$ that picks out a subsequence of factors. In particular, this means that, for $j_{1}, j_{2} \in[1, \ell]_{\mathbb{Z}}$ with $j_{1}<j_{2}$,

$$
\begin{align*}
\prod_{k=\kappa\left(j_{1}\right)+1}^{\kappa\left(j_{2}\right)}\left(s_{l(k)}\right)_{\mid i(g)-\sigma(k-1)} & =\prod_{j=j_{1}+1}^{j_{2}} \prod_{k=\kappa(j-1)+1}^{\kappa(j)}\left(s_{l(k)}\right)_{\mid i(g)-\sigma(k-1)} \\
& =\prod_{j=j_{1}+1}^{j_{2}}\left(s_{l(\kappa(j))}\right)_{\mid i(g)-\sigma(\kappa(j)-1)} \neq 1, \tag{3.2}
\end{align*}
$$

and moreover we have $l_{S}(g) \geqslant \ell \geqslant l_{S_{0}}\left(g_{\mid i(g)}\right) \geqslant f(n)$.
By means of suitable perturbations, we aim to produce from g a collection of ℓ distinct elements $\dot{g}(1), \ldots, \dot{g}(\ell)$ which each carry sufficient information to 'recover' the initial element g. We proceed as follows. For each choice of $j \in[1, \ell]_{\mathbb{Z}}$ we decompose the itinerary I for g into a product $I=I_{j, 1} * I_{j, 2}$ of itineraries of length $\kappa(j)$ and $l_{S}(g)-\kappa(j)$; compare with Lemma 2.5. Then $g=g_{j, 1} g_{j, 2}$, where $g_{j, 1}, g_{j, 2}$ denote the elements of G corresponding to $I_{j, 1}, I_{j, 2}$. From $g \in R_{q}(n)$ it follows that $\operatorname{maxi}\left(I_{j, 1}\right)-\operatorname{mini}\left(I_{j, 1}\right)$ and $\operatorname{maxi}\left(I_{j, 2}\right)-\operatorname{mini}\left(I_{j, 2}\right)$ are bounded by $q(n)$; in particular, $\rho\left(g_{j, 1}\right) \in[-q(n), q(n)]_{\mathbb{Z}}$.

Fig. 2 An illustration of the factorisation $\dot{g}(j)=g_{j, 1} t^{-3 q(n)-4 C} g_{j, 2}$

We define

$$
\begin{equation*}
\dot{g}(j)=g_{j, 1} t^{-3 q(n)-4 C} g_{j, 2} \tag{3.3}
\end{equation*}
$$

with $C=C(S)$ as above; see Fig. 2 for a pictorial illustration, which features an additional parameter τ that we introduce in the proof of Lemma 3.4.

Lemma 3.4 In the set-up above, the elements $\dot{g}(1), \ldots, \dot{g}(\ell)$ defined in (3.3) satisfy the following:
(i) for each $j \in[1, \ell]_{\mathbb{Z}}$ the element $\dot{g}(j)$ lies in $B_{S}\left(n+(3 q(n)+4 C) l_{S}(t)\right)$;
(ii) for each $j \in[1, \ell]_{\mathbb{Z}}$ the original element g can be recovered from $\dot{g}(j)$;
(iii) the elements $\dot{g}(1), \ldots, \dot{g}(\ell)$ are pairwise distinct.

Proof (i) Lemma 2.5 gives $l_{S}\left(g_{j, 1}\right)+l_{S}\left(g_{j, 2}\right)=\ell \leqslant l_{S}(g) \leqslant n$, and it is clear that $l_{S}\left(t^{-3 q(n)-4 C}\right) \leqslant(3 q(n)+4 C) l_{S}(t)$.
(ii) Let $j \in[1, \ell]_{\mathbb{Z}}$, and write $\mathcal{G}_{1}=\operatorname{supp}\left(g_{j, 1}\right), \mathcal{G}_{2}=\operatorname{supp}\left(g_{j, 2}\right)$. Lemma 2.6 (i) implies that the sets \mathcal{G}_{1} and $\mathcal{G}_{2}-\rho\left(g_{j, 1}\right)=\operatorname{supp}\left(t^{\rho\left(g_{j, 1}\right)} g_{j, 2}\right)$ lie wholly within the interval $[-q(n)-C, q(n)+C]_{\mathbb{Z}}$, hence

$$
\begin{equation*}
\operatorname{supp}(\dot{g}(j))=\mathcal{G}_{1} \cup\left(\mathcal{G}_{2}-\rho\left(g_{j, 1}\right)+3 q(n)+4 C\right) \tag{3.4}
\end{equation*}
$$

with a gap

$$
\tau=\underbrace{\min \left(\mathcal{G}_{2}-\rho\left(g_{j, 1}\right)+3 q(n)+4 C\right)}_{\geqslant-q(n)-C+3 q(n)+4 C=2 q(n)+3 C}-\underbrace{\max \left(\mathcal{G}_{1}\right)}_{\leqslant q(n)+C} \geqslant q(n)+2 C,
$$

subject to the standard conventions $\min \varnothing=+\infty$ and $\max \varnothing=-\infty$ in special circumstances; see Fig. 2 for a pictorial illustration.

In contrast, gaps between two elements in \mathcal{G}_{1} or two elements in \mathcal{G}_{2} are strictly less than $q(n)+2 C \leqslant \tau$. Consequently, we can identify the two components in (3.4) and thus \mathcal{G}_{1} and $\mathcal{G}_{2}-\rho\left(g_{j, 1}\right)$, without any prior knowledge of j or $g_{j, 1}, g_{j, 2}$. Therefore, for each $i \in \mathbb{Z}$ the i th coordinate of g satisfies

$$
g_{\mid i}= \begin{cases}\dot{g}(j)_{\mid i} \dot{g}(j)_{\mid i+3 q(n)+4 C} & \text { if } i \in[-q(n)-C, q(n)+C] \\ 1 & \text { otherwise },\end{cases}
$$

and hence g can be recovered from $\dot{g}(j)$.
(iii) For $j_{1}, j_{2} \in[1, \ell]_{\mathbb{Z}}$ with $j_{1}<j_{2}$ we conclude from our choice of the 'reduced' product expression (3.1) and its consequence (3.2) that

$$
\begin{aligned}
\dot{g}\left(j_{1}\right)_{\mid i(g)} & =\left(g_{j_{1}, 1}\right)_{\mid i(g)}=\prod_{k=1}^{\kappa\left(j_{1}\right)}\left(s_{l(k)}\right)_{\mid i(g)-\sigma(k-1)} \\
& \neq \prod_{k=1}^{\kappa\left(j_{2}\right)}\left(s_{l(k)}\right)_{\mid i(g)-\sigma(k-1)}=\left(g_{j_{2}, 1}\right)_{\mid i(g)}=\dot{g}\left(j_{2}\right)_{\mid i(g)}
\end{aligned}
$$

and hence $\dot{g}\left(j_{1}\right) \neq \dot{g}\left(j_{2}\right)$.
For the proof of Proposition 3.2 we now make a more careful choice of the nondecreasing unbounded function $f: \mathbb{N} \rightarrow \mathbb{R}_{>0}$, which entered the stage in Lemma 3.3: we arrange that

$$
f \in o(n / q(n)) \text { and } f \in \omega\left((\lambda+1)^{m(n)}\right) \text { for } m(n)=(3 q(n)+4 C) l_{S}(t)
$$

with $C=C(S)$ as in Lemma 2.6(i). For instance, we can take $f=f_{\alpha}$ for any real parameter α with $0<\alpha<1$, where $f_{\alpha}(n)=\max \left\{k^{\alpha} / q(k) \mid k \in[1, n]_{\mathbb{Z}}\right\}$ for $n \in \mathbb{N}$. Indeed, since $q(n) \in o(\log n)$ and $q(n) \geqslant 1$ for all $n \in \mathbb{N}$, each of these functions satisfies

$$
\lim _{n \rightarrow \infty} \frac{f_{\alpha}(n) q(n)}{n} \leqslant \lim _{n \rightarrow \infty} \frac{n^{\alpha} q(n)}{n}=0
$$

Furthermore, $q(n) \in o(\log n)$ implies $q(n) a^{q(n)} \in o\left(n^{\beta}\right)$ for all $a \in \mathbb{R}_{>1}$ and $\beta \in \mathbb{R}_{>0}$ so that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{(\lambda+1)^{m(n)}}{f_{\alpha}(n)} & \leqslant \lim _{n \rightarrow \infty} \frac{q(n)(\lambda+1)^{m(n)}}{n^{\alpha}} \\
& =(\lambda+1)^{4 C l_{S}(t)} \lim _{n \rightarrow \infty} \frac{q(n)(\lambda+1)^{3 l_{S}(t) q(n)}}{n^{\alpha}}=0 .
\end{aligned}
$$

Proof of Proposition 3.2 We continue with the set-up established above; in particular, we make use of the refined choice of f. In view of Lemma 3.3 it remains to show that

$$
\frac{\left|R_{q}(n) \backslash R_{q}^{f}(n)\right|}{\left|B_{S}(n)\right|} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

We define a map

$$
\begin{aligned}
F_{n}: R_{q}(n) \backslash R_{q}^{f}(n) & \rightarrow \mathcal{P}\left(B_{S}(n+m(n))\right) \\
g & \mapsto\left\{\dot{g}(j) \mid 1 \leqslant j \leqslant \ell_{g}\right\} ;
\end{aligned}
$$

see (3.3) and Lemma 3.4(i). From Lemma 3.4(ii) we deduce that $F_{n}\left(g_{1}\right) \cap F_{n}\left(g_{2}\right)=\varnothing$ for all $g_{1}, g_{2} \in R_{q}(n) \backslash R_{q}^{f}(n)$ with $g_{1} \neq g_{2}$. In addition, from $\ell_{g} \geqslant f(n)$ and

Lemma 3.4 (iii) we deduce that $\left|F_{n}(g)\right| \geqslant f(n)$ for all $g \in R_{q}(n) \backslash R_{q}^{f}(n)$. This yields

$$
\left|B_{S}(n+m(n))\right| \geqslant f(n)\left|R_{q}(n) \backslash R_{q}^{f}(n)\right|,
$$

and hence, by submultiplicativity,

$$
\begin{aligned}
\frac{\left|R_{q}(n) \backslash R_{q}^{f}(n)\right|}{\left|B_{S}(n)\right|} \leqslant \frac{\left|B_{S}(n+m(n))\right|}{f(n)\left|B_{S}(n)\right|} & \leqslant \frac{\left|B_{S}(m(n))\right|}{f(n)} \\
& \leqslant \frac{(\lambda+1)^{m(n)}}{f(n)} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Remark 3.5 Proposition 3.2 can be established much more easily under the extra assumption that H has sub-exponential word growth. Indeed, in this case, one can prove that

$$
\lim _{n \rightarrow \infty} \frac{\left|R_{q}(n)\right|}{\left|B_{S}(n)\right|}=0
$$

for any non-decreasing unbounded function $q: \mathbb{N} \rightarrow \mathbb{R}_{>1}$ such that $q \in o(n)$; the proof is similar to the one of Lemma 4.1 below.

If we assume that H is finite, it is easy to see that there exists $\alpha \in \mathbb{R}_{>0}$ such that

$$
\lim _{n \rightarrow \infty} \frac{\left|R_{q}(n)\right|}{\left|B_{S}(n)\right|}=0 \text { for } q: \mathbb{N} \rightarrow \mathbb{R}_{>1}, \quad n \mapsto 1+\alpha n
$$

Next we establish Theorem B, using ideas that are similar to those in the proof of Proposition 3.2: again we work with perturbations of a given element g in such a manner that the original element can be retrieved easily. We begin with some preparations to establish an auxiliary lemma.

Fix a representative function \mathcal{W} which yields for each element of G an S-expression of shortest possible length, and fix an element $u \in H \backslash\{1\}$. Consider $g \in N$ with \mathcal{W}-itinerary $I=(\iota, \sigma)$, viz. $I_{g}=\left(\iota_{g}, \sigma_{g}\right)$. We put

$$
\sigma^{+}=\sigma_{g}^{+}=\operatorname{maxi}_{\mathcal{W}}(g) \text { and } \sigma^{-}=\sigma_{g}^{-}=\operatorname{mini}_{\mathcal{W}}(g)
$$

For the time being, we suppose that

$$
\begin{aligned}
& k^{+}=k_{\mathcal{W}, g}^{+}=\min \left\{k \mid 0 \leqslant k \leqslant l_{S}(g) \text { and } \sigma(k)=\sigma^{+}\right\}, \\
& k^{-}=k_{\mathcal{W}, g}^{-}=\min \left\{k \mid 0 \leqslant k \leqslant l_{S}(g) \text { and } \sigma(k)=\sigma^{-}\right\}
\end{aligned}
$$

satisfy $k^{+} \leqslant k^{-}$. We decompose the itinerary for g as $I=I_{1} * I_{2} * I_{3}$, where I_{1}, I_{2}, I_{3} have lengths $k^{+}, k^{-}-k^{+}, l_{S}(g)-k^{-}$; compare with Lemma 2.5.

If $x=x_{\mathcal{W}, g}, y=y_{\mathcal{W}, g}, z=z \mathcal{W}, g$ denote the elements corresponding to I_{1}, I_{2}, I_{3} then $g=x y z$; observe that the lengths of I_{1}, I_{2}, I_{3} are automatically minimal, i.e,

Fig. 3 A schematic illustration of the decomposition $g=x y z$
equal to $l_{S}(x), l_{S}(y), l_{S}(z)$. All this is illustrated schematically in Fig. 3. Observe that I_{1}, associated to x, 'starts' at 0 and 'ends' at σ^{+}, the shifted I_{2}, associated to y, 'starts' at σ^{+}and 'ends' at σ^{-}, and the shifted I_{3}, associated to z, 'starts' at σ^{-}and 'ends' at 0 .

Next, we put to use the element $u \in H \backslash\{1\}$ that was fixed and define, for any given $J \subseteq\left[\sigma^{-}, \sigma^{+}\right]_{\mathbb{Z}}$, perturbations

$$
\dot{x}(J)=\dot{x}_{\mathcal{W}, g}(J, u), \quad \dot{y}(J)=\dot{y}_{\mathcal{W}, g}(J, u), \quad \dot{z}(J)=\dot{z} \mathcal{W}_{, g}(J, u)
$$

of the elements x, y, z that are specified by

$$
\begin{align*}
& \rho(\dot{x}(J))=\rho(x)=-\sigma^{+}, \quad \rho(\dot{y}(J))=\rho(y)=-\sigma^{-}+\sigma^{+}, \tag{3.5}\\
& \quad \rho(\dot{z}(J))=\rho(z)=\sigma^{-}
\end{align*}
$$

and

$$
\begin{align*}
& \dot{x}(J)_{\mid i}= \begin{cases}x_{\mid i} u & \text { for } i \in J_{\geqslant 0}, \\
x_{\mid i} & \text { otherwise },\end{cases} \\
& \dot{y}(J)_{\mid i}= \begin{cases}u^{-1} y_{\mid i} & \text { for } i \in \mathbb{Z} \text { such that } i+\sigma^{+} \in J_{\geqslant 0}, \\
y_{\mid i} u^{-1} & \text { for } i \in \mathbb{Z} \text { such that } i+\sigma^{+} \in J_{<0}, \\
y_{\mid i} & \text { otherwise },\end{cases} \tag{3.6}\\
& \dot{z}(J)_{\mid i}= \begin{cases}u z_{\mid i} & \text { for } i \in \mathbb{Z} \text { such that } i+\sigma^{-} \in J_{<0}, \\
z_{\mid i} & \text { otherwise },\end{cases}
\end{align*}
$$

where we suggestively write $J_{\geqslant 0}=\{j \in J \mid j \geqslant 0\}$ and $J_{<0}=\{j \in J \mid j<0\}$. We observe that

$$
\begin{equation*}
g=\dot{x}(J) \dot{y}(J) \dot{z}(J) . \tag{3.7}
\end{equation*}
$$

Let $C=C(S) \in \mathbb{N}$ be as in Lemma 2.6 (i). We call

$$
\ddot{g}(J)=\dot{x}(J) t^{-2 C} \dot{y}(J)^{-1} t^{-2 C} \dot{z}(J)
$$

the J-variant of g; see Fig. 4 for a schematic illustration.
Observe that

$$
\begin{equation*}
\ddot{g}(J) \in N t^{\rho(\ddot{g}(J))}, \quad \text { where } \rho(\ddot{g}(J))=2\left(\sigma_{g}^{-}-\sigma_{g}^{+}\right)-4 C \leqslant-4 \tag{3.8}
\end{equation*}
$$

Fig. 4 A schematic illustration of the support components of $\ddot{g}(J)$
Up to now we assumed that $k^{+} \leqslant k^{-}$. If instead $k^{-}<k^{+}$, a similar construction at this stage yields elements

$$
\begin{equation*}
\ddot{g}(J) \in N t^{\rho(\ddot{g}(J))}, \quad \text { where } \rho(\ddot{g}(J))=2\left(\sigma_{g}^{+}-\sigma_{g}^{-}\right)+4 C \geqslant 4 \tag{3.9}
\end{equation*}
$$

in particular, there is no overlap between elements $\ddot{g}(J)$ arising from these two different cases.

For our purposes, it suffices to work with subsets $J \subseteq\left[\sigma^{-}, \sigma^{+}\right]_{\mathbb{Z}}$ of size $|J|=2$ and we streamline the discussion to this situation.

Lemma 3.6 In the set-up described above, suppose that $J \subseteq\left[\sigma^{-}, \sigma^{+}\right]_{\mathbb{Z}}$ with $|J|=2$. Let $D=D(S, u) \in \mathbb{N}$ be as in Lemma 2.6(ii). Then
(i) $l_{S}(\ddot{g}(J)) \leqslant l_{S}(g)+D^{\prime}$ for $D^{\prime}=6 D+2 l_{S}\left(t^{2 C}\right)$;
(ii) the element g can be recovered from $\ddot{g}(J)$ and any one of σ^{+}, σ^{-};
(iii) the resulting variants of g are pairwise distinct, i.e., $\ddot{g}(J) \neq \ddot{g}\left(J^{\prime}\right)$ for all $J^{\prime} \subseteq$ $\left[\sigma^{-}, \sigma^{+}\right]_{\mathbb{Z}}$ with $\left|J^{\prime}\right|=2$ and $J \neq J^{\prime}$.

Proof (i) Since

$$
\begin{aligned}
J_{\geqslant 0} \subseteq\left[0, \sigma^{+}\right]_{\mathbb{Z}} \subseteq\left[\operatorname{mini}\left(I_{1}\right), \operatorname{maxi}\left(I_{1}\right)\right]_{\mathbb{Z}}, \\
J-\sigma^{+} \subseteq\left[\sigma^{-}-\sigma^{+}, 0\right]_{\mathbb{Z}}=\left[\operatorname{mini}\left(I_{2}\right), \operatorname{maxi}\left(I_{2}\right)\right]_{\mathbb{Z}}, \\
J_{<0}-\sigma^{-} \subseteq\left[0,-\sigma^{-}\right]_{\mathbb{Z}} \subseteq\left[\operatorname{mini}\left(I_{3}\right), \operatorname{maxi}\left(I_{3}\right)\right]_{\mathbb{Z}}
\end{aligned}
$$

we can apply Lemma 2.6 (ii), if necessary twice, to deduce that

$$
l_{S}(\dot{x}(J)) \leqslant l_{S}(x)+2 D, \quad l_{S}(\dot{y}(J)) \leqslant l_{S}(y)+2 D, \quad l_{S}(\dot{z}(J)) \leqslant l_{S}(z)+2 D
$$

Since $l_{S}(x)+l_{S}(y)+l_{S}(z)=l_{S}(g)$, this gives

$$
l_{S}(\ddot{g}(J)) \leqslant l_{S}(g)+D^{\prime} \text { for } D^{\prime}=6 D+2 l_{S}\left(t^{2 C}\right)
$$

(ii) As in the discussion above suppose that $k^{+}=k_{\mathcal{W}, g}^{+}$and $k^{-}=k_{\mathcal{W}, g}^{-}$satisfy $k^{+} \leqslant k^{-}$; the other case $k^{-}<k^{+}$can be dealt with similarly. We have to check that g can be recovered from $\ddot{g}(J)$, if we are allowed to use one of the parameters σ^{+}, σ^{-}. Indeed, from $-\rho(\ddot{g}(J))=2\left(\sigma^{+}-\sigma^{-}\right)+4 C$ we deduce that in such a case both, σ^{+} and σ^{-}are available to us. Furthermore, Lemma 2.6 (i) gives

$$
\begin{aligned}
\operatorname{supp}(\dot{x}(J)) & \subseteq\left[\sigma^{-}-C+1, \sigma^{+}+C-1\right]_{\mathbb{Z}} \\
\operatorname{supp}\left(\dot{y}(J)^{-1}\right) & \subseteq\left[-C+1, \sigma^{+}-\sigma^{-}+C-1\right]_{\mathbb{Z}} \\
\operatorname{supp}(\dot{z}(J)) & \subseteq\left[-C+1, \sigma^{+}-\sigma^{-}+C-1\right]_{\mathbb{Z}},
\end{aligned}
$$

and thus

$$
\begin{aligned}
\operatorname{supp}(\ddot{g}(J))=\operatorname{supp}(\dot{x}(J)) & \cup\left(\operatorname{supp}\left(\dot{y}(J)^{-1}\right)+\sigma^{+}+2 C\right) \\
& \cup\left(\operatorname{supp}(\dot{z}(J))+2 \sigma^{+}-\sigma^{-}+4 C\right)
\end{aligned}
$$

allows us to recover $\dot{x}(J), \dot{y}(J)$ and $\dot{z}(J)$ via (3.5) and

$$
\begin{aligned}
\dot{x}(J)_{\mid i} & = \begin{cases}\ddot{g}(J)_{\mid i} & \text { for } i \in\left[\sigma^{-}-C, \sigma^{+}+C\right]_{\mathbb{Z}}, \\
1 & \text { for } i \in \mathbb{Z} \backslash\left[\sigma^{-}-C, \sigma^{+}+C\right]_{\mathbb{Z}},\end{cases} \\
\left(\dot{y}(J)^{-1}\right)_{\mid i} & = \begin{cases}\ddot{g}(J)_{\mid i+\sigma^{+}+2 C} & \text { for } i \in\left[-C, \sigma^{+}-\sigma^{-}+C\right]_{\mathbb{Z}}, \\
1 & \text { for } i \in \mathbb{Z} \backslash\left[-C, \sigma^{+}-\sigma^{-}+C\right]_{\mathbb{Z}},\end{cases} \\
\dot{z}(J)_{\mid i} & = \begin{cases}\ddot{g}(J)_{\mid i+2 \sigma^{+}-\sigma^{-}+4 C} & \text { for } i \in\left[-C, \sigma^{+}-\sigma^{-}+C\right]_{\mathbb{Z}}, \\
1 & \text { for } i \in \mathbb{Z} \backslash\left[-C, \sigma^{+}-\sigma^{-}+C\right]_{\mathbb{Z}} .\end{cases}
\end{aligned}
$$

Using (3.7), we recover $g=\dot{x}(J) \dot{y}(J) \dot{z}(J)$.
(iii) Again we suppose that $k^{+}=k_{\mathcal{W}, g}^{+}$and $k^{-}=k_{\mathcal{W}, g}^{-}$satisfy $k^{+} \leqslant k^{-}$; the other case $k^{-}<k^{+}$can be dealt with similarly. Let $J^{\prime} \subseteq\left[\sigma^{-}, \sigma^{+}\right]_{\mathbb{Z}}$ with $\left|J^{\prime}\right|=2$ such that $\ddot{g}(J)=\ddot{g}\left(J^{\prime}\right)$. As explained above, we can not only recover g but even $\dot{x}(J)=\dot{x}\left(J^{\prime}\right)$, $\dot{y}(J)=\dot{y}\left(J^{\prime}\right)$ and $\dot{z}(J)=\dot{z}\left(J^{\prime}\right)$ from $\ddot{g}(J)=\ddot{g}\left(J^{\prime}\right)$ and σ^{+}, say. Since $u \neq 1$ we deduce from (3.6) that $J=J^{\prime}$.

Proof of Theorem B We continue within the set-up established above; in particular, we employ the J-variants $\ddot{g}(J)$ of elements $g \in N$ for two-element subsets $J \subseteq$ $\left[\sigma_{g}^{-}, \sigma_{g}^{+}\right]_{\mathbb{Z}}$, with respect to a fixed representative function \mathcal{W} and a chosen element $u \in H \backslash\{1\}$.

Let $q: \mathbb{N} \rightarrow \mathbb{R}_{\geqslant 1}$ be a non-decreasing unbounded function such that $q \in o(\log n)$. We make use of the decomposition

$$
\begin{equation*}
N \cap B_{S}(n)=R_{q}(n) \cup R_{q}^{b}(n), \quad \text { for } n \in \mathbb{N} \text {, } \tag{3.10}
\end{equation*}
$$

where $R_{q}(n)=R_{\mathcal{W}, q}(n)$ is defined as in Proposition 3.2 and $R_{q}^{b}(n)=R_{\mathcal{W}, q}^{b}(n)$ denotes the corresponding complement in $N \cap B_{S}(n)$. Let $D^{\prime} \in \mathbb{N}$ be as in Lemma 3.6(i). Below we show that

$$
\begin{equation*}
\left|B_{S}\left(n+D^{\prime}\right)\right|>\frac{q(n)}{2}\left|R_{q}^{\mathrm{b}}(n)\right| \quad \text { for } n \in \mathbb{N} \text {. } \tag{3.11}
\end{equation*}
$$

This bound and submultiplicativity yield

$$
\frac{\left|R_{q}^{b}(n)\right|}{\left|B_{S}(n)\right|}<\frac{2\left|B_{S}\left(n+D^{\prime}\right)\right|}{q(n)\left|B_{S}(n)\right|} \leqslant \frac{2\left|B_{S}\left(D^{\prime}\right)\right|}{q(n)} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Together with Proposition 3.2 we deduce from (3.10) that N has density zero:

$$
\delta_{S}(N)=\lim _{n \rightarrow \infty} \frac{\left|N \cap B_{S}(n)\right|}{\left|B_{S}(n)\right|}=0,
$$

properly as a limit.
It remains to establish (3.11). The set $R_{q}^{\mathrm{b}}(n)$ decomposes into a disjoint union of subsets

$$
R_{q, \ell}^{\mathrm{b}}(n)=\left\{g \in N \cap B_{S}(n) \mid \sigma_{g}^{+}-\sigma_{g}^{-}=\ell\right\}, \quad \ell>q(n),
$$

and the map

$$
\begin{aligned}
F_{n}: R_{q}^{\mathrm{b}}(n) & \rightarrow \mathcal{P}\left(B_{S}\left(n+D^{\prime}\right)\right), \\
g & \mapsto\left\{\ddot{g}(J) \mid J \subseteq\left[\sigma_{g}^{-}, \sigma_{g}^{+}\right]_{\mathbb{Z}} \text { with }|J|=2\right\}
\end{aligned}
$$

restricts for each $\ell \in \mathbb{N}$ with $\ell>q(n)$, to a mapping

$$
F_{n, \ell}: R_{q, \ell}^{\mathrm{b}}(n) \rightarrow \mathcal{P}\left(\left(N t^{-2 \ell-4 C} \cup N t^{2 \ell+4 C}\right) \cap B_{S}\left(n+D^{\prime}\right)\right)
$$

see Lemma 3.6(i), (3.8) and (3.9).
We contend that for every $h \in\left(N t^{-2 \ell-4 C} \cup N t^{2 \ell+4 C}\right) \cap B_{S}\left(n+D^{\prime}\right)$, where $\ell>q(n)$, there are at most $\ell+1$ elements $g \in R_{q, \ell}^{\mathrm{b}}(n)$ such that $h \in F_{n}(g)$. Indeed, suppose that $h \in N t^{2 \ell+4 C} \cap B_{S}\left(n+D^{\prime}\right)$, with $\ell>q(n)$, and suppose that $g \in R_{q, \ell}^{\mathrm{b}}(n)$ such that $h=\ddot{g}(J)$ for some $J \subseteq\left[\sigma_{g}^{-}, \sigma_{g}^{+}\right]_{\mathbb{Z}}$ with $|J|=2$. Then $\sigma_{g}^{+} \in[0, \ell]_{\mathbb{Z}}$ takes one of $\ell+1$ values, and once σ^{+}is fixed, there is a way of recovering g, by Lemma 3.6 (ii). For $h \in N t^{-2 \ell-4 C} \cap B_{S}\left(n+D^{\prime}\right)$ the argument is similar.

From this observation and Lemma 3.6(ii) we conclude that

$$
\begin{aligned}
\left|\left(N t^{-2 \ell-4 C} \cup N t^{2 \ell+4 C}\right) \cap B_{S}\left(n+D^{\prime}\right)\right| & \geqslant \frac{1}{\ell+1}\binom{\ell+1}{2}\left|R_{q, \ell}^{\mathrm{b}}(n)\right| \\
& >\frac{q(n)}{2}\left|R_{q, \ell}^{\mathrm{b}}(n)\right| .
\end{aligned}
$$

Hence

$$
\left|B_{S}\left(n+D^{\prime}\right)\right|>\frac{q(n)}{2} \sum_{\ell>q(n)}\left|R_{q, \ell}^{\mathrm{b}}(n)\right|=\frac{q(n)}{2}\left|R_{q}^{\mathrm{b}}(n)\right|,
$$

which is the bound (3.11) we aimed for.

4 Proof of Theorem C

Throughout this section let G denote a finitely generated group of exponential word growth of the form $G=N \rtimes\langle t\rangle$, where
(a) the subgroup $\langle t\rangle$ is infinite cyclic;
(b) the normal subgroup $N=\left\langle\bigcup\left\{H^{t^{i}} \mid i \in \mathbb{Z}\right\}\right\rangle$ is generated by the $\langle t\rangle$-conjugates of a finitely generated subgroup H;
(c) the $\langle t\rangle$-conjugates of this group H commute elementwise: $\left[H^{t^{i}}, H^{t^{j}}\right]=1$ for all $i, j \in \mathbb{Z}$ with $H^{t^{i}} \neq H^{t^{j}}$.
Suppose further that $S_{0}=\left\{a_{1}, \ldots, a_{d}\right\} \subseteq H$ is a finite symmetric generating set for H and that the exponential growth rates of H with respect to S_{0} and of G with respect to $S=S_{0} \cup\left\{t, t^{-1}\right\}$ satisfy

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt[n]{\left|B_{H, S_{0}}(n)\right|}<\lim _{n \rightarrow \infty} \sqrt[n]{\left|B_{G, S}(n)\right|} \tag{4.1}
\end{equation*}
$$

This is essentially the setting of Theorem C; for technical reasons we prefer to work with symmetric generating sets. Our ultimate aim is to show that $\delta_{S}(N)=0$.

Using the commutation rules recorded in (c), it is not difficult to see that every $g \in N$ admits S-expressions of minimal length that take the special form

$$
\begin{align*}
& g=t^{-\sigma^{-}} \cdot\left(\prod_{i=\sigma^{-}}^{\sigma^{+}-1}\left(w_{i}\left(a_{1}, \ldots, a_{d}\right) t^{-1}\right)\right) \cdot w_{\sigma^{+}}\left(a_{1}, \ldots, a_{d}\right) \cdot t^{\sigma^{+}}, \tag{4.2}\\
& g=t^{-\sigma^{+}} \cdot\left(\prod_{j=\sigma^{-}}^{\sigma^{+}-1}\left(w_{\sigma^{+}+\sigma^{-}-j}\left(a_{1}, \ldots, a_{d}\right) t\right)\right) \cdot w_{\sigma^{-}}\left(a_{1}, \ldots, a_{d}\right) \cdot t^{\sigma^{-}}, \tag{4.3}
\end{align*}
$$

where the parameters $\sigma^{-}, \sigma^{+} \in \mathbb{Z}$ satisfy $\sigma^{-} \leqslant \sigma^{+}$and, for every $i \in\left[\sigma^{-}, \sigma^{+}\right]_{\mathbb{Z}}$, we have picked a suitable semigroup word $w_{i}=w_{i}\left(Y_{1}, \ldots, Y_{d}\right)$ in d variables of length $l_{S_{0}}\left(w_{i}\left(a_{1}, \ldots, a_{d}\right)\right)$. The lengths of the expressions (4.2) and (4.3) are equal to

$$
l_{S}(g)=\left|\sigma^{-}\right|+\left(\sigma^{+}-\sigma^{-}\right)+\left|\sigma^{+}\right|+\sum_{i=\sigma^{-}}^{\sigma^{+}} l_{S_{0}}\left(w_{i}\left(a_{1}, \ldots, a_{d}\right)\right)
$$

For the following we fix, for each $g \in N$, expressions as described and we use subscripts to stress the dependency on g : we write $\sigma_{g}^{-}, \sigma_{g}^{+}$and $w_{g, i}$ for $i \in\left[\sigma_{g}^{-}, \sigma_{g}^{+}\right]_{\mathbb{Z}}$, where necessary. The notation is meant to be reminiscent of the one introduced in Definition 2.3, but one needs to keep in mind that we are dealing with a larger class of groups now.

Lemma 4.1 In addition to the general set-up described above, let $q: \mathbb{N} \rightarrow \mathbb{R}_{>0}$ be a non-decreasing unbounded function such that $q \in o(n)$. Then the sequence of sets

$$
R_{q}(n)=\left\{g \in N \cap B_{S}(n) \mid-q(n) \leqslant \sigma_{g}^{-} \leqslant \sigma_{g}^{+} \leqslant q(n)\right\},
$$

indexed by $n \in \mathbb{N}$, satisfies

$$
\lim _{n \rightarrow \infty} \frac{\left|R_{q}(n)\right|}{\left|B_{S}(n)\right|}=0
$$

Proof For short we set $\mu=\lim _{n \rightarrow \infty} \sqrt[n]{\left|B_{H, S_{0}}(n)\right|}$ and $\lambda=\lim _{n \rightarrow \infty} \sqrt[n]{\left|B_{G, S}(n)\right|}$. According to (4.1) we find $\varepsilon \in \mathbb{R}_{>0}$ such that $(\mu+\varepsilon) / \lambda \leqslant 1-\varepsilon$ and $M=M_{\varepsilon} \in \mathbb{N}$ such that

$$
\left|B_{H, S_{0}}(n)\right| \leqslant M(\mu+\varepsilon)^{n} \quad \text { for all } n \in \mathbb{N}_{0} .
$$

This allows us to bound the number of possibilities for the elements $w_{g, i}\left(a_{1}, \ldots, a_{d}\right)$ in an S-expression of the form (4.2) for $g \in R_{q}(n)$ and, writing $\tilde{q}(n)=2\lfloor q(n)\rfloor+1$, we obtain

$$
\begin{aligned}
\left|R_{q}(n)\right| & \leqslant \sum_{\substack{m_{-\lfloor q(n)\rfloor}, \ldots, m_{\lfloor q(n)\rfloor} \in \mathbb{N}_{0} \text { st } \\
m_{-\lfloor q(n)\rfloor}+\cdots+m_{\lfloor q(n)\rfloor} \leqslant n}} \prod_{i=-\lfloor q(n)\rfloor}^{\lfloor q(n)\rfloor}\left|B_{H, S_{0}}\left(m_{i}\right)\right| \\
& \leqslant\binom{ n+\tilde{q}(n)}{\tilde{q}(n)} M^{\tilde{q}(n)}(\mu+\varepsilon)^{n},
\end{aligned}
$$

and hence

$$
\begin{equation*}
\frac{\left|R_{q}(n)\right|}{\left|B_{S}(n)\right|} \leqslant \frac{\left|R_{q}(n)\right|}{\lambda^{n}} \leqslant\binom{ n+\tilde{q}(n)}{\tilde{q}(n)} M^{\tilde{q}(n)}(1-\varepsilon)^{n} \quad \text { for } n \in \mathbb{N} \text {. } \tag{4.4}
\end{equation*}
$$

We notice that $q \in o(n)$ implies $\tilde{q} \in o(n)$. Thus Lemma 2.1 implies that $\binom{n+\tilde{q}(n)}{\tilde{q}(n)} M^{\tilde{q}(n)}$ grows sub-exponentially, and the term on the right-hand side of (4.4) tends to 0 as n tends to infinity.

Proof of Theorem C We continue to work in the notational set-up introduced above. In addition we fix a non-decreasing unbounded function $q: \mathbb{N} \rightarrow \mathbb{R} \geqslant 0$ such that $q \in o(n)$ and

$$
\begin{equation*}
\frac{\left|B_{S}(n)\right|}{\left|B_{S}(n-q(n))\right|} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{4.5}
\end{equation*}
$$

see Proposition 2.2. As in the proof of Theorem B, we make use of a decomposition

$$
N \cap B_{S}(n)=R_{q}(n) \cup R_{q}^{b}(n), \quad \text { for } n \in \mathbb{N} \text {, }
$$

where $R_{q}(n)$ is defined as in Lemma 4.1 and $R_{q}^{\mathrm{b}}(n)$ denotes the corresponding complement in $N \cap B_{S}(n)$.

In view of Lemma 4.1 it suffices to show that

$$
\begin{equation*}
\frac{\left|R_{q}^{b}(n)\right|}{\left|B_{S}(n)\right|} \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{4.6}
\end{equation*}
$$

It is enough to consider sufficiently large n so that $n>q(n)$ holds. For every such n and $g \in R_{q}^{\text {b }}(n)$, with chosen minimal S-expressions (4.2) and (4.3), we have $\sigma^{-}=$ $\sigma_{g}^{-}<-q(n)$ or $\sigma^{+}=\sigma_{g}^{+}>q(n)$, hence

$$
\left\{g t^{-q(n)}, g t^{q(n)}\right\} \cap B_{S}(n-q(n)) \neq \varnothing .
$$

As each of the right translation maps $g \mapsto g t^{-q(n)}$ and $g \mapsto g t^{q(n)}$ is injective, we conclude that

$$
\left|R_{q}^{b}(n)\right| \leqslant 2\left|B_{S}(n-q(n))\right|,
$$

and thus (4.6) follows from (4.5).
Acknowledgements We thank two independent referees for detailed and valuable feedback. Their comments triggered us to improve the exposition and to sort out a number of minor shortcomings. In particular, this gave rise to Proposition 2.2.

Author Contributions All the authors contributed equally to this work.
Funding Open Access funding enabled and organized by Projekt DEAL.
Data availability Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Antolín, Y., Martino, A., Ventura, E.: Degree of commutativity of infinite groups. Proc. Amer. Math. Soc. 145(2), 479-485 (2017)
2. Burillo, J., Ventura, E.: Counting primitive elements in free groups. Geom. Dedicata. 93, 143-162 (2002)
3. Cox, C.G.: The degree of commutativity and lamplighter groups. Internat. J. Algebra Comput. 28(7), 1163-1173 (2018)
4. Erdős, P., Turán, P.: On some problems of a statistical group-theory. IV. Acta Math. Acad. Sci. Hungar. 19, 413-435 (1968)
5. Guralnick, R.M., Robinson, G.R.: On the commuting probability in finite groups. J. Algebra 300(2), 509-528 (2006)
6. Gustafson, W.H.: What is the probability that two group elements commute? Amer. Math. Monthly 80(9), 1031-1034 (1973)
7. De la Harpe, P.: Topics in Geometric Group Theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (2000)
8. Martino, A., Tointon, M.C., Valiunas, M., Ventura, E.: Probabilistic nilpotence in infinite groups. Israel J. Math. 244(2), 539-588 (2021)
9. Neumann, P.M.: Two combinatorial problems in group theory. Bull. London Math. Soc. 21(5), 456-458 (1989)
10. Pittet, Ch.: The isoperimetric profile of homogeneous Riemannian manifolds. J. Differential Geom. 54(2), 255-302 (2000)
11. Rusin, D.J.: What is the probability that two elements of a finite group commute? Pacific J. Math. 82(1), 237-247 (1979)
12. Shalev, A.: Probabilistically nilpotent groups. Proc. Amer. Math. Soc. 146(4), 1529-1536 (2018)
13. Tointon, M.C.H.: Commuting probabilities of infinite groups. J. London Math. Soc. 101(3), 1280-1297 (2020)
14. Valiunas, M.: Rational growth and degree of commutativity of graph products. J. Algebra 522, 309-331 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: The first author acknowledges support by the Basque Government, grant POS_2021_2_0040. The third author is supported by Spanish Ministry of Science, Innovation and Universities' grant FPU17/04822. The first and third author acknowledge as well support by the Basque Government, project IT483-22, and the Spanish Government, project PID2020-117281GB-I00, partly funded by ERDF. The authors thank Heinrich-Heine-Universität Düsseldorf, where a large part of this research was carried out.

 B Benjamin Klopsch
 klopsch@math.uni-duesseldorf.de
 Iker de las Heras
 iker.delasheras@ehu.eus
 Andoni Zozaya
 andoni.zozaya@ehu.eus
 1 Department of Mathematics, Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, 40225 Düsseldorf, Germany
 2 Department of Mathematics, University of the Basque Country UPV/EHU, 48940 Leioa, Spain

[^1]: ${ }^{1}$ At this stage the sign change is a price we pay for not introducing notation for left-conjugation; Example 2.4 illustrates that σ plays a convenient role in the concept of itinerary.

