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Abstract
Weclassify the non-degenerate two-step nilpotent Lie algebras of dimension 8 over the
field of real numbers, using known results over complex numbers. We write explicit
structure constants for these real Lie algebras.
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1 Introduction

Classification lists of Lie algebras, in particular of nilpotent Lie algebras, over the
field of complex numbers C and over the field of real numbers R, appear to be an
often used tool in mathematical physics; see, for instance, [27, 28]. The problem
of classification of nilpotent Lie algebras of arbitrary dimensions (even of two-step
nilpotent Lie algebras of arbitrary dimension with 3-dimensional center) is wild; see
[3]. However, it is possible to classify nilpotent Lie algebras in low dimensions. Up to
now, nilpotent Lie algebras over some fields have been classified up to dimension 7.
Lists of nilpotent Lie algebras of dimension atmost 7 over different fields can be found,
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in particular, in [1, 16, 18, 23, 25, 30]. There is no known classification of nilpotent
algebras of dimensions greater than 7, even over the field of complex numbers C.

A two-step nilpotent Lie algebra over a field k (synonyms: metabelian Lie algebra,
nilpotent Lie algebra of class 2) is a Lie algebra L over k such that

[[L, L], L] = 0. (1.1)

Write z(L) for the center of L:

z(L) = { x ∈ L | [x, y] = 0 for all y ∈ L }.

Set L(1) = [L, L]. Then condition (1.1) means that L(1) ⊆ z(L).
Two-step nilpotent Lie algebras form the first non-trivial subclass of nilpotent Lie

algebras. A classification of two-step nilpotent Lie algebras in dimensions up to 7 was
given by Gauger [15] over an algebraically closed field of characteristic different from
2, and by Stroppel [35] over an arbitrary field.

In [13], Galitski and Timashev introduced an invariant-theoretic approach to clas-
sification of two-step nilpotent Lie algebras, which allowed them to classify such Lie
algebras over C up to dimension 9 (in almost all cases). They reduced the classifica-
tion of two-step nilpotent Lie algebras up to dimension 9 to classification of orbits of
SL(m,C)×SL(n,C) in

∧2Cm⊗Cn for (m, n) taking values (5, 4), (6, 3), and (7, 2),
and they solved the classification problems for (5, 4) and (6, 3) using the method of
θ -groups due to Vinberg [36, 37].

Later, in the papers [29, 39], the two-step nilpotent Lie algebras overC of dimension
8were classified. These results are consistent with the results of Galitski and Timashev
[13]; see Sect. 3 below.

In the present paper, using the known classification of 8-dimensional non-dege-
nerate two-step nilpotent Lie algebras over C (due to Galitski and Timashev [13], and
also to Ren and Zhu [29] and to Yan and Deng [39]) we obtain a classification over
R. See the next section for the definition of a non-degenerate two-step nilpotent Lie
algebra. We start with known results overC and use Galois cohomology. We compute
the Galois cohomology using the computer program [20] described in [6]. Our main
results are Tables 1–3.

We performed our computations using computational algebra systemGAP; see [14].
A small number of computations concerning automorphism groups of lattices were
performed on Magma [10].

The plan of our paper is as follows. In Sect. 2we reduce our classification problem to
classification of orbits of the groupG(R) = GL(m,R)×GL(n,R) in the set of non-
degenerate tensors e ∈ Y = (

∧2U)∗⊗V where U = Rm, V = Rn for the pair (m, n)

taking values (6, 2), (5, 3), and (4, 4). In Sect. 3 we give the tables of representatives
of all orbits; this is our main result.

Section 4 contains preliminaries on real algebraic groups and real Galois cohomol-
ogy. In Sect. 5, for a connected reductive complex algebraic group G, we describe
the action of the automorphism group Aut(G) on the canonical based root datum
BRD(G). Section6 contains preliminaries on θ -representations. Starting Sect. 7, we
compute our tables. See below the idea of the computations.
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In Sect. 7, we consider a tensor e ∈ Y and the stabilizerGe of e inG. We reduce the
classification of the orbits ofG(R) in G ·e ⊂ Y (where G = G(C) and Y = Y⊗RC)

to computing the Galois cohomology set H1Ge.
In order to compute H1Ge, we embed g = LieG and Y into a Z-graded real Lie

algebra ĝ such that ĝ0 = g and ĝ1 = Y . Moreover, we embed our real tensor e into a
real homogeneous sl2-triple t = (e, h, f ) with h ∈ ĝ0 and f ∈ ĝ−1. Using ĝ and t ,
we construct a reductive R-subgroup Pt ⊆ Ge (not necessarily connected) such that

Ge = Ru(Ge)�Pt ,

Ru denoting the unipotent radical. Then by Sansuc’s lemma we have

H1Ge = H1Pt .

For computing H1Pt , we have a computer program [20], described in [6], which
computes the Galois cohomology of a real algebraic groupH, and the input for which
is a real basis of the Lie algebra LieH and a set of representatives in H = H(C) of
the component group π0(H). Thus we need LiePt and π0(Pt ). It is easy to compute
LiePt using computer, but computing π0(Pt ) is tricky. We computed π0(Pt ) case by
case via a computer-assisted calculation with participation of a humanmathematician.
For details see Sects. 7–11.

In Appendix A we consider an alternative approach for the case (m, n) = (4, 4).
Namely, by duality (see Gauger [15, Section 3] or Galitski and Timashev [13, Section
1.2]) our classification problem for (4, 4) reduces to the already solved classification
problems for (4, 2) and (3, 2). Our results for (4, 4) are consistent with the results of
[18] for (4, 2) and (3, 2).

Notation

In this paper, by an algebraic group we mean a linear algebraic group. By letters
G,H, . . . in the boldface font we denote real algebraic groups. By the same letters,
but in the usual (non-bold) font G, H , . . . , we denote the corresponding complex
algebraic groups G = G×RC, H = H×RC, . . . (though the standard notations are
GC andHC) and by the corresponding small Gothic letters g, h, . . . , we denote the Lie
algebras of G, H , . . . . Similarly, for real vector spaces U,V, we write U = U⊗RC,
V = V⊗RC, . . . .

For a real algebraic group G, we denote by G(R) and G(C) the groups of the real
points and the complex points of G, respectively; see Sect. 4 for details. By abuse of
notation, we identify G ..= G×RC with the group of C-points G(C) = G(C). In
particular, g ∈ G means g ∈ G(C).

We gather some of our notations:

• Z(G) denotes the center of an algebraic group G;
• Aut(G) denotes the automorphism group of G;
• Inn(G) denotes the group of inner automorphisms of G;
• Out(G) = Aut(G)/Inn(G);
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• Lie(G) denotes the Lie algebra of G;
• Dyn(G) denotes the Dynkin diagram of a connected reductive group G;
• G0 denotes the identity component of an algebraic group G;
• π0(G) = G/G0 denotes the component group of G;
• H1G = H1(R,G), the first Galois cohomology of a real algebraic group G;
• GL(n,C) denotes the complex Lie group of invertible complex n×n-matrices,
and also the complex algebraic group with this group of C-points;

• GL(n,R) is the real Lie group of invertible real n×n-matrices;
• GLn,R is the connected real algebraic group with the group of real points
GL(n,R).

2 First reductions

Let L be a two-step nilpotent Lie algebra over a field k of characteristic different from
2. If A is a nonzero abelian Lie algebra, then the direct sum of Lie algebras L⊕ A
is again a two-step nilpotent Lie algebra; we say that such a Lie algebra L⊕ A is
degenerate. Clearly, in order to classify two-step nilpotent Lie algebras of dimension
d over a field k, it suffices to classify non-degenerate two-step nilpotent Lie algebras
over k of dimension � d.

The following lemma is almost obvious, and so we skip the proof.

Lemma 2.1 Let L be a finite-dimensional two-step nilpotent Lie algebra over a field
k. Then L is non-degenerate if and only if L(1) = z(L).

In this paper we classify non-degenerate two-step nilpotent Lie algebras of dimen-
sion 8 over R. Clearly, classification of degenerate two-step nilpotent Lie algebras
of dimension 8 over R can be reduced to classification of non-degenerate two-step
nilpotent Lie algebras of smaller dimension over R (which is known).

Let L be a non-degenerate two-step nilpotent Lie algebra over a field k of charac-
teristic different from 2. Set U = L/z(L) and V = L(1) ⊆ z(L). The Lie bracket in
L defines a skew-symmetric bilinear map

β : U ×U → V

and the induced linear map

β∗ : ∧2U → V .

The triple (U , V , β) is non-degenerate in the following sense: the linear map β∗ is
surjective, and for any nonzero u ∈ U , there exists u′ ∈ U with β(u, u′) 
= 0.

Let L be a non-degenerate two-step nilpotent Lie algebra. Write m = dimU ,
n = dim V where U ,V are as above. Then m + n = dim L (because L is non-
degenerate). We say then that L is of signature (m, n).

A non-degenerate two-step nilpotent Lie algebra L of signature (m, n) defines
a non-degenerate triple (U , V , β) of signature (m, n) (that is, with dimU = m,
dim V = n). Conversely, a non-degenerate triple (U , V , β) of signature (m, n) defines
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a non-degenerate two-step-nilpotent Lie algebra of signature (m, n) with underlying
vector space

L = U ⊕V

and with the Lie bracket

[(u, v), (u′, v′)] = (0, β(u, u′)) for u, u′ ∈ U , v, v′ ∈ V .

Wesee that to classify non-degenerate two-step nilpotent Lie algebras L of signature
(m, n) up to an isomorphism is the same as to classify non-degenerate triples (U , V , β)

with dimU = m and dim V = n up to isomorphism, which in turn is equivalent to
classification of the orbits of the Lie group GL(m,k)×GL(n,k) in the set of non-
degenerate skew-symmetric maps

β : km×km → kn .

We wish to classify non-degenerate skew-symmetric maps β as above over k = R

for the signatures (m, n) with m + n = 8, that is,

(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1).

However, if (m, n) = (7, 1), then β is a skew-symmetric bilinear form on R7, but
we know that there are no non-degenerate skew-symmetric bilinear forms on odd-
dimensional spaces; see, for instance, Artin [2, Theorem 3.7] or Lang [22, Theorem
XV.8.1]. Moreover, if m � 3, then dim

∧2U = m(m − 1)/2 � 3, while dim V =
n � 5, and therefore the linear map β∗ : ∧2U → V cannot be surjective. Thus for
(m, n) = (1, 7), (2, 6), (3, 5) there are no non-degenerate skew-symmetric bilinear
maps of those signatures. It remains to classify the non-degenerate skew-symmetric
maps β for

(m, n) = (4, 4), (5, 3), (6, 2).

3 Tables

In Tables 1, 2 and 3,we classify the orbits of the groupG(R) = GL(m,R)×GL(n,R)

acting on the set of non-degenerate skew-symmetric bilinear maps Rm×Rm → Rn

for m + n = 8. This corresponds to the isomorphism classes of non-degenerate two-
step nilpotent real Lie algebras of dimension 8.

In these tables, our real two-step nilpotent Lie algebra L is R8 with the standard
basis e1, . . . , e8. The notations like 1 and 1-bis denote two real orbits contained in the
same complex orbit. The representatives 1, 2, 3 . . . in each table were taken from [13,
Tables 2 and 8]. Using Galois cohomology, we determined whether there are other
orbits in the same complex orbit, and if yes, we computed a representative of each
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real orbit. It turned out that there are at most two real orbits in each complex orbit; the
other real orbit in the complex orbit containing the real orbit 1 is denoted by 1-bis.

In each row, the Lie bracket is given by the (2, 1)-tensor e given in the table, as
explained in Sect. 2.

For example, in the row 3-bis in Table 2, our (2, 1)-tensor is

e = e13↑8 + e14↑7 + e15↑6 − e23↑7 + e24↑8 + e34↑6 (3.1)

where we write e13↑8 for the (2, 1)-tensor (e∗
1 ∧e∗

3)⊗e8. Here e∗
1 and e∗

3 are basis
vectors of the dual space U∗ ..= Hom(R5,R) with basis e∗

1, . . . , e
∗
5, and e8 is a basis

vector of the spaceV = R3 with basis e6, e7, e8. This tensor e of formula (3.1) defines
the following Lie bracket:

[e1, e3] = e8; [e1, e4] = e7; [e1, e5] = e6; [e2, e3] = −e7; [e2, e4] = e8;
[e3, e4] = e6; [e1, e2] = 0; [e2, e5] = 0; [e3, e5] = 0; [e4, e5] = 0.

In the columns 3–6 (π0, g′′
t , “Rep. in U”, “Rep. in V ”) of each of the tables, we

give certain invariants of the stabilizer Ge of our tensor e ∈ Hom(
∧2U,V) in the

group G = GL(U)×GL(V). We use these invariants in order to compute the Galois
cohomology ofGe, which permits us to determine the real orbits in the complex orbit
G ·e.

We define the invariant π0 here: it is the component group π0(Ge) of the stabilizer
Ge of our tensor e. The real Lie algebra g′′

t is defined in Sect. 7, and the representations
in the columns “Rep. in U” and “Rep. in V ” are defined in Sect. 11. We remark that
the most tricky part of our calculations is the calculation of π0(Ge); see Sect. 11 for
an outline of the methods that we have used.

We see from the table that there are 27 isomorphism classes of non-degenerate
two-step nilpotent Lie algebras of dimension 8 overR: seven isomorphism classes of
signature (6, 2), sixteen isomorphismclasses of signature (5, 3), and four isomorphism
classes of signature (4, 4). Any isomorphism class over C comes from one or two
isomorphism classes over R.

We say that a Lie algebra is indecomposable if it is not a direct sum of Lie algebras
of smaller dimension. Any indecomposable two-step nilpotent Lie algebra is non-
degenerate. Our tables give also a classification of non-degenerate two-step nilpotent
complex Lie algebras (extracted from Galitski and Timashev [13]). We can compare
our tables with results of Ren and Zhu [29] and Yan and Deng [39], who classify
indecomposable two-step nilpotent complex Lie algebras of dimension 8. Using the
method of characteristics (see [38, Section 4.1], [7, Section 5.4]) we can check which
complex tensors (structures of two-step nilpotent Lie algebras) are equivalent. It turns
out that the classifications of [29, 39] are equivalent to ours, except for that they omit
the isomorphism class of Lie algebra 5 in our Table 1 and the class of Lie algebra 11
in our Table 2. This is because these two Lie algebras are decomposable:

Lie(e12↑8 + e34↑7 + e56↑7) = Lie(e12↑8)⊕Lie(e34↑7 + e56↑7),
Lie(e14↑7 + e15↑8 + e23↑6) = Lie(e14↑7 + e15↑8)⊕Lie(e23↑6)
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whereLie( ·) denotes theLie algebra defined by the tensor in the parentheses. It follows
that our Tables 1, 2 and 3 with these two Lie algebras removed, give a classification
of indecomposable two-step nilpotent real Lie algebras.

4 Real algebraic groups and real Galois cohomology

Let G be a real linear algebraic group. In the coordinate language, one may regard
G as a subgroup in the general linear group GL(N ,C) (for some natural number N )
defined by polynomial equations with real coefficients in the matrix entries; see Borel
[4, Section 1.1]. More conceptually, one may assume thatG is an affine group scheme
of finite type overR; see Milne [24, Definition 1.1]. With any of these two equivalent
definitions, G defines a covariant functor

A → G(A)

from the category of commutative unital R-algebras to the category of groups. We
apply this functor to theR-algebraR and obtain a real Lie groupG(R). We apply this
functor to the R-algebra C and to the morphism of R-algebras

γ : C → C, z → z̄ for z ∈ C,

and obtain a complex Lie group G(C) together with an anti-holomorphic involution
G(C) → G(C), which we denote by σG. The Galois group � naturally acts onG(C);
namely, the complex conjugationγ acts byσG.WehaveG(R) = G(C)� (the subgroup
of fixed points).

We shall consider the linear algebraic group G ..= G×RC obtained from G by
extension of scalars from R to C. Since G is an affine group scheme over C, we have
the ring of regular functionC[G] = R[G]⊗RC. Our anti-holomorphic involution σG
ofG(C) is anti-regular in the following sense: when acting on the ring of holomorphic
functions on G (by acting by σ−1

G on the argument of a function, and by complex
conjugation on the value) it preserves the subring C[G] of regular functions. An anti-
regular involution of G is called also a real structure on G.

Remark 4.1 If G is a reductive algebraic group over C (not necessarily connected),
then any anti-holomorphic involution of G is anti-regular. The hypothesis that G is
reductive is necessary. For details and references see [9, Section 1].

A morphism of real linear algebraic groups G → G′ induces a morphism of pairs
(G, σG) → (G ′, σG′). In this way we obtain a functor G → (G, σG). By Galois
descent this functor is an equivalence of categories; for details and references see [9,
Section 1] or [6, Appendix A]. In particular, any pair (G, σ ), where G is a complex
linear algebraic group and σ is a real structure on G, is isomorphic to a pair coming
from a real linear algebraic group G, and any morphism of pairs (G, σ ) → (G ′, σ ′)
comes from a unique morphism of the corresponding real algebraic groups.
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When computing the Galois cohomology H1G for a real algebraic group G, we
shall actually work with the pair (G, σ ), where G is a complex algebraic group and σ

is a real structure on G. We shall shorten “real linear algebraic group” to “R-group”.
LetG = (G, σ ) be a real algebraic group (not necessarily connected or reductive).

The Galois group � = {1, γ } acts on G by

γg = σ(g) for g ∈ G.

We define the first Galois cohomology set H1(R,G) by

H1(R,G) = Z1G/∼.

Here Z1G = {z ∈ G | g ·γg = 1} is the set of 1-cocycles, and two cocycles z, z′ ∈ Z1G
are equivalent (we write z ∼ z′) if z = g−1 · z′ ·γg for some g ∈ G. We shorten
H1(R,G) to H1G.

For details see [7, Section 3.3] or [6, Section 4]. See Serre’s book [33] for the Galois
cohomology H1(k,G) for an algebraic group G over an arbitrary field k.

5 Action on the based root datum

Let G be a connected reductive group over an algebraically closed field k. Let T ⊂ G
be a maximal torus, and let B ⊂ G be a Borel subgroup containing T . We consider
the based root datum

BRD(G, T , B) = (X , X∨,R,R∨, S, S∨).

Here

• X = X∗(T ) is the character group of T ;
• X∨ = X∗(T ) is the cocharacter group of T ;
• R = R(G, T ) ⊂ X is the root system;
• R∨ = R∨(G, T ) ⊂ X∨ is the coroot system;
• S = S(G, T , B) ⊂ R is the system of simple roots;
• S∨ = S∨(G, T , B) ⊂ R∨ is the system of simple coroots.

For details see Springer [34, Sections 1 and 2].
Recall that the root system R is defined in term of the root decomposition

LieG = Lie T ⊕
⊕

α∈R
gα

where gα is the eigenspace corresponding to the root α. For each α ∈ S we choose a
nonzero element xα ∈ gα . We write P = {xα | α ∈ S} and say that P is a pinning of
(G, T , B).

We write S = {α1, . . . αr } and consider the Cartan matrix with entries ai j =
〈αi , α

∨
j 〉. Recall that the Dynkin diagram Dyn(G) is the graph whose set of vertices
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is the set of simple roots S and whose set of edges is defined in the usual way using
the Cartan matrix; see, for instance, [17, Section 3.1.7].

We say that (T , B,P) is a Borel triple in G. It is well known that if (T ′, B ′,P′) is
another Borel triple, then there exists a unique element gad = gZ(G) ∈ Inn(G) ..=
G/Z(G) such that gTg−1= T ′, gBg−1= B ′, gPg−1= P′. This element gad induces
an isomorphism gad ∗ : BRD(G, T ′, B ′) ∼−→ BRD(G, T , B). Moreover, this induced
isomorphism gad ∗ does not depend on the choice of the pinning P as above. Thus for
given G we can canonically identify the based root data BRD(G, T , B) for all Borel
pairs (T , B). We obtain the canonical based root datum BRD(G).

The automorphism group Aut(G) naturally acts on BRD(G), and so we obtain a
canonical homomorphism

φ : Aut(G) → Aut BRD(G).

We describe φ. Choose a pinning P = (xα) of (G, B, T ). Write

BRD(G) = BRD(G, T , B).

Consider the Borel triple (T , B,P). Let a ∈ Aut(G). Then (a(T ), a(B), a(P)) is
again a Borel triple in G, and therefore there exists ga ∈ G such that

ga ·a(T ) ·g−1
a = T , ga ·a(B) ·g−1

a = B, ga ·a(P) ·g−1
a = P.

We see that the automorphism inn(ga)◦a ofG preserves theBorel triple (T , B,P) and
thus induces an automorphism φ(a) of BRD(G, T , B). One checks that the obtained
automorphism φ(a) does not depend on the choice of P and ga as above. For details
see [8, Section 3]. By construction, the subgroup Inn(G) ⊆ Aut(G) acts on BRD(G)

trivially, and so we obtain an action of Out(G) ..= Aut(G)/Inn(G) on BRD(G).
The action of Out(G) on BRD(G), in particular, on S and S∨, induces an action on
Dyn(G).

We embed X∨ into t ..= Lie T as follows. Let ν ∈ X∨, ν : k× → T . Consider
dν : k → t and set hν = (dν)(1) ∈ t.

Consider the center Z(G), its identity component Z(G)0 (which is a torus), and
the cocharacter group X∨

Z = X∗(Z(G)0). We can identify

X∨
Z = {ν ∈ X∨ | 〈α, ν〉 = 0 for all α ∈ S}.

The group Out(G) naturally acts on the torus Z(G)0 and on its cocharacter group X∨
Z .

Moreover, it acts on the Lie algebra z ..= Lie Z(G) and on the lattice {hν ∈ z | ν ∈ X∨
Z }.

For α ∈ S ⊂ X , we consider α∨ ∈ S∨ ⊂ X∨, and by abuse of notation we write hα

for hα∨ ∈ t. The set {hα | α ∈ S} is a basis of the Lie algebra t ∩ [g, g] where [g, g] is
the derived subalgebra of g.

For each α ∈ S we choose a nonzero vector xα ∈ gα . Then we have Ad(t) xα =
α(t) · xα for t ∈ T , whence

[hβ, xα] = (dα)(hβ∨) · xα = (dα)(dβ∨(1)) · xα = d(α ◦β∨)(1) · xα = 〈α, β∨〉 · xα
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because (α ◦β∨)(t) = t 〈α,β∨〉 for t ∈ C×.
We choose yα ∈ g−α such that [xα, yα] = hα . Then [hα, yα] = −2yα . Note that

the set {xα, yα | α ∈ S} generates the subalgebra [g, g] of g.
The set hα, xα, yα for α ∈ S has the following properties (see [19, Section 2.9.3,

formulas (2.1)]):

[hα, hβ ] = 0;
[xα, yβ ] = δαβhα;
[hβ, xα] = 〈α, β∨〉 xα;
[hβ, yα] = − 〈α, β∨〉 yα for α, β ∈ S.

We say that hα, xα, yα is a canonical generating set for [g, g].
Now let G be a reductive group, not necessarily connected, over an algebraically

closed field k. We consider the action of G on the Dynkin diagram DynG0 ..=
DynG0,ad , where G0,ad = (G0)ad ..= G0/Z(G0) denotes the adjoint group cor-
responding to the identity component G0 of the reductive group G.

As above, we choose a maximal torus T ⊂ G0,ad and a Borel subgroup B ⊂ G0,ad

containing T . We consider the based root datum

BRD(G0,ad, T , B) = (X , X∨,R,R∨, S, S∨).

For each simple root α ∈ Swe choose canonical generators xα, yα, hα ∈ LieG0,ad =
[g, g] as explained in Sect. 6, where g = LieG. Observe that the set {xα, yα | α ∈ S}
generates the semisimple Lie algebra [g, g].

Consider the action of G by conjugation on G0 and on G0,ad . We obtain a homo-
morphism

G → AutG0,ad .

Lemma 5.1 Consider the homomorphism

φDyn : G → Aut(DynG0) = Aut(DynG0,ad )

and the group

A1 = {
g ∈ G |Ad(g) xα = xα,Ad(g) yα = yα for all α ∈ S

}
.

Then ker φDyn = G0 · A1.

Corollary 5.2 We have A1 ⊂ ker φDyn , and the homomorphism

π0(A1) → π0(ker φDyn)

induced by the inclusion homomorphism A1 ↪→ ker φDyn is surjective.

This corollary gives us a method to compute π0(ker φDyn).
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Proof of Lemma 5.1 Consider the canonical homomorphism

ψ : G → AutG0,ad = Aut(LieG0,ad ).

Since the elements xα, yα generate [g, g] = LieG0,ad , we have A1 = kerψ . On the
other hand, we can factor the homomorphism φDyn as follows:

φDyn : G ψ−−→ Aut G0,ad → Aut BRD(G0,ad, T , B) = Aut(DynG0,ad ).

It follows that A1 = kerψ ⊆ ker φDyn . Writing OutG0,ad = AutG0,ad/InnG0,ad ,
we have that the homomorphism

AutG0,ad → Aut BRD(G0,ad, T , B)

induces an isomorphism

OutG0,ad ∼−→ Aut BRD(G0,ad, T , B);

see Conrad [12, Proposition 1.5.5]. It follows that ker φDyn is the preimage in G of
the subgroup G0,ad = InnG0,ad ⊆ AutG0,ad . Since G0,ad is the identity component
of AutG0,ad , we have ψ(G0) = G0,ad , and hence for any g ∈ ker φDyn there exists
g0 ∈ G0 such that ψ(g0g) = 1 ∈ AutG0,ad = Aut[g, g], that is, g0g ∈ kerψ = A1,
as required. ��

6 Vinberg’s �-representations

Vinberg [36, 37] introduced a class of representations of algebraic groups which
share many properties with the adjoint representation of a semisimple Lie algebra.
This makes it possible to classify the orbits corresponding to such a representation.
These representations are constructed from a Z/mZ-grading or a Z-grading of a
split semisimple Lie algebra over a field k. In this paper we deal exclusively with
Z-gradings of split semisimple real Lie algebras.

Let g be a split semisimple Lie algebra overR. We construct a class of Z-gradings
of g. Fix a split Cartan subalgebra t of g with corresponding root system R = R(g, t).
For α ∈ R, we denote the corresponding root space by gα . Fix a basis of simple roots
S = {α1, . . . , α�} of R. Let (d1, . . . , d�) be a sequence of non-negative integers. We
define a function

d : R → Z, d

( �∑

i=1

miαi

)

=
�∑

i=1

midi .

We let g0 be the subspace of g spanned by t and all subspaces gα with d(α) = 0.
Furthermore, for i ∈ Z, i 
= 0, we let gi be the subspace of g spanned by all gα with
d(α) = i . Then
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g =
⊕

i∈Z
gi

is aZ-grading of g. We observe that g0 is a reductive Lie subalgebra; see [19, Theorem
8.3.1]. If

α = m1α1 + · · · + m�α� ∈ R with mi ∈ Z�0

is a positive root with mi > 0 for some i such that di > 0, then d(α) � midi > 0 and
hence gαi

∩ g0 = 0. It follows that the simple roots αi such that di = 0 form a basis
of the root system of g0 with respect to t.

LetG be the inner automorphism group of g. This algebraicR-group is also known
as the adjoint group of g, or as the identity component of the automorphism group of
g. For x ∈ gwe denote its adjoint map by ad x , so (ad x)(y) = [x, y]. The Lie algebra
of G is ad g = {ad x | x ∈ g}. Consider the Lie subalgebra ad g0 = {ad x | x ∈ g0}.
Let T ⊂ G be the Cartan subgroup (maximal torus) ofGwith Lie algebra ad t, and let
G0 denote the algebraic subgroup ofG generated by T and the elements exp(ad x) for
x ∈ gα with d(α) = 0; then G0 is the connected real algebraic subgroup of G whose
Lie algebra is ad g0. Since [g0, gi ] ⊂ gi , the action of G0 on g1 leaves the subspaces
gi invariant. The representation of G0 in g1 so obtained is called a θ -representation,
and G0 together with its action on g1 is called a θ -group.

For x ∈ g1 and y ∈ gi , we have (ad x)k(y) ∈ gi+k . Since the grading is a Z-
grading, we have gi+k = 0 for sufficiently big k, implying that ad x is nilpotent. It can
be shown that each real element x ∈ g1 lies in a real homogeneous sl2-triple (h, x, y),
where h ∈ g0 and y ∈ g−1 and

[h, x] = 2x, [h, y] = −2y, [x, y] = h;

see [19, Lemma 8.3.5]. The proof of [19, Lemma 8.3.5] shows how to construct a
homogeneous sl2-triple (h, x, y) for a complex element x . When applied to a real
element x , this method gives a real sl2-triple.

Consider two elements x, x ′ ∈ g1 lying in the homogeneous sl2-triples (h, x, y),
(h′, x ′, y′). Then x, x ′ are G0-conjugate if and only if the two triples are G0-conjugate
if and only if h, h′ are G0-conjugate; see [19, Theorem 8.3.6]. It is possible to devise
an algorithm for classifying the G0-orbits in g1 based on this fact; see [19, Section
8.4.1]. An alternative method for this is based on Vinberg’s theory of carrier algebras;
see [37]. Since a θ -group for a Z-grading or a Z/mZ-grading has a finite number of
nilpotent orbits in g1,C (see [19, Corolary 8.3.8]), and in the case of a Z-grading all
G0-orbits in g1 are nilpotent, for aZ-grading there are finitely manyG0-orbits in g1,C.

Nowwe describe theZ-gradings that are relevant to this paper. They are constructed
using a sequence (d1, . . . , d�)where precisely one of the di is 1, and all others are 0.We
give such a grading by giving the Dynkin diagram of g where the node corresponding
to αi with di = 1 is colored black. We consider the following three Z-gradings:
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(4, 4) (D7)
−1 −1

(5, 3) (E7) −1 −1

(6, 2) (E7) −1 −1

Consider such a Z-grading labeled (m, n) with (m, n) taking values (4, 4), (5, 3),
(6, 2). Write Gder

0 = [G0,G0], the derived subgroup of G0. We see from the Dynkin
diagram that the semisimple groupGder

0 is of type Am−1×An−1. Therefore, the univer-
sal cover G̃0 ofGder

0 is a split simply connected semisimple group of typeAm−1×An−1
and hence it is isomorphic to SLm,R×SLn,R; we fix this isomorphism. We obtain an
isogeny (surjective homomorphism with finite kernel)

SLm,R×SLn,R
∼−→ G̃0 � Gder

0 .

Of course, to specify this isogeny we need to work with Lie algebras.
SinceG is of adjoint type, the set of simple roots {α1, . . . , α�} (with � = 7) is a basis

of the character group X∗(T). Write T0 = T∩G0; then the set {α1, . . . , α�} � {αi0} is
a basis of X∗(T0), and T = T0×T1, where T1 = Z(G0) ∼= Gm,R is a 1-dimensional
split R-torus with character group X∗(T1) = Z ·αi0 . Write

Gm,n = SLm,R×SLn,R×Gm,R;

we obtain an isogeny Gm,n � G0. Since g1 is the direct sum of eigenspaces gα of T
in g where α runs over the roots

α = m1α1 + · · · + m�α� with mi0 = 1,

we see that t ∈ T1(C) = C× acts on g1 by multiplication by t .
We compute the representation of Tder

0 in g1. For 1 � i � � = 7, let

xi ∈ gαi
, yi ∈ g−αi

, hi ∈ t

be canonical generators of g. For the root systems of types D7 and E7, this means that
each (hi , xi , yi ) is an sl2-triple, that for i 
= j we have [hi , x j ] = −x j , [hi , y j ] = y j
if i, j are connected in the Dynkin diagram, otherwise [hi , x j ] = [hi , y j ] = 0, and
that [xi , y j ] = 0. Let i0 be such that di0 = 1. Then the elements hi , xi , yi for i 
= i0
form a canonical generating set of the semisimple part gder0 = [g0, g0] of g0. In the
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three cases above it is easy to check that αi0 is the unique lowest weight of g1. This
means that (1) for every i 
= i0 we have that αi0−αi is not a root, and (2) for every root
α 
= αi0 with d(α) = 1, there is i 
= i0 such that α − αi is a root. Here (1) is obvious,
because any root must be a linear combination of simple roots with non-negative
coefficients, or a linear combination of simple roots with non-positive coefficients.
Assertion (2) can be checked using a list of the positive roots of the root systems of
type D7 and E7, respectively. (See [36, Section 8] for a more conceptual approach.)
The positive roots can be listed using a computer program like GAP; alternatively,
they can be found in Bourbaki [11]. Hence xi0 ∈ g1 is the unique (up to scalar) lowest
weight vector (here “lowest weight vector" means that [yi , xi0 ] = 0 for i 
= i0).
Furthermore, [hi , xi0 ] = −xi0 if i and i0 are connected in the Dynkin diagram, and
[hi , xi0 ] = 0 otherwise. Hence the g0-module g1 is irreducible and we know its lowest
weightλl ; the numerical labels 〈λl , α∨

i 〉 are given on theDynkin diagrams above. From
this we can determine the highest weight of g1. Namely, let τ be the only nontrivial
automorphism of the Dynkin diagram A� when � > 1, and the trivial automorphism
of A� for � = 1. Then the highest weight λh is given by λh = −τ(λl); see [17, Section
3.2.6, Proposition 2.3 and Theorem 2.13]. We see that the numerical labels of λh are
1 at the node neighboring an extreme node of Am , and 1 at an extreme node of An for
m � n. This means that there exists an isomorphism G̃0

∼−→ SLm,R×SLn,R with
m � n such that g1 is isomorphic to (

∧2Rm)∗⊗Rn as aGm,n-module; see [26, Table
5]. An element (am, bn, c1) ∈ Gm,n acts on (

∧2Cm)∗⊗Cn as follows:

(am, bn, c1) ·(φ⊗v) = c1(am ·φ)⊗(bn ·v) for φ ∈ (∧2Cm)∗
, v ∈ Cn .

We note that we have a canonical isomorphism (
∧2Rm)∗⊗Rn ∼= Hom(

∧2Rm,Rn).

7 Using Galois cohomology

Set

Y = Hom
(∧2U,V

) = Hom
(∧2Rm,Rn), Y ..= Y⊗RC = Hom

(∧2Cm,Cn)

with the standard action of the Galois group Gal(C/R) on Y . Write

G = GLm,R×GLn,R, G = GL(m,C)×GL(n,C),

G′ = SLm,R×GLn,R, G ′ = SL(m,C)×GL(n,C),

G′′ ..= Gm,n = SLm,R×SLn,R×Gm,R,

G ′′ ..= Gm,n = SL(m,C)×SL(n,C)×C×.

See Notation in Introduction for the notations GLm,R and GL(m,C). The group G
acts on Y in the standard way, and we have a composite homomorphism

G′′ p−→ G′ ↪→ G.
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Here the surjective homomorphism p is given by

p : G′′ → G′, (am, bn, c1) → (am, c1bn), (7.1)

where am ∈ SL(m,C), bn ∈ SL(n,C), c1 ∈ C×, and we write c1bn for the product
of the scalar c1 and the matrix bn . Then

ker p = {
(Im, λ−1 In, λ)

∣
∣ λn = 1

} ∼= μn,

where μn denotes the group of n-th roots of unity.
Let e ∈ Y = Hom(

∧2Rm,Rn), which we view as embedded into Y ..= Y⊗RC. As
seen in Sect. 6, LieG ′′ is isomorphic to ĝ0, the zero component of a Z-graded simple
complex Lie algebra ĝ. Moreover, Y is isomorphic as a G ′′-module to ĝ1 (in Sect. 6
it was denoted by g1). We use the machinery of sl2-triples, as indicated in Sect. 6,
to classify the G ′′-orbits in Y . Let t = (h, e, f ) be a real homogeneous sl2-triple
containing e, where h ∈ ĝ0, f ∈ ĝ−1. We write

Ge = StabG(e), G′
e = StabG′(e), G′′

e = StabG′′(e), G′′
t = StabG′′(t).

Let e ∈ Y. We denote by g′′
t the centralizer (stabilizer) of a real sl2-triple

t = (h, e, f ) in the real Lie algebra g′′ = LieG′′ = sl(m,R)×sl(n,R)×R. These
stabilizers for the real orbits are tabulated in fourth column of each of Tables 1, 2 and
3, where by t we denote the Lie algebra of a one-dimensional split torus of G, and by
u we denote the Lie algebra of a one-dimensional compact torus of G.

Lemma 7.1 Assume that e ∈ Y, and consider Ge, which is a real algebraic group.
Then there is a canonical bijection between H1Ge and the set of real orbits (the orbits
of G(R) in Y) contained in the complex orbit G ·e.
Proof By Serre [33, Section I.5.4, Proposition 36], see also [7, Proposition 3.6.5], we
have a canonical bijection between ker [H1Ge → H1G] and the set of orbits of G(R)

in G ·e∩Y. Moreover, sinceG = GLm,R×GLn,R, we have H1G = 1 (see Serre [32,
Section X.1, Proposition 3]), and the lemma follows. ��

We specify the map of the lemma. Recall that H1Ge = Z1Ge/∼ where Z1Ge is the
set of 1-cocycles; see Sect. 4. Here we write z ∼ z′ if there exists g ∈ Ge such that
z = g−1z′ γg. Let [z] ∈ H1Ge be the cohomology class represented by a cocycle z.
Since H1G = 1, there exists g ∈ G such that

z = g−1 ·1 ·γg, that is, γg = gz.

One can easily find such an element g using computer or by hand. We have

γ(g ·e) = γg ·e = gz ·e = g ·e,

because z ∈ Ge. Thus g ·e is real (contained inY), and to [z]we assign theG(R)-orbit
of g ·e.
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8 The stabilizer of e and the centralizer of t = (h, e, f )

ByLemma 7.1we can useH1Ge in order to classify orbits ofG(R) inY. Therefore, we
need to compute H1Ge. To compute H1Ge, we embed e into an sl2-triple t = (e, h, f )
as in Sect. 7. We compute G′′

t using the theory of θ -groups. Below we describe some
relations between G′′

t and Ge.
By [7, Theorem 4.3.16] we have

G′′
e = Ru(G′′

e )�G′′
t (8.1)

where Ru denotes the unipotent radical. By Sansuc’s lemma ( [31, Lemma 1.13], see
also [5, Proposition 3.2] and [6, Proposition 7.1]) the inclusion G′′

t ↪→ G′′
e induces a

bijection H1G′′
t = H1G′′

e .

Lemma 8.1 For the homomorphism p of (7.1), we have ker p ⊆ Z(G ′′
t ) where Z(G ′′

t )

denotes the center of G ′′
t .

Proof Clearly, ker p ⊂ G ′′
e . Since ker p ⊆ Z(G ′′), we have ker p ⊆ Z(G ′′

e ). Each
element x ∈ ker p is semisimple, and in view of (8.1) there exists g ∈ G ′′

e such that
gxg−1 ∈ G ′′

t ; see Hochschild [21, Theorem VIII.4.3]. Since x ∈ Z(G ′′
e ), we see that

x ∈ G ′′
t and that x ∈ Z(G ′′

t ), as required. ��
Since the homomorphism p is surjective, from (8.1) we obtain that

G ′
e = p(G ′′

e ) = p
(
Ru(G

′′
e )�G ′′

t

) = p(Ru(G
′′
e ))� p(G ′′

t ), (8.2)

where p(Ru(G ′′
e ))

∼= Ru(G ′′
e ) because by Lemma 8.1 we have ker p ⊂ G ′′

t .
Now consider Ge. Write

D = {(x Im, x2 In) | x ∈ C×} ⊂ G.

Lemma 8.2 Ge = D ·G ′
e.

Proof Clearly D ⊆ Ge for any e ∈ Hom(
∧2Cm,Cn), whence D ·G ′

e ⊆ Ge. Con-
versely, if g = (gm, gn) ∈ Ge ⊂ GL(m,C)×GL(n,C), we choose x ∈ C× such that
xm = det(gm), and we set

d = (x Im, x2 In), g′ = (x−1gm, x−2gn) = d−1g.

Then det(x−1gm) = 1, and thereforewe have g′ ∈ G ′. Since g′ = d−1gwhere d ·e = e
and g ·e = e, we see that g′ ·e = e. Thus g′ ∈ G ′

e, d ∈ D, and g = dg′, as required.��
We denote Pt = D · p(G′′

t ).

Corollary 8.3 Ge = p(Ru(G ′′
e ))� Pt .
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Proof We use Lemma 8.2 and formula (8.2), and obtain

Ge = D ·G ′
e = D ·(p(Ru(G

′′
e ))� p(G ′′

t )
)

= p(Ru(G
′′
e ))�(D · p(G ′′

t )) = p(Ru(G
′′
e ))� Pt ,

as required. ��
Proposition 8.4 The inclusion Pt ↪→ Ge induces a bijection

H1Pt = H1Ge.

Proof Since the group p(Ru(G′′
e )) is unipotent, by Sansuc’s lemma we have

H1Pt = H1(p(Ru(G′′
e ))�Pt

)
.

By Corollary 8.3 we have H1(p(Ru(G′′
e ))�Pt ) = H1Ge, as required. ��

In order to compute H1Pt we need the Lie algebra of Pt . We have an isomorphism
LieG ′′

t → Lie(G ′′
t /ker p) given by

(gm, gn, c1) → (gm, c1 In + gn).

Then Lie Pt = Lie D + Lie(p(G ′′
t )), where Lie D = C · (Im, 2In). Write g′′ =

Lie(G ′′), g′ = Lie(G ′). For the differential dp : g′′ → g′ we have dp(am, bn, c1) =
(am, bn + c1). Now Lie(p(G ′′

t )) = dp(Lie(G ′′
t )) = dp(g′′

t ), where g
′′
t is the central-

izer of t in g′′. We see that it is straightforward to compute using computer the Lie
subalgebra

Lie Pt ⊂ gl(m,C)×gl(n,C).

For classification of G(R)-orbits in Y = Hom(
∧2Rm,Rn), we need H1Ge. For

this end we need a real basis of Lie Pt (which is computed by our program) and the
component group π0(Pt ).

Proposition 8.5 Consider the composite homomorphism

ϕ : G ′′
t � p(G ′′

t ) ↪→ Pt .

Then the induced homomorphism ϕ∗ : π0(G ′′
t ) → π0(Pt ) is surjective.

Proof The homomorphism D×G ′′
t → D · p(G ′′

t ) = Pt is surjective. It follows that
the homomorphism of the component groups

π0(G
′′
t )

∼−→ π0(D×G ′′
t ) → π0(Pt )

is surjective, as required. ��
We have reduced computing H1Ge to computing π0(Pt ). Moreover, in view of

Proposition 8.5, computingπ0(Pt ) reduces to computingπ0(G ′′
t ); see the end of Sect. 9

below.
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9 Computing H1Ge

We start with a tensor e from Tables 1, 2 and 3. These are the tensors in the rows
1–6 (but not 1-bis) in Table 1, in the rows 1–12 in Table 2, and in the rows 1–3 in
Table 3. We can compute the stabilizer ge = LieGe of our tensor e in the real Lie
algebra LieG = gl(m,R)×gl(n,R). This is a linear problem, and we can easily do
that using computer.

Weneed theGalois cohomologyH1Ge
..= H1(R,Ge).Wehave a computer program

[20] described in [6] for calculating the Galois cohomology H1H of a real linear
algebraic group H, not necessarily connected or reductive. We call this program “the
H1-program”. We assume that H ⊆ GL(N ,C) (for some natural number N ) is a real
algebraic subgroup (that is, defined by polynomial equations with real coefficients).
The input of the H1-program is the real Lie algebra LieH ⊂ gl(N ,R) given by a
(real) linear basis, and the component group π0(H) given by a set of representatives
h1, . . . , hr ∈ GL(N ,C).

However, when working on this paper, we had only an older version of the H1-
program. This older H1-program computes H1HwhenH is reductive (not necessarily
connected). Therefore, we reduce our calculation of H1Ge to the reductive case, see
below.

Using computer, we embed our tensor e into a homogeneous sl2-triple (h, e, f )
in a Z-graded Lie algebra as in Sect. 6, and we consider the reductive group Pt =
D · p(G′′

t ) ⊂ Ge, not necessarily connected; see Sect. 8. By Proposition 8.4 we have a

canonical bijection H1Pt
∼−→ H1Ge. It remains to compute H1Pt .

In order to compute H1Pt using the older H1-program, we need a basis of the real
Lie algebra Lie(Pt ) and the component group π0(Pt ). Using computer, we can easily
compute a basis of Lie(Pt ).

It remains to compute π0(Pt ). By Proposition 8.5, the homomorphism π0(G ′′
t ) →

π0(Pt ) is surjective. It remains to find representatives of π0(G ′′
t ) up to equivalence in

Pt . Here we say that g1, g2 ∈ G ′′
t are equivalent in Pt if p(g1)p(g2)−1 is contained in

the identity component P0
t of Pt .

Wehave a computer programcheckingwhether an elementh of a reductive algebraic
group H ⊂ GL(N ,C) (not necessarily connected) with Lie algebra h is contained in
the identity component H0 of H . Using this program, from a set of representatives of
π0(G ′′

t ) we obtain a set of representatives of π0(Pt ). It remains to compute π0(G ′′
t ).

10 Computing �0(G′′
t )

The group G ′′
t acts by conjugation on its identity component G ′′ 0

t , whence we obtain
a homomorphism

π0(G
′′
t ) = G ′′

t /G
′′ 0
t → AutG ′′ 0

t /InnG ′′ 0
t = OutG ′′ 0

t ,

where InnG ′′ 0
t denotes the group of inner automorphisms of G ′′ 0

t . The group of
outer automorphisms OutG ′′ 0

t naturally acts on the based root datum BRD(G ′′ 0
t ). In
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particular, it acts on the Dynkin diagramD = DynG ′′ 0
t and on the free abelian group

X∨
Z = X∗(Z(G ′′ 0

t )); see Sect. 5. We obtain a homomorphism

π0(G
′′
t ) → Aut(DynG ′′ 0

t )×Aut(X∨
Z ). (10.1)

The action of π0(G ′′
t ) on Dyn(G ′′

t )
0 preserves the sets of highest weights of the rep-

resentations of the derived Lie algebra g′′der
t = [g′′

t , g
′′
t ] in U = Cm and in V = Cn .

The group Aut(DynG ′′ 0
t ) in (10.1) is finite, but Aut(X∨

Z ) is infinite when
dim Z(G ′′ 0

t ) � 2. We construct a finite subgroup of Aut(X∨
Z ) containing the image

of π0(G ′′
t ) in Aut(X

∨
Z ). Consider the symmetric bilinear form on g

F(x, y) = Tr(xy), x, y ∈ g = gl(m,R)×gl(n,R)

where xy denotes the product ofmatrices. This symmetric bilinear form isG-invariant,
hence G ′′

t -invariant. By abuse of notation, we denote again by F the restriction of the
form to z ..= Lie Z(G ′′ 0

t ); it is G ′′
t -invariant and hence π0(G ′′

t )-invariant.
We observe that in all our examples, the bilinear form F on the real vector space z

is positive definite. Indeed, one can see from Tables 1, 2 and 3 that the center z of the
Lie algebra g′′

t = LieG ′′
i is split, that is, it can be diagonalized over R. It follows that

any matrix x ∈ z can be diagonalized over R, and therefore F(x, x) = Tr(x2) � 0;
moreover, if x 
= 0 then F(x, x) = Tr(x2) > 0, as required.

We embed X∨
Z ↪→ z: to any ν ∈ X∨

Z we assign the element hν = (dν)(1) ∈ z as in
Sect. 5. We obtain a π0(G ′′

t )-invariant positive definite bilinear form FX on X∨
Z :

FX (ν1, ν2) = F(hν1, hν2) for ν1, ν2 ∈ X∨
Z .

SinceFX is definite, the groupAut(X∨
Z ,FX ) is finite.We canwrite the homomorphism

(10.1) as
π0(G

′′
t ) → Aut(DynG ′′ 0

t )×Aut(X∨
Z ,FX )

where both automorphism groups are finite.

11 Details of computation of Tables 1, 2 and 3

We describe the last two columns in our Tables 1, 2 and 3. We take a representative
e ∈ Y = Hom(

∧2U,V) and embed it into a homogeneous sl2-triple t = (h, e, f ).
We consider the centralizer (stabilizer) g′′

t ; see Sect. 7. The Lie algebra g
′′
t is reductive.

Let g′′der
t = [g′′

t , g
′′
t ] denote its derived subalgebra. The inclusion homomorphism

g′′der
t ↪→ g′′

t ↪→ Lie(G′′) = sl(U)×sl(V)×R

induces complex representations of g′′der
t inU and V . We compute the highest weights

of these representations and write them in the corresponding columns “Rep. in U”
and “Rep. in V ” of the tables.
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For example, in the row 1 of Table 1, we have g′′
t � sl2×sl2×sl2, and the rep-

resentation of g′′der
t = g′′

t in U = R6 is the direct sum of the three 2-dimensional
irreducible representations with the highest weights (1, 0, 0), (0, 1, 0), and (0, 0, 1).
The representation in V is the trivial 1-dimensional irreducible representation (with
highest weight (0, 0, 0)) with multiplicity 2.

Let e be one of the tensors in the rows 2, 3, 4, 5, 6 of Table 1. Looking at the last
three columns of the table, we see that the Dynkin diagramDynG ′′ 0

t has no non-trivial
automorphisms preserving the highest weights of the representations inU and V . Thus
π0(G ′′

t ), when acting on G ′′ 0
t , acts trivially on DynG ′′ 0

t . Write r for the semisimple
rank of G ′′ 0

t , and let x1, . . . , xr , y1, . . . , yr , h1, . . . , hr be canonical generators of the
semisimple Lie algebra [g′′

t , g
′′
t ] as in Sect. 6. We add the equations

Ad(g) xi = xi , Ad(g) yi = yi for i = 1, . . . , r ,

to the equations definingG ′′
t , and compute the Gröbner basis. A calculation shows that

the obtained subgroup H ′′ = ker[G ′′
t →Aut g′′

t ] ⊂ G ′′ is contained in the diagonal
maximal torus ofG ′′. This means that H ′′ is given as the intersection of a finite number
of characters of the maximal torus. This makes it possible to work with H ′′ using the
machinery of finitely-generated abelian groups. In particular we can use the Smith
form of an integral matrix to find generators of π0(H ′′). Here we do not go into the
details but refer to [19, Proposition 3.9.7] and its proof. A calculation shows that the
images of all these representatives are contained in the identity component P0

t of Pt .
By Corollary 5.2 the image of π0(H ′′) in π0(Pt ) is the whole π0(Pt ), and we conclude
that π0(Pt ) = 1 in all these cases. A calculation (by hand or using computer) shows
that H1Pt = 1, and thus H1Ge = 1, in all these cases. Similarly, we obtain that for
the cases 8, 9, 10, 11 of Table 2 and the cases 2, 3 of Table 3 we have π0(Pt ) = 1 and
H1Ge = 1. Thus the complex orbit G ·e contains only one real orbitG(R) ·e, and the
corresponding complex two-step nilpotent Lie algebra has only one real form.

In the case 1 of Table 2 we have π0(Pt ) = 1, but # H1Pt = 2. Thus there are two
real orbits in the complex orbit, and we computed (using computer) a representative
of the second real orbit; see the row 1-bis in Table 2.

One can see that in the row 1 of Table 1, the automorphism group of the Dynkin
diagram Dyn(G ′′

t )
0 together with the highest weights of the representations in U and

V is the symmetric group S3. A calculation shows that the homomorphisms

π0(Pt ) ←− π0(G
′′
t ) −→ Aut(DynG ′′ 0

t )

are isomorphisms, whence π0(Pt ) � S3. A calculation (using the H1-program or by
hand) shows that H1Ge = H1Pt ∼= H1(�, S3) and # H1Ge = 2. Thus there are two
real orbits in the complex orbit G ·e; see the row 1-bis in Table 1 for a representative
of the second real orbit.

Similarly, in the row 1 of Table 3, we have π0(G2) ∼= C2 (a group of order 2), and

H1Ge = H1Pt ∼= H1(�,C2) = {[1], [c]}

where c ∈ C2, c 
= 1. Again we have two real orbits in the complex orbit G ·e.
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We consider the rows 2, 3, 4, 5, 6, 7, 11 of Table 2. We see from the table that G ′′ 0
t

is a torus of dimension 2 or 3.We computed theGröbner basis of the equations defining
G ′′

t . In the cases 4, 6, 7, 11 we obtain a subgroup contained in the diagonal maximal
torus ofG ′′, and the image of this subgroup in Pt is contained in the identity component.
We see that π0(Pt ) = 1, and therefore Pt is a split torus. Thus H1Ge = H1Pt = 1,
and the complex orbit G ·e contains only one real orbit G(R) ·e.

It remains to consider the cases 2, 3, 5 of Table 2, in which G ′′ 0
t is a torus and the

group G ′′
t is not diagonal. We provide details for the case 5; the cases 2 and 3 are

similar (and easier). In the case 5 the group G ′′ 0
t is a 3-dimensional torus, and hence

X∨
Z is a free abelian group of rank 3. We chose a basis e1, e2, e3 of X∨

Z and computed
the Gram matrix Gr(FX ) = (ai j ) where ai j = FX (ei , e j ). We obtained the matrix

⎛

⎝
4 2 0
2 4 0
0 0 31

⎞

⎠.

Using the function AutomorphismGroup of Magma, we computed the automor-
phism group A = Aut(X∨

Z ,FX ). It is a group of order 24 with generators

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠,

⎛

⎝
1−1 0
0−1 0
0 0 −1

⎞

⎠,

⎛

⎝
−1 0 0
0 −10
0 0 1

⎞

⎠.

We computed the list of elements ofA, and for each a ∈ A we computed the Gröbner
basis for G ′′

t with additional equations saying that the element g ∈ G ′′
t acts on X∨

Z
as a. For 18 elements a we got the trivial Gröbner basis {1}, which means that the
corresponding enlarged system of equations has no solutions. For the following six
elements:

⎛

⎝
−10 0
−1 1 0
0 0 1

⎞

⎠,

⎛

⎝
−1 1 0
−10 0
0 0 1

⎞

⎠,

⎛

⎝
0−10
1−10
0 0 1

⎞

⎠,

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠,

⎛

⎝
1−10
0−10
0 0 1

⎞

⎠,

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

we obtained nontrivial Gröbner bases, which meant that the corresponding enlarged
systemdid have a solution, and then itwas easy tofind a solution by a computer-assisted
calculation. From this we obtained that π0(G ′′

t ) � S3 and H1Ge = H1Pt � H1(�, S3)
is of cardinality 2. Similarly, we obtained that π0(Ge) � C2 in cases 2 and 3 of Table
2. In these two cases we also obtained that # H1Ge = 2. Thus the complex orbit G ·e
contains exactly two real orbits, and in each case we computed a representative of the
other orbit.

A Appendix: Signature (4, 4): the duality approach

We use the duality approach; see Gauger [15, Section 3] or Galitski and Timashev [13,
Section 1.2]. LetU and V be finite dimensional spaces over a field k of characteristic
different from 2. To each surjective linear map β : ∧2U → V we assign the natural

123



Real non-degenerate two-step nilpotent Page 25 of 27    16 

surjective linear map

β∗ : ∧2U∗ → ∧2U∗/(ker β)⊥

where (ker β)⊥ denotes the orthogonal complement (annihilator) to ker β ⊂ ∧2U
in the dual space

∧2U∗ to
∧2U . This approach reduces classification of surjective

skew-symmetric bilinear maps km×km → kn1 to classification of surjective skew-
symmetric bilinear maps km×km → kn2 where n2 = (m

2

) − n1. When (m, n1) =
(4, 4), we obtain n2 = (4

2

)−4 = 6−4 = 2. This reduces the problem of classification
of two-step nilpotent Lie algebras overk of signature (4, 4) to the well-known cases of
signatures (4, 2) and (3, 2) (note that the signatures (2, 2) and (1, 2) are impossible).

In [18] one can find a classification of 6-dimensional nilpotent Lie algebras over a
field k of characteristic different from 2. This gives, in particular, a classification of
surjective skew-symmetric bilinear maps

β : k4×k4 → k2

over such fields. These are representatives of the orbits with the numbering of [18,
Section 4].

β6,8 = e12↑5 + e13↑6 of signature (3, 2),

β6,22(ε) = e12↑5 + e13↑6 + εe24↑6 + e34↑5 for ε ∈ k of signature (4, 2).

Here β6,22(δ) is equivalent to β6,22(ε) if δ = α2ε for some α ∈ k×. Thus for k = C

we obtain three equivalence classes with representatives

β6,8, β6,22(0), β6,22(1),

and for k = R we obtain four equivalence classes with representatives

β6,8, β6,22(0), β6,22(1), β6,22(−1),

which is compatible with our Table 3.
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