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Abstract
Given an arbitrary set �, we consider the collections SS(�), SR(�) and SO(�) of
all the set systems, the binary set relations and the set operators on �. We introduce
the notion of linking map on � as any map whose domain and codomain may be
chosen between the above collections. After providing a descriptive overview useful
for framing the notion of linking map in a broad non-specialized context, we explain
how linking maps occur in a very natural way in two specific results. The first of
these results concerns the classic identification between the subfamily EQ(�) of all
the equivalence relations on � and the subfamily SP(�) of all the set partitions on �.
Starting from it, we introduce a new subfamily ESO(�) of closure operators on� and
four linking maps whose restrictions to the subfamilies EQ(�), SP(�) and ESO(�)

are bijections. The second result concerns the identification between the subfamily
CSO(�) of all closure set operators on � and the subfamily CSS(�) of all closure set
systems on �. Starting from it, we introduce a new subfamily DSR(�) of binary set
relations and four linkingmapswhose restrictions to the subfamiliesCSO(�), CSS(�)

and DSR(�) are again bijections. In an attempt to extend in a natural way the above
linking maps to categorical isomorphisms, after fixing a nonnegative integer k, we
introduce three categories SSk, SRk and SOk, whose detailed study mainly occupies
the first part of the present work. Objects and arrows of these three categories are
obtained by means of k-iterations of the powerset functor ℘ : Set −→ Set, and they
generalize the notions of set systems, set relations and set operators, respectively. In
the second part of the paper, we extend the linking maps previously described at a
categorical level in terms of isomorphisms between specific categories of set systems,
binary set relations and set operators generalizing the occurring collections introduced
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before, and also prove numerous other results concerning the main properties of all
these categories, such as completeness, cocompleteness and Cartesian closedness.

Keywords Set systems · Set operators · Dependence relations · Closure operators ·
Categories · Functors · Complete and Cartesian closed categories · Linking maps
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1 Introduction

1.1 Motivation and framing of the paper

In many contexts from both mathematics and theoretical computer science three types
of families associated with an arbitrary fixed set � assume a substantial relevance,
namely the collection SS(�) ..= ℘(℘(�)) of all set systems on � (in the whole paper
℘(�) denotes the powerset of �), the collection SR(�) ..= ℘(℘(�)×℘(�)) of all set
relations on �, and the collection SO(�) of all the maps σ : ℘(�) −→ ℘(�), that are
usually called set operators on �.

More in detail, in the previous contexts, many notions and corresponding results
may be reformulated and refined in terms of set systems, set relations, set operators
and through appropriate maps between such collections. We will call linking maps on
� these kinds of maps, and set relation geometry on � any fixed family of linking
maps on �.

The main purpose of the present work is twofold:

• to provide an accurate study of some types of linking maps, which permits to
reinterpret classical results for equivalence relations and closure operators in much
more general and categorical context (see Theorems 5.4 and 6.6);

• to frame in a suitable way the notion of linking map in a categorical context,
analyzing its functoriality after introducing new concretizable categories and sub-
categories [25] of set systems, set relations and set operators, bymeans of iterations
of the usual powerset functor of the set category Set.

There are many studies that fit within such a framework, and to this regard we refer
the reader to a (not exhaustive) part of theseworks, some ofwhich on puremathematics
[2, 6, 10, 17, 20, 21], and others on an intermediate scope between mathematics and
theoretical computer science [22–24, 28, 29, 35]. However, two of the main sources
of inspiration for the basic ideas developed in this work can be traced back to the
coarse- and weak-shape theories, mainly dealt with in topological contexts (for details
on these links, we refer the reader to [31]).

Two very relevant and common cases in large part of both mathematics and theoret-
ical computer science concern the classic notions of equivalence relation and closure
operator (recall that a set closure operator is a set operator which is extensive, increas-
ing and idempotent).
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Clearly, any element of EQ(�) (i.e. the collection of all equivalence relations on
�) may be also uniquely identified with a corresponding element of SR(�), simply
by identifying any element x ∈ � with the singleton {x} ∈ ℘(�). Therefore we
can see EQ(�) as a subfamily of SR(�). Let moreover SP(�) ⊆ SS(�) be the
collection of all set partitions on � and ESO(�) be the collection of a new type of set
operators on�, that we call equivalence set operator. These are extensive set operators
σ ∈ SO(�) for which σ(X) = ⋃{σ({x}) | x ∈ X} for each X ∈ ℘(�), and such that
the condition σ({x}) = σ({y}) is equivalent to σ({x})∩σ({y}) �= ∅ for any x, y ∈ �

(see Definition 5.1).
At a first elementary level, it is well known how to identify to each other the ele-

ments of EQ(�) and SP(�). However, going further the aforementioned level, we can
see that two more general maps Pa : SR(�) −→ SS(�) and Eq : SS(�) −→ SR(�),
respectively defined by PaR ..= {NR(x) | x ∈ �} for any R ∈ SR(�), where
NR(x) ..= {y ∈ � | ({x}, {y}) ∈ R or ({y}, {x}) ∈ R}, and by EqF

..= {({x}, {y}) ∈
℘(�)×℘(�) | ∃ Z ∈ F [{x, y} ⊆ Z ]}, for each F ∈ SS(�), induce such an identifi-
cation.

It is clear that the two above maps Pa and Eq are not inverses of each other.
Nevertheless, their corresponding restrictions to the subfamilies EQ(�) and SP(�),
respectively, are inverses of each other, providing the usual identification between
equivalence relations and set partitions.

We now analyze the link between set partitions and equivalence set operators by
means ofmaps between SS(�) and SO(�). To this regard let Up : SS(�) −→ SO(�),
defined by UpF(X) ..= ⋃{Y ∈ F | X ∩ Y �= ∅}, for each F ∈ SS(�) and any
X ∈ ℘(�), and Qa : SO(�) −→ SS(�) defined by Qa(σ ) ..= {σ({x}) | x ∈ �}, for
each σ ∈ SO(�). Then, even in this case, the maps Up and Qa are not inverses of
each other, but they become such after restricting them to the subfamilies SP(�) and
ESO(�), respectively.

Another similar situation occurs when we consider the subfamilies CSO(�) of all
closure set operators on�, CSS(�) of all closure set systems on� (they are set systems
containing � and closed with respect to arbitrary intersections) and DSR(�) of all
dependence set relations on� [14] (seeDefinition 6.1). In this case, let η : SR(�) −→
SO(�), Cl : SS(�) −→ SO(�), � : SO(�) −→ SR(�) and Fix : SO(�) −→
SS(�) be the maps defined respectively by ηR(X) ..= ⋃{Y ∈ ℘(�) | (Y , X) ∈ R},
ClF(X) ..= ⋂{Y ∈ F | X ⊆ Y }, �(σ) ..= {(Z ,W ) ∈ ℘(�)×℘(�) | Z ⊆ σ(W )} and
Fix(σ ) ..= {X ∈ ℘(�) | σ(X) = X}, for any R ∈ SR(�), F ∈ SS(�), σ ∈ SO(�)

and X ∈ ℘(�).
Then it results that the restriction of the map Cl to the subfamily CSS(�) is the

inverse of the restriction of the map Fix to the subfamily CSO(�). Moreover, the
restriction of the map � to the subfamily CSO(�) is the inverse of the map η to the
subfamily DSR(�) (see Proposition 5.3).

The previous bijections between equivalence relations, set partitions, equivalence
set operators, and between closure set operators, closure set systems, dependence set
relations, provide two relevant examples of the possibility to describe classical results
in terms of specificmapswhose domain and codomainmay be chosen between SS(�),
SR(�) and SO(�). Because of their importance, we name thesemaps that we consider
as the starting point of the present work.
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Definition 1.1 Let B,C ∈ {SO(�),SS(�),SR(�)}. We call any map β : B −→ C
a linking map on �. We also call any collection of linking maps on � a set relation
geometry on �.

A particularly interesting situation occurs when one endows the ground set � with
some algebraic, topological, combinatorial or order structure, and investigates a fixed
set relation geometry on such amathematical structure. In fact, such a type of study can
help to find new and non-trivial classifications of families of substructures which are
naturally induced by the mutual interrelations of the linking maps that constitute the
assigned relation geometry on �. Some recent studies in this perspective concern the
cases where� is an abelian variety over a finite field [26], a special type of DG-module
[27], a particular space of polynomial automorphisms [4, 5], an integral domain [15,
19], a left-act of monoid [12], a module on a unitary ring [13], a finite lattice [11].
However, in the present paper we do not take any additional structure on the ground
set �.

At this point it is convenient to frame the two specific aforementioned examples in
a more formal way, introducing the next notion of sub-bijection, that will be a starting
point in order to determine new corresponding categorial isomorphisms.

Definition 1.2 Let B,C ∈ {SO(�),SS(�),SR(�)}. We say that a formal writing of
the type

(B |B′) (C |C′)
β

γ

is a (B,C)-sub-bijection if B′ ⊆ B, C′ ⊆ C, and β : B −→ C, γ : C −→ B are two
linking maps such that:

(i) β(B) ∈ C′ for all B ∈ B′ and γ (C) ∈ B′ for all C ∈ C′;
(ii) γ (β(X)) = X for all X ∈ B′ and β(γ (Y)) = Y for all Y ∈ C′.
Moreover, if n � 2 and B1, . . . ,Bn ∈ {SO(�),SS(�),SR(�)}, we say that the
formal writing

(B1 |B′
1) (B2 |B′

2) · · · (Bn−1 |B′
n−1) (Bn |B′

n)
β1 β2

γ1

βn−2

γ2

βn−1

γn−2 γn−1

is a (B1, . . . ,Bn)-sub-bijection if

(Bk |B′
k) (Bk+1 |B′

k+1)
βk

γk

is a (Bk,Bk+1)-sub-bijection for each k = 1, . . . , n − 1.

By means of the above terminology and notations, we may express the bijection
between equivalence relations, set partitions and equivalence set operators in terms of
the following (SR(�),SS(�),SO(�))-sub-bijection (see Proposition 5.3):

(SR(�) |EQ(�)) (SS(�) |SP(�)) (SO(�) |ESO(�)),
Pa Up

Eq Qa
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and, similarly,wemayexpress the bijection between closure systems, closure operators
and dependence relations in terms of the following (SS(�),SO(�),SR(�))-sub-
bijection (see Proposition 6.4):

(SS(�) |CSS(�)) (SO(�) |CSO(�)) (SR(�) |DSR(�)).
Cl �

Fix η
(1)

Clearly,whenwehave a set relationgeometrywhose linkingmaps are sub-bijections
it is possible to carry out the results concerning specific subfamilies of set systems,
and to express them in terms of set relations or set operators.

Note that in Definition 1.2 the bijections induced by the linking maps β and γ

are their respective restrictions on B′ and C′. Therefore, one could question the real
need for the introduction of the maps β and γ on the ambient families B and C.
The answer to such a legitimate question comes from our explicit desire to highlight
that the bijections between B′ and C′ derive from maps defined on more general
domains. To this regard, in fact, it can happen that there are two bijections between
two pairs of distinct subfamilies (B′,C′) and (B′′,C′′) ofB and C which derive from
a same pair (β, γ ) of linking maps defined between B and C. For instance, if B =
SS(�), C = SO(�), ATOP(�) ..= {F ∈ SS(�) |F is the family of closed sets of an
Alexandroff topology on �} and ACSO(�) ..= {σ ∈ SO(�) | σ is the Kuratowski
closure operator of an Alexandroff topology on �}, then we get the further
(SS(�),SO(�))-sub-bijection compared to the first of the sub-bijections explicited
in (1)

(SS(�) |ATOP(�)) (SO(�) |ACSO(�)).
Cl

Fix

Similarly, when � is a finite arbitrary set, the same maps give rise to the
(SS(�),SO(�))-sub-bijection

(SS(�) |FLAT(�)) (SO(�) |MLS(�)),
Cl

Fix

where FLAT(�) ..= {F ∈ SS(�) |F is the family of flats of a matroid on �} and
MLS(�) ..= {σ ∈ SO(�) | σ is the Mac Lane–Steinitz closure operator of a matroid
on �}.Hence, the bijections between different subfamilies ofB and Cmight or might
not derive from a same pair (β, γ ) of linking maps. In other terms, from a conceptual
point of view, two distinct situations occur. In our work, we want to highlight the case
where the sub-bijections come from a given fixed pair (β, γ ). The reason for that is
related to the observation that various cryptomorphisms [16], beyond those previously
described, that occur in matroid theory or topology arise starting from maps defined
on domains that are more general than those between which the cryptomorphism is
established. Clearly, when proceeding towards a categorical extension, it is not guar-
anteed that the behavior of the maps β and γ is functorial. Nevertheless, though such
an obstruction may occur, in Definition 1.2 we emphasized the fact that the bijections
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among subfamilies of B and C arise from two fixed maps defined on a more general
ambient.

Set relation geometries with their corresponding linking maps occur, more or less
explicitly, in great part of both mathematical and theoretical computer science lit-
erature. To this regard, many works have been cited in the first part of the present
subsection. Here we can further mention the monographs [32, 33], and again matroid
theory, with regard to its classical results [34].

It is worthwhile noticing that all the previous notions rely on the hypothesis that
the ground set � is given. Thus it is natural to ask what happens to both the above
collections and corresponding linking maps if the set� is no longer fixed. In this case,
we are clearly led to an analysis of the aforementioned collections and maps from a
categorical outlook. In fact, it is natural to think of each element of the collections
SS(�), SR(�) and SO(�) as a particular object of specific corresponding categories,
and, possibly, each linking map as a particular type of functor among these categories
or their subcategories. The introduction and the study of these categories, of some
of their subcategories and of several functors defined between them is the primary
purpose of the present paper, whose detailed content will be described in the next
subsection.

1.2 Content of the paper

As mentioned in the previous subsection, our primary goal is to extend some classic
linking maps to a categorical level. To this end, we first need to remove the fixed
parameter given by the ground set �. Secondly, we need to determine specific fami-
lies of arrows, allowing us to transform the aforementioned linking maps into suitable
functors between these categories or between some of their subcategories. Our con-
structions rely in natural way on the k-th iterations of the usual powerset functor
℘ : Set −→ Set, where k is a fixed nonnegative integer. The particular case which
includes the study of the aforementioned linking maps corresponds to the value k = 1,
and the case that includes the equivalence relations to the value k = 0.

Let us highlight that the categorical extension of linking maps passes from the
suitable definition of morphisms. To this regard, as we will work with structures, i.e.
sets endowed with set systems, set relations or set operators, a natural choice consists
of working with structure-preserving functions.

More in detail, for any fixed integer k � 0, let ℘k be the composition of k times
the powerset functor ℘ (the case k = 0 corresponds to the identity functor). We first
consider the category SSk, whose objects are pairs of the form (�,F), where � is an
arbitrary set (no longer fixed) and F is a set system on ℘k−1(�)when k � 1, or simply
a subset of� if k = 0.As arrows between two given objects (�,F) and (�′,F′) ofSSk,
we take the maps between sets f : � −→ �′ for which ℘k f (X) ..= (℘k f )(X) ∈ F′,
whenever X ∈ F. We call SSk the category of the k-set systems.

Next we introduce the category SRk of the k-set relations, whose objects are pairs
of the form (�,R), where � is an arbitrary set and R ∈ ℘(℘k(�)×℘k(�)). The
arrows of SRk from (�,R) to (�′,R′) are the set maps f : � −→ �′ such that
(℘k f (X),℘k f (Y )) ∈ R′, whenever (X ,Y ) ∈ R.
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Finally, for any k � 1 we introduce three categories of set operators, denoted by
SOk, SOk,	 and SOk,
, and called the k-set operator, (k,	)-set operator and (k,
)-
set operator category, respectively. The objects of all these three categories are the
pairs (�, σ ), where� is an arbitrary set, and σ is a set operator on ℘k−1(�). However,
they differ with respect to the arrows. More specifically, given two objects (�, σ ) and
(�, σ ′), the corresponding arrows in the above three categoriesSOk ,SOk,	 andSOk,

are ordered pairs ( f , f ′) of set maps f , f ′ : � −→ �′ such that ℘k f ′(σ (X)) =
σ ′(℘k f (X)), ℘k f ′(σ (X)) ⊆ σ ′(℘k f (X)) and ℘k f ′(σ (X)) ⊇ σ ′(℘k f (X)), for any
X ∈ ℘k(�), respectively.

For set operators, the situation ismore complex than for the categories of set systems
and set relations. In this case, indeed, it is necessary to introduce the above three specific
types of arrows.

In Sect. 3, after introducing all the above categories, we establish the first basic
properties of their arrows. To this regard, we characterize monomorphisms, epi-
morphisms and isomorphisms of the categories SSk, SRk, SOk,	 and SOk,
 (see
Propositions 3.7, 3.8 and 3.9, respectively). With regard to the category SOk, we
characterize its isomorphisms (see Proposition 3.10), whereas the complete charac-
terization of its monomorphisms and epimorphisms is left as an open question.

Section 4 contains three subsections. More in detail, in Sect. 4.1 we prove that
both the categories SSk and SRk are bicomplete (see Theorems 4.1 and 4.2), while
in Sect. 4.2 we show that both the categories SSk and SRk are Cartesian closed (see
Theorem 4.6).

Finally, in Sect. 4.3 we prove some fundamental properties of the categories SOk,
SOk,	 and SOk,
. We will see that the two categories SOk,	 and SOk,
 are substan-
tially different, though at a first glance their properties might seem to be in a certain
sense dual.

In particular, in Theorem 4.7 we show that the category SOk is neither complete
nor cocomplete since it does not admit neither the initial nor the terminal object. With
regard to the remaining two categories, using the fact SOk,	 has both the initial and
terminal object, whereas SOk,
 admits no initial object, we prove in Theorem 4.10
that the two categories SOk,	 and SOk,
 cannot be neither equivalent nor dually
equivalent. Indeed, the main result of the present section (see Theorem 4.12) ensures
the completeness of the category SOk,	, whereas in Proposition 4.15 we show that,
in general, SOk,
 admits no equalizers, so that it turns out to be not complete.

In Sect. 5 we develop the considerations exposed in Sect. 1.1, concerning the exten-
sion at categorical level of the sub-bijection obtained in Proposition 5.3. To this regard,
we first consider the full subcategoryEQ ofSR0 whose objects are pairs (�,R), where
� is an arbitrary set and R ∈ EQ(�). Next, we introduce the subcategory ESO1,	,=,
whose objects are pairs (�, σ ), where � is an arbitrary set and σ ∈ ESO(�), and
whose arrows are those of SO1,
 of the form ( f , f ).

Finally we consider the category SP whose objects are pairs (�,F), where � is
an arbitrary set, F ∈ SP(�) and, for every two of its objects (�,F) and (�′,F′), the
corresponding arrows are the set maps f : � −→ �′ such that ℘2 f (F) � F′, where
� denotes the usual refining partial order on SP(�′).

Starting from of the above three categories with their corresponding arrows, we
extend the linking maps given in the sub-bijection obtained in Proposition 5.3 to four
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corresponding functors, through which we prove in Theorem 5.4 the existence of
isomorphisms between the categories EQ, ESO1,	,= and SP.

In Sect. 6 we deal with categories of closure operators, closure systems and depen-
dence relations. Regarding closure set systems, we introduce the category CSS1 as
the full subcategory of SS1 whose objects consists of the pairs (�,F), where � is an
arbitrary set and F ∈ CSS(�). Analogously, we consider the full subcategory DSR1

of SR1 whose objects consists of the pairs (�,R), where � is an arbitrary set and /.
Concerning closure operators, we need to introduce two distinct categories, namely
CSO1,	,= andCSO1,
,=. Their objects agree and are the pairs (�, σ ), where � is an
arbitrary set and σ ∈ CSO(�), while the arrows of CSO1,	,= are those of SO1,	 of
the form ( f , f ) (and, similarly, for the arrows of the category CSO1,
,=).

In Theorem 6.5 we show that the category DSR1 is complete. Next, we again
develop the considerations discussed in Sect. 1.1 about the extension at a categorical
level of the sub-bijection obtained in Proposition 6.4. To this regard, such a functorial
extension has been provided in Theorem 6.6.

At this point it is appropriate to make a brief consideration regarding a comparison
between the statements of Theorems 5.4 and 6.6. In fact, in Theorem 5.4, each of the
three factors of the sub-bijection of Proposition 5.3 “extends to a unique category”,
while, in Theorem 6.6, closure operators cannot be extended to a unique category in
order to obtain the desired categorical isomorphisms. Actually, to achieve such an
aim, we need to consider the two distinct categories CSO1,	,= and CSO1,
,= which,
despite having the same objects, require different types of arrows.

Therefore, although Theorem 6.6 seems to yield a weaker kind of result than that of
Theorem 5.4, it might lead to the development of future research perspectives, where
one deals with the possible cases occurring when the determination of categorical iso-
morphisms (or equivalences) needs the introduction of categories, extending specific
linking maps, and having the same class of objects but different arrows.

In Proposition 6.7 we prove some further basic results concerning the categories
CSS1, CSO1,	,= and CSO1,
,=. Finally, in Theorem 6.11 we prove the commuta-
tivity condition � ◦ClDSR(�) = � = Fix◦	, where � and 	 are two linking maps
frequently used in theoretical computer science.

2 Notations and brief reviews on categories, set systems and set
operators

In this brief preliminary sectionwe introduce themain notations concerning categories
and functors that wewill use in thewhole paper. Next, we also recall some fundamental
notions on set systems, set operators and set relations.

If I is an index set and fi : �i −→ �′
i is amap between sets for any i ∈ I , we denote

by
∏{ fi | i ∈ I } their Cartesian product and we set f1× · · · × fk ..= ∏{ fi | i ∈ I }

when I = {1, . . . , k}. Moreover, if �i = � for any i ∈ I , we denote by
∏̇{ fi | i ∈ I }

the map from � to
∏{�′

i | i ∈ I } associating the element ( fi (z))i∈I with every z ∈ �.
For all the main notions and results on categories, we refer the reader to [7–9],

while, for the basics on classes and sets, we refer the reader to [30]. In this paper we
only deal with covariant functors, so we use the term functor as equivalent to covariant
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functor. We denote by Set the usual category whose objects are sets and whose arrows
are maps between sets.

Let C be a given category. We denote by Obj(C) and Arr(C) the classes of the
objects and arrows (or equivalentlymorphisms) ofC, respectively.Moreover, if A, B ∈
Obj(C), we denote by ArrC(A, B) the arrows f ∈ Arr(C) with A as domain and B as
codomain.

If I is an index set and {Xi | i ∈ I } is a family of sets, we denote by
∐{Xi | i ∈ I }

the coproduct of {Xi | i ∈ I } in the category of sets. This is the disjoint union
⊍ {Xi ×{i} | i ∈ I }. However, in this work, we always identify any set X j with the
subset X j ×{ j} of ∐{Xi | i ∈ I }. Notice that if ξ j : X j ↪→ X denotes the inclusion
map and Y ∈ ℘(X j ), then ℘ξ j (Y ) = Y ∈ ℘(∐{Xi | i ∈ I }).

Definition 2.1 A category C is called concretizable if there exists a faithful functor
F : C −→ Set.

Let ℘ be the powerset functor on the category Set. For any nonnegative integer k,
we denote by ℘k the k-th iteration of the functor ℘ with respect to the composition.
In particular, ℘0 agrees with the identity functor of Set and ℘1 = ℘. When working
in a set-theoretical context, we usually write ℘ instead of ℘1. For any � ∈ Obj(Set)
and h � 1, we denote by �h the Cartesian product of h copies of �. In particular, we
often write ℘k(�)2 instead of ℘k(�)×℘k(�), and so on. If f ∈ Arr(Set), we usually
write 〈2〉 instead of f × f . In particular, we write (℘k f )〈2〉 instead of ℘k f ×℘k f .

Let � be an arbitrary fixed set. We set SS(�) ..= ℘(℘(�)) and SR(�) ..=
℘(℘(�)×℘(�)). We call set system on � any element F ∈ SS(�) and set relation on
� any element R ∈ SR(�).

We say that a non-empty set system F ∈ SS(�) is:

• a closure set system on � if � ∈ F and whenever F′ ⊆ F then
⋂

F′ ∈ F. We
denote by CSS(�) the collection of all closure set systems on �;

• a set partition on� if
⋃

F = � and whenever X ,Y ∈ F it results that X ∩Y = ∅.
We denote by SP(�) the collection of all set partitions on �.

A set operator on � is any map σ : ℘(�) −→ ℘(�), and we denote by SO(�) the
family of all set operators on �. The binary relation 	 on SO(�) defined by

σ 	 σ ′ :⇐⇒ ∀X ∈ ℘(�) [σ(X) ⊆ σ ′(X)],

for any σ, σ ′ ∈ SO(�) is clearly a partial order on SO(�).
We say that a set operator σ ∈ SO(�) is:

• extensive if X ⊆ σ(X), for any X ∈ ℘(�);
• increasing if whenever X ,Y ∈ ℘(�) and X ⊆ Y , then σ(X) ⊆ σ(Y );
• idempotent if σ(σ(X)) = σ(X), for any X ∈ ℘(�);
• a closure set operator on � if it is extensive, increasing and idempotent, and we
denote by CSO(�) the set of all the closure set operators on �.

If σ ∈ SO(�), we set σ 0 ..= Id℘(�) and σ k ..= σ k−1 ◦σ , for any integer k � 1.
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3 Categories of set systems, set relations and set operators

Let k be a given nonnegative integer. In this section we introduce and analyze the
basic properties of the arrows of three categories SSk, SRk and SOk, and some of
their corresponding subcategories, which will be the main topic of the present paper.
The objects of such categories are pairs constituted by a ground set and a corresponding
set system, set relation or a set operator respectively. The exponent k determines the
iteration of the powerset functor ℘ occurring in the definition of the corresponding
arrows.

When we fix the ground set � and an associated set system F ∈ ℘k(�), we can
consider the pair (�,F) as an object of a category. We may take as arrows the maps
f : � −→ �′ for which the k-th iteration ℘k sends elements of F to elements of F′.
In such a way, we are led to consider the category SSk for which

Obj(SSk) ..= {
(�,F) | � ∈ Obj(Set), F ∈ ℘k+1(�)

}
,

and such that for any pair of its objects (�,F) and (�′,F′), the corresponding arrow
set is defined by

ArrSSk((�,F), (�′,F′)) ..= {
f ∈ ArrSet(�,�′) | ∀X ∈ F [℘k f (X) ∈ F′]},

where the composition law is induced by that of Set. Clearly, the intrinsic nature of
the arrows in the category SSk is local, because it is carried on ℘k(�) by means of the
application of the k-th iteration of ℘ on any function defined on the ground set �.

Definition 3.1 We call SSk the category of the k-set systems.

For every k, the category SSk has a reflective subcategory isomorphic to Set. More-
over, as one intuitively expects, the category SSk embeds in a quite natural way into
the category SSk+1. In fact, consider the correspondence Sk : SSk −→ SSk+1, where
Sk(�,F) ..= (�, {{X} | X ∈ F}) for any (�,F) ∈ Obj(SSk), and Sk f ..= f for any
f ∈ Arr(SSk). Then the following result holds.

Proposition 3.2 Sk is a full embedding.

Proof It is immediate to check that Sk is an embedding by its definition. It remains
to prove that Sk is a full functor. To this end, let f ∈ ArrSSk+1(Sk(�,F), Sk(�′,F′))
and X ∈ F. Now, since

℘
k+1 f ({X}) ∈ {{X ′} | X ′ ∈ F′} and ℘k+1 f ({X}) = {℘k f (X)},

we deduce that ℘k f (X) ∈ F′ and, hence, f ∈ ArrSSk((�,F), (�′,F′)), so that Sk is
full. ��

As for set systems, when we fix � and a binary relation R ⊆ ℘k(�)×℘k(�), we
can consider the pair (�,R) as an object of a category of binary relations. In such a
way, we consider the category SRk, whose object class is

Obj(SRk) ..= {
(�,R) | � ∈ Obj(Set), R ∈ ℘(℘k(�)×℘k(�))

}
,
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and having arrow set given by

ArrSRk((�,R), (�′,R′)) ..=
{

f ∈ ArrSet(�,�′)
∣
∣
∣
∣

∀(X , Y ) ∈ R

[(℘k f (X), ℘k f (Y )) ∈ R′]

}

,

for any pair of objects (�,R), (�′,R′) ∈ Obj(SRk). Also in this case the composition
law is that induced by the corresponding composition law in Set.

Definition 3.3 We call SRk the category of the k-set relations.

Also for the category SRk, we can check in a natural way that SRk embeds
into SRk+1. In fact, consider the correspondence Rk : SRk −→ SRk+1, where
Rk(�,R) ..= (�, {({X}, {Y }) | (X ,Y ) ∈ R}) for any (�,R) ∈ Obj(SRk), and
Rk f ..= f for any f ∈ Arr(SRk). Then the following result holds.

Proposition 3.4 Rk is a full embedding.

Proof It is immediate to verity that Rk is an embedding. We now show that Rk is also
a full functor.

Let ((�,R), (�′,R′)) ∈ Obj(SRk) and f ∈ ArrSRk+1(Rk(�,R), Rk(�′,R′)). By
the definition of Rk, in order to obtain the conclusion of the present part (ii) we
must prove that f ∈ ArrSRk((�,R), (�′,R′)). To this regard, let (X ,Y ) ∈ R. Then
({X}, {Y }) ∈ Rk(�,R), and therefore

({℘k f (X)}, {℘k f (Y )}) = (℘k+1 f ({X}),℘k+1 f ({Y })) ∈ Rk(�′,R′)
= {({X ′}, {Y ′}) | (X ′,Y ′) ∈ R′},

whence (℘k f (X),℘k f (Y )) ∈ R′. Hence f ∈ ArrSRk((�,R), (�′,R′)). ��
Finally we introduce the categories whose objects are set operators induced by

maps between sets. In this case, assume k � 1.We call anymap σ : ℘k(�) −→ ℘
k(�)

(that is, equivalently, any arrow σ ∈ ArrSet(℘k(�),℘k(�)) a k-set operator on �. In
particular, a 0-set operator σ on � is a map σ : � −→ � and a 1-set operator σ on
� is a map σ : ℘(�) −→ ℘(�) (which in literature is usually called a set operator
on �). We introduce now three categories of k-set operators, denoted by SOk, SOk,	
and SOk,
, which are induced by means of the functor ℘k. More in detail, we set

Obj(SOk) = Obj(SOk,	) = Obj(SOk,
)

..= {
(�, σ ) | � ∈ Obj(Set), σ ∈ ArrSet(℘

k(�),℘k(�))
}
,

and for any (�, σ ), (�′, σ ′) ∈ Obj(SOk),

ArrSOk((�, σ ), (�′, σ ′)) = {
(g, g′) ∈ ArrSet(�,�′)2 | ℘kg′ ◦σ = σ ′ ◦℘kg},

ArrSOk,⊆((�, σ ), (�′, σ ′)) = {
(g, g′) ∈ ArrSet(�,�′)2 | ℘kg′ ◦σ 	 σ ′ ◦℘kg},

ArrSOk,⊇((�, σ ), (�′, σ ′)) = {
(g, g′) ∈ ArrSet(�,�′)2 | ℘kg′ ◦σ 
 σ ′ ◦℘kg}.
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The composition law in SOk (and analogously in SOk,	 and in SOk,
) is naturally
defined by

(g, g′)◦( f , f ′) = (g ◦ f , g′ ◦ f ′),

whenever ( f , f ′) ∈ ArrSOk((�, σ ), (�′, σ ′)) and (g, g′) ∈ ArrSOk((�′, σ ′), (�′′, σ ′′)).

Definition 3.5 We call SOk the category of the k-set operators, SOk,	 the category
of the (k,	)-set operators, and SOk,
 the category of the (k,
)-set operators.

Remark 3.6 At a first glance, it might seem that the categories SOk,	 and SOk,
 turn
out to be isomorphic. Nevertheless, this does not correspond to reality. In fact, in
Theorem 4.10 we will show that they are neither equivalent nor dual.

The forgetful functor U : SSk −→ Set such that U ((�,F)) = � and U ( f ) = f
is clearly faithful. A similar functor may be defined on category SRk. Furthermore,
the categories SOk, SOk,	, SOk,
 are also concretizable. In fact, just take the func-
tor U : SOk,	 −→ Set, such that U ((�, σ )) = �×� and U (( f , f ′)) = ( f , f ′)
whenever (�, σ ), (�′, σ ′) ∈ Obj(SOk,	) and ( f , f ′) ∈ ArrSOk,	((�, σ ), (�′, σ ′))
(the other cases are similar).

In the next result we determine monomorphisms, epimorphisms and isomorphisms
for the category SSk.

Proposition 3.7 Let (�,F), (�′,F′) ∈ Obj(SSk) and f ∈ ArrSSk((�,F), (�′,F′)).
Then:

(i) f is a monomorphism of SSk ⇐⇒ f is an injective map between � and �′;
(ii) f is an epimorphism of SSk ⇐⇒ f is a surjective map between � and �′;
(iii) f is an isomorphism of SSk ⇐⇒ f is bijective and F′ = {℘k f (X) | X ∈ F}.
Proof (i): Clearly, if f is injective then it is a monomorphism. Conversely, assume
that f is a monomorphism and let x, y ∈ � be such that f (x) = f (y). Taking the
arrows x, y ∈ ArrSSk(({∗}, ∅), (�,F)) sending ∗ to x and y respectively, we get
f ◦ x = f ◦ y, whence x = y, i.e. f is injective.

(ii): Clearly, if f is surjective then it is an epimorphism. Conversely, let f be
an epimorphism and take ({0, 1},℘k({0, 1})) ∈ Obj(SSk) and the arrows g, h ∈
ArrSSk((�

′,F′), ({0, 1},℘k({0, 1}))) defined as follows:

∀x ′ ∈ �′
[

g(x ′) = 1 and h(x ′) =
{
1 if x ′ ∈ f (�),

0 otherwise.

]

.

Hence g ◦ f = h ◦ f , whence g = h, i.e. f (�) = �′.
(iii): Assume first that f is an isomorphism of SSk, so that there exists g ∈
ArrSSk((�

′,F′), (�,F)) such that f ◦g = Id
(�′,F′

)
and g ◦ f = Id(�,F). Clearly,

f is bijective with g as its inverse. Therefore f is an isomorphism in Set, and con-
sequently ℘k f is also bijective with inverse ℘kg. Fix now X ′ ∈ F′ and X ∈ ℘k(�)

such that ℘k f (X) = X ′. Since g ∈ ArrSSk((�
′,F′), (�,F)), we easily deduce that
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X = ℘k(g ◦ f )(X) = ℘kg(X ′) ∈ F. Thus F′ ⊆ {℘k f (X) | X ∈ F}, and the reverse
inclusion is a direct consequence of the choice of f .

Conversely, assume that f is a bijective map and F′ = {℘k f (X) | X ∈F}. Let g ..=
f −1. Then we get ℘kg(X ′) = ℘kg(℘k f (X)) = ℘k(g ◦ f )(X) = ℘kId(X) = X for
each X ′ ∈ F′, whence g ∈ ArrSSk((�

′,F′), (�,F)). ��
The case of SRk can be treated in a similar way to SSk, and we leave the details to

the following result to the reader.

Proposition 3.8 Let (�,R), (�′,R′) ∈ Obj(SRk) and f ∈ ArrSRk((�,R), (�′,R′)).
Then:

(i) f is a monomorphism of SRk ⇐⇒ f is an injective map between � and �′;
(ii) f is an epimorphism of SRk ⇐⇒ f is a surjective map between � and �′;
(iii) f is an isomorphism of SRk ⇐⇒ f is bijective and

R′ = {(℘k f (X),℘k f (Y )) | (X ,Y ) ∈ R}.

The situation concerning monomorphisms, epimorphisms and isomorphisms in
the previous categories of k-th set operators is more articulated. With regard to the
categories SOk,	 and SOk,
 we have the following results.

Proposition 3.9 LetO be one of the categoriesSOk,	 orSOk,
. Let (�, σ ), (�′, σ ′) ∈
Obj(O) and ( f , f ′) ∈ ArrO((�, σ ), (�′, σ ′)). Then:

(i) ( f , f ′) is a monomorphism of O ⇐⇒ f and f ′ are both injective maps
between � and �′;

(ii) ( f , f ′) is an epimorphism of O ⇐⇒ f and f ′ are both surjective maps
between � and �′;

(iii) ( f , f ′) is an isomorphism ofO ⇐⇒ f and f ′ are both bijective maps between
� and �′ and ℘k f ′◦σ = σ ′◦℘k f .

Proof We provide the proof in the case in which O = SOk,	. The other case can be
treated in a similar way, therefore we leave the proof to the reader.

(i): Using the characterization of monomorphisms of Set, the implication “⇐" is
immediate.

Conversely, assume that ( f , f ′) is a monomorphism. We first associate with
any pair (u, v) ∈ �×� an arrow (u, v) ∈ ArrSOk,	(({u, v}, τ ), (�, σ )) such that
u(u) = u(v) = u, v(u) = v(v) = v, and τ(X) = ∅ for each X ∈ ℘k({u, v}). Let now
x, z, y, w ∈ � be such that ( f (x), f ′(z)) = ( f (y), f ′(w)). In order to get the con-
clusion, we must show that x = y and z = w. Clearly, the condition ( f (x), f ′(z)) =
( f (y), f ′(w)) can be equivalently written in the form ( f , f ′)◦(x, z) = ( f , f ′)
◦(y, w). Therefore, since ( f , f ′) is a monomorphism of the category SOk,	, we
deduce that (x, z) = (y, w), whence x = y and z = w.

(ii): Let ( f , f ′) ∈ ArrSOk,	((�, σ ), (�′, σ ′)). Using the characterization of epimor-
phisms of Set, if f and f ′ are surjective we may easily deduce that ( f , f ′) is an
epimorphism.
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Conversely, assume that ( f , f ′) is an epimorphism and let ({0, 1}, τ ) ∈
Obj(SOk,	), where τ(X) = ℘

k−1({0, 1}) for any X ∈ ℘
k({0, 1}). Let now

(g, g′), (h, h′) ∈ ArrSOk,	((�′, σ ′), ({0, 1}, τ ))) be defined as follows:

∀x ′ ∈ �′
[

g(x ′) = g′(x ′) = 1, h(x ′) =
{
1 if x ′ ∈ f (�),

0 otherwise
and h′(x ′) =

{
1 if x ′ ∈ f ′(�),

0 otherwise

]

.

Hence (g, g′)◦( f , f ′) = (h, h′)◦( f , f ′), so that (g, g′) = (h, h′) since ( f , f ′) is an
epimorphism. This proves that f (�) = f ′(�) = �′, i.e. f and f ′ are surjective.
(iii): Assume first that ( f , f ′) is an isomorphism. Then there exists (g, g′) ∈
ArrSOk,	((�′, σ ′), (�, σ )) such that (g, g′)◦( f , f ′) = (Id�, Id�) and ( f , f ′)◦(g, g′)
= (Id�′, Id�′), and this implies that f and f ′ are both bijective.

Furthermore, as (g, g′) ∈ ArrSOk,	((�′, σ ′), (�, σ )), it results that

℘
kg′ ◦σ ′ 	 σ ◦℘kg.

On the other hand, since ( f , f ′) ∈ ArrSOk,	((�, σ ), (�′, σ ′)) and ℘k f and ℘k f ′ are
invertible with inverses ℘kg and ℘kg′, respectively, we easily get

℘
kg′ ◦σ ′ 
 σ ◦℘kg.

Combining together the above conditions we deduce that℘kg′ ◦σ ′ = σ ◦℘kg, whence,
again by the invertibility of both ℘kg and ℘kg′, we conclude that ℘k f ′◦σ = σ ′ ◦℘k f .

Conversely, assume that f and f ′ are invertible, with inverses denoted by g and g′
respectively, and such that ℘k f ′ ◦σ = σ ′◦℘k f . Composing the last equality by ℘kg′
at left and by ℘kg at right, we clearly get ℘kg ◦σ ′ = σ ◦℘kg and, so, we conclude that
(g, g′) ∈ ArrSOk,	((�′, σ ′), (�, σ )). ��

In the case of the category SOk, the determination of its monomorphisms and
epimorphisms is more complex than the previous cases (see Remark 3.11). Now, we
provide the following result concerning the characterization of isomorphisms of SOk.

Proposition 3.10 Let (�, σ ), (�′, σ ′) ∈ Obj(SOk) and ( f , f ′) ∈ ArrSOk((�, σ ),

((�′, σ ′)). Then

( f , f ′) ∈ Iso(SOk) ⇐⇒ f and f ′ are both bijective maps between � and �′.

Proof Let ( f , f ′) ∈ ArrSOk((�, σ ), (�′, σ ′)). Assume first that ( f , f ′) is an isomor-
phism. Then there exists (g, g′) ∈ ArrSOk((�′, σ ′), (�, σ )) such that (g, g′)◦( f , f ′)
= (Id�, Id�) and ( f , f ′)◦(g, g′) = (Id�′, Id�′), and this implies that both f and f ′
are bijective.

Conversely, assume that f and f ′ are invertible, with inverses denoted by g and
g′ respectively. We claim that (g, g′) ∈ ArrSOk((�′, σ ′), (�, σ )). To this regard,
first note that ℘k f and ℘k f ′ are invertible with inverses ℘kg and ℘kg′. So, as
℘
kg ◦σ(X) = σ ′◦℘k f (X) for any X ∈ ℘k(�), composing by℘k f ′ we easily conclude

that ℘kg′◦σ ′(X ′) = σ ◦℘k f ′(X ′) for any X ′ ∈ ℘k(�′), i.e. ℘kg′◦σ ′ = σ ◦℘k f ′. ��
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We leave the characterization of monomorphisms and epimorphisms as an exercise.

Remark 3.11 As we mentioned above, a complete and exhaustive characterization of
the monomorphisms and epimorphisms of the category SOk is more complex to be
obtained with respect than the two categories SOk,	 and SOk,
 in Proposition 3.9.

More in detail, the condition of equality occurring in the definition of the arrows
of SOk is quite strict and this reduces the possibility to construct an arrow between
two objects (�, σ ) and (�, τ). In fact, when an object (�, σ ) ∈ Obj(SOk) is given,
the k-set operator σ : ℘k(�) −→ ℘

k(�) maps any X ∈ ℘k(�) to a σ(X) ∈ ℘k(�),
whose correlation with X is too general without establishing additional conditions on
the k-set operator σ , such as for instance extensiveness, monotonicity or idempotency
(see Sect. 6 where we deal with closure set operators).

Thus, since it is difficult to check that the equality ℘k f ′(σ (X)) = τ(℘k f (X))

holds for any X ∈ ℘k(�), some work is needed to characterize an arrow ( f , f ′) ∈
ArrSOk((�, σ ), (�, τ)).

We denote by SOk,	,=, SOk,
,= and SOk,= the wide subcategories of SOk,	,
SOk,
 and SOk, respectively, whose arrows have the form ( f , f ). In the successive
sections, we deal with some specific subcategories of the previous categories SOk,	,=,
SOk,
,= and SOk,=.

Remark 3.12 The analogue of Proposition 3.9 holds for both the categories SOk,	,=
and SOk,
,=. Similarly, the analogue of Proposition 3.10 holds for SOk,=.

4 Fundamental properties of the categories SSk, SRk and SOk

Let k ∈ N be fixed. In the present section we provide two fundamental properties
of the categories SSk and SRk, i.e. that they are bicomplete (see Theorem 4.1) and
Cartesian closed (see Theorem 4.6).

4.1 SSk and SRk are bicomplete categories

In this subsection we prove the first fundamental property of the category SSk, namely
that it is a bicomplete category.

Theorem 4.1 SSk is a bicomplete category.

Proof We first determine the product in SSk. To this regard fix {(Xi ,Xi ) | i ∈ I } ⊆
Obj(SSk). Set

X ..=
∏

{Xi | i ∈ I } and X ..= {
Z ∈ ℘k(X) | ∀i ∈ I [℘kπi (Z) ∈ Xi ]

}
,

where πi : X −→ Xi is the usual projection for any i ∈ I (notice that X ∈ ℘k+1(X)).
We show that

((X ,X), {πi | i ∈ I }) is the product of the object family {(Xi ,Xi ) | i ∈ I } in SSk. (2)
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By the definition of the arrows of SSk and of the set system X, we get πi ∈
ArrSSk((X ,X), (Xi ,Xi )), for any i ∈ I . Let now (Y ,Y) ∈ Obj(SSk) and hi ∈
ArrSSk((Y ,Y), (Xi ,Xi )), for any i ∈ I . Let h̃ : Y −→ X be the usual universal
arrow induced by the family of maps {hi | i ∈ I } in Set and Z ∈ Y. Since πi ◦ h̃ = hi ,
it follows that

℘
kπi (℘

k h̃(Z)) = (℘kπi ◦℘k h̃)(Z) = ℘k(πi ◦ h̃)(Z) = ℘khi (Z) ∈ X,

for each i ∈ I , whence ℘k h̃(Z) ∈ X, and thus h̃ ∈ ArrSSk((Y ,Y), (X ,X)). Therefore,
in view of the universal property of the map h̃ in Set, it follows that h̃ is also the unique
arrow in ArrSSk((Y ,Y), (X ,X)) for which hi = πi ◦ h̃ for any i ∈ I . This proves (2).

We determine now the equalizer of any two arrows of SSk. Take (�,F), (�′,F′) ∈
Obj(SSk) and f , g ∈ ArrSSk((�,F), (�′,F′)). Let �∗ ..= {x ∈ � | f (x) = g(x)},
ι∗ : �∗ ↪→ � be the inclusion map, and F∗ ..= F ∩ ℘k(�∗). Now we prove that

((�∗,F∗), ι∗) is the equalizer of f and g in SSk. (3)

We clearly have (�∗,F∗) ∈ Obj(SSk), ι∗ ∈ ArrSSk((�∗,F∗), (�,F)) and f ◦ ι∗ =
g ◦ ι∗. Take (�′′,F′′) ∈ Obj(SSk) and h ∈ ArrSSk((�

′′,F′′), (�,F)) such that f ◦h =
g ◦h. We show that there exists a unique arrow h∗ ∈ ArrSSk((�

′′,F′′), (�∗,F∗)) such
that ι∗ ◦h∗ = h.

To this regard, since f ◦h = g ◦h it follows that h(z) ∈ �∗. Define then the
map h′ : �′′ −→ �∗ setting h′(z) ..= h(z) for any z ∈ �. We easily deduce that
h∗ is the unique map such that h = ι∗ ◦h∗. Fix now Z ∈ G. It is immediate that
℘
kh′(Z) = ℘kh(Z) ∈ F ∩ ℘k(�∗) = F∗, whence h∗ ∈ ArrSSk((�

′′,F′′), (�∗,F∗)).
This proves (3), and consequently the category SSk is complete in view of [7, Theorem
2.8.1].

We consider now the construction of the coproduct in SSk. Let {(�i ,Fi ) | i ∈ I } ⊆
Obj(SSk). We set �̂ ..= ⊔{�i | i ∈ I } and let ξi : �i −→ �̂ be the inclusion map, for
any i ∈ I . Set moreover F̂ ..= ⊔{Fi | i ∈ I }. We prove now that

((�̂, F̂), {ξi | i ∈ I }) is the coproduct of the object family {(�i ,Fi ) | i ∈ I } in SSk. (4)

Also in this case, by the definition of F̂ and of Arr(SSk), we clearly get ξi ∈
ArrSSk((�i ,Fi ), (�̂, F̂)), for any i ∈ I . Let now (�,G) ∈ Obj(SSk) and si ∈
ArrSSk((�i ,Fi ), (�,G)) for any i ∈ I . Let t : �̂ −→ � be the universal map induced
by {si | i ∈ I } in Set, i.e. t((x, i)) ..= si (x) for any (x, i) ∈ �̂. Take now Z ∈ F̂. Then
there exists j ∈ I such that Z ∈ F j and ℘kξ j (Z) = Z . Thus, since si = t ◦ξi for any
i ∈ I , it follows that ℘k t(Z) = ℘k t(℘kξ j (Z)) = (℘k t ◦℘kξ j )(Z) = ℘k(t ◦ξ j )(Z) =
℘
ks j (Z) ∈ G, whence we get ℘k t(Z) ∈ G. Hence t ∈ ArrSSk((�̂, F̂), (�,G)). At this

point, in view of the universal property of the map t in Set, it follows that t is also the
only arrow in ArrSSk((�̂, F̂), (�,G)) such that t ◦ξi = si for any i ∈ I . This proves
(4).

Finally, we determine the coequalizer of any two arrows of SSk. Let again
(�,F), (�′,F′) ∈ Obj(SSk) and f , g ∈ ArrSSk((�,F), (�′,F′)). We set �� ..=
�′/∼�, where ∼� is the equivalence relation on �′ generated by the binary relation
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{( f (x), g(x)) | x ∈ �} ⊆ �′×�′. Let moreover by π� : �′ −→ �′/∼� be the projec-
tion on the quotient and F� ..= {℘kπ�(X) | X ∈F′}. We show then that

((��,F�), π�) is the coequalizer of f and g in SSk. (5)

We have that (��,F�) ∈ Obj(SSk), π� ∈ ArrSSk((��,F�), (�,F)) and π� ◦ f =
π� ◦g.

Take now (�,G) ∈ Obj(SSk) and h ∈ ArrSSk((�
′,F′), (�,G)) such that h ◦ f =

h ◦g. Then there exists a unique map h′ : �� −→ � such that h′ ◦π� = h.
We finally claim that h′ ∈ ArrSSk((��,F�), (�,G)). In fact, let Z ∈ F�. In view

of the definition of F�, there exists X ∈ F′ such that Z = ℘kπ�(X). Thus, since h ∈
ArrSSk((�

′,F′), (�,G)), we get ℘kh′(Z) = ℘kh′(℘kπ�(X)) = ℘kh′(X) ∈ G. Hence
h′ ∈ ArrSSk((��,F�), (�,G)), and therefore (5) holds. Consequently, the category
SSk is cocomplete in view of [7, Theorem 2.8.1]. ��

In the next result we show that SRk is also a bicomplete category. The proof is
similar to that of the category SSk and, hence, we only sketch it, leaving to the reader
to fix the details.

Theorem 4.2 SRk is a bicomplete category.

Proof We first determine the product in SRk. To this regard, let {(�i ,Ri ) | i ∈ I } ⊆
Obj(SRk), and we take � and πi (where i ∈ I ) as in (2). We set nowB ..= {(Z ,W ) ∈
℘
k(�)×℘k(�) | ∀i ∈ I [(℘kπi (Z),℘kπi (W )) ∈ Ri ]}. We leave to the reader the proof

of the fact that ((�,B), {πi | i ∈ I }) is the product of {(�i ,Ri ) | i ∈ I } ⊆ Obj(SRk)

in SRk.
Now determine the equalizer of any two arrows of SRk. Let (�,R), (�′,R′) ∈

Obj(SRk) and f , g ∈ ArrSRk((�,R), (�′,R′)). Take �∗ ..= {x ∈ � | f (x) = g(x)}
and ι∗ : �∗ ↪→ � be as in (3) and also set R∗

f ,g
..= R ∩ (℘k(�∗)×℘k(�∗)). Also

in this case, we leave to the reader the proof of the fact that ((�∗,R∗
f ,g), ι∗) is the

equalizer of f and g in SRk.
We consider now the construction of the coproduct in SRk. Take �̂, ξi (where i ∈ I )

as in (4) and set R ..= ⊔{Ri | i ∈ I }. We leave to the reader the proof of the fact that
((�,R), {ξi | i ∈ I }) is the coproduct of {(�i ,Ri ) | i ∈ I } in SRk.

Finally, we determine the coequalizer of any two arrows of SRk. Let again (�,R),
(�′,R′) ∈ Obj(SRk) and f , g ∈ ArrSRk((�,R), (�′,R′)). Take �� ..= �′/∼� and
π� : �′ −→ �′/ ∼� as in (5) and set R�

f ,g
..= {(℘kπ�(X), (℘kπ�(Y )) | (X ,Y ) ∈ R′}.

We leave to the reader the proof of the fact that ((��,R�
f ,g), π�) is the coequalizer of

f and g in SRk. ��

4.2 The categories SSk and SRk are Cartesian closed

The main result of the present subsection is Theorem 4.6, where we determine the
exponential objects of both the categoriesSSk andSRk and deduce that such categories
are Cartesian closed.

We now recall two classical basic notions of category theory in the next two defi-
nitions.
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Definition 4.3 Let C be a category with binary products and Z ,Y ∈ Obj(C). We
say that a pair (W , eval) is a (Z ,Y )-exponential object in C if W ∈ Obj(C), eval ∈
ArrC(W ×Y , Z) and for any X ∈ Obj(C), g ∈ ArrC(X ×Y , Z) there is a unique
morphism tg : X −→ W (usually called the transpose of g) such that the diagram

W ×Y Z

X ×Y

eval

tg×IdY g

commutes.

Definition 4.4 A category C is said Cartesian closed if it admits finite products and
exponential objects exist for any pair of objects.

In the next Theorem 4.6 we exhibit the explicit characterization of the expo-
nential objects for both the categories SSk and SRk, proving hence that they are
Cartesian closed. To this regard, for any X ,Y ∈ Obj(Set), we consider the map
evX ,Y : XY×Y −→ X defined by

evX ,Y : ( f , y) ∈ XY×Y �→ f (y) ∈ X .

Let now �,�,� ∈ Obj(Set), g ∈ Arr(�×�,�) and (X,Y) ∈ ℘k(�)×℘k(�) be
arbitrary andfixed. Letmoreoverπ1 : Arr(�,�)×� −→ Arr(�,�),π2 : Arr(�,�)

×� −→ �, p1 : �×� −→ � and p2 : �×� −→ � denote usual Cartesian
projections. Consequently, we define themap tg : � −→ Arr(�,�) such that tg(θ) ..=
t̃g,θ for any θ ∈ �, where t̃g,θ : λ ∈ � �→ t̃g,θ (λ) ..= g(θ, λ) ∈ �. Clearly, in view of
the definition of the exponential object in Set, tg is the only map for which

ev�,� ◦(tg× Id�) = g. (6)

We set now

C(X,Y)
..= {

(Z,W) ∈ ℘k(Arr(�,�)×�)2 | (℘kπ1)
〈2〉(Z,W) = (℘k tg)

〈2〉(X,Y)
}

and, for any (Z,W) ∈ C(X,Y),

UX,Z
..= {

U ∈ ℘k−1(� × �) | ℘k−1 p1(U ) ∈ X and ℘k−1(tg × Id�)(U ) ∈ Z
}
,

UY,W
..= {

U ∈ ℘k−1(� × �) | ℘k−1 p1(U ) ∈ Y and ℘k−1(tg × Id�)(U ) ∈ W
}
.

At this point we are ready to exhibit a preliminary technical result before providing
a complete proof of Theorem 4.6 in the case of SRk.

Lemma 4.5 Let k � 1, �,�,� ∈ Obj(Set), g ∈ Arr(�×�,�) and (X,Y) ∈
℘
k(�)2. Then, with the previous notations, for every (Z,W) ∈ C(X,Y) we have that:
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(a) (℘k(tg × Id�))〈2〉(UX,Z,UY,W) = (Z,W);
(b) (℘k p1)〈2〉(UX,Z,UY,W) = (X,Y);
(c) (℘k p2)〈2〉(UX,Z,UY,W) = (℘kπ2)

〈2〉(Z,W).

Proof We proceed inductively on k. Let first k = 1. Then we respectively have

UX,Z = {
(θ, λ) ∈ � × � | θ ∈ X and (tg× Id�)(θ, λ) = (t̃g,θ , λ) ∈ Z

}

and

UY,W = {
(θ, λ) ∈ � × � | θ ∈ Y and (tg× Id�)(θ, λ) = (t̃g,θ , λ) ∈ W

}
.

Let us prove Condition (a). The inclusions ℘(tg× Id�)(UX,Z) ⊆ Z and
℘(tg× Id�)(UY,W) ⊆ W respectively hold by the definition of UX,Z and UY,W. Con-
versely, fix ((z, μ), (w, ν)) ∈ (Z,W) ∈ ℘(Arr(�,�)×�)2. By our choice of
(Z,W), there exist θ ∈ X and δ ∈ Y such that t 〈2〉g (θ, δ) = (z, w). Hence, we
clearly have ((θ, μ), (δ, ν)) ∈ (UX,Z,UY,W), proving that Z ⊆ ℘(tg× Id�)(UX,Z) and
W ⊆ ℘(tg× Id�)(UY,W).

Let us prove Condition (b). By the definitions of UX,Z and UY,W, the inclusions
℘p1(UX,Z) ⊆ X and ℘p1(UY,W) ⊆ Y hold. Vice versa, let θ ′ ∈ X. By our choice of
Z, we can find an element (tg(θ ′), λ′) ∈ Z ∩ π−1

1 (tg(θ ′)). Then (θ ′, λ′) ∈ UX,Z and
θ ′ = p1(θ ′, λ′), with (θ ′, λ′) ∈ UX,Z. In such a way, we showed that X ⊆ ℘p1(UX,Z).
Analogously, we can demonstrate the inclusion Y ⊆ ℘p1(UY,W).

Let us prove Condition (c). First observe that from p2 = π2 ◦(tg× Id�) and our
definition of UX,Z and of UY,W, we easily get the inclusions ℘p2(UX,Z) ⊆ ℘π2(Z)

and ℘p2(UY,W) ⊆ ℘π2(W). Conversely, let λ′′ ∈ ℘π2(Z) and ν′′ ∈ ℘π2(W). By the
choice of (Z,W), it is quite simple to check the existence of x ′′ ∈ X and y′′ ∈ Y such
that (x ′′, λ′′) ∈ UX,Z and (y′′, λ′′) ∈ UY,Z. This proves that ℘π2(Z) ⊆ ℘p2(UX,Z) and
℘π2(W) ⊆ ℘p2(UY,W). This shows Condition (c) for k = 0.

Fix now an integer k � 2 and suppose that our conclusion holds for every j ∈
{1, . . . , k − 1}. Let then (X,Y) ∈ ℘k(�)2 and (Z,W) ∈ C(X,Y). First note that the
inclusions

℘
k(tg× Id�)(UX,Z) ⊆ Z, ℘kp2(UX,Z) ⊆ ℘kπ2(Z), ℘kp1(UX,Z) ⊆ X,

and

℘
k(tg× Id�)(UY,W) ⊆ W, ℘kp1(UY,W) ⊆ Y ℘kp2(UY,W) ⊆ ℘kπ2(W)

follow from the definition of UX,Z, UY,W and of the equality π2 ◦(tg× Id�) = p2.
Wemust prove the reverse inclusions to get our conclusions.We only show the three

first inclusions, as the others may be obtained in the same way. Take then Z1 ∈ Z and
set Z ..= ℘k−1π1(Z1) ∈ ℘kπ1(Z). As (Z,W) ∈ C(X,Y), we can find some X ∈ X such
that ℘k−1tg(X) = Z . Set
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UX ,Z1
..= {

u ∈ ℘k−2 (� × �) | ℘k−2 p1(u) ∈ X and ℘k−2(tg× Id�)(u) ∈ Z1
}

∈ ℘k−1(�×�).

Note that UX ,Z1 ∈ UX,Z because, by the inductive hypothesis, it clearly results
that ℘k−1 p1(UX ,Z1) = X ∈ X and ℘k−1(tg× Id�)(UX ,Z1) = Z1 ∈ Z. Thus
Z ⊆ ℘k(tg× Id�)(UX,Z) and (a) holds.

Let us now prove the reverse inclusion needed for obtaining Condition (b). Take
X ∈ X and set Z ..= ℘k−1tg(X) ∈ Z. Letmoreover Z1 ∈ Z be such that℘k−1π1(Z1) =
Z and, as before, set

UX ,Z1
..= {

u ∈ ℘k−2 (� × �) | ℘k−2 p1(u) ∈ X and ℘k−2(tg× Id�)(u) ∈ Z1
}
.

By the inductive hypothesis, we get ℘k−1 p1(U ) = X and ℘k−1(tg× Id�)(U ) = Z1,
so that U ∈ UX,Z and X ⊆ ℘k p1(UX,Z). So (b) holds.

Finally, by our choice of (Z,W), if Y ∈ ℘kπ2(Z), then we can easily findU ∈ UX,Z

such that ℘k−1 p2(U ) = Y , so we get ℘kπ2(Z) ⊆ ℘kp1(UX,Z) and Condition (c)
holds. ��

Let now (�,F), (�,G) ∈ SSk and (�,R), (�, S) ∈ SRk be arbitrary and
fixed. We consider the k-set system L(�,F),(�,G) on Arr(�,�) and the k-set relation
M(�,R),(�,S) on Arr(�,�) defined respectively by:

L(�,F),(�,G)
..=

{

Z ∈ ℘k(Arr(�,�))

∣
∣
∣
∣
℘
kev�,�(W ) ∈ F ∀W ∈ ℘k(Arr(�,�)×�)

such that ℘kπ1(W ) = Z and ℘kπ2(W ) ∈ G

}

,

M(�,R),(�,S)
..=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(X ,Y ) ∈ ℘k(Arr(�,�))2
∣
∣
∣
∣

(℘kev�,�)〈2〉(W , Z) ∈ R

∀(W , Z) ∈ ℘k(Arr(�,�)×�)2

such that (℘kπ1)
〈2〉(W , Z) = (X ,Y ),

(℘kπ2)
〈2〉(W , Z) ∈ S

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (7)

So we get the following characterization that also provides an alternative proof
for the Cartesian closedness of SSk and SRk. We give the proof only for SRk (part
(ii) of Theorem 4.6) leaving as an exercise for readers the case of SSk (part (i) of
Theorem 4.6).

Theorem 4.6 Let (�,F), (�,G) ∈ SSk and (�,R), (�, S) ∈ SRk. The following
conditions hold:

(i) ((Arr(�,�),L(�,F),(�,G)), ev�,�) is the exponential object of (�,F) and (�,G);
(ii) ((Arr(�,�),M(�,R),(�,S)), ev�,�) is the exponential object of (�, R) and (�, S).

Therefore SSk and SRk are both Cartesian closed categories.
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Proof Clearly, (Arr(�,�),M(�,R),(�,S)) ∈ SRk. Consider now the product
(Arr(�,�)×�,A) in SRk of (Arr(�,�),M(�,R),(�,S)) and (�, S), for a suitable
A ∈ ℘k(Arr(�,�)×�)2. By using (7), we easily get

ev�,� ∈ ArrSRk((Arr(�,�)×�),A), (�, R)).

Fix now (�,T) ∈ SRk and take the product (�×�,B) in SRk of (�,T) and
(�, S), for a suitable B ∈ ℘k(�×�)2. Take g ∈ ArrSRk((�×�,B), (�, R)). We
claim that

tg ∈ ArrSRk((�,T), (Arr(�,�),M(�,R),(�,S))),

that is:

∀(X,Y) ∈ T [(℘k tg)〈2〉(X,Y) ∈ M(�,R),(�,S)]. (8)

Fix therefore (X,Y) ∈ T. We first show our claim when k = 0. To this regard, note
that

M(�,R),(�,S) =

⎧
⎪⎨

⎪⎩
(h, s) ∈ Arr(�,�)2

∣
∣
∣
∣

ev〈2〉
�,�((h, z), (s, w)) ∈ R

∀((h, z), (s, w)) ∈ (Arr(�,�)×�)2

such that (z, w) ∈ S

⎫
⎪⎬

⎪⎭
.

Now, if (λ, μ) ∈ S and ((t̃g,X, λ), (t̃g,Y, μ)) ∈ (Arr(�,�)×�)2, we clearly have

ev〈2〉
�,�((t̃g,X, λ), (t̃g,Y, μ)) = (t̃g,X(λ), t̃g,Y(μ)) = g〈2〉((X, λ), (Y, μ)) ∈ R

as ((X, λ), (Y, μ)) ∈ B, whence t 〈2〉g (X,Y) ∈ M(�,R),(�,S). This shows (8) when
k = 0.

Suppose now k � 1 and take any (Z,W) ∈ C(X,Y) such that (℘kπ2)
〈2〉(Z,W) ∈ S.

We can then apply Lemma 4.5 to (X,Y) and (Z,W), so that

(a) (℘k(tg× Id�))〈2〉(UX,Z,UY,W) = (Z,W);
(b) (℘kp1)〈2〉(UX,Z,UY,W) = (X,Y);
(c) (℘kp2)〈2〉(UX,Z,UY,W) = (℘kπ2)

〈2〉(Z,W).

Note that conditions (b)–(c) imply that (UX,Z,UY,W) ∈ B. Thus, as g ∈
ArrSRk((�×�,B), (�,R)), we have that (℘kg)〈2〉(UX,Z,UY,W) ∈ R. Next, by con-
dition (a) and by using (6), we get

(℘kev�,�)〈2〉(Z,W) = (℘k(ev�,� ◦(tg × Id�)))〈2〉(UX,Z,UY,W)

= (℘kg)〈2〉(UX,Z,UY,W) ∈ R,

so that (8) holds. ��
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4.3 Some basic properties of SOk, SOk,� and SOk,�

For the category SOk, the properties holding for SSk and SRk are not valid in general.
In the next result we show that such a category is neither complete nor cocomplete.

Theorem 4.7 The category SOk is neither complete nor cocomplete.

Proof In view of [7, Theorem 2.8.1], by proving the non-existence of a terminal object
we will check that SOk is not complete. To this regard, assume by contradiction that
(�, σ ) is the terminal object in the category SOk. We clearly have � �= ∅. Moreover,
it results that |ArrSOk((�, τ), (�, σ ))| = 1 for any (�, τ) ∈ Obj(SOk). Fix first
(�, τ) ∈ Obj(SOk) such that τ(∅) = ∅, and let (g, h) be the only morphism in
ArrSOk((�, τ), (�, σ )). Thus the equality ℘kh ◦τ = σ ◦℘kg holds, and we easily
deduce that σ(∅) = ∅. On the other hand, take (�′, τ ′) ∈ Obj(SOk) such that
τ ′(∅) �= ∅, and denote by (g′, h′) the only morphism in ArrSOk((�′, τ ′), (�, σ )).
Thus the equality ℘kh′ ◦τ = σ ◦℘kg′ holds, and we easily deduce that σ(∅) �= ∅,
which provides a contradiction.

In view of [7, Theorem 2.8.1], by proving the non-existence of an initial object
we will check that SOk is not bicomplete. To this end, assume by contradiction that
(�, σ ) is the initial object in SOk. Hence |ArrSOk((�, σ ), (�, τ))| = 1 for any
(�, τ) ∈ Obj(SOk). Fix now (�, τ) ∈ Obj(SOk), with τ(∅) = ∅ and denote by
(g, h) the only morphism in ArrSOk((�, σ ), (�, τ)). Thus, as the equality ℘kh ◦σ =
τ ◦℘kg holds, we easily get σ(∅) = ∅.

On the other hand, (�, τ) ∈ Obj(SOk), with τ(∅) �= ∅ and denote again by (g, h)

the onlymorphism inArrSOk((�, σ ), (�, τ)). Thus, as the equality℘kh ◦σ = τ ◦℘kg
holds, we easily get σ(∅) �= ∅, which provides a contradiction. ��
Remark 4.8 The following conditions hold:

(i) ({a}, σ ), where σ : ℘k({a}) −→ ℘
k({a}) is defined by σ(X) = ℘k−1({a}) for

each X ∈ ℘k({a}), is the terminal object in the category SOk,	;
(ii) ({a}, σ ), where σ : ℘k({a}) −→ ℘

k({a}) is defined by σ(X) = ∅ for each
X ∈ ℘k({a}), is the terminal object in the category SOk,
;

(iii) (∅, σ ), where σ : ℘k(∅) −→ ℘
k(∅) is defined by σ(X) = ∅ for each X ∈

℘
k(∅), is the initial object in the category SOk,	.

Before proving the next Theorem 4.10, we need the following preliminary result
that we leave as an exercise to the reader.

Proposition 4.9 Let f ∈ ArrSet(�,�′) and k � 1 be a given integer. If ℘k f is
surjective, then ℘k−1 f is also surjective.

Theorem 4.10 The following conditions hold:

(i) there is no initial object in SOk,
;
(ii) the category SOk,
 is not cocomplete;
(iii) the categories SOk,	 and SOk,
 are not equivalent;
(iv) the categories SOk,	 and SOk,
 are not dually equivalent.
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Proof (i): Assume by contradiction that (�, τ) is the initial object inSOk,
.We cannot
have � �= ∅. In fact, assume that � �= ∅ and let (�, σ ) ∈ Obj(SOk,
), where �

contains at least two elements and σ(X) = ℘k−1(�) for each X ∈ ℘k(�), and let
( f , f ′) be the only arrow in ArrSOk,
((�, τ), (�, σ )). As ℘k f ′ ◦τ 
 σ ◦℘k f , we
easily deduce that ℘k−1 f ′ is surjective and, by Proposition 4.9, we also conclude that
f ′ is surjective. So |�| � |�|. At this point, notice that we can choose f in more than
one way, contradicting the uniqueness of ( f , f ′).

Thus � = ∅ and, moreover, if (�, σ ) ∈ Obj(SOk,
) and ( f , f ′) is the only
arrow in ArrSOk,
((�, τ), (�, σ )), we also deduce f and f ′ are the empty maps.
Nevertheless, the inclusion ℘k f ′ ◦τ 
 σ ◦℘k f cannot hold if we take a non-empty set
� and the k-set operator σ on � such that σ(X) = ℘k−1(�) for each X ∈ ℘k(�). In
fact, just note that if z ∈ �, then ℘k−1({z}) ∈ ℘k(�)\℘k(℘k−1(∅)). This shows that
(�, τ) cannot exist.

(ii): It is an immediate consequence of the above part (i) and of [7, Theorem 2.8.1].

(iii): Use part (iii) of Remark 4.8, the above part (i) and the fact that equivalence of
categories preserve co-limit objects.

(iv):Assumebycontradiction thatSOk,
 andSOk,
 weredually equivalent categories.
Then SOk,	 would be equivalent to the dual category of SOk,
. Now, by part (i) of
Remark 4.8 there exists the terminal object ofSOk,	 and, hence, even the dual category
of SOk,
 admits terminal object. This implies that SOk,	 has an initial object, in
contrast with the above part (i). ��

Another substantial difference between the categories SOk,	 and SOk,
 concerns
their completeness. In fact, with regard to the category SOk,	, we prove in the next
Theorem 4.12 that it is complete, while for SOk,
 we check that in general it does not
admit equalizers (see Proposition 4.15).

In order to prove Theorem 4.12, we need the following construction. Let G ..=
{Xi | i ∈ I } ⊆ Obj(Set) be a set-indexed family of sets. For every n ∈ N, let �

(n)
G

..=∏{℘n(Xi ) | i ∈ I } be the Cartesian product of the family {℘n(Xi ) | i ∈ I } in Set, and
π

(n)
G,i : �

(n)
G −→ ℘

n(Xi ) the i-th projection, for any i ∈ I . Next, we consider:

• for any n � 1, the map c(n)
G : �

(n)
G −→ ℘(�

(n−1)
G ) defined by setting c(n)

G ((Ki )i∈I )
..= ∏{Ki | i ∈ I };

• for any n ∈ N, the map s(n)
G : �

(n)
G −→ ℘

n(�
(0)
G ) defined by inductively setting

s(0)
G

..= Id
�

(0)
G

and s(n)
G

..= ℘(s(n−1)
G )◦c(n)

G for every n � 1.

Lemma 4.11 Let G ..= {Xi | i ∈ I },H ..= {Yi | i ∈ I } ⊆ Obj(Set) be two families of
sets indexed by the same set I , fi ∈ ArrSet(Xi , Yi ) for every i ∈ I , Z ∈ Obj(Set)
and gi ∈ ArrSet(Z , Yi ) for any i ∈ I . The following properties hold:

(i) ℘π
(n−1)
G,i ◦c(n)

G = π
(n)
G,i for any i ∈ I and any n � 1;

(ii) ℘
(∏{℘n−1 fi | i ∈ I })◦c(n)

G = c(n)
H ◦(∏{℘n fi | i ∈ I }) for any n � 1;

(iii) ℘
(∏̇{℘n−1gi | i ∈ I })(K) ⊆ (

c(n)
H ◦(∏̇{℘n−1 gi | i ∈ I }))(K) for any K ∈ ℘n(Z)

and any n � 1;
(iv) ℘nπ(0)

G,i ◦s(n)
G = π

(n)
G,i for any i ∈ I and n ∈ N;
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(v) ℘n
(∏{ fi | i ∈ I })◦s(n)

G = s(n)
H ◦ ∏{℘n fi | i ∈ I } for any n ∈ N;

(vi) ℘n
(∏̇{gi | i ∈ I })(K) ⊆ (s(n)

H ◦∏̇{℘ngi | i ∈ I })(K) for any K ∈ ℘n(Z) and any
n � 1.

Proof (i): Straightforward.

(ii): Let (Ki )i∈I ∈ �
(n)
G . Then

(
℘

(∏{
℘
n−1 fi | i ∈ I

})◦c(n)
G

)
((Ki )i∈I )

= ℘
(∏

{℘n−1 fi | i ∈ I }
)(∏

{Ki | i ∈ I }
)

= {
(℘n−1 fi (Ki ))i∈I | Ki ∈ Ki ∀i ∈ I }}

=
∏{{℘n−1 fi (Ki ) |Ki ∈ Ki } | i ∈ I

}

= c(n)
H

(
((℘n fi )(Ki ))i∈I

)

=
(
c(n)
H ◦

∏{
℘
n fi | i ∈ I

})
((Ki )i∈I ).

(iii): Let K ∈ ℘n(Z) = ℘(℘n−1(Z)). Then

℘

(∏̇
{℘n−1gi | i ∈ I }

)
(K) =

{∏̇
{℘n−1gi | i ∈ I }(K) |K ∈ K

}

= {
(℘n−1gi (K))i∈I | K ∈ K}

⊆
∏

{℘ngi (K) | i ∈ I } = c(n)
H ((℘ngi (K))i∈I )

=
(
c(n)
H ◦

∏̇
{℘ngi | i ∈ I }

)
(K).

(iv): We proceed inductively on n. The case n = 0 is trivial. Fix now an integer n � 1
and assume that the claim holds for 1 � k � n − 1. Let i ∈ I and consider the
following diagram:

�
(n)
G

℘(�
(n−1)
G ) ℘(℘n−1(Xi )) = ℘n(Xi )

℘(℘n−1(�
(0)
G )) = ℘n(�(0)

G )

π
(n)
G,i

c(n)
G

s(n)
G

℘π
(n−1)
G,i

℘ s(n−1)
G

℘(℘n−1 π
(0)
G,i )=℘nπ(0)

G,i

In view of the above part (i), we have that ℘π(n−1)
G,i ◦c(n)

G = π
(n)
G,i . On the other hand,

by the inductive hypothesis we have ℘n−1π
(0)
G,i ◦s(n−1)

G = π
(n−1)
G,i . Hence, applying ℘
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to the previous equality, we get the commutativity of the lower triangle of the diagram
and we easily deduce the equality ℘n(π(0)

G,i )◦s(n)
G = π

(n)
G,i .

(v): We proceed inductively on n. The case n = 0 is trivial. Fix now an integer n � 1
and assume that the claim holds for 1 � k � n − 1. Consider the following diagram:

�
(n)
G �

(n)
H

℘(�
(n−1)
G ) ℘(�

(n−1)
H )

℘
n(�

(0)
G ) ℘(�

(0)
H )

∏{℘n fi | i ∈ I }

s(n)
G

c(n)
G c(n)

H

s(n)
H℘(

∏{℘n−1 fi | i ∈ I })

℘ s(n−1)
G ℘ s(n−1)

H

℘
n(

∏{ fi | i ∈ I })

In view of the above part (ii), we have that the equality ℘
(∏{℘n−1 fi | i ∈ I })◦c(n)

G

c(n)
H ◦(∏{℘n fi | i ∈ I }) holds. On the other hand, by the inductive hypothesis we get

℘
n−1

(∏{ fi | i ∈ I })◦s(n−1)
G = s(n−1)

H ◦ ∏{℘n−1 fi | i ∈ I }. Hence, applying ℘ to the
previous equality, we get the commutativity of the lower square of the diagram. So,
we clearly deduce the equality ℘n

(∏{ fi | i ∈ I })◦s(n)
H = s(n)

G ◦ ∏{℘n fi | i ∈ I }.
(vi): We proceed inductively on n. The case n = 0 is trivial. Fix now an integer n � 1
and assume that our assertion holds for 1 � k � n − 1. Then ℘n−1

(∏̇{gi | i ∈ I })(K)

⊆ (
s(n−1)
H ◦∏̇{℘n−1 gi | i ∈ I })(K) for everyK ∈ ℘n−1(Z). We must prove our claim

for n. To this regard, let K ∈ ℘n(Z). By the above part (iii) it results that

℘
n
(∏̇

{gi | i ∈ I }
)
(K) ⊆ ℘ s(n−1)

H ◦℘
(∏̇

{℘n−1gi | i ∈ I }
)
(K)

⊆ ℘ s(n−1)
H ◦

(
cn ◦

∏̇
{℘ngi | i ∈ I }

)
(K)

= s(n)
H ◦

(∏̇
{℘ngi | i ∈ I }

)
(K). ��

At this point we can show the completenesss of the category SOk,	.

Theorem 4.12 The category SOk,	 is complete.

Proof In view of [7, Proposition 2.8.1] it suffices to check the existence of the product
of any indexed set family of objects and of equalizers. We begin with products. To
this regard, let us consider S ..= {�i | i ∈ I } ⊆ Obj(Set) and {(�i , σi ) | i ∈ I } ⊆
SOk,	. Set moreover � ..= ∏

S and let π
(0)
S,i : � −→ �i be the usual projec-

tions for any i ∈ I and σ ..= s(k)
S ◦(∏̇{σi ◦℘kπ(0)

S,i | i ∈ I }). Let us check that

((�, σ ), {(π(0)
S,i , π

(0)
S,i ) | i ∈ I }) is the product of {(�i , σi ) | i ∈ I } in SOk,	.
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We clearly have (π
(0)
S,i , π

(0)
S,i ) ∈ ArrSOk,	((�, σ ), (�i , σi )) for any i ∈ I because,

by Lemma 4.11 (iv) and of the definition of σ , we get

℘
kπ

(0)
S,i ◦σ = π

(k)
S,i ◦

(∏̇
{σi ◦℘kπ(0)

S,i | i ∈ I }
)

= σi ◦℘kπ(0)
S,i .

Let now (�, τ) ∈ SOk,	 and (qi , q ′
i ) ∈ ArrSOk,	((�, τ), (�i , σi )) for any i ∈ I .

Set first r ..= ∏̇{qi | i ∈ I } and r ′ ..= ∏̇{q ′
i | i ∈ I }.

We claim that (r , r ′) ∈ ArrSOk,	((�, τ), (�, σ )), i.e. that ℘kr ′ ◦τ 	 σ ◦℘kr . By
Lemma 4.11 (iv), the definition of r and since (qi , q ′

i ) ∈ ArrSOk,	((�, τ), (�i , σi ))

for any i ∈ I , we have

℘
kr ′◦τ 	 s(k)

S ◦
∏̇

{℘kq ′
i | i ∈ I }◦τ = s(k)

S ◦
∏̇

{℘kq ′
i ◦τ | i ∈ I }

	 s(k)
S ◦

∏̇
{σi ◦℘kqi | i ∈ I }

= s(k)
S ◦

∏̇ {(
σi ◦℘k(π(0)

S,i ◦r)
) | i ∈ I }

=
(
s(k)
S ◦

∏̇ {(
σi ◦℘k(π(0)

S,i )
) | i ∈ I

})◦℘kr = σ ◦℘kr .

Furthermore we have (qi , q ′
i ) = (π

(0)
S,i , π

(0)
S,i )◦(r , r ′) for each i ∈ I .

To complete the proof, let us compute the equalizers. To this regard, consider
(�1, σ1), (�2, σ2) ∈ SOk,	 and ( f , f ′), (g, g′) ∈ ArrSOk,	((�1, σ1), (�2, σ2)).
Respectively set

� ..= {x ∈ �1 | f (x) = g(x) and f ′(x) = g′(x)} and

∀X ∈ ℘k(�) [σ(X) ..= σ1(X) ∩ ℘k−1(�)].

We claim that ((�, σ ), (ξ, ξ)), where ξ : � −→ �1 is the usual set-theoretical
inclusion, is the equalizer of ( f , f ′) and (g, g′) in SOk,	. Clearly, (ξ, ξ) ∈
ArrSOk,	((�, σ ),

(�1, σ1)) and ( f , f ′)◦(ξ, ξ) = (g, g′)◦(ξ, ξ).
Take now (�, τ) ∈ SOk,	 and (m,m′) ∈ ArrSOk,	((�, τ), (�1, σ1)) such that

( f , f ′)◦(m,m′) = (g, g′)◦(m,m′). Define the maps n : � −→ � and n′ : � −→ �

respectively setting n(λ) ..= m(λ) and n′(λ) ..= m′(λ) for any λ ∈ �. We claim
that (n, n′) ∈ ArrSOk,	((�, τ), (�, σ )). To this end, fix Z ∈ ℘k(�). Hence we
get the inclusion (℘kn′ ◦τ)(Z) = (℘km′ ◦τ)(Z) ⊆ (σ1 ◦℘km)(Z) ∩ ℘k−1(�) =
(σ ◦℘km)(Z), whence our conclusion. Finally, it is obvious that (n, n′) is the only
morphism such that (m,m′) = (ξ, ξ)◦(n, n′). ��
Exercise 4.13 Using a proof similar as that of Theorem 4.12, it may be easily shown
that SOk,	,= is a complete category.

In order to prove the next Proposition 4.15, we need the following preliminary
result.
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Lemma 4.14 ([7], Proposition 2.4.3) Let C be a category, A, B ∈ Obj(C) and f , g ∈
ArrC(A, B). If (H , h) is the equalizer of f and g, the arrow h ∈ ArrC(H , A) is a
monomorphism.

In the next result we will find two morphisms of SOk,
 not admitting equalizers.

Proposition 4.15 In general, the category SOk,
 does not admit equalizers.

Proof Let (�1, σ1), (�2, σ2) ∈ Obj(SOk,
), where�1 = {x},�2 = {a, b}, σ1(X) =
℘
k−1(�1) for each X ∈ ℘k(�1) and σ2(Z) = ∅ for each Z ∈ ℘k(�2).
Consider moreover the four maps f , f ′, g, g′ : �1 −→ �2 defined as follows:

f (x) = f ′(x) = g′(x) = a and g(x) = b. Notice that ( f , f ′), (g, g′) ∈
ArrSOk,
((�1, σ1), (�2, σ2)).

Assume by contradiction that ((�, τ), (h, h′)) is an equalizer of ( f , f ′) and (g, g′)
in the category SOk,
. By Proposition 4.14 it follows that (h, h′) is a monomorphism
and, thus, by Proposition 3.9 (i) we deduce that both h and h′ are injective maps from
� to �1.

On the other hand, as (h, h′) ∈ ArrSOk,
((�, τ), (�1, σ1)), we get the inclusion
℘
kh′ ◦τ 
 σ1 ◦℘kh and, using our choice of σ1, this implies that ℘k−1h′ is surjective.

So, by Proposition 4.9 we deduce that h′ is surjective. Thus, h′ is a bijection between
� and �1. This shows that � contains only one element.

Furthermore, we deduce that h is also bijective. Now, since ((�, τ), (h, h′)) is the
equalizer of ( f , f ′) and (g, g′) in the category SOk,
, it result that f ◦h = g ◦h,
whence f = g, in contrast with our choice of f and g. This shows that there is no
equalizer of ( f , f ′) and (g, g′) in the category SOk,
. ��

As an immediate consequence of Proposition 4.15, we obtain the following result.

Corollary 4.16 The category SOk,
 is not complete.

We conclude this section showing that the category SOk does not have neither
products nor coproducts.

Proposition 4.17 The following conditions hold:

(i) SOk does not admit products;
(ii) SOk does not admit coproducts.

Proof In both proofs, we will consider the objects (�1, σ1), (�2, σ2) ∈ Obj(SOk),
where �1 = �2 = {x}, σ1(X) = ℘k−1(�1) for each X ∈ ℘k(�1) and σ2 = Id

℘k (�2)
.

(i): Assume by contradiction that there exists a product ((�, τ), (p1, p′
1), (p2, p

′
2))

of (�1, σ1) and (�2, σ2). Then it follows that

℘
kp′

1 ◦τ = σ1 ◦℘kp1 and ℘kp′
2 ◦τ = σ2 ◦℘kp2. (9)

Now, by (9) and the fact that σ2(∅) = ∅, we get τ(∅) = ∅ and σ1(∅) = ∅,
contradicting our choice of σ1. This proves that (�1, σ1) and (�2, σ2) do not have a
product.
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(ii): Assume by contradiction that there exists a coproduct ((�, τ), (i1, i ′1), (i2, i ′2))
of (�1, σ1) and (�2, σ2). Then it follows that

℘
ki ′1 ◦σ1 = τ ◦℘ki1 and ℘ki ′2 ◦σ2 = τ ◦℘ki2. (10)

Now, by (10) and the fact that σ2(∅) = ∅, we get τ(∅) = ∅ and σ1(∅) = ∅,
contradicting our choice of σ1. This proves that (�1, σ1) and (�2, σ2) do not have a
coproduct. ��

5 A new interpretation of the category of the equivalence relations

In any classical mathematical textbook an equivalence relation R on a given set �

is usually studied in a direct analogy with its corresponding counterpart which is the
induced set partition on the same ground set �. In the scope of such an identification,
we introduce a new notion, which is a class of Alexandroff closure set operators, and
that we call equivalence closure set operators. In this section, we first address the
identification of the three notions of equivalence relations, set partitions and equiva-
lence closure set operators within our formalism of sub-bijection (see Proposition 5.3).
Next, we extend the above sub-bijection to a categorial level (see Theorem 5.4).

To this regard, for any given set � we denote by EQ(�) the collection of all the
equivalence relations on �, that is all the set relations R ∈ ℘(℘0(�)×℘0(�)) =
℘(�×�) = Obj(SR0)which are reflexive, symmetric and transitive. Notice also that
we may consider EQ(�) as a subfamily of SR(�), by means of the identification of
any pair (x, y) ∈ �×� with the pair ({x}, {y}) ∈ ℘(�)×℘(�). Let EQ be the full
subcategory of SR0 defined by

Obj(EQ) = {
(�,R) | � ∈ Obj(Set), R ∈ EQ(�)

}
.

The main purpose of the present section is the proof of the next Theorem 5.4,
where we determine two isomorphisms between the above category EQ and other two
categories of set systems and set operators, respectively. We need first to introduce
some preliminary linkingmaps, between binary relations and set systems, and between
set systems and set operators. To this regard we define:

• Pa : SR(�) −→ SS(�) such that PaR ..= {NR(x) | x ∈ �} for any R ∈ SR(�),
where

NR(x) ..= {
y ∈ � | ({x}, {y}) ∈ R or ({y}, {x}) ∈ R

};

• Qa : SO(�) −→ SS(�) defined by Qa(σ ) ..= {σ({x}) | x ∈ �}, for each σ ∈
SO(�);

• Up : SS(�) −→ SO(�) such that UpF(X) ..= ⋃{Y ∈ F | X ∩ Y �= ∅}, for each
F ∈ SS(�) and any X ∈ ℘(�);

• Eq : SS(�) −→ SR(�) defined by EqF
..= {(x, y) ∈ �×� | ∃ Z ∈ F [{x, y} ⊆

Z ]}, for each F ∈ SS(�).
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We introduce now a new sub-collection of closure set operators, which we call
equivalence set operators in view of the categorial isomorphism obtained in Theo-
rem 5.4.

Definition 5.1 We say that a set operator σ ∈ SO(�) is an equivalence set operator
on � if it satisfies the following properties:

(E1) σ is extensive;
(E2) σ(X) = ⋃{σ({x}) | x ∈ X}, for any X ∈ ℘(�);
(E3) for any x, y ∈ �, the condition σ({x}) = σ({y}) is equivalent to σ({x}) ∩

σ({y}) �= ∅.

We denote by ESO(�) the family of all equivalence set operators on �.

Remark 5.2 Notice that equivalence set operators are particular types of closure set
operators, that is ESO(�) ⊆ CSO(�).

A direct consequence of Remark 5.2 and of property (E2) is that any equivalence
set operator is also an Alexandroff closure set operator. We refer the interested reader
to know further properties of Alexandroff closure set operators to the work [12], where
such operators are investigated mainly in relation to their links with monoid actions.

Thenext result is preliminary to the proof ofTheorem5.4.Here,we frame the collec-
tions EQ(�), SP(�) and ESO(�) within the formalism of sub-bijections, introduced
in Definition 1.2.

Proposition 5.3 We have that

(SR(�) |EQ(�)) (SS(�) |SP(�)) (SO(�) |ESO(�))
Pa Up

Eq Qa

is an (SR(�),SS(�),SO(�))-sub-bijection.

Proof The fact that Pa is a bijection between EQ(�) and SP(�), with inverse Eq, is
a classical result. So, it suffices to show that Up is a bijection between SP(�) and
ESO(�), with inverse Qa.

Let F ∈ SP(�). We claim that UpF ∈ ESO(�). To this regard, by the definition
of Up we clearly have that UpF(∅) = ∅ and, moreover, it is also easy to prove that
UpF is an extensive and increasing set operator. Furthermore it satisfies property (E3)
because, for every x ∈ �, it results that UpF({x}) agrees with the only member of the
set partition F of � that contains the element x .

Let us now prove that UpF satisfies (E2). To this end, fix X ∈ ℘(�) and, for every
y ∈ �, denote by By the only member of F containing y. Then, we clearly have

y ∈ UpF(X) ⇐⇒ X ∩ By �= ∅ ⇐⇒ ∃ x ∈ X [By ⊆ UpF({x})].

This shows (E2) and, so, UpF ∈ ESO(�).
Let σ ∈ ESO(�). As σ is extensive and by property (E3) we easily deduce that

Qa(σ ) ∈ SP(�).
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Now, let us prove that UpQa(σ ) = σ for each σ ∈ ESO(�). To this regard, when
σ ∈ ESO(�), it is sufficient to observe that

X ∩ σ({x}) �= ∅ ⇐⇒ ∃ y ∈ X [σ({x}) = σ({y})].

On the other hand, we clearly have Qa(UpF) = F for each F ∈ SP(�). ��
Now, in order to obtain a categorical extension preserving the directions of the

arrowsof the above sub-bijection,weconsider the following (SS(�),SR(�),SO(�))-
sub-bijection induced by that previously obtained in Proposition 5.3:

(SS(�) |SP(�)) (SR(�) |EQ(�)) (SO(�) |ESO(�)),
Eq Ta

Pa Za
(11)

where Ta ..= Up◦Pa and Za ..= Eq◦Qa.
We introduce now the following category, whose objects are equivalence set oper-

ators.

• Let ESO1,	,= be the full subcategory of SO1,	,= for which Obj(ESO1,	,=) =
{(�, σ ) | σ ∈ ESO(�)}.
Before proving Theorem 5.4, we need to introduce the category SP whose objects

are set partitions, and the candidate correspondences to be the categorial isomorphisms
established in Theorem 5.4.

• Let SP be the category for which Obj(SP) = {(�,F) | � ∈ Obj(Set), F ∈
SP(�)}, and such that ArrSP((�,F), (�′,F′)) = { f ∈ ArrSet(�,�′) |
℘
2 f (F) � F′} for each (�,F), (�′,F′) ∈ Obj(SP), where the symbol � denotes

the usual partial order on SP(�′) defined by

∀F,G ∈ SP(�′)
[
F � G :⇐⇒ ∀X ∈ F ∃ Y ∈ G [X ⊆ Y ]].

We now extended to a functorial level the linking maps Za, Ta, Pa and Eq, respectively
as follows:

• Ẑa : ESO1,	,= −→ EQ, where Ẑa((�, σ )) ..= (�,Za(σ )) and Ẑa(( f , f )) ..= f ,
for (�, σ ), (�′, σ ′) ∈ Obj(ESO1,	,=) and ( f , f ) ∈ ArrESO1,	,=((�, σ ), (�′, σ ′));

• T̂a : EQ −→ ESO1,	,=, where T̂a((�, R)) ..= (�,Ta(R)) and T̂a( f ) ..= ( f , f ),
whenever (�,R), (�′,R′) ∈ Obj(EQ) and f ∈ ArrEQ((�,R), (�′,R′));

• P̂a : EQ −→ SP, where P̂a((�,R)) ..= (�,PaR) and P̂a( f ) ..= f , whenever
(�,R), (�′,R′) ∈ Obj(EQ) and f ∈ ArrEQ((�,R), (�′,R′));

• Êq : SP −→ EQ, where Êq((�,F)) ..= (�,Eq(F)) and Êq( f ) ..= f , whenever
(�,F), (�′,F′) ∈ Obj(SP), for any f ∈ ArrSP((�,F), (�′,F′)).
Through the categories ESO1,	,=, EQ and SP and the previous correspondences,

in the next result we extend to a categorical level the sub-bijection given in (11).

Theorem 5.4 The arrows of the diagram

SP EQ ESO1,	,=Êq T̂a

P̂a Ẑa
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are isomorphisms of categories, where P̂a is the inverse of Êq and Ẑa is the inverse of
T̂a.

Proof The claim concerning P̂a and Êq is easy and straightforward. Let us prove
that Ẑa and T̂a are well defined. To this regard, let us consider (�, σ ), (�′, σ ′) ∈
Obj(ESO1,	,=) and ( f , f ) ∈ ArrESO1,	,=((�, σ ), (�′, σ ′)). Letmoreover x1, x2 ∈ �

be such that (x1, x2) ∈ Za(σ ). Hence we get (℘ f ◦σ)({x1}) = ℘ f (σ ({x1})) =
℘ f (σ ({x2})) = (℘ f ◦σ)({x2}), so that

∅ �= (℘ f ◦σ)({x1})
⊆ (σ ′◦℘ f )({x1}) ∩ (σ ′◦℘ f )({x2}) = σ ′( f ({x1}) ∩ σ ′( f ({x2}))

and, by (E3), we conclude that σ ′( f ({x1}) == σ ′( f ({x2})), i.e. ( f ({x1}, f ({x2}) ∈
Za(σ ′). This proves that Ẑa(( f , f )) = f ∈ ArrEQ((�,Za(σ )), (�′,Za(σ ′))).

Let us analyze the correspondence T̂a. Let (�,R), (�′,R′) ∈ Obj(EQ) and f ∈
ArrEQ((�,R), (�′,R′)). Take X ∈ ℘(�). Then we have

(Ta(R′)◦℘ f )(X) =
⋃

{[ f (x)]R′ | x ∈ X},
(℘ f ◦Ta(R))(X) = ℘ f

(⋃
{[x]R | x ∈ X}

)
.

At this point, we take an element y′ ∈ (℘ f ◦Ta(R))(X). Clearly there exist
x, y ∈ X such that y ∈ [x]R and y′ = f (y). Therefore, since f ∈ ArrEQ((�,R),

(�′,R′)), it follows that ( f (x), f (y)) ∈ R′, whence y′ ∈ (Ta(R′)◦℘ f )(X). Then
T̂a( f ) = ( f , f ) ∈ ArrESO1,	,=((�,Ta(σ )), (�′,Ta(σ ′))). ��

In the next result we prove that EQ is a reflective subcategory of SR0.

Proposition 5.5 EQ is a reflective subcategory of SR0.

Proof Let (�,R) ∈ SR0 and consider the transitive closure R̂ of the binary relation

R ∪ {(x, x) ∈ �×� | x ∈ �} ∪ {(z, w) ∈ �×� | (w, z) ∈ R}.

Then Id� ∈ Arr((�,R), (�, R̂)) and it is immediate to check that ((�, R̂), Id�) is
the wanted reflection. ��

As an immediate corollary we get the following result.

Corollary 5.6 The following conditions hold:

(i) EQ is bicomplete;
(ii) SP and ESO1,	,= are bicomplete.

Proof (i): It follows by Theorem 4.2 and by Proposition 5.5.

(ii): It is an immediate consequence of Theorem 5.4 and of the above part (i). ��
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6 Closure set operators, closure set systems and dependence set
relations

In this section we consider the pairs (�, σ ), where � is a fixed ground set and σ ∈
CSO(�), as the objects of two specific categories, that we denote respectively by
CSO1,	,= and CSO1,
,=.

More in detail, we must introduce two different conditions in order to define the
previous two categories. Using the two categoriesCSO1,	,= andCSO1,
,= we prove
the main result (Theorem 6.6) of this section. In such a result we obtain a categori-
cal version of the usual bijective correspondence between closure set operators and
closure set systems, and, moreover, provide an isomorphism between one among the
previous categories of closure set operators and a specific kind of binary relations
(called dependence relations) introduced formally in [14].

Let therefore � be a fixed arbitrary set. We recall the notion of dependence relation
on �.

Definition 6.1 ([14]) We call any set relation R ∈ SR(�) a dependence set relation
on � if the following conditions hold:

(D1) if (Y , X) ∈ ℘(�)×℘(�) and Y ⊆ X , then (Y , X) ∈ R;
(D2) if (Z ,Y ), (Y , X) ∈ R then (Z , X) ∈ R;
(D3) (Y , X) ∈ R if and only if ({y}, X) ∈ R for any y ∈ Y .

We denote by DSR(�) the family of all dependence relations on �.

The proof of the next result is easy and we leave it to the reader.

Proposition 6.2 The following conditions hold:

(i) R ∈ DSR(�) if and only if it satisfies (D1), (D2) and if {(Yi , X) | i ∈ I } ⊆ R

then
(⋃{Yi | i ∈ I }, X) ∈ R;

(ii) if R ∈ DSR(�) and {(Zi ,Wi ) | i ∈ I } ⊆ R then
(⋃{Zi | i ∈ I },⋃{Wi | i ∈ I })

∈ R;
(iii) if E ⊆ DSR(�) then

⋂
E ∈ DSR(�).

If R ∈ SR(�), we set

R+ ..=
⋂{

E ∈ DSR(�) | R ⊆ E
}
.

Notice that R+ is the smallest dependence relation on � containing R as a subfamily.
We say that R+ the dependence closure of R.

In order to prepare the proof of Theorem 6.6 we first introduce the following new
linking maps:

• η : SR(�) −→ SO(�) and Cl : SS(�) −→ SO(�), defined respectively by:

∀X ∈ ℘(�)
[
ηR(X) ..=

⋃
{Y ∈ ℘(�) | (Y , X) ∈ R}

]
, (12)

∀X ∈ ℘(�)
[
ClF(X) ..=

⋂
{Y ∈ F | X ⊆ Y }

]
; (13)
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• � : SO(�) −→ SR(�) and Fix : SO(�) −→ SS(�), defined respectively by:

∀σ ∈ SO(�)
[
�(σ) ..= {(Z ,W ) ∈ ℘(�)×℘(�) | Z ⊆ σ(W )}],

∀σ ∈ SO(�)
[
Fix(σ ) ..= {X ∈ ℘(�) | σ(X) = X}].

In the next result (whose simple proof is left to the reader) we establish the basic
properties of the above linking maps.

Proposition 6.3 Let R ∈ DSR(�) and X ∈ ℘(�). Then:

(i) ηR(X) = max{W ∈ ℘(�) | (W , X) ∈ R};
(ii) ηR ∈ CSO(�);
(iii) R+ = ClDSR(�)(R).

The next result is preliminary to the proof of Theorem 6.6. Here, we frame the
collections DSR(�), CSS(�) and CSO(�) within the formalism of sub-bijections,
introduced in Definition 1.2.

Proposition 6.4 We have that

(SS(�) |CSS(�)) (SO(�) |CSO(�)) (SR(�) |DSR(�))
Cl �

Fix η

is an (SS(�),SO(�),SR(�))-sub-bijection.

Proof Using a classical result of Birkhoff concerning closure set systems and closure
set operators (see [3]) it results that

(SS(�) |CSS(�)) (SO(�) |CSO(�))
Cl

Fix

is an (SS(�),SO(�))-sub-bijection. Therefore it remains to show that also

(SO(�) |CSO(�)) (SR(�) |DSR(�)))
�

η
(14)

is an (SO(�),SR(�))-sub-bijection.
To this regard, since R ∈ DSR(�), in view of Proposition 6.3 (ii) we deduce that

ηR ∈ CSO(�). Let now σ ∈ CSO(�). We first show that �(σ) ∈ DSR(�), namely
that the set relation �(σ) satisfies the properties (D1), (D2) and (D3). With regard to
both the properties (D1) and (D2), they follow respectively by the extensiveness and
the monotonicity of the set operator σ .

With regard to the property (D3), let X ,Y ∈ ℘(�) and y ∈ �. Then we get
(Y , X) ∈ �(σ) if and only if ({y}, X) ∈ �(σ) for each y ∈ Y . In fact, notice that
(Y , X) ∈ �(σ) if and only if Y ⊆ σ(X), that is equivalent to say that y ∈ σ(X) for
each y ∈ Y , i.e. ({y}, X) ∈ �(σ) for any y ∈ Y . Hence (D3) holds.

Let now R ∈ DSR(�). We claim that �(ηR) = R. To this end, if (Y , X) ∈ R,
then Y ⊆ ηR(X) by (12), whence (Y , X) ∈ �(ηR). Conversely, if (Y , X) ∈ �(ηR),
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then Y ⊆ ηR(X). Therefore, for any element y ∈ Y there exists Zy ∈ ℘(�) for which
y ∈ Zy and (Zy, X) ∈ R. Consequently, since R ∈ DSR(�), by (D3) it follows that
({y}, X) ∈ R for each y ∈ Y . Thus, again by (D3) we deduce that (Y , X) ∈ R.

At this point, notice that η�(σ) = σ . In fact, if X ∈ ℘(�), we have that

η�(σ)(X) =
⋃

{Y ∈ ℘(�) | (Y , X) ∈ �(σ)}
=

⋃
{Y ∈ ℘(�) | Y ⊆ σ(X)} = σ(X).

Hence (14) is an (SO(�),SR(�))-sub-bijection on �. ��
We now introduce the following new categories of set operators (for brevity we pro-

vide explicitly only the definition concerning 	, because the corresponding definition
with 
 is similar):

• the full subcategory CSO1,	,= of SO1,	,=, where Obj(CSO1,	,=) ..= {(�, σ ) ∈
Obj(SO1,	,=) | σ ∈ CSO(�)}.
Wewill use closure set systems and dependence relations as objects of the following

two categories:

• the full subcategoryCSS1 of SS1, where Obj(CSS1) ..= {(�,F) ∈ Obj(SS1) |F ∈
CSS(�)};

• the full subcategoryDSR1 ofSR1, whereObj(DSR1) ..= {(�,R) |R ∈ DSR(�)}.
In the next result we prove that the category DSR1 is complete.

Theorem 6.5 The category DSR1 is complete.

Proof In view of [7, Theorem 2.8.1], we must prove the existence of products and
equalizers in DSR1. To this regard, first take {(�i ,Ri ) | i ∈ I } ⊆ Obj(DSR1) ⊆
Obj(SR1). Consider their product (�,B) in the category SR1, computed in the proof
of Theorem 4.2. As DSR1 is a full subcategory of SR1, it suffices to check that
(�,B) ∈ Obj(DSR1).

To this end, let first (Y , X) ∈ ℘(�)×℘(�) be such that Y ⊆ X . Then, as ℘πi is
increasing and Ri ∈ DSR(�i ) for any i ∈ I , we get (℘πi (Y ),℘πi (X)) ∈ Ri for all
i ∈ I , so that (Y , Z) ∈ B.

Suppose now that (Z ,W ), (W , T ) ∈ B. We claim that (Z , T ) ∈ B. To this regard,
just observe that our assumptions imply that (℘πi (Z),℘πi (W )), (℘πi (W ),℘πi (T ))

∈ Ri for each i ∈ I . Hence (℘πi (Z),℘πi (T )) ∈ Ri for each i ∈ I because Ri ∈
DSR(�i ). This proves that (Z , T ) ∈ B.

Finally let us prove that (Z ,W ) ∈ B if and only if ({z},W ) ∈ B for each z ∈ Z .
To this regard, using the fact that ℘πi (Z) = ⋃{℘πi ({z}) | z ∈ Z}, we easily get

∀i ∈ I
[
(℘πi (Z),℘πi (W )) ∈ Ri ⇐⇒ ∀z ∈ Z [(℘πi ({z}),℘πi (W )) ∈ Ri ]

]
.

This proves that B ∈ DSR(�).
Let now (�,R), (�′,R′) ∈ Obj(DSR1) ⊆ Obj(SR1) and f , g ∈ ArrDSR1((�,R),

(�′,R′)). AsDSR1 is a full subcategory of SR1, we haveArrDSR1((�,R), (�′,R′)) =
ArrSR1((�,R), (�′,R′)).
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Thus we can consider the equalizer ((�∗,R∗
f ,g), ι∗) of f and g in SR1 com-

puted in the proof of Theorem 4.2. By a straightforward check, we easily deduce
that (�∗,R∗

f ,g) ∈ Obj(DSR1). ��

The last tools to be introduced before proving the next Theorem6.6 are the following
correspondences:

• F̂ix : CSO1,
,= −→ CSS1, where F̂ix((�, σ )) ..= (�,Fix(σ )) and F̂ix( f , f ) ..=
f ,whenever (�, σ ), (�′, σ ′) ∈ Obj(CSO1,
,=) and ( f , f ) ∈ ArrCSO1,
,=((�, σ ),

(�′, σ ′));
• Ĉl : CSS1 −→ CSO1,
,=, where Ĉl((�,F)) ..= (�,ClF) and Ĉl( f ) ..= ( f , f ),
whenever (�,F), (�′,F′) ∈ Obj(CSS1) and f ∈ ArrCSS1((�,F), (�′,F′));

• η̂ : DSR1 −→ CSO1,	,=, where η̂((�,R)) ..= (�, ηR) and η̂( f ) ..= ( f , f ),
whenever (�,R), (�′,R′) ∈ Obj(DSR1) and f ∈ ArrDSR1((�,R), (�′,R′));

• �̂ : CSO1,	,= −→ DSR1, where �̂((�, σ)) ..= (�,�(σ)) and �̂( f , f ) ..= f ,
whenever (�, σ ), (�′, σ ′) ∈ Obj(CSO1,
,=) and ( f , f ) ∈ ArrCSO1,
,=((�, σ ),

(�′, σ ′)).

Now we provide the proof of the main result of the present section.

Theorem 6.6 The arrows of the diagrams

CSS1 CSO1,
,=Ĉl

F̂ix
and CSO1,	,= DSR1�̂

η̂

are isomorphisms of categories.

Proof We must only show the four correspondences are well defined on arrows. Let
(�, σ ), (�′, σ ′) ∈ Obj(CSO1,	,=) and ( f , f ) ∈ ArrCSO1,	,=((�, σ ), (�′, σ ′)). Let
moreover (X ,Y ) ∈ �(σ). By the definitions of �(σ) and of the arrows in CSO1,	,=
it follows that℘ f (X) ⊆ ℘ f (σ (Y )) ⊆ σ ′(℘ f (Y )), whence (℘ f (X),℘ f (Y )) ∈ �(σ ′)
and �̂( f , f ) ..= f ∈ ArrDSR1((�, �̂(σ )), (�′, �̂(σ ′))). Thus �̂ is well defined.

We examine now η̂. To this end, let (�,R), (�′,R′) ∈ Obj(DSR1) and f ∈
ArrDSR1((�,R), (�′,R′)). Let moreover X ∈ ℘(�). Then, by Proposition 6.3 (i)
and since R ∈ DSR(�), it follows that (ηR(X), X) ∈ R. Hence, in view of the defi-
nition of the arrows in the category DSR1, it results that (℘ f (ηR(X)),℘ f (X)) ∈ R′.
Again, by Proposition 6.3 (i) and sinceR′ ∈ DSR(�′), we also obtain that ℘ f (ηR(X))

⊆ ηR
′(℘ f (X)), whence ℘ f ◦ηR 	 ηR

′ ◦℘ f in view of the arbitrariness of X . This
proves that η̂( f ) = ( f , f ) ∈ ArrCSO1,	,=((�, ηR), (�

′, ηR′)). Therefore, also the
correspondence η̂ is well defined.

We now prove that F̂ix : CSO1,
,= −→ CSS1 is well defined on arrows. Let there-
fore (�, σ ), (�′, σ ′) ∈ Obj(CSO1,
,=) and ( f , f ) ∈ ArrCSO1,
,=((�, σ ), (�′, σ ′)).
Let moreover X ∈ Fix(σ ) and set Y ..= ℘ f (X). By the definition of the arrows of
CSO1,
,= and our choice of X , it follows that

σ ′(Y ) = σ ′(℘ f (X)) ⊆ ℘ f (σ (X)) = ℘ f (X) = Y .
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On the other hand, since σ ′ ∈ CSO(�′), we also have Y ⊆ σ ′(Y ), so that σ ′(Y ) = Y ,
i.e. Y ∈ Fix(σ ′). Therefore F̂ix( f , f ) = f ∈ ArrCSS1((�, F̂ix(σ )), (�′, F̂ix(σ ′))),
i.e. F̂ix is well defined.

Let us examine Ĉl. Let (�,F), (�′,F′) ∈ Obj(CSS1) and f ∈ ArrCSS1((�,F),

(�′,F′)). Since ℘ f is increasing and ClF′ ∈ CSO(�′), in view of Proposition 6.4 and

the definition of the arrows of CSS1, it follows that

ClF′(℘ f (X)) ⊆ ClF′(℘ f (ClF(X))) = ℘ f (ClF(X))

for any X ∈ ℘(�). Thus Ĉl( f ) = ( f , f ) ∈ ArrCSO1,
,=((�,ClF), (�′,ClF′)) and
the correspondence Ĉl is also well defined. ��

In the next result we establish further properties of the categories CSO1,	,=,
CSO1,
,= and CSS1. In particular, we will see that the two categories CSO1,	,=
and CSO1,
,= are deeply different because they are neither equivalent nor dually
equivalent.

Proposition 6.7 The following conditions hold:

(i) there is no initial object in CSO1,
,=;
(ii) CSO1,
,= is not cocomplete;
(iii) the categories CSO1,	,= and CSO1,
,= are not equivalent;
(iv) the categories CSO1,	,= and CSO1,
,= are not dually equivalent;
(v) the category CSS1 is not cocomplete;
(vi) the categories CSS1 and DSR1 are not equivalent;
(vii) the category CSO1,	,= is complete.

Proof (i): Assume by contradiction that (�, τ) is the initial object in CSO1,
,=. We
cannot have � �= ∅. In fact, assume that � �= ∅ and let (�, σ ) ∈ Obj(CSO1,
,=),
where � contains at least two elements and σ(X) = � for each X ∈ ℘(�), and let
( f , f ) be the only arrow in ArrCSO1,
,=((�, τ), (�, σ )). As ℘ f ◦τ(X) 
 σ ◦℘ f (X),
taking X = �, we easily deduce that f is surjective. So |�| � |�| and we can choose
the surjective function f : � −→ � in a more than one arbitrary way, contradicting
the uniqueness of ( f , f ).

Thus � = ∅ and τ = Id℘(∅). Moreover, if (�, σ ) ∈ Obj(CSO1,
,=) and ( f , f )
is the only arrow in ArrCSO1,
,=((�, τ), (�, σ )), we also deduce f is the empty map.
Nevertheless, the inclusion ℘ f ◦τ 
 σ ◦℘ f cannot hold if we take a non-empty set
� and the set operator σ on � such that σ(X) = � for each X ∈ ℘(�). This shows
that (�, τ) cannot exist.

(ii): It follows immediately by the above part (i) and by [7, Theorem 2.8.1].

(iii): In view of Proposition 4.7 (v), the category CSO1,	,= admits an initial object.
Now, if the categoriesCSO1,	,= andCSO1,
,= were equivalent, then evenCSO1,
,=
would have an initial object, in contrast with the above part (i).

(iv): In view of Proposition 4.7 (iv), the category CSO1,	,= admits a terminal
object. Now, if the categories CSO1,	,= and CSO1,
,= were dually equivalent, then
CSO1,
,= would admit an initial object, in contrast with the above part (i).
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(v): It follows by the above part (ii) and by Theorem 6.6.

(vi): If CSS1 and DSR1 were equivalent, then by Theorem 6.6 we would get an
equivalence between the categoriesCSO1,	,= andCSO1,
,=, contradicting the above
part (iii).

(vii): It follows immediately by Theorems 6.5 and 6.6. ��
We conclude the present section proving next Theorem 6.11. With regard to this

result, it is convenient first provide a new interpretation of the linking map Cl when
the ground set � is substituted with ℘(�)×℘(�). In fact, with such a choice, it is
clear that DSR(�) ∈ SS(℘(�)×℘(�)). Consequently, in view of (13) it follows that
ClDSR(�) is an element of SO(℘(�)×℘(�)), i.e.

ClDSR(�) : ℘(℘(�)×℘(�)) = SR(�) −→ ℘(℘(�)×℘(�)) = SR(�).

Now, if we interpret ClDSR(�) as a linking map between SR(�) into itself, it is also
natural to consider its relationshipswith a linkingmap�, from relations to set systems,
that is implicitly used (although not explicitly defined) in several scopes of theoretical
computer science (see for example [35]).

Formally, we introduce the linking map � : SR(�) −→ SS(�) defined by

�(R) ..= {
Z ∈ ℘(�) | ∀(Y , X) ∈ R [X ⊆ Z �⇒ Y ⊆ Z ]},

for any R ∈ SR(�).
Themap� enables us to highlight a fundamental aspect related to the sub-bijections

obtained through linking maps. To this end, we consider both the linking maps � and
Fix◦η. Then, we have the following result, whose simple proof is left to the reader.

Proposition 6.8 The following conditions hold:

(i) Fix(ηR) = �(R) for any R ∈ DSR(�);
(ii) �(R) is a closure set system on �, for any R ∈ SR(�);
(iii) there exists R§ ∈ SR(�) such that (Fix◦η)(R§) /∈ CSS(�).

In view of Proposition 6.8 we observe that the linking maps � and Fix◦η differ
from each other. In fact, by Proposition 6.8 (ii) it follows that � maps any set relation
on � to a closure set system on the same ground set, while the same does not hold for
the linking map Fix◦η, as one can see by Proposition 6.8 (iii).

In addition, by Proposition 6.8 (i) we can also notice that the restrictions of � and
Fix◦η to the collection of all dependence relations on � agree. From this and Propo-
sition 6.4, we then obtain the two following distinct (SR(�),SS(�))-sub-bijections:

(SR(�) |DSR(�)) (SS(�) |CSS(�)).
Fix◦η �

�◦Cl

In the next Theorem 6.11 we will establish the natural commutativities between the
linking maps Fix, � and ClDSR(�) when � is a fixed finite ground set. To this regard
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it is first necessary to introduce two linking maps �,	 : SR(�) −→ SO(�) defined
by:

∀R ∈ SR(�),∀X ∈ ℘(�)
[
�R(X) ..= X ∪

⋃
{ηR(Y ) | Y ⊆ X} and 	R(X) ..=

⋃
{�k

R(X) | k ∈ N}
]
.

With regard to the above linking maps, we get the following results.

Proposition 6.9 Let R ∈ SR(�), k � 0, X ∈ ℘(�) and Y ⊆ �k
R(X). Then (Y , X) ∈

R+.

Proof Use induction on k and the definition of dependence relation, R+ and of the set
operator �. ��
Proposition 6.10 For any R ∈ SR(�), the following conditions hold:

(i) ηR 	 �R 	 	R;
(ii) 	R ∈ CSO(�).

Proof Straightforward. ��
At this point we are able to prove the last result of this section.

Theorem 6.11 Let � be a fixed set. Then the diagram

SR(�) SS(�)

SR(�) SO(�)

�

�
ClDSR(�)

	

Fix

commutes, i.e. � ◦ClDSR(�) = � = Fix◦	.

Proof LetR ∈ SR(�) be fixed. The commutativity of the above diagram is equivalent
to show that �(R+) = �(R) = Fix(	R). We want first show that

Fix(	R) = �(R+). (15)

To this end, we need to show that

�◦	 = ClDSR(�) and η◦ClDSR(�) = 	. (16)

Let us check that

R+ ⊆ �(	R). (17)

To this regard, take (Y , X) ∈ R. First note that Y ⊆ 	R(X) by (12) and by Proposition
6.10 (i), so that R ⊆ �(	R). By the definition of R

+, it is now sufficient to check that
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�(	R) ∈ DSR(�) and this is a consequence of Proposition 6.4 because	R ∈ CSO(�)

by Proposition 6.10 (ii). So (17) holds.
We now show that ηR+ = 	R. To this regard, fix X ∈ ℘(�).
As �(	R) ∈ DSR(�) and 	R ∈ CSO(�), by Proposition 6.4 we have that

	R = η�(	R). Therefore, by (17) and Proposition 6.3 (i), we easily get the inclusion
ηR+(X) ⊆ 	R(X).

Conversely, let y ∈ 	R(X) = ⋃ {�k
R(X) | k ∈ N}. Then either y ∈ X or there exists

a minimum integer s � 1 such that y ∈ �s
R(X). If y ∈ X , then we get ({y}, X) ∈ R+,

whence y ∈ ηR
+(X).

Assume therefore the existence of a minimum integer s � 1 such that

y ∈ �s
R(X) = �s−1

R (X) ∪
⋃

{ηR(W ) |W ⊆ �s−1
R (X)}.

In view of the minimality of s, there exists Z ⊆ �s−1
R (X) such that y ∈ ηR(Z). Thus,

by (12), there exists Zy ∈ ℘(�) such that y ∈ Zy and (Zy, Z) ∈ R ⊆ R+. Now, as
Z ⊆ �s−1

R (X), by Proposition 6.9 it follows that (Z , X) ∈ R+. So, using (D2) on the
pairs (Zy, Z) and (Z , X), we get (Zy, X) ∈ R+, whence y ∈ ηR

+(X). Therefore we
obtain the inclusion 	R(X) ⊆ ηR

+(X), so that ηR
+ = 	R = η�(	R). Then we also

get the equality R+ = �(	R) by Proposition 6.4. This proves that (16) holds.
At this point, we can conclude the proof of (15). In fact, as R+ ∈ DSR(�), we get

our conclusion using (16) and Proposition 6.8 (i).
In order to complete the proof, let us finally show that �(R) = �(R+). To this

end, note first that �(R+) ⊆ �(R) since R ⊆ R+ and the map � is decreasing with
respect to set-theoretical inclusion. Take now Z ∈ �(R). We claim that Z ∈ �(R+).
To this end, let us check that Z ∈ Fix(�R). By the definition of �R, we clearly have
Z ⊆ �R(Z). Conversely, let w ∈ �R(Z). Then there exists Y ∈ ℘(Z) such that
w ∈ ηR(Y ). At this point, by the definition of ηR, we get w ∈ W , for some W ∈ ℘(�)

such that (W ,Y ) ∈ R. Since Z ∈ �(R) and Y ⊆ Z , we deduce that W ⊆ Z ,
whence w ∈ Z . Thus �R(Z) ⊆ Z and, hence, Z ∈ Fix(�R). Now, using the fact that
Fix(�R) = Fix(	R), we deduce that 	R(Z) = Z , whence Z ∈ �(R+) by virtue of
(15). This proves that �(R) = �(R+). ��

7 Conclusions

In this paper we introduced new categories SSk, SRk, SOk,	, SOk,
 and SOk gen-
eralizing at a categorical level the notions of set system, set relation and set operator,
respectively. These categories depend on a nonnegative parameter k, on the basis of
which the objects and arrows of the above categories were defined by means of k
successive compositions of the classic powerset functor.

In the first part of the paper we studied the basic properties of these categories. A
particular attention has been addressed towards the analysis of the main properties
of the previous categories; among the most important, we proved for instance the
bi-completeness and Cartesian closedness of SSk and SRk.
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In the second part of the work we extended both the bijection between equivalence
relations, set partitions and equivalence set operators, and also that between closure set
operators, closure set systems and dependence set relations, determining more general
categorical isomorphisms. In order to establish the aforementioned isomorphisms, we
have also introduced and studied in detail suitable relevant subcategories of the main
categories SSk, SRk, SOk,	, SOk,
 and SOk.

The study of these sub-categories may be seen as the starting point of the develop-
ment of an articulated framework, which we believe is worthy of being investigated
even in successive works.

The future research perspectives appear to be quite promising, because of the nov-
elty of these categories and since we can study them relatively with topics typical
of various sectors of both pure mathematics (e.g. commutative algebra, topology and
matroid theory, to name few specific examples), and of theoretical computer science
(e.g. granular and soft computing, rough set theory, or functional programming).

Furthermore, the complete investigation of such categories is far to be reached,
because most of the usual properties of the aforementioned categories have not been
yet analyzed. So,many possible open problems (whichwe believe to be not appropriate
to list in this short final section) occur and this situation may constitute an interesting
future research perspective.
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