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Abstract

It is well known that every smooth cubic threefold is the zero locus of the Pfaffian
of a 6 x 6 skew-symmetric matrix of linear forms in P* To compactify the space of
such Pfaffian representations of a given cubic and to study the construction in families
for singular or reducible cubics as well as, it is thus natural to consider the incidence
correspondence of Pfaffian representations inside the product of the space of semistable
skew-symmetric 6 x 6 matrices of linear forms in P* and the space of cubics. Here
we describe concretely the irreducible component of this incidence correspondence
dominating the space of skew matrices.
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1 Introduction and background

Pfaffian representations of cubic threefolds and associated moduli spaces have been
studied by various authors, notably Beauville [1, 2], Comaschi [6, 7], Manivel and
Mezzetti [10], Iliev and Markushevich [9]. In this article we seek to prove some
general results that are useful to study certain compactifications of such spaces of
Pfaffian representations in families. To describe our goal more precisely, we first need
to set up some notation and terminology.

Let R be the graded polynomial ring over C in variables xo, . . ., x4 of weight 1, and
let § = P((C°)V ® AC®) be the projective space of skew-symmetric 6 x 6-matrices
with entries linear forms on P%. The group G = GLg(C) acts on 8 by acting trivially
on (C)V and naturally on A>C®. This corresponds to performing simultaneous row
and column operations on skew-symmetric 6 x 6-matrices. We denote by

=8%//G
the good quotient of the locus of semistable points in & by the action of G. Let
7:8% - M

be the canonical projection. We define the subset 8P* C 8% to be the subset of those
points whose orbits in 8% are closed. We recall that every fibre of 7 contains a unique
closed orbit, i.e. the orbit of an element in 8P5. Let C = IP’(HO(OEM (3))) be the space
of cubic hypersurfaces in P* Consider the incidence correspondence

T={(M],[F]) | PE(M) € (F)} C 8" xC
with its two projections
71:T = 8%, mm: T — C.

The condition Pf (M) € (F) is to be understood as the vanishing of all 2 x 2 minors
of the matrix containing in its rows the coefficients of Pf (M) and F with respect to
some basis of the degree 3 homogeneous polynomials in xo, . .., X4.

Let 8 C 8% be the subset consisting of matrices with Pfaffian zero, and let

To =77 (85) = S§x C.

Notice that 77y is one- to one onto its image outside of the subset Ty C 7. Denote by
S5 the closure of T Lgss — &) in 7.

The group G acts on 8 x C if we let it act trivially on C. Then 8* x € is the locus
of semistable points for this action, and 8% is clearly a G-invariant irreducible closed
subset of 8% x €. The good categorical quotient (8* x €) //G is nothing but M x C,
and S5 maps to an irreducible closed subset of M x €, which we denote by M.

Our goal is to describe the points of S“ = 8% N Ty more explicitly, which we
will achieve in Theorem 2.1. Our initial mterest in this problem stems from the fact
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that M — € may then be viewed as the universal family of G-equivalence classes of
Pfaffian representations of cubic threefolds, the fibres are projective, and there is a fibre
over any cubic, singular, reducible, whatsoever. Also base-changing to curves inside C
and discarding components of the resulting total spaces that do not dominate the base
curves, we can talk about one-parameter degenerations of (compactified) spaces of G-
equivalence classes of Pfaffian representations. In a forthcoming article, we will show
that the fibre of M over a smooth cubic threefold X coincides with the Maruyama-—
Druel-Beauville moduli space of equivalence classes of semistable sheaves on X with
Chern classes ¢y = 0,¢cp = 2,¢3 =0, or equivalgntly, the intermediate Jacobian of X
blown up in the Fano surface of lines [2]. Thus M gives us a way to construct explicit
degenerations of these birational models of the intermediate Jacobians, which, we
hope, will pave a way to decide unresolved questions about the cycle theory on such
intermediate Jacobians: the most famous perhaps being if, realising these intermediate
Jacobians as Prym varieties of double covers of smooth plane quintic curves, half of
the class of the Prym curve is an algebraic cohomology class for very general X.
By ? a positive answer to this is equivalent to the cubic being Chow zero universally
trivial, which in turn is necessary for the cubic to be stably rational. It is a famous
open problem if very general cubic threefolds are stably rational or not.
We will make repeated use of the following classification result below.

Theorem 1.1 Let [M] € 8% have vanishing Pfaffian. View M as a map of graded
R-modules

R(—1)°® X, RS,

Let S be a matrix with columns representing a minimal system of generators of the
kernel of this map M. Let Y be the rank at most two locus of M with its scheme
structure defined by the 4 x 4 sub-Pfaffians. Then there exist independent linear forms
lo, ..., 14 and matrices B € GLg(C) and B’ € GL,(C) such that after making the
replacements

M +— B'MB
S+ B'SB

we have one of the cases in Table 1. Moreover; the stability type of M is as described
in the last column of Table 1.

Proof Most of this is proven in [4], and the results are summarised in Table 2 there.
The information about S and the more precise information about Y is readily obtained
using Macaulay?2, see [3, Tablel.m2]. O

In the following it will be helpful to notice that S carries exactly the same informa-
tion as M:

Proposition 1.2 Let M and S be matrices as in Table 1. Then M represents the syzygy
module of S'. Furthermore the ideal generated by the 2 x 2 minors of S is equal to the
one generated by the 4 x 4 Pfaffians of M.
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Proof In all cases we can compute that the syzygy module of S” is represented by a not
necessarily skew-symmetric 6 x 6 matrix of linear forms. See [3, Tablel.m2]. Since
S'M" = 0 we have that the columns of M! = —M are linear syzygies of S’. Since
these columns are linearly independent in all cases, —M and hence M represent the
syzygy module of S’.

The last statement of the proposition follows by a direct computation done in [3,
Tablel.m2]. O

2 The main theorem

Here we prove

Theorem 2.1 Let [M] be a point in 8§ and X = V(F) C P* a cubic threefold. Let
Y C X be the scheme defined by the 4 x 4 Pfaffians of M and the cubic polynomial
F. Then ([M], [F]) is a point in 8 if and only if Y contains a curve of degree 2.

The proof of this will occupy the rest of the paper. We start by laying the groundwork
for some local computations involving jets.

Remark 2.2 Notice that for matrices M of type (a)—(e) the degree 2 curve is uniquely
defined by M. For matrices of type (f) the condition is satisfied for all F' such that
V(F) contains the rank 2 locus of M with reduced scheme structure, i.e. the line
lo=h=0h=0.

Below by an algebraic scheme we mean a scheme separated and of finite type over
Spec(C).

Definition 2.3 Let X be an algebraic scheme and p € X a closed point. Put
T, = Spec(CLt1/(1"*1)).
An n-jet starting at p, or centred at p, in X is a morphism of algebraic schemes

T, — X mapping the closed point of 7;, to p. We sometimes write the residue class
of r in C[¢]/(t"*") as ¢, and elements j € C[r]/("*!) as

Jj=Jo+ j1e+---+ jue".
Note that if Spec(C[xy, ..., x,1/(fi(x1, .. s x0)s ..., fr(x1,...,Xx,))) is an affine
chart on X containing p and p = (ay, ..., a,), the datum of an n-jet starting at p is
the same as the datum of a solution (aj, ..., a,) of the equations f; =--- = f, =0

where a; € C[¢]/(t"t)) is a lift of g;.

Definition 2.4 The natural ring homomorphism
Cle]/ (") — CLel/ (")
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19 Page60f16 C.Bohning et al.

for m < n induces a corresponding operation on jets: given an n-jet j: 7, — X
centred at a point p in an algebraic scheme X, we get an m-jet

Tgm(]) Tn — X,

called the truncation of j in degrees < m.
Moreover, the ring homomorphism

Cle1/ (") — Cls1/(s™

5"

induces an operation on jets: given an n-jet j: 7, — X centred at a point p in an
algebraic scheme X, we get an rn-jet

e Ton > X

called the r-fold covering of j.

Proposition 2.5 Let [M] be a point in 8. Then the codimension of the tangent space
T (8y) in the ambient Typr)(8%) is given by the second column in Table 2.

Proof Let M' = (Zi:o a; jkxk) 1<i.j<6 be a general skew-symmetric matrix of linear
forms. Then we consider a 1-jet M + e M’ at M in 8%. Then we get

Pf(M +eM') =€eF’

and M+eM'isal-jetin 8 if and only if F’ = 0. The coefficients of F” are linear in the
ajjk» SO we obtain a set of linear equations on the a;jx whose rank is the codimension
of the tangent space. The computation of the rank is done in [3, Table 2.m2]. O

Consider the tangent cone to an algebraic scheme X at the point p. Choose an affine
chart as above with p = (a1, ...,a,) = (0, ..., 0). The tangent cone T'Cp(X) is the
subscheme of C" given as the zero locus of the leading terms of all elements in the
ideal IX = (fl, ey fr)

If I is the ideal of the tangent cone TC,(X) and I, is the degree at most 2
part of this ideal, we call the vanishing locus V(I<2) =: (TC,(X)) the degree 2
approximation of the tangent cone.

The tangent cone to a variety at a given point is often difficult to compute, but the
degree 2 approximation still has some useful computational properties. In particular
a version of Hensel lifting still holds:

Proposition 2.6 Ler X C C" be a variety, p € X a point. Then p' € C" is a point
in the degree 2 approximation of the tangent cone if and only if there exists a point
p’" € C" such that the 2-jet

ji= p—i—ep’—i-ezp”

is contained in X.
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Proof Without loss of generality we can assume p = 0. Let f1, ..., fin € Ix be poly-
nomials whose initial terms generate /<>. We can assume that these have expansions

fi=fi+ f{' +ho.t

fi = fi+ f’ +ho.t

fier = fi4 +hot
fn = S +heo.t.
with f{,..., f{ linearly independent linear forms, and f/’,..., f,, homogeneous
quadratic polynomials, of which f;’, |, ..., f,, are linearly independent.

Now a2-jet j = p+ep'+€%p”lieson X ifand onlyif f; (j) =Ofori =1,...,m.
If p = 0 and p’ is in the degree 2 approximation of the tangent cone, then this system
of equations reduces to

0=fih)=fEH+ ), i=1,... k.

For given p’ this is a set of linear equations for p”. Since f7,..., f; are linearly
independent, this set of linear equations has a solution.
Let conversely j = p+ep’ +€2p” bea2-jet on X. Evaluating the first k equations

in j and considering the terms linear in €, we get that f{(p') = --- = f/(p') = 0.
Evaluating the remaining equations in j gives f’,;(p’) = --- = f,(p) = 0. So p’
lies on the degree 2 approximation of the tangent cone. O

Remark 2.7 1n the situation of the proposition above the proof also shows that we can
compute the degree 2 approximation of the tangent cone in the following way.

(1) Consider a 2-jet

j=p+6p/+62p”

with p” in T, X general and p” € C" general.
(2) Evaluate the generators of Iy in j. This yields a vector space V of polynomials
quadratic in p’ and linear in p”.

(3) The generators of I, are those elements of V whose linear part vanishes. This can
be computed by solving a linear system of equations.

Proposition 2.8 Let [M] be a point in 8. Let I be the ideal of the tangent cone
TCin(8y) C Tim(8™). Then the degree 2 part I is the same as the degree 2 part
of the ideal listed in the third column of Table 2.

4 4
Proof Let M'= (3 ¢ aijkxk)lgi,jgé and M" = (3 bijkxk)lgi,jés be general
skew matrices of linear forms. We consider a 2-jet M 4+ e M’ + €>M” at M in 8% and
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19 Page80f16 C.Bohning et al.

Table 2 Geometric properties of the semistable locus

Type of [M] codim Tjp71(8§°) Ideal of T Cpr)(8F°) in Tiar)(SF)
(a) 28 (0)

(b) 27 (0)

(©) 26 (a124 — azsa, apo4 — azaa) - (apsa)
(d) 27 0)

(e) 26 (a454. azsa) - (ag14)

minorsy w2 (N1|N2) N minorsy o <x;>

with
a124 a454
() 22 Ny = | ao24 a3ss
a4 aza4
a123 d4s3
Ny = | a3 ass3
ap13 az43

compute
Pf(M +eM +e’M") = €F' + €’F".

We choose M’ such that F' = 0. As explained in the proof of Proposition 2.5 this
means that M’ represents a tangent vector to 83’ at [M]. The coefficients of F” are
homogeneous of degree two where dega;jx = 1 and degb;jr = 2. The quadrics in
the table are those linear combinations of the coefficients of F” that no longer contain
any of the b; . These are contained in the ideal of the tangent cone by Remark 2.7.
Finding those linear combinations amounts to solving a linear system of equations
and is done in [3, Table2.m2]. O

Proposition 2.9 We have the following stratification of 8y :

(b) —(d)
(a) (c) (e) ()

where (x) — (y) means that the stratum of type (y) matrices lies in the closure
of the stratum of type (X) matrices.

Proof We deal with the closure relation symbolised by each arrow separately.

(b) — (c¢) | Notice that matrices of type (b) are conjugate to matrices of the form

0 ly I
—lp 0 b
-1 —Ih 0

0 Iy 123

—lIy 0 I3

- -I3 0
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Here we use that A>C3 ~ (C3)V as GL3 C-representation, whence passing to a con-
jugate matrix we can replace the entries of the bottom right 3 x 3 skew-symmetric
matrix by any invertible linear combination of them. Now specialising Iy — [, we
get a matrix of type (c).

(d) — (e) | This is obvious letting Iy — 0.

(e) — (f) | This is obvious letting I3 — 0.

(a) — (c) | Consider the family of skew-symmetric 6 x 6 matrices

I3 0 ly 0L
—I3 —ly 0 153
B -, —hL 0
M; = 0 Ilo L I3+ Iyt
—lyp 0 Ih =3 — gt
-1 =1 0

One has Pf (M;) = 0 and the rank 2 locus with its reduced structure is defined by the
ideal:

(11, I, 18 — l% — l3l4t>.

Fort # 0this defines a smooth conic, while for = 0 it defines two distinct intersecting
lines. Therefore M, is of type (a) for r # 0 and of type (c) for t = 0.
(b) — (d) | Consider the family of skew-symmetric 6 x 6 matrices

l3t2 l4t2 0 Iy L4

—l3l2 —lp 0 I
| —lr? 11—l 0
M: = 0 Iy 4 I3 Iy
—ly 0 L —Nh
—l =, 0 —l4

One can check that Pf (M;) = 0 and the rank 2 locus with its reduced scheme structure
is defined by

(o, It + tla, lo +tlz) N (I, Iy — tlg, Iy — t13).

For t # 0 this defines two skew lines and hence M; is of type (b) for ¢ # 0. Also My
is of type (d).
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(¢) — (e) | Consider the family of skew-symmetric 6 x 6 matrices

L2 0 Iy I

—1312 —lp 0 Ip
_ 1 =1L 0
Mi=1 o lo It I3
—ly 0 Ih—I3
-1 =1L 0

One can check that Pf (M;) = 0 and the rank 2 locus with its reduced structure is:
(I, 1, 1§ — 131%).

For ¢ # 0 this defines two distinct, but intersecting lines and hence M, is of type (c).
Moreover M) is of type (e).

All computations necessary for the above are done in [3, deformations6x6.m2].

Now notice that the rank < 2 locus of a specialization of M must contain the
specialization of the rank < 2 locus of M. This shows that only those specialisations
depicted in the diagram can exist. For example, neither can two skew lines be deformed
into a subscheme of a smooth conic nor a smooth conic into a subscheme of two skew
lines. Also notice that (a) does not specialise to (d) since a plane conic can only
specialise to plane double lines, which are not contained in any smooth quadric. O

Definition 2.10 We denote by A and B the closures of the loci of matrices [M] of type
(a) and (b) in 8.

Proposition 2.11 Both A and B are irreducible and 885 is their union. Moreover,
codim(A C 8%) =28, codim(B C 8%) =27, codim(ANB C 8*) =29.

Proof That A and B are irreducible is clear. Then one can compute the codimen-
sion by noticing that matrices of type (a) and (b) form one orbit under the action of
GL¢(C) x GL5(C) (the latter acting by changing coordinates xo, . . ., x4). Computing
the dimension of the stabiliser of a representative in (a) or (b) yields the result. O

Corollary 2.12 Let [M] be a point in 8. Then the ideal I of the tangent cone
T Cim(8y) C Tian(Spy) is listed in the third column of Table 2.

Proof The tangent space to A at a point of type (a) is of codimension 28 which is also
the codimension of A, so A is smooth in these points and the tangent cone has ideal
(0). The same argument also explains the entries in the third column for points of type
(b) and (d).

Points [M] of type (c), (e) and (f) lie in the intersection of A and B. We have seen
in Proposition 2.8 that the quadrics listed in the third column of Table 2 vanish on
the tangent cone 7' Cip1(8§) C Tjar1(8™). In all three cases the quadrics listed in the
third column cut out the union of two irreducible reduced varieties of codimension 28
and 27 in Tj371(8%). Therefore this union must be equal to the tangent cone at these
points. O
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Lemma 2.13 Let p = ([M], [F]) be a point in gss, and let
j=(M+eMi+ - +€"M,],[F+€F + -+ €"F,])
be a jet centred at p and contained in S, Suppose that
PE(M +eMy+---+€"M,) =€"G

with G # 0. Then F and G are nonzero scalar multiples of each other.

Proof The defining equations of T imply that Pf (M +e M +- - -+€" M,)) is amultiple
of F + €F| + - - - 4 €" F,, with a factor of proportionality in C[¢]/(¢"*!). Therefore
G must be proportional to F* with a nonzero scalar in C. O

We now start showing one direction of Theorem 2.1.

Proposition 2.14 Let p = ([M], [F]) be a point in gas and let Y C X be the scheme
defined by the 4 x 4 Pfaffians of M and the cubic polynomial F. Then' Y contains a
curve of degree 2.

Proof We divide the proof into cases, depending on whether [M] is of type (a)—(f).
’Case 1: [M] of type (a), (b) or (d)‘ In these cases Ty is smooth in p because of

Corollary 2.12. In such a point there must be a tangent vector to 7 that is not tan-
gent to Jp, or in terms of jets, a 1-jet centred at p in T:

J=(M+eM],[F +€F1])
such that
Pf(M +eM;) =Pf(M) +eG =€¢G

with G # 0. Now G is a linear combination of the 4 x 4 sub-Pfaffians of M with
coefficients entries of M by Pfaffian Laplace expansion [8, equation (D.1), p. 116]:
hence in these cases X = V(G) contains the scheme defined by the 4 x 4 Pfaffians
of M.
’ Case 2: [M] of type (c) or (e) |If the tangent space to T at p is strictly larger than the
tangent space to Jp at p, then we can argue as in Step 1, so we assume the two tangent
spaces are equal in the following. Therefore the tangent cones 7'C,(7) and T C,(Tp)
can be viewed as living in the same ambient space, and we have TC,(To) € TC,(7):
let I3, I7, be the ideals of T, Ty in an affine neighbourhood of p which we can assume
to be the origin. Then I5 C I5,. Choose a Grobner basis B for I3 with respect to
some monomial ordering refining the order given by total degree. Let f € Iy, be a
polynomial which is not in /5. The reduction f of this polynomial modulo the Grobner
basis B is nonzero and the initial term of f (i.e., the lowest degree homogeneous
component) is not in the ideal of the tangent cone TC, (7).

In cases (c), (e) the ideal of the tangent cone T'C,(Tp) is given by (xz, yz) with suit-
able choice of coordinates x, y, z. The ideal of T'C,(7) contains at most one quadric
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19 Page120f16 C.Bohning et al.

(ax + By)z in the ideal (xz, yz). Therefore the support of the degree 2 approxima-
tion of TC,(7) is strictly bigger than the support of the degree 2 approximation of
TC,(To). By Proposition 2.6 this implies that there is a 2-jet p + €p’ + €*p” con-
tained in T with p’ in the tangent space to T at p, which is equal to the tangent space
to Jo at p, which is not contained in Ty. Now we can check by computer algebra [3,

Tablel.m?2] that for all 2-jets
j = (IM + eMy + €M1, [F + € F + €* F>])
with M a point of type (c) or (e) and
Pf (M + €M) + €My) = €2G
we have that G vanishes on the subscheme defined by the 4 x 4 Pfaffians of M with

embedded points removed.
Case 3: [M] of type (f) ‘There exists a pair of formal power series

(M, F) = (IM + Myt + Mot + -1, [F + Fit + Fot* + - -])
such that
Pf(M;) =¢"G mod {""!

withn € Nand G anonzero cubic polynomial. Let ngf C 8} be the closed subvariety
of type (f) matrices. Let (1, s be the intersection multiplicity of M, with 3o 7 and o
be the intersection multiplicity of M, with 8y - We have oy < o = n — 1 since
the Pfaffian is the defining equation of 8{°. We distinguish two cases: o,y < o or
Mo, f = KO- B

If wo,r < o, then ([M], [F]) is in the closure of points in 8% for which the
statement of Proposition 2.14 has already been proven. Therefore X = (F = 0)
contains the limit of a flat family of degree 2 curves, which is a degree 2 curve.

Now let uo, r = po. Let x € C3\{0} be a point such that M (x) has rank < 2; for
type (f) this is equivalent to requiring that M (x) = 0. We claim that there exists a
power series

Xy =x+x1t+x2t2+~--
such that the 4 x 4 sub-Pfaffians of
M (%)

vanish modulo #". Granting the claim for the moment, we can finish the proof as
follows.
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On the one hand, we have
Pt(M,(x,) =1"GE;) = 1"G(x) mod "t

On the other hand, for any matrix N

PE(N) = £1up(N) gup(N)

a<p

where lyg(N) is the (a, B)-entry of N and gug(N) the sub-Pfaffian of the matrix
obtained from N by erasing rows and columns «, 8. Applying this to N = M, (x;) we
see that

PE(M,(%1)) = Y +lap(M, (X)) qup (M, (%))

a<f

Since

lop(M;(x;)) =0 mod ¢
and

qap M,;x))=0 mod t"
we get that

"G(x) =Pf(M,(x,)) =0 mod "+

whence G(x) = 0. Therefore G vanishes on the support of the rank < 2 locus of M,
which by Remark 2.2 is enough.

It therefore remains to prove the above claim. We consider the subscheme Y in
P* x¢ 8o - By our previous classification, all fibres of Y over 8§  are lines with their
full infinitesimal neighbourhood in P%. Then Y™ is a family of lines in P* over 8o Iz
hence has a section ¥ through x. Let B = Spec C[#]/(¢"). By hypothesis, M, gives
a map from Spec C[[¢]] to 8% whose restriction to B lands in Sff - Pulling back the
section ¥ to B and extending the resulting n — 1-jet arbitrarily to all higher orders,
we obtain X; with the properties claimed. O

It remains to show the other direction of Theorem 2.1.

Proposition 2.15 Let p = ([M], [F]) be a point in Ty such that the schgme 7~deﬁned
by the 4 x 4 Pfaffians of M and F contains a curve of degree2. Then p € 8§ = §*NTy.

Proof We again split up the argument into cases according to the type of M.
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’Case 1: [M] of type (a), (b), (d) ‘ In these cases, the subscheme Y defined by the

4 x 4 sub-Pfaffians of M is a pure dimensional degree 2 curve, hence by the assumption
F can be written

F = Z :tla/gqa,g

a<p

where g, is the sub-Pfaffian of the matrix obtained from M by erasing rows and
columns «, B, and the /g are some linear forms. We can now collect the [og (with
appropriate signs) into an antisymmetric matrix M; such that

Pf(M + eM;) = €F.

This means that there exists a 1-jet centred~at p = ([M], [F]) that is contained in T
but not in Ty. This can only happen if p € 8% N Ty.

Case 2: [M] of type (c), (f) and X smooth | In this case, by our assumption, the
smooth cubic threefold X = V(F) contains two intersecting and possibly identi-
cal lines. Since we already know that all pairs ([M'], [F']) with M" of type (b) and
rank 2 locus of M’ contained in X' = V (F’) are in 8% N T, it suffices to show that
our given ([M], [F]) is a limit of such ([M'], [F']). In our argument we take F'= F.
Since the space of lines on a smooth cubic threefold is irreducible [5] and the general
pair of lines is skew, each pair of such lines is the limit of a family of pairs of skew
lines on the cubic. We can assume that for ¢ # O this family of skew lines is defined

by a family of matrices of type (b):
A O
0 B/~

For t = 0 we get a matrix of type (c) or (f) by our construction.
Case 3: [M] of type (e) and X smooth ‘Consider a 6 x 6 skew-symmetric matrix of
linear forms M of type (e), which we write as

0 24
M= <2A —B)

with A, B skew-symmetric, and X = V (F) a smooth cubic threefold containing the
unique double line Y that is contained in the rank 2 locus of M. Our goal is to write
down a family of matrices ([M,], [F]) in 8§ where M is of type (b) for # # 0 and
M = M. Intuitively, the strategy will be to deform the reduced underlying scheme ¢
of Y in the direction of the double structure.

The entries of A define £. We claim that M still has rank 2 on the vanishing locus
of the entries of A 4+ € B with €2 = 0: indeed, the matrix

0 —2eB
M = (—ZGB —B )
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has rank 2. Also it follows that there is a family of lines ¢, on X with £y = ¢ and
tangent direction at ¢+ = 0 defined by the vanishing of the entries of A + €B = 0.
We can also choose the family such that the general £; does not intersect £. Therefore
there exists a family of skew-symmetric 3 x 3 matrices of linear forms defining the
family of lines £, on X such that locally we have

A; = A 4t B + higher order terms.

For ¢ # 0 consider the family of skew-symmetric 6 x 6 matrices

A 0
0—-A)"
Conjugating with ( } _11 ) we obtain
A—A A+ A
A+ A A—A4A, )
. . . t 0 .
Conjugating with (/9) gives

<r2<A —Ap) t(A+ A»)
t(A+A) (A-A) )"

Now notice that A — A, = —¢(B + h.o.t.). Scaling by #~! we obtain a family

M — —t2(B+hot) A+ A
r= A+A, —(B+hot

that by construction is conjugate to

(A0
0 —A,

0 24
Mo = <2A —B) =M.

This accomplishes what we wanted.

’ Case 4: [M] of type (c¢), (e) (f) and X singular ‘ In this case, we are given a singu-
lar cubic threefold X = V (F) containing a subscheme Z which is either a pair of
intersecting but distinct lines (type (c)), or a plane double line (type (e)), or a reduced
line (type (f)). We observe that X can be written as a limit of smooth cubic threefolds
X, containing the same Z. Therefore the pair ([M], [F]) is in the limit of a fa}\'mily of
pairs ([M], [ F;]) where X; = V (Fy) fort # 0is smooth and ([M], [F;]) is in 8% NTy
by Case 2 and 3. O

for ¢ # 0. For t = 0 we have
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