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Abstract
We consider moduli spaces of plane quartics marked with various structures such as
Cayley octads, Aronhold heptads, Steiner complexes andGöpel subsets and determine
their cohomology. This answers a series of questions of Jesse Wolfson. We also count
points of these moduli spaces over finite fields of odd characteristic.
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1 Introduction

A plane quartic is a smooth curve C given by the vanishing of a homogeneous poly-
nomial of degree 4 in three variables. The most famous result about plane quartics is
the following.

Theorem 1.1 (Plücker [42], Jacobi [33]) Every plane quartic has 28 bitangents.

There aremany structures beyondbitangentswhich one can attach to a plane quartic.
Many of these structures were discovered already in the 19th century and have some-
what mysterious names such as Cayley octads, Aronhold heptads, Steiner complexes
and Göpel subsets.

Given such a structure, there is a corresponding moduli space of plane quartics
marked with this structure. For instance, there is a moduli space Qbtg of plane quartics
marked with a bitangent line and a moduli space QCO of plane quartics marked with
a Cayley octad. Jesse Wolfson posed the following question.
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Question 1.2 (Wolfson [32]) Given a structure associated with plane quartics (such
as bitangents, Cayley octads, Aronhold heptads or Steiner complexes) what is the
cohomology of the corresponding moduli space?

From a modern point of view, the above question is best understood in terms of
curves with level 2 structure. More precisely, given a plane quartic C with level 2
structure, the group Sp(6, F2) acts on the bitangents of C via changing the level 2
structure. The classical structures, such as Cayley octads and Steiner complexes, can
thenbeunderstood as sets of bitangentswhich arefixedby some subgroupofSp(6, F2).
In fact, in most cases the corresponding subgroup is maximal (the exception being
Aronhold heptads). Moreover, fixed structures of maximal subgroups of Sp(6, F2)

have been studied classically.
The cohomology groups of the moduli space Q[2] of plane quartics with level 2

structure have been determined as representations of Sp(6, F2) in earlier work by
the author [6–9] (see also [5, 10, 11, 13]). The purpose of the present paper is the
following:

• To explain how the answer to Wolfsons question can be derived from our previous
work.

• To recall definitions of various structures associated to plane quartics and provide
references to the classical literature.

• To recall descriptions of the various subgroups stabilizing the above structures.
• To provide point counts over finite fields (of odd characteristic) of the abovemoduli
spaces.

Plane quartics are closely related to both Del Pezzo surfaces of degree 2 and maxi-
mally nodal double Veronese cones, see [1]. The above structures all have counterparts
in these settings. Thus,most results in this note have counterparts in terms ofDel Pezzo
surfaces and Veronese cones (e.g. refinements of results in [4, 38] in the sense of [12,
16]). However, the precise nature of these structures and results are more subtle than
one might naively expect. We have therefore not pursued these results in this paper.
Another direction for future study is to investigate how the corresponding results look
like for the various compactifications of Q[2] that have been constructed; e.g. in [31,
43, 44]. It would also be very interesting to investigate the relationship between the
approach of the present paper with other recent developments in the theory of plane
quartics and their bitangents; e.g. the tropical counts of Baker, Len,Morrison, Pflueger
and Ren [3] and the signed counts of Larson and Vogt [35].

The paper contains more than a few moduli spaces. For convenience, we provide a
table listing the most important ones below. We also tabulate the most central results
about these moduli spaces.
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List of moduli spaces of plane quartics

Notation Structure

Q[2] Level 2 structure
Qbtg Bitangent
QCO Cayley octad
QAH Aronhold heptad
QSC Steiner complex
QGS Göpel subset
Qsyz Syzygetic tetrad
Qazy Azygetic triad
Qenn Ennead
QOS Octonionic structure

Poincaré polynomials and point counts

Moduli space Poincaré polynomial Point count

Qbtg 1 + t5 + 2t6 q6 − q + 2
QCO 1 + t + t5 + 4t6 q6 − q5 − q + 4
QAH 1 + t + t3 + 4t4 + 6t5 + 6t6 q6 − q5 − q3 + 4q2 − 6q + 6
QSC 1 + t + 2t5 + 5t6 q6 − q5 − 2q + 5
QGS 1 + t + 2t5 + 11t6 q6 − q5 − 2q + 11
Qsyz 1 + t + t4 + 7t5 + 13t6 q6 − q5 + q2 − 7q + 13
Qazy 1 + t + t3 + 3t4 + 8t5 + 9t6 q6 − q5 − q3 + 3q2 − 8q + 9
Qenn 1 + 3t3 + 11t4 + 13t5 + 11t6 q6 − 3q3 + 11q2 − 13q + 11
QOS 1 + 2t5 + 7t6 q6 − 2q + 7

2 Background

We work over an alebraically closed field k of characteristic different from 2.

2.1 Symplectic level 2 structures

LetC be a smooth, irreducible and projective curve of genus g over k and let Jac(C) be
its Jacobian. We will only consider group theoretic properties of Jac(C) so we make
the identifications

Jac(C) = Pic0(C) = Cl0(C).

If D ∈ Cl(C), we denote the corresponding line bundle by L(D) and we use the
notation hn(D) for the dimension of Hn(C,L(D)).

Let V = Jac(C)[2] denote the 2-torsion subgroup of Jac(C). This group is a vector
space over F2 of dimension 2g. TheWeil pairing b is a symplectic bilinear form on V .

Definition 2.1 A symplectic level 2 structure on a curve C of genus g is an isometry
φ from the standard symplectic vector space of dimension 2g to (V , b).

The group of isometries from (V , b) to itself is called the symplectic group of V
and is denoted Sp(V ). The symplectic group of the standard symplectic vector space
of dimension 2g over F2 is denoted Sp(2g, F2).
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Equivalently, a symplectic level 2 structure is a choice of an (ordered) sym-
plectic basis x1, . . . , xg, y1, . . . , yg of V . We will write (C, φ) and (C, x1, . . . , xg,
y1, . . . , yg) interchangeably. Two curves with level 2 structures (C, x1, . . . , yg) and
(C ′, x ′

1, . . . , y
′
g) are isomorphic if there is an isomorphism of curves ϕ : C → C ′ such

that the induced morphism ϕ̃ : V ′ → V takes one symplectic basis to the other in the
sense that

ϕ̃(x ′
i ) = xi , i = 1, . . . , g,

ϕ̃(y′
i ) = yi , i = 1, . . . , g.

Let KC denote the canonical class of C . A theta characteristic on C is a divisor
class θ such that 2θ = KC . The Arf invariant of a theta characteristic θ is defined as

Arf (θ) = h0(θ) mod 2.

A theta characteristic θ is called odd (resp. even) if Arf (θ) = 1 (resp. 0). A curve C
of genus g has precisely 22g theta characteristics. Of these, 2g−1(2g − 1) are odd and
2g−1(2g + 1) are even. The set � of theta characteristics of C can be identified with
the set Q(V ) of quadratic forms on the symplectic vector space V via

θ(v) = Arf (θ + v) + Arf (θ).

We denote the subset of odd theta characteristics by �− and the subset of even theta
characteristics by �+.

Given two theta characteristics θ and θ ′, the difference θ − θ ′ is 2-torsion. This
gives � the structure of a V -torsor. The union U = V ∪ � is thus a vector space over
F2 of dimension 2g + 1. The vector space U can also be identified with the 2-torsion
subgroup of Pic(C)/ZKC .

Let B = (θ1, . . . , θ2g+1) be an ordered basis for U consisting of elements of �.
For a vector u ∈ U , let nB(u) denote the number of nonzero coordinates of u in the
basis B. If θ is an element of �, then nB(θ) is odd. If the basis B has the property
that Arf (θ) only depends on the residue class of nB(θ) mod 4 for any θ ∈ � we
say that B is an ordered Aronhold basis. The set {θ1, . . . , θ2 g+1} is then called an
Aronhold set. It follows directly from the definition that if B is an Aronhold basis,
then Arf (θ1) = · · · = Arf (θ2 g+1). By [29, Proposition 2.1], Aronhold bases exist
and their elements satisfy Arf (θi ) = 0 if g ≡ 0 or 1 mod 4 and Arf (θi ) = 1 if g ≡ 2
or 3 mod 4. Furthermore, given an Aronhold basis B, the elements

x1 = θ1 + θ2 y1 = θ1 + θ2g+1,

x2 = θ3 + θ4 y2 = θ1 + θ2 + θ3θ2g+1,

· · ·
xg = θ2g−1 + θ2g yg = θ1 + θ2 + · · · + θ2g−1 + θ2g+1
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constitute a level 2 structure, see [29, Section 2] (recall that the addition is taken
modulo KC ). This establishes a bijection between the set of Aronhold bases of C and
the set of level 2 structures.

2.2 Bitangents and level 2 structures

A plane quartic is a smooth curve C in the projective plane given by a polynomial of
degree 4. By the genus-degree formula, such a curve has genus 3. Conversely, every
non-hyperelliptic curve of genus 3 can be embedded as a plane quartic via its canonical
linear system. A bitangent to a plane quartic C is a line L which is tangent to C at two
points or has contact order 4 at one point. If L intersects C at two distinct points we
say that L is a genuine bitangent. If L only intersects C at one point we say that it is
a hyperflex line. Every plane quartic has precisely 28 bitangents.

A representative of the canonical class of a plane quartic C is obtained by inter-
secting C with a line L , i.e. KC ∼ L ·C . Suppose that L is a bitangent to C . Then
L ·C = 2P + 2Q for some points P, Q ∈ C (where P = Q if L is a hyperflex
line). Therefore, the divisor D = P + Q satisfies 2D = 2P + 2Q ∼ KC . In other
words, D is a theta characteristic of C . Since there are 28 bitangents of C we obtain
28 theta characteristics in this way. These are exactly the 23−1(23 −1) = 28 odd theta
characteristics. We combine this identification with the bijection between Aronhold
bases and level 2 structures. In this, we may interpret level 2 structures in terms of
(special) collections of seven bitangents and vice versa.

2.3 Plane quartics and Del Pezzo surfaces

A Del Pezzo surface is a smooth and projective surface S such that the anticanonical
class −KS is ample. The number K 2

S is called the degree of S.
Let C be a smooth plane quartic curve. The double cover π : S → P

2 branched
over C is a Del Pezzo surface of degree 2. Every Del Pezzo surface of degree 2 is
obtained in this way. The surface S has 56 exceptional lines. The covering map π

maps pairs of these lines to the 28 bitangents of C .
Let P1, . . . , P7 ∈ P

2 be seven points in general position. In other words

• no three of the points P1, . . . , P7 lie on a line, and
• no six of the points P1, . . . , P7 lie on a conic.

By blowing up the points P1, . . . , P7 we obtain a Del Pezzo surface S of degree 2.
All Del Pezzo surfaces of degree 2 can be obtained in this way. The seven exceptional
curves E1, . . . , E7 together with the strict transform E0 of a line in P

2 constitute a
basis for Pic(S)

Pic(S) = ZE0⊕ZE1⊕ · · · ⊕ZE7.

Such a basis (coming from a blow up) is called a geometric marking of S. The inter-
section theory of S is given by

E2
0 = 1, E2

i = −1, i 	= 0, Ei ·E j = 0, i 	= j .
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The group permuting the geometric markings of a given surface is isomorphic to the
Weyl group W (E7). This group is isomorphic to the direct product of Sp(6, F2) with
a group with two elements.

We thus have two ways of obtaining a Del Pezzo surface S: as a cover π : S → P
2

branched over a plane quartic curve C and as the blow-up S = BlP1,...,P7 . The images
π(E1), . . . , π(E7) of the exceptional curves are seven bitangents of the plane quartic
C which constitute an Aronhold set.

Denote the moduli space of geometrically marked Del Pezzo surfaces of degree 2
by DP

gm
2 , denote the moduli space of seven ordered points in P

2 in general position
by P2

7 and denote the moduli space of plane quartics with level 2 structure by Q[2].
The moduli spaces P2

7 and Q[2] are fine moduli spaces. Every geometrically marked
Del Pezzo surface of degree 2 has precisely one non-trivial automorphism (namely
the involution changing the two sheets of the cover π : S → P

2) so the moduli space
DP

gm
2 is not fine (as a scheme). On the level of coarse moduli spaces we have the

following result due to van Geemen.

Theorem 2.2 ([19, Chapter IX, Theorem 1]) There are Sp(6, F2)-equivariant isomor-
phisms of coarse moduli spaces

DP
gm
2

∼= P2
7

∼= Q[2].

2.4 The cohomology of themoduli space of quartics with level structure

Let � be a prime number different from the characteristic of the field k. Let Q� denote
the field of �-adic numbers. For a variety X , let Hi (X , Q) denote its i th de Rham coho-
mology group, let Hi

c (X , Q) denote its i th de Rham cohomology group with compact
support, let Hi

ét(X , Q�) denote its i th étale cohomology group and let Hi
ét,c(X , Q�)

denote its i th étale cohomology group with compact support.

Theorem 2.3 ([8, Section 6]) The cohomology groups Hi (Q[2], Q) are pure of Tate
type (i, i). Their structure as representations of Sp(6, F2) are as given in Table 1.

By Poincaré duality, the cohomology groups Hi
c (Q[2]) are pure of weight 2i −

2 dim(Q[2]).
Definition 2.4 (Dimca and Lehrer [17]) Let X be an irreducible and separated scheme
of finite type over k. If, for all i , the cohomology groups Hi

c (Q[2]) are pure of weight
2i − 2 dim(Q[2]) we say that X is minimally pure.

There is also an étale version of minimal purity.

Definition 2.5 (Dimca and Lehrer [17]) An irreducible and separated scheme X of
finite type over Fq is called minimally pure if the Frobenius endomorphism F acts on
Hi
ét,c(X , Q�) with all eigenvalues equal to qi−dim(X).

Corollary 2.6 For odd q, the moduli space Q[2] is minimally pure also in the étale
sense and the cohomology groups Hi

ét(X , Q�) are as given in Table 1.
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Proof By Theorem 2.2, Q[2] can be identified with the complement of a finite num-
ber of hypersurfaces in P

2× P
2× P

2. In particular, Q[2] is smooth. Sekiguchi has
constructed a compactification Q[2] of Q[2] with many nice properties, see [43, 44].
Hacking, Keel and Tevelev have shown that over Z[1/2] the compactification Q[2]
is smooth and the boundary Q[2]\Q[2] is a union of smooth divisors with normal
crossings, see [31, Theorm 1.2]. By [34, Corollary 1.3] we may now identify the de
Rham cohomology of Q[2] over C with the étale cohomology of Q[2] over Fq (but
only for odd q). 
�
Proposition 2.7 ([8, Section 5]) Let Qbtg[2] denote the moduli space of plane quar-
tics with level 2 structure and one marked bitangent line. The cohomology groups
Hi (Qbtg[2], Q) are pure of Tate type (i, i). Their structure as representations of
Sp(6, F2) are as given in Table 2.

2.5 Cohomology of quotients

Let X be a variety over the field k. LetG be a finite group of rational automorphisms of
X such that the morphism f : X → X/G is Galois. In what follows, we will typically
have cohomological information about X and we will want to use this information to
obtain cohomological information about X/G. The following facts allow us to achieve
this.

Proposition 2.8 Hi (X/G, Q) ∼= Hi (X , Q)G. Moreover, if X is minimally pure (in the
sense of mixed Hodge theory) then so is X/G.

The first part of result can be found e.g. in [30], the corollary following Proposition
5.2.4. The second part follows from Peters–Steenbrink’s generalization of the Leray–
Hirsch theorem, see [41, Theorem 2].

Proposition 2.9 Hi
ét(X/G, Q) ∼= Hi

ét(X , Q)G. Moreover, if X is minimally pure (in
the étale sense) then so is X/G.

This follows from the Hochschild–Serre spectral sequence, see e.g. [40, Theorem
2.20].

3 Constructions of classical structures

In this section we recall some classical results and constructions related to plane
quartics and their bitangents.

Each of these structures can be understood as the structure stabilized by some sub-
group of Sp(6, F2). A small computation in GAP shows that there are 1369 conjugacy
classes of subgroups of Sp(6, F2) so we could, in principle, investigate this many
structures. However, most of the structures occurring in the classical literature cor-
respond to maximal subgroups of Sp(6, F2). The exception to this rule is Aronhold
heptads—these are stabilized by a subgroup isomorphic to S7 which is not quite maxi-
mal (it sits as a maximal subgroup inside an S8 which is in turn maximal in Sp(6, F2)).
Also, out of the eight maximal subgroups of Sp(6, F2), only seven occur as stabilizers
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Table 1 The cohomology groups of the moduli space of plane quartics with level 2 structure as represen-
tations of Sp(6, F2)

φ1a φ7a φ15a φ21a φ21b φ27a φ35a φ35b φ56a φ70a

H0 1 · · · · · · · · ·
H1 · · · · · · · 1 · ·
H2 · · · · · · · · · ·
H3 · · · 1 · · · · · ·
H4 · · · · · · · · · 1

H5 · · · · · 1 1 1 · ·
H6 1 · 2 · 1 1 1 3 · ·

φ84a φ105a φ105b φ105c φ120a φ168a φ189a φ189b φ189c φ210a

H0 · · · · · · · · · ·
H1 · · · · · · · · · ·
H2 · · · · · · · · · 1

H3 · · 1 · · · 1 · · 2

H4 · · 2 · 2 1 2 1 · 3

H5 1 2 2 1 2 4 3 3 3 4

H6 5 1 1 4 · 3 2 2 5 3

φ210b φ216a φ280a φ280b φ315a φ336a φ378a φ405a φ420a φ512a

H0 · · · · · · · · · ·
H1 · · · · · · · · · ·
H2 · · · 1 · · · · · ·
H3 1 · · · · · 1 2 2 1

H4 4 · 3 1 3 2 3 6 5 4

H5 4 4 4 6 5 6 6 6 8 9

H6 1 6 3 6 1 6 4 2 6 6

The characters are ordered as in [15, p. 47]. The indices are the degrees of the representations followed by
a letter to distinguish characters of the same degree, see [15, Section 5.1]

of some structure in the classical literature (the group G2(2) of automorphisms of the
integral octonions is missing).

In this section, we also describe the stabilizers in Sp(6, F2) of each structure and
identify the structure corresponding to G2(2). For a different approach, via root sub-
systems of E7, to find most of these structures (all except those in Sects. 3.8 and 3.9),
see [39, Section 4].

3.1 Bitangents and odd theta characteristics

3.1.1 Constructions

See Sect. 2.2 for a discussion about bitangents to plane quartic curves and their relation
to odd theta characteristics.
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Table 2 The cohomology groups of the moduli space of plane quartics with a marked bitangent line and
level two structure as representations of Sp(6, F2)

φ1a φ7a φ15a φ21a φ21b φ27a φ35a φ35b φ56a φ70a

H0 1 · · · · 1 · · · ·
H1 · · · · · 1 · 2 · ·
H2 · · · 1 · 1 · 2 · ·
H3 · · · 5 · 3 1 3 · 3

H4 · · 1 7 1 8 7 9 8 17

H5 1 2 7 10 8 16 17 21 22 31

H6 2 2 10 6 10 13 14 20 16 20

φ84a φ105a φ105b φ105c φ120a φ168a φ189a φ189b φ189c φ210a

H0 · · · · · · · · · ·
H1 · · 1 · 1 1 · · · 1

H2 1 · 3 2 4 4 3 · · 7

H3 5 1 11 8 15 16 19 3 5 25

H4 18 16 34 24 41 50 54 33 33 65

H5 43 46 54 50 62 89 92 83 86 106

H6 42 37 35 46 39 65 65 66 77 76

φ210b φ216a φ280a φ280b φ315a φ336a φ378a φ405a φ420a φ512a

H0 · · · · · · · · · ·
H1 · · · 1 · · · · · ·
H2 2 1 · 7 · 2 1 6 4 4

H3 16 8 11 23 13 19 21 38 33 34

H4 60 42 64 74 73 79 89 122 114 130

H5 103 103 129 143 145 160 176 198 205 247

H6 68 90 95 112 100 126 131 129 151 181

The characters are ordered as in [15, p. 47]. The indices are the degrees of the representations followed by
a letter to distinguish characters of the same degree, see [15, Section 5.1]

3.1.2 Stabilizer subgroup

The stabilizer of a bitangent (or, if one prefers, an odd theta characteristic) is amaximal
subgroup of order 51840. It is isomorphic to theWeyl groupW (E6) of the root system
E6. It has index 28 in Sp(6, F2).

The action ofW (E6) is probably best understood in theworld ofDel Pezzo surfaces.
Let C be a plane quartic and let π : S → P

2 be the double cover of P
2 branched over

C . Recall from Sect. 2.3, that S is a Del Pezzo surface of degree 2 and that π identifies
the 56 exceptional curves of S with the 28 bitangents of C .

Let L be a bitangent ofC and let E be an exceptional curve of S such thatπ(E) = L .
By blowing down E we obtain a Del Pezzo surface S′ of degree 3 (i.e. a smooth cubic
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surface). Such a surface has 27 lines. From this perspective, these 27 lines correspond
to the 27 bitangents of C different from L . The group W (E6) is the group permuting
the 27 lines of S′. See Sect. 3.3 for a few more details on this perspective.

We denote the moduli space of (smooth) plane quartics marked with a bitangent
by Qbtg.

3.2 Cayley octads and even theta characteristics

3.2.1 Constructions

There is also a close relationship between even theta characteristics of a non-hyper-
elliptic genus 3 curve C and bitangents of its canonical model as a plane quartic Q.
We explain this relationship below (for a more complete account, see [29, Section 6]).

Let θ be an even theta characteristic of C and consider the linear system corre-
sponding to the divisor class KC + θ . This linear system is very ample and gives an
embedding of C into P

3 as a curve of degree 6. We denote this curve by B.
To bemore precise, letV = H0(C, KC )∗, letW = H0(C, KC+θ).Weobtain amap

ϕ : V → Sym2W ∗ given in the following way. Let s0, . . . , s3 be a basis for W . The
products si s j are then sections of the line bundle corresponding to 2(KC +θ) = 3KC .
Thus, si s j can be identified with a cubic polynomial fi j on PV . Construct the matrix
M = ( fi j ) and let N0 be thematrix of cofactors ofM . Let F be the defining polynomial
for Q. One may show that N0 is divisible by F2. Let N be the matrix N0/F2. The
matrix N is a matrix representation of ϕ.

We make the identifications PV = P
2 and PW = P

3. We think of ϕ as a net1 N of
quadrics in P

3. With these identifications at hand, the quartic Q is the locus

Q ..= {[v] ∈ PV | ϕ(v) is singular}
and the sextic B ⊂ PW is the locus of singular points of members of N. Moreover,
for every point P = [v] of Q we may consider ϕ(P) to be a map W → W ∗. We let
L denote the divisor class corresponding to the dual of the line bundle whose fiber at
P ∈ Q is ker(ϕ(P)). It can then be shown that

θ = L − KC .

Somewhat remarkably, the above process can be abstracted in the following sense.
Let V be a vector space of dimension 2 and let W be a vector space of dimension 3.
Let ϕ : V → Sym2W ∗ be a linear map such that the netN given by ϕ has eight points
in general linear position as its base locus. The process described above then yields a
genus 3 curve C with an even theta characteristic.

Not all 8-tuples of points in P
3 occur as the base locus of a net of quadrics. When

this is the case, the 8-tuple uniquely determines the net.

Definition 3.1 ACayley octad is an unordered 8-tuple of points in P
3 in general linear

position which is the base locus of a net of quadrics.

1 I.e. a linear system of dimension 2.
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Cayley octads are a special case of self-associated point sets, see [19, Section III.3].
Note that a plane quartic curve with an even theta characteristic uniquely defines a
Cayley octad and vice versa. In particular, we see that, up to projective equivalence,
there are 36 Cayley octads associated to each plane quartic.

Let � = {Q1, . . . , Q8} be a Cayley octad and let B be the corresponding sextic
curve in P

3 given by the theta characteristic θ . The 28 lines Li j , 1 � i < j � 8, are
bisecants to B, i.e. they intersect B in two points each and each of the 28 lines cuts out
an odd theta characteristic on B. Recall that the odd theta characteristics are naturally
identified with bitangents of the canonical model of B as a plane quartic. We thus see
that θ can be specified by labelling the 28 bitangents with the 28 pairs of points of
a set of eight elements (in a compatible way according to the above constructions).
Sometimes Cayley octads are defined as such labellings, see e.g. [15].

3.2.2 Stabilizer subgroup

The stabilizer of a Cayley octad is a maximal subgroup of order 40320 and it is
isomorphic to S8, the symmetric group on eight elements. It has index 36 in Sp(6, F2).
Here, the action is plainly seen as the permutation action of S8 on the eight points of
the Cayley octad.

We denote the moduli space of plane quartics marked with a Cayley octad by QCO.

3.3 Aronhold heptads

3.3.1 Constructions

Let � = {Q1, . . . , Q8} be a Cayley octad, let B be the corresponding sextic curve in
P
3 and let θ be the corresponding even theta characteristic. By projecting from one

of the points, say Q8, we obtain seven points P1, . . . , P7 in P
2 in general position,

i.e. no three of them lie on a line and no six of them lie on a conic. The image ˜B of
B under the projection is a plane sextic curve with double points at the seven points.
The seven lines L18, . . . , L78 define seven odd theta characteristics θ1, . . . , θ7 on B.
Such a 7-tuple of odd theta characteristics is called an Aronhold heptad. A more direct
definition is the following.

Definition 3.2 AnAronhold heptad η is a 7-tuple of odd theta characteristics such that
if θ1, θ2 and θ3 are distinct elements of η, then

θ1 + θ2 + θ3

is an even theta characteristic.

Recall that the sum is taken modulo KC . We remark that we can get the even theta
characteristic back from the Aronhold heptad via

θ =
7

∑

i=1

θi .
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There are eight different points of the Cayley octad to project from, thus yielding
eight different Aronhold heptads. We thus see that there are 8 ·36 = 288 projectively
inequivalent Aronhold heptads associated to a plane quartic.

3.3.2 Stabilizer subgroup

The stabilizer of an Aronhold heptad is a subgroup isomorphic to S7, the symmetric
group on seven elements. This subgroup is not maximal (it is contained in the S8
stabilizing the associatedCayley octad). The index of S7 in Sp(6, F2) is 288.Again, the
action is plainly seen as the permutation action of S7 on the seven theta characteristics
of the Aronhold heptad.

We denote the moduli space of plane quartics marked with an Aronhold heptad
by QAH.

3.4 Steiner complexes

3.4.1 Constructions

Let Q be a plane quartic and let P be the set of unordered distinct pairs of odd theta
characteristics of Q. Consider the map

s : P → Jac(Q)[2]\{0}

sending a pair {θ1, θ2} to θ1 + θ2 − KC .

Definition 3.3 (see [18]) Let v ∈ Jac(C)[2] be a nonzero element. The set


(v) =
⋃

{θ1,θ2}∈s−1(v)

{θ1, θ2}

is called the Steiner complex associated to v.

Thus, there is one Steiner complex for each of the 22·3 − 1 = 63 elements of
Jac(Q)[2]. Each Steiner complex contains precisely 12 odd theta characteristics (or
12 bitangents, if one prefers this viewpoint).

A more direct definition of a Steiner complex is


(v) = {θ ∈ �− | θ(v) = 0}.

However, from Definition 3.3 it is clear how the 12 elements of a Steiner complex
naturally form six pairs.

3.4.2 Stabilizer subgroup

Permuting the six pairs stabilizes a Steiner complex and so does interchanging the
two elements of a pair. This suggests that the stabilizer subgroup of a Steiner complex
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should be the wreath product F2 � S6 (i.e. the semidirect product F
6
2� S6 with the

canonical action of S6 on F
6
2). However, it turns out (see e.g. [18] for details) that a

nontrivial parity condition must be satisfied by the F
6
2-part; once five of the switches

are chosen the sixth is determined. This gives the stabilizer subgroup the structure of
a semidirect product F5

2� S6. It is a maximal subgroup of cardinality 23040 and index
63. It is also possible to identify the stabilizer subgroup with the Weyl group of D6,
see [19].

We denote the moduli space of plane quartics marked with a Steiner complex
by QSC.

3.5 Göpel subsets andmaximal isotropic subspaces

3.5.1 Constructions

Definition 3.4 Let C be a plane quartic. A Göpel subspace is a maximal isotropic
subspace of Jac(C)[2] with respect to the Weil pairing. The set of the seven nonzero
elements of a Göpel subspace is called a Göpel subset.

There are 135 maximal isotropic subspaces of a symplectic vector space of dimen-
sion 6 over F2, see [2]. Thus, there are 135 Göpel subsets. For more details and further
perspectives, see [14, 19, 39].

3.5.2 Stabilizer subgroup

Stabilizers of isotropic subspaces are maximal parabolic subgroups of Sp(6, F2). We
give a more precise description below.

A Göpel subset is naturally a Fano plane. Therefore, the automorphism group
PGL(3, F2) of the Fano plane is naturally a subgroup of the stabilizer of aGöpel subset.

To understand the rest of the stabilizer it is convenient to once again recall the Del
Pezzo picture (see Sect. 2.3). In particular, recall that ifC is a plane quartic and S is the
corresponding Del Pezzo surface then a level 2 structure on C naturally corresponds
to a geometric marking of S. Under this correspondence, the 63 nonzero elements
of Jac(C)[2] correspond to the 63 positive roots of the root system E7 (defined with
respect to the geometric marking). Thus, the seven elements of a Göpel subset give rise
to seven positive roots. The remainder of the stabilizer of a Göpel subset comes from
the operation of switching such a root to its negative. However, we may only choose
the direction of six out of seven roots freely—once six directions are chosen there is a
unique direction of the final root so that the seven roots constitute part of a choice of
positive roots for E7. This explains how the stabilizer subgroup of a Göpel subset is
identified with PGL(3, F2)× F

6
2. It is a maximal subgroup of cardinality 10752 and

index 135.
We denote the moduli space of plane quartics marked with a Göpel subset by QGS.
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3.6 Syzygetic tetrads and isotropic planes

3.6.1 Constructions

Definition 3.5 Let {θ1, θ2, θ3} be a set of three odd theta characteristics on a curve C .
The set is called a syzygetic triad if

Arf (θ1) + Arf (θ2) + Arf (θ3) + Arf (θ1 + θ2 + θ3) = 0,

otherwise it is called an azygetic triad.

Note that if {θ1, θ2, θ3} is a syzygetic triad of odd theta characteristics, then θ123 =
θ1 + θ2 + θ3 is an odd theta characteristic. Moreover, any subset of three elements of
{θ1, θ2, θ3, θ123} is a syzygetic triad such that the sum of the three elements is equal
to the fourth.

Definition 3.6 A syzygetic tetrad is a set {θ1, θ2, θ3, θ4}of four odd theta characteristics
such that any subset of three elements is a syzygetic triad and such that the sum of any
three elements is equal to the fourth.

In terms of bitangents, a syzygetic tetrad is a set of four bitangents such that the
intersection points of the bitangents and the quartic lie on a conic, see Fig. 1. Given a
syzygetic tetrad of odd theta characteristics {θ1, θ2, θ3, θ4}, we may choose one of the
four theta characteristics θ of the tetrad and construct the plane

V = {

θ1 − θ, θ2 − θ, θ3 − θ, θ4 − θ
} ⊂ Jac(C)[2].

Onemay show that V is isotropic and independent of the choice of θ , see [18, Corollary
5.4.5]. Furthermore, the isotropic planes of Jac(C)[2] correspond bijectively to the
syzygetic tetrads. Thus, there are (26 − 1) ·(25 − 2)/|GL(2, F2)| = 315 syzygetic
tetrads on a plane quartic.

3.6.2 Stabilizer subgroup

Again, stabilizers of isotropic subspaces are maximal parabolic subgroups of
Sp(6, F2). We give a more precise description below.

The determination of the stabilizer of a syzygetic tetrad follows from standard
results around stabilizers of isotropic subspaces in symplectic spaces. For complete-
ness, we sketch the argument.

An elementσ of Sp(6, F2) stabilizing the isotropic planeV will necessarily stabilize
the orthogonal complement V⊥ of V . Since V is isotropic we have V ⊂ V⊥. Thus, σ
preserves the flag 0 ⊂ V ⊂ V⊥ ⊂ Jac(C)[2]. The Weil pairing induces a symplectic
pairing on the quotient V⊥/V so the stabilizer of V contains a copy of Sp(V⊥/V ) ∼=
Sp(2, F2). The stabilizer also contains a copy of GL(2, F2) stabilizing V . To identify
the rest of the stabilizer we choose a symplectic basis x0, x1, x2, y0, y1, y2 such that
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Fig. 1 A syzygetic tetrad on a plane quartic (the figure is reproduced from [7])

V is spanned by x0 and x1 and V⊥ is spanned by x0, x1, x2 and y2; this is possible by
Witt’s lemma. The elements of Sp(6, F2) of the form

Ai, j : x j �→ x j + xi , yi �→ yi + y j ,

Bi, j : yi �→ yi + x j , y j �→ y j + xi

generate a non-abelian special 2-groupG such that its center Z(G) is an abelian group
isomorphic to F

3
2 and such that G/Z(G) is isomorphic to F

4
2. Thus, G is an extension

G = F
3
2.F

4
2. These parts can be shown to constitute the full stabilizer; more precisely,

they fit together in a semidirect product (Sp(2, F2)×GL(2, F2))× F
3
2.F

4
2.

Remark 3.7 Of course, Sp(2, F2) ∼= GL(2, F2) ∼= S3 so one could in principle say that
the stabilizer is (S3× S3)× F

3
2.F

4
2. This is the approach of [15]. However, we found

the above approach to be more transparent.

Wedenote themoduli space of plane quarticsmarkedwith a syzygetic tetrad byQsyz.

3.7 Azygetic triads of Steiner complexes

A pair {
(u),
(v)} of Steiner complexes is called azygetic if 〈u, v〉 = 1 and it is
called syzygetic if 〈u, v〉 = 0.

Definition 3.8 A triple {
(u),
(v),
(w)} of Steiner complexes is called azygetic if
the vectors u, v and w form the nonzero vectors of a non-isotropic plane in Jac(C)[2].

Recall that Jac(C)[2] ∼= F
6
2. Thus, there are (64 − 1)(64 − 2)/|GL(2, F2)| =

651 planes in Jac(C)[2]. We have seen that 315 of these are isotropic so there are
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651 − 315 = 336 non-isotropic planes. In other words, there are 336 azygetic triads
on a plane quartic.

Remark 3.9 A triple of threemutually syzygetic Steiner complexes is called a syzygetic
triad of Steiner complexes. It can be shown that if {
(u),
(v),
(w)} is a syzygetic
triad of Steiner complexes, then


(u) ∪ 
(v) ∪ 
(w) = �−.

3.7.1 Stabilizer subgroup

As mentioned above, there is a symmetric group S6 permuting pairs of elements
of each Steiner complex (recall that a Steiner complex consists of six pairs of odd
theta characteristics). There is also a symmetric group S3 permuting the three Steiner
complexes. This explains why the stabilizer subgroup in Sp(6, F2) of an azygetic
tetrad of Steiner complexes can be identified with the product S3× S6. It is a maximal
subgroup of Sp(6, F2) of cardinality 4320 and index 336.

We denote themoduli space of plane quarticsmarkedwith an azygetic triad byQazy.

3.8 Enneads and the Study quadric

Themaximal subgroups ofSp(6, F2)of cardinality 1512 and index960were somewhat
mysterious for some time but have now been studied extensively by Dye [20], Edge
[24, 25], Frame [27] and Study [45] (to mention a few).

3.8.1 Constructions

Cayley and Hesse denoted the 28 bitangents of a plane quartic C by indexing them
with pairs of objects from a set of eight objects (Sect. 3.2 expands on this perspective).
Study observed that one may take the eight elements to be eight variables x1, . . . , x8
and the 28 pairs to be the 28 monomials xi x j , 1 � i < j � 8. Then, much of the
geometry of the 28 bitangents can be explored via the Study quadric

S =
∑

1�i< j�8

xi x j , xi ∈ F2. (3.1)

For instance, S defines a variety V (S) in P
7(F2) with 135 points corresponding to

the 135 Göpel subsets. The lines in P
7(F2) fall into different classes depending on

the number of points they have in common with V (S); given a point P outside V (S)

there are exactly 28 lines through P which do not meet V (S), 63 lines through P
which meet V (S) once and 36 lines through P which intersect V (S) in two F2-points
(corresponding to the 28 bitangents, the 63 Steiner complexes and the 36Cayley octads
of C).

The form of S given in equation (3.1) depends on the chosen coordinates for P
7(F2)

but there are many choices of coordinates for P
7(F2) which preserve the form of S.
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To investigate the matter further, let Pi denote the point whose i th coordinate is 1
and whose other coordinates are 0 and let P9 denote the point whose coordinates are
all 1. The points P1, . . . , P9 then all lie on V (S) and the points P1, . . . , P8 natu-
rally correspond to the above choice of coordinates. Furthermore, any choice of eight
points among P1, . . . , P9 corresponds to another choice of coordinates which leaves
S invariant.

Recall that the function � : P
7(F2)× P

7(F2) → F2 given by

�(x, y) =
8

∑

i, j=1
i 	= j

xi y j

is called the polar form with respect to S and that two points P and Q in P
7(F2) such

that �(P, Q) = 0 are called conjugate with respect to S. We see that no two of the
points P1, . . . , P9 are conjugate with respect to S. Moreover, the chord joining any
pair of the points P1, . . . , P9 is not contained in V (S). To see this, note that the chord
L joining Pi and Pj contains three points and the point different from Pi and Pj has
precisely two nonzero coordinates—V (S) does not contain any points with precisely
two nonzero coordinates.

It turns out that these two properties characterize 9-tuples coming from choices of
coordinates which gives S the form of equation (3.1).

Definition 3.10 A set of nine points on V (S) such that

• no two points are conjugate with respect to S, and
• no chord between two points is contained in V (S)

is called an ennead.

There are precisely 960 enneads (and, thus, 960 ·9! different choices of coordinates
preserving equation (3.1)).

3.8.2 Stabilizer subgroup

Dye [20] uses character theory to identify the stabilizerG of an ennead as a finite group
of order 1512 containing the group PSL(2, F8) as a maximal simple subgroup of index
3. Up to isomorphism, there are exactly two such groups. The character table of G is
given by Littlewood [36, p. 279]. The character table is not that of PSL(2, F8)× F3 so
G must be the other possibility, namely the projective semilinear group P
L(2, F8)—
this group is also known as the Ree group Ree(3). The paper [25] of Edge is devoted to
describing the action explicitly, we refer to his paper for details. Dye has investigated
G in several works, see for instance [20–23].

We denote the moduli space of plane quartics marked with an ennead by Qenn.

3.9 Octonionic structures

In the above, we have considered seven of the eight maximal subgroups of Sp(6, F2).
The eighth maximal subgroup is isomorphic to the Chevalley group G2(2). It has size
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Table 3 Various structures associated to a plane quartic curve, their stabilizers, the size of the stabilizer,
the number of inequivalent structures and whether or not the stabilizer is a maximal subgroup of Sp(6, F2)

Structure Stabilizer Size # Max.?

Bitangent (odd theta) W (E6) 51840 28 Yes

Cayley octad (even theta) S8 40320 36 Yes

Steiner complex F
5
2� S6 (alt. W (D6)) 23040 63 Yes

Göpel subset (max. isotropic subspace) PGL(3, F2)× F
6
2 10752 135 Yes

Aronhold heptad S7 5040 288 No

Syzygetic tetrad (isotropic plane) (Sp(2, F2)×GL(2, F2))× F
3
2.F

4
2 4608 315 Yes

Azygetic triad S3× S6 4320 336 Yes

Ennead P
L(2, F8) (alt. Ree(3)) 1512 960 Yes

Octonionic structure G2(2) 12096 120 Yes

12096 and index 120. It can be identified with the stabilizer of a point outside of the
Study quadric (recall from Sect. 3.8 that the Study quadric V (S) is a hypersurface in
P
7(F2) containing 135 points so there are 255 − 135 = 120 points outside of V (S)).
Apart from the aobve observation, we have not found any structure associated to a

plane quarticC which is fixedbyG2(2) in the literature. ThegroupG2(2) is isomorphic
to the automorphism group of the integral octonions and the above observation does
not shed any light on this fact. There seem to be some hints to what G2(2) fixes in
terms of bitangents and octonions in [39, Section 4], but we have not been able to come
up with any meaningful structure. Thus, the only definition at hand of the anticipated
“octonionic structure” is a point outside the Study quartic. It would of course be very
interesting to find a more meaningful definition.

We denote the moduli space of plane quartics marked with an octonionic structure
by QOS.

3.10 Summary

We summarize the results in Table 3.

4 Cohomological computations

In this section we compute the cohomology groups of the moduli spaces of plane
quartic curves marked with the various structures from Sect. 3. Using Propositions 2.8
and 2.9, the results follow straightforwardly from the following result.

Theorem 4.1 ([8]) For each i , the cohomology group Hi
dR(Q[2]) of the moduli space

of smooth plane quartic curves with level two structure is pure of Tate type (i, i). Its
structure as a representation of Sp(6, F2) is as given in Table 1.

Also, recall from Sect. 2.4 that Q[2] is minimally pure (both in the mixed Hodge
theory and étale senses).

123



Arithmetic and topology of classical structures... Page 19 of 23 117

Recall that the generating series of the Betti numbers of a topological space X is
called the Poincaré series of X , i.e.

PX (t) =
∑

i�0

dim(Hi (X)) t i .

If PX (t) is a polynomial, it is called the Poincaré polynomial of X .

Theorem 4.2 The Poincaré polynomials of the moduli spaces introduced in Sect. 3 are
as follows:

Moduli space Poincaré polynomial

Qbtg 1 + t5 + 2t6

QCO 1 + t + t5 + 4t6

QAH 1 + t + t3 + 4t4 + 6t5 + 6t6

QSC 1 + t + 2t5 + 5t6

QGS 1 + t + 2t5 + 11t6

Qsyz 1 + t + t4 + 7t5 + 13t6

Qazy 1 + t + t3 + 3t4 + 8t5 + 9t6

Qenn 1 + 3t3 + 11t4 + 13t5 + 11t6

QOS 1 + 2t5 + 7t6

For each of the above spaces and for each i , the cohomology group Hi is a pure
Hodge structure of type (i, i).

Proof We apply Proposition 2.8 (or Proposition 2.9 in the étale case) to Theorem 4.1
to see that in each case we just need to find the invariant part of Table 1 with respect
to the relevant stabilizer subgroup.

Let str be one of the above structures, let Qstr be the corresponding moduli space
and letG ⊂ Sp(2 g, F2) be the corresponding stabilizer subgroup. The characterχG of
Sp(2g, F2) corresponding to G is the character of IndSp(2g,F2)

G Triv, the induced repre-
sentation from the trivial representation of G to Sp(2g, F2). By Frobenius reciprocity
(see e.g. [28, Corollary 3.20]), we obtain the G-invariants of Hi (Q[2]) by taking the
inner product (in the sense of character theory) of χG and the character corresponding
to Hi (Q[2]).

The characters of Hi (Q[2]) are given in Table 1 and the characters for the stabilizer
subgroups G are given in the table below. Most of these characters can be found
in [15, p. 46]. The only exception is the character corresponding to QAH (the only
stabilizer subgroup which is not maximal in Sp(2g, F2)). However, we can compute
the character corresponding to S7 quite easily (but tediously) in a number of ways—
most straightforward is perhaps to use an explicit embedding of S7 into Sp(6, F2), see
for instance [7, p. 60]. 
�
Remark 4.3 The cohomology of Qbtg is known since before, see [37, Corollary 4.5]
and [46, Theorem 1.1]. See also [26] for some computations and constructions related
to QCO.
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Moduli space Character

Qbtg φ1a + φ27a
QCO φ1a + φ35b
QAH φ1a + φ27a + φ35b + φ105b + φ120a
QSC φ1a + φ27a + φ35b
QGS φ1a + φ15a + φ35b + φ84a
Qsyz φ1a + φ27a + φ35b + φ84a + φ168a
Qazy φ1a + φ27a + φ35b + φ105b + φ168a
Qenn φ1a + φ70a + φ84a + φ105b + φ280a + φ420a
QOS φ1a + φ35a + φ84a

Remark 4.4 We can also compute the cohomology of Qbtg in the following way. The
cohomology of the moduli space Qbtg[2] of plane quartics with a marked bitangent
line and level two structure is given in Table 2 as a representation of Sp(6, F2). The
cohomology of the quotient by Sp(6, F2), i.e. the cohomology of Qbtg, can be read
off as the invariant part, i.e. the part given by the trivial representation. This can be
read off in column 1 of Table 2.

Remark 4.5 We can also compute the cohomology of QAH in the following way. The
stabilizer G of an Aronhold heptad is isomorphic to the symmetric group S7. The
cohomology of Q[2] was computed as a representation of G in Sp(6, F2) in [6] (see
also [7] and [9]). We reproduce the result in Table 4. We use the notation sλ for the
irreducible representation of S7 corresponding to the partition λ of 7. In particular, s7
denotes the trivial representation of S7.We obtain the result by reading off the invariant
part, i.e. the column corresponding to s7.

Using the Grothendieck–Lefschetz trace formula, Theorem 4.2 and Corollary 2.6
gives the following corollary (by simply making the substitution t = −q in Theo-
rem 4.2).

Corollary 4.6 Let q be a power of an odd prime number and let Fq be a finite field with
q elements. The number of points over Fq of the moduli spaces introduced in Sect. 3
are as follows:

Moduli space Point count

Qbtg q6 − q + 2
QCO q6 − q5 − q + 4
QAH q6 − q5 − q3 + 4q2 − 6q + 6
QSC q6 − q5 − 2q + 5
QGS q6 − q5 − 2q + 11
Qsyz q6 − q5 + q2 − 7q + 13
Qazy q6 − q5 − q3 + 3q2 − 8q + 9
Qenn q6 − 3q3 + 11q2 − 13q + 11
QOS q6 − 2q + 7
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Table 4 The cohomology of Q[2] as a representation of S7 (see [6, 7, 9])

s7 s6,1 s5,2 s5,12 s4,3 s4,2,1 s4,13 s32,1 s3,22 s3,2,12

H0 1 · · · · · · · · ·
H1 1 1 1 · 1 · · · · ·
H2 · 3 4 4 3 5 1 3 1 1

H3 1 8 14 18 14 30 16 16 12 18

H4 4 20 44 47 44 99 56 56 54 83

H5 6 33 76 76 72 178 97 104 105 169

H6 6 23 51 54 54 127 74 76 77 126

s3,14 s23,1 s22,13 s2,15 s17

H0 · · · · ·
H1 · · · · ·
H2 · · · · ·
H3 4 6 3 · ·
H4 32 31 25 6 1

H5 71 65 64 26 3

H6 54 54 50 22 5
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