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Abstract
Semiholomorphic polynomials are functions f : C2 → C that can be written as poly-
nomials in complex variables u, v and the complex conjugate v. The origin is a weakly
isolated singularity of a polynomial map if it is locally the only critical point on the
variety. In this case the intersection of the variety and a sufficiently small 3-sphere
produces a link whose link type is a topological invariant of the singularity. We prove
the semiholomorphic analogue of Akbulut’s and King’s All knots are algebraic, that
is, every link type in the 3-sphere arises as the link of a weakly isolated singularity of
a semiholomorphic polynomial. Our proof is constructive, which allows us to obtain
an upper bound on the polynomial degree of the constructed functions.

Keywords Semiholomorphic polynomial · Weakly isolated singularity · Algebraic
link · Trigonometric braid parametrisation

Mathematics Subject Classification 57K10 · 14P25

1 Introduction

In [1],Akbulut andKingproved that “All knots are algebraic”. Since thewordalgebraic
carries several different meanings, their title could cause confusion. Besides links that
are built from rational tangles as studied by Conway [10] the term “algebraic link” is
nowadays usually reserved for links of isolated singularities of complex hypersurfaces.
These are known to be unions of certain iterated cables of torus links. So clearly not all
knots are algebraic in this sense. If the word “algebraic” is interpreted as “an algebraic
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set”, then Akbulut’s and King’s title is a true statement, but also a classical and well-
known result in algebraic geometry, see for example the Nash–Tognoli theorem [5].

The correct interpretation ofAkbulut’s andKing’s “algebraic knots” lies somewhere
between the notion of the link of an isolated singularity and an algebraic set. Consider
a real polynomial map f : R4 → R

2. A critical point of f is a point p ∈ R
4, where

the real Jacobian matrix D f (p) of f does not have full rank. We say that the origin
O ∈ R

4 is a weakly isolated singularity of f , if f (O) = 0, D f (O) = 0 (i.e., the
2×4-matrix with zero entries) and there is some neighbourhood U of the origin such
that U\{O} ∩ f −1(0) contains no critical points of f . Hence f is allowed to have a
line of critical points passing through the origin, but the origin should be an isolated
intersection point of f −1(0) and the critical set.

Every weakly isolated singularity can be associated with a link, since the link type
of the intersection of f −1(0) and the 3-sphere S3

ρ of radius ρ does not depend on the
sufficiently small radius ρ > 0. We call L f = f −1(0)∩ S3

ρ the link of the singularity.
Akbulut and King prove that every link in the 3-sphere arises as the link of a weakly

isolated singularity of a real polynomial map f : R4→ R
2. Thus their interpretation of

the term “algebraic” does involve singularities, but of real polynomial maps instead of
complex ones, and their definition of an isolated singularity is (as the name suggests)
so weak that there is no restriction in the type of links that can be obtained this way.

Note that by composing an inverse stereographic projection R
3 → S3

ρ with f and
clearing the denominator we obtain a real polynomial map on R

3 whose variety is
isotopic to the link of the singularity L f of f , so that Akbulut’s and King’s proof also
establishes L f as an algebraic set in R3.

In [6], we discuss a construction of weakly isolated singularities for certain links.
It produces functions f : C2 → C that can be written as polynomials in complex
variables u, v and the complex conjugate v. Hence they are holomorphic with respect
to one complex variable, but not necessarily with respect to the other. We call such
functions semiholomorphic. They form an interesting family of mixed polynomials
[15], lying between the complex and the real setting. However, the construction in
[6] only works for links that satisfy certain symmetry constraints, such as being the
closure of a 2-periodic braid. This is necessary in order to obtain polynomials with
the desired properties rather than more general real analytic maps.

In this paper we offer a constructive proof of Akbulut’s and King’s result, an algo-
rithm that takes a braid word as input and produces a polynomial with a weakly
isolated singularity, whose link is ambient isotopic to the closure of the given braid.
Furthermore, all of the constructed polynomials are semiholomorphic.

Theorem 1.1 Algorithm 1 (outlined in Sect. 3) constructs for any given braid B on s
strands a semiholomorphic polynomial f : C2→ C with degu( f ) = s, with a weakly
isolated singularity at the origin and L f ambient isotopic to the closure of B.

The algorithm is based on trigonometric interpolation, which allows us to prove
upper bounds on the polynomial degrees of the constructed functions.
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Theorem 1.2 Let B be a braid with s strands, � crossings and let C denote the set of
components of its closure, which by assumption is not the unknot. Let sC denote the
number of strands of the component C ∈ C. Then the degree of the polynomial f that
Algorithm 1 constructs from the input B is at most

deg( f ) � s�(2 + s) + 1 +
∑

C∈C
s2C�.

Corollary 1.3 If the closure of B is a non-trivial knot, the degree of the polynomial f
constructed by Algorithm 1 is bounded by

deg( f ) � 2s�(s + 1) + 1.

We would also like to point out that there is a stronger notion of isolation of
singularities of real polynomial maps. We say that the origin is an isolated singularity
if f (O) = 0, D f (O) = 0 andU\{O} contains no critical points of f . Typically the set
of critical points of f is 1-dimensional, so that polynomials with isolated singularities
are very rare. The links that arise from isolated singularities, the real algebraic links,
have not been classified yet and are conjectured to be equal to the set of fibered links [4].
Some constructions of isolated singularities have been put forward to make progress
on this conjecture [6, 13, 16], but the family of links that are known to be real algebraic
is still comparatively small. A construction similar to Algorithm 1, which produces
isolated singularities for large families of fibered links will be the subject of a future
paper [7].

Holomorphic polynomials have a weakly isolated singularity if and only if they
have an isolated singularity. Therefore, the construction can only result in a holo-
morphic function if the link in question is a (complex) algebraic link. In particular,
the polynomials for quasipositive links are in general not holomorphic, even though
the links are transverse C-links [9, 18]. In general, we should not expect the con-
structed polynomials to be holomorphic even if the corresponding link is complex
algebraic.

Our algorithm can be interpreted as a deformation of a Newton degenerate mixed
function in the sense of [3] or [15]. Our results can thus be viewed in the broader
context of the question: How do deformations of real polynomial mappings affect the
topology of their zeros close to singular points? Some work has been done on this
question regarding so-called inner Newton non-degenerate mixed functions [3] and
complex polynomial mappings [11, 12, 19], but the problem is still wide open in the
general setting.

The remainder of this paper is structured as follows. Section2 reviews some useful
background and introduces notation and conventions. In Sect. 3 we give an overview
of the algorithm that constructs weakly isolated singularities for any given link. The
individual steps of the algorithm are discussed in Sect. 4, where we illustrate that all
the steps can indeed be performed algorithmically. We prove our main result Theo-
rem 1.1 in Sect. 5 by showing that the described algorithm constructs weakly isolated
singularities for any given link. The bounds on the polynomial degrees are provided
in Sect. 6.
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2 Background

Semiholomorphic polynomials are a special type of mixed polynomials as introduced
by Oka [15]. In the dimensions that we are interested in, the set of mixed polynomials
f : C2 → C consists of polynomials in two complex variables u and v, and their
complex conjugates, u and v, so that f takes the form

f (u, v) =
∑

i, j,k,�

ci, j,k,� ui u jvk v�,

with all but finitely many ci, j,k,� ∈ C equal to zero. Note that every polynomial
map from R

4 to R
2 can be written as a mixed polynomial and vice versa. A mixed

polynomial is semiholomorphic if and only if ci, j,k,� �= 0 implies j = 0. Thus a
semiholomorphic polynomial is holomorphic with respect to the variable u, but not
necessarily with respect to the variable v.

Semiholomorphic polynomials lend themselves to constructions like the one dis-
cussed in this paper for two reasons. First, the holomorphicity in one variable grants
us a certain rigidity and control over the behaviour of zeros that is usually associated
with complex functions. For instance, we know that for any fixed value of v = v∗ the
number of zeros of f ( · , v∗) is equal to its degree. The second advantage of working
with semiholomorphic polynomials is that it is comparatively easy to prove that a point
is a regular point, i.e., that the real Jacobian matrix has full rank, and consequently to
prove that a singularity is weakly isolated. It suffices to show that the origin O is the
only zero of f where ∂ f /∂u vanishes.

As for complex polynomials there is the notion of a Newton polyhedron for mixed
polynomials [15]. For every weight vector P = (p1, p2) ∈ N

2 we can define the
radially weighted degree of a mixed monomial M = ci, j,k,� ui u jvk v� with respect to
P as d(P; M) ..= p1(i + j) + p2(k + �). A mixed polynomial f is radially weighted
homogeneous of degree d(P; f ) if there is a weight vector P such that all non-zero
monomials M in f have the same radially weighted degree d(P; M) = d(P; f ) with
respect to P .

Our algorithm is based on braids and the fact that every link is the closure of
some braid [2]. A geometric braid on s strands is a collection of s disjoint curves
(u j (t), t) ⊂ C×[0, 2π ], j = 1, 2, . . . , s, parametrized by their height coordinate t
going from 0 to 2π . The functions u j : [0, 2π ] → C are assumed to be smooth and
to satisfy that for every j ∈ {1, 2, . . . , s} there is a unique i ∈ {1, 2, . . . , s} such that
u j (2π) = ui (0).

Identifying the (t = 0)- and the (t = 2π)-plane results in a link inC× S1, the closed
braid. Embedding the open solid torus C× S1 as an untwisted neighbourhood of the
unknot in the 3-sphere S3 defines a link in S3, the closure of the braid, whose link type
is well defined.

Projecting curves via the map (u, t) �→ (Re(u), t) into R×[0, 2π ] results in s
intersecting curves. A braid diagram is such a projection where every intersection is
transverse and involves exactly two strands. We keep track of the information about
the Im(u)-coordinate of these two strands at the crossing by deleting the strand with
the larger Im(u)-coordinate in a neighbourhood of the crossing. The strand with the
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a b

Fig. 1 (a) A braid diagram. (b) The corresponding singular braid

smaller Im(u)-coordinate is thus the overcrossing strand. This is an arbitrary choice
and in previous papers we have not been consistent with our choices (although consis-
tent in each individual paper). Changing this convention only means that several signs
throughout this paper need to be reversed. Obviously, the results are not affected by
this.

If two strands cross at t = tk and for all small ε > 0 the overcrossing strand has
smaller Re(u)-coordinate for all t ∈ (tk − ε, tk), this crossing is a positive crossing.
Non-positive crossings are negative.

The braid isotopy classes of braids on s strands form a group generated by the Artin
generators σ j , j = 1, 2, . . . , s − 1, where σ j denotes a positive crossing between the
strand with the j th smallest Re(u)-coordinate (the “ j th strand”) and the strand with
the next larger Re(u)-coordinate (the ( j + 1)th strand). The square B2 of a braid B is
thus the double repeat of its braid word, two copies of the same braid concatenated.

A braid diagram can be interpreted as a singular braid on s strands, that is, a
collection of curves that are allowed to intersect transversely in finitely many points,
whose image under the projection map (u, t) �→ (Re(u), t) into R×[0, 2π ] results
in a braid diagram (see Fig. 1). The singular braid monoid is generated by the Artin
generators, their inverses σ−1

j and τ j , j = 1, 2, . . . , s − 1, which correspond to
intersection points between the j th strand and the ( j + 1)th strand. Thus a singular
braid in R×[0, 2π ] (i.e., it is a braid diagram) is represented by a word that only
consists of τ j ’s.

The projection map that associates to every geometric braid a braid diagram can
thus be understood as a function from the set of braid words to the set of singular braid
words mapping a generator σε

j , ε ∈ {±1}, to τ j , regardless of the sign ε.
For some given geometric braid its image under the projection map (u, t) �→

(Re(u), t) into R×[0, 2π ] might not be a braid diagram. We call a collection of
curves (u j (t), t), j = 1, 2, . . . , s, in C×[0, 2π ] a generalized singular braid if for
every j = 1, 2, . . . , s, there is a unique i ∈ {1, 2 . . . , s} with u j (0) = ui (2π) and all
intersection points between the different strands (u j (t), t) are isolated points. Hence
the intersectionpoints are allowed to be tangential and to involvemore than two strands.
The condition that the intersections are isolated is always satisfied if the strands are
not identical and parametrized by real-analytic functions.

We say that a singular crossing of a generalized singular braid is generic if it
is a transverse intersection between exactly two strands. Otherwise we call it non-
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generic. Non-generic crossings thus consist ofmore than two strands or are a tangential
intersection of at least two strands. We also say that the functions u j that parametrize
a generalized singular braid are non-generic if it has non-generic singular crossings.

3 An outline of the algorithm

In [8] we describe an algorithm that finds for any given braid a semiholomorphic
polynomial f : C2 → C whose vanishing set intersects the 3-sphere of unit radius
transversely in the closure of the given braid. In [6] this construction is modified so
that it produces a semiholomorphic polynomial f with a weakly isolated singularity,
whose link is the closure of the square B2 of the given braid word B.

The first step in both of these constructions is to find (via trigonometric interpola-
tion) a parametrization of the given braid B (up to isotopy) in terms of trigonometric
polynomials. Let C denote the set of connected components of the closure of B and
let sC denote the number of strands that make up the component C ∈ C. The first
step of the algorithm in [8] finds for every C ∈ C a pair of trigonometric polynomials
FC , GC : [0, 2π ] → R such that B is parametrized by

⋃

t∈[0,2π ]

⋃

C∈C

sC⋃

j=1

(
FC

(
t + 2π j

sC

)
+ iGC

(
t + 2π j

sC

)
, t

)
⊂ C×[0, 2π ].

Note that since we use the projection (u, t) �→ (Re(u), t) to obtain braid diagrams
and braid words, the real part of the parametrized strands FC ((t + 2π j)/sC ) deter-
mines the crossing pattern (i.e., the braid word without the signs of the crossings) and
the imaginary part GC ((t + 2π j)/sC ) determines the signs of the crossings.

In particular, the first step of the algorithm in [8] yields via trigonometric inter-
polation a set of trigonometric polynomials FC such that the corresponding curves
(FC ((t + 2π j)/sC ), t) parametrize a generalized singular braid.

As in [8] wewould like to point out that the braid diagram for the braid parametrized
by the FC ’s and the GC ’s is not necessarily identical to the braid diagram of B that we
started with. However, the braids are guaranteed to be braid isotopic. The functions
GC are also found via trigonometric interpolation.

Once we have found a parametrization of a braid that is isotopic to B in terms of
FC and GC , we define g : C× S1→ C via

g(u, ei t ) =
∏

C∈C

sC∏

j=1

(
u − FC

(
2t + 2π j

sC

)
− iGC

(
2t + 2π j

sC

))
.

Note the factor 2 in front of the variable t in the expression above. It means that
as t varies between 0 and 2π we are traversing the braid B twice. In other words, the
vanishing set of g is (up to isotopy) the closed braid B2.

Expanding the product above results in a polynomial expression for g with respect to
the complex variable u, as well as with respect to ei2t and e−i2t .We define pk : C2→ C

by
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pk(u, rei t ) = r2ks g

(
u

r2k
, ei t

)
,

where k is a sufficiently large integer. Note that by writing v = rei t this becomes a
mixed polynomial pk(u, v, v) = (vv)ks g(u/(vv)k, v/

√
vv) if 2ks is greater than the

degree of g with respect to ei t and e−i t . Note that all exponents of ei t and e−i t in g
are even, so that the term

√
vv always comes with an even exponent.

The constructed polynomials pk are semiholomorphic and radially weighted homo-
geneous with respect to P = (2k, 1) with degree d(P; f ) = 2ks.

Since all roots of g( · , ei t ) are simple, the singularity at the origin is weakly isolated.
The link of the singularity is the closure of B2. An explicit isotopy between p−1

k (0)∩S3
ρ

and a projection of p−1
k (0)∩ (C×ρS1) to S3

ρ , which is known to be the closure of B2,
can be constructed as in [8].

Algorithm 1 below, which constructs a weakly isolated singularity for any given
link, is based on the same ideas. However, it uses parametrizations of singular braids
instead of classical braids. Figure2 shows the parametrized braids and vanishing sets
of functions at various steps throughout the algorithm.

We start with a braid diagram of a braid B that closes to the link that we want to
construct, such as shown in Fig. 1 (a). Via the same trigonometric interpolation pro-
cedure as in [8] we obtain trigonometric polynomials FC that parametrize curves that
form a generalized singular braid, see Fig. 2 (a). The functions FC are not necessarily
generic. Via small modifications we can make the FC ’s generic and obtain a singular
braid Bsing (Fig. 2 (b)) that has the property that there exists a choice of signs for each
of its singular crossings that turns Bsing into a classical braid that is isotopic to B, see
Fig. 2 (c).

As in [8] we define a function pk . It is a radially weighted homogeneous mixed
polynomial with a singularity at the origin. The intersection p−1

k (0)∩S3
ρ is the singular

braid B2
sing for all ρ > 0, shown in Fig. 2 (d). In particular, it does not have a weakly

isolated singularity, since the singular crossings correspond to lines of critical points
of pk through the origin. However, we can add a term rm A(ei t ), where v = rei t and
A is a finite Fourier series, that makes the singularity weakly isolated. This term has
to be constructed in such a way that all singular crossings of B2

sing are resolved in such
a way that the link of the singularity is the closure of a braid isotopic to B, which is
displayed in Fig. 2 (e).

Algorithm 1 Construction of weakly isolated singularities
Step 1: From the given braidword B find the trigonometric polynomials FC via trigonometric interpolation

as in [8].
Step 2: Make FC generic. Call the resulting functions F̃C .

Step 3: Define g(u, ei t ) = ∏
C∈C

∏sC
j=1

(
u − F̃C

( 2t+2π j
sC

))
.

Step 4: Define pk (u, rei t ) = r2ks g
( u

r2k , ei t
)
with 2ks greater than the degree of g with respect to ei t and

e−i t .
Step 5: Solve the trigonometric interpolation problem (∗) in Sect. 4.2 for A : S1→ C.
Step 6: Define f (u, rei t ) = pk (u, rei t ) + rm A(ei t ), where m is odd and larger than the degree of A with

respect to ei t and e−i t and larger than 2ks.
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a b c

d e

Fig. 2 (a) The generalized singular braid parametrized by the FC ’s is not necessarily a singular braid. (b)
We can make the FC ’s generic. The resulting functions F̃C parametrize a singular braid Bsing. (c) The
braid diagram of a braid B′ that is obtained from an appropriate choice of crossing signs for the singular
crossings in Bsing. The braid B′ is braid isotopic to B in Fig. 1 (a). (d) B2

sing, the vanishing set of g. (e) A

resolution of the singular crossings of B2
sing that results in B′, whose closure is the link of the singularity

of f

The idea behind Algorithm 1 can be understood as a natural consequence of [3],
where we introduce certain non-degeneracy conditions of mixed functions and study
links of their (weakly) isolated singularities. We show that for such non-degenerate
mixed polynomials adding terms above the boundary of the Newton polygon does not
change the topology of the link. This seems to suggest that not all links can be obtained
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as link of weakly isolated singularities of non-degenerate mixed polynomials (and it is
an interesting question for which links this is possible). Algorithm 1 thus constructs a
degenerate polynomial pk and adds an appropriate term above the Newton boundary.

In the following sections we explain the individual steps. In particular, we show that
each of the steps can be performed algorithmically. Then we show that the algorithm
indeed constructs weakly isolated singularities with the closure of B as the link of the
singularity.

4 The individual steps

Step1 is identical to the correspondingprocedure in [8].Note however that the resulting
trigonometric polynomials FC are not necessarily generic. This is not a problem for
the construction in [8]. For the construction in Algorithm 1 however, we need generic
parametrizations. This is done in Step 2, which requires a more detailed explanation,
given in Sect. 4.1. Step 3 and 4 are then simply definitions of functions. Step 5 is
arguably the most important part of this algorithm. It will be discussed in detail in
Sect. 4.2. Step 6 is again simply the definition of a function f . Thus if Step 2 and Step
5 can be performed algorithmically, Algorithm 1 is indeed an algorithm.

4.1 Generic parametrizations of singular braids (Step 2)

The set of trigonometric polynomials FC that result in generic parametrizations is
dense in the set of trigonometric polynomials. So we should expect that the trigono-
metric polynomials FC foundvia themethod from [8] almost always have this property.
However, there is no guarantee. If the FC ’s are not generic, we have to make some
adjustments to make them generic. Again we would like to emphasize that in practice,
this is usually not necessary.

Alternative to the method from [8] trigonometric approximation can be used in
Step 1 to find a trigonometric parametrisation of the braid. If the approximated orig-
inal braid parametrisation is generic, i.e., the corresponding projection gives a braid
diagram, then a sufficiently close approximation is generic, too. Therefore, Step 2 of
the algorithm is not needed if trigonometric approximation is used in Step 1. How-
ever, in contrast to the method from [8], trigonometric approximation does not allow
us to give bounds on the degrees of the trigonometric polynomials that parametrize
the strands.

Let FC , C ∈ C, be a given set of trigonometric polynomials with given values sC

and a, b ∈ [0, 2π ], a < b, away from the values of t for which there are intersections
between the different FC ((t + 2π j)/sC ).We call the permutation of the s = ∑

C∈C sC

curves parametrized by
⋃

t∈[a,b]

⋃

C∈C

sC⋃

j=1

(
FC

(
t + 2π j

sC

)
, t

)

the permutation associated to the FC ’s in the interval [a, b]. It is thus an element of
the symmetric group on s elements. Note that this is possible, because the FC ’s are
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real analytic. This is why even at tangential intersections of strands, we can uniquely
determine which incoming arc corresponds to which outgoing arc.

Lemma 4.1 ([8]) Let FC , C ∈ C, be trigonometric polynomials and B = ∏�
j=1 σ

ε j
i j

be
a braid, whose closure has |C| components. Then there exist trigonometric polynomials
GC , C ∈ C, such that

⋃

t∈[0,2π ]

⋃

C∈C

sC⋃

j=1

(
FC

(
t + 2π j

sC

)
+ iGC

(
t + 2π j

sC

)
, t

)

parametrizes a braid that is braid isotopic to B if there exist values t j ∈ [0, 2π ],
j = 1, 2, . . . , � + 1, t1 = 0, t�+1 = 2π , t j < t j+1, such that the permutation
associated to the FC ’s in the interval [t j , t j+1] is the transposition (i j ↔ i j + 1).

The algorithm in [8] finds trigonometric polynomials FC such that the condition in
Lemma 4.1 is satisfied. We would like to make the FC ’s generic, while maintaining
this property.

The FC ’s being non-generic could mean that there are tangential intersections
between strands of the corresponding generalized singular braid Bsing or that there
are more than two strands involved in a singular crossing of Bsing.

Having explicit expressions for the functions FC , we can find all values t = t ′k ,
k = 1, 2, . . . , M , for which there are non-generic crossings. The fact that there are
only finitely many of these follows from the real analyticity of the functions. It will
simplify our notation if we adopt the convention of updating our variables throughout
the modifications outlined below. That is to say, when we change the function FC for
example by adding a term, the resulting function will again be called FC . The values
t ′k , k = 1, 2, . . . , M , are again defined as the values of t at which the new collection
of functions FC has non-generic crossings. Note that their number M can change
throughout our modification, and will eventually be 0.

A tangential intersection between the strands (C, j) and (C ′, j ′) at t = t ′k corre-
sponds to a non-simple root of FC ((t + 2π j)/sC ) − FC ′((t + 2π j ′)/sC ′) at t = t ′k
and a singular crossing between more than two strands (Ci , ji ), i = 1, 2, . . . , m′, at
t = tk corresponds to a common root of FCi((t + 2π ji )/sCi ) − FCi ′ ((t + 2π ji ′)/sCi ′ )
at t = t ′k . We can thus check numerically if any given collection of trigonometric
parametrizations FC is generic or not. Likewise, we can check numerically if the FC ’s
satisfy the condition from Lemma 4.1 for the same values t j , j = 1, 2, . . ., � + 1, as
the original functions FC .

We can remove the tangential intersection points between two strands of different
components C and C ′ by adding small constants εC,1 to each FC . This is displayed
in Fig. 3 (a). This requires εC,1 �= εC ′,1 if C �= C ′. Furthermore, we can choose εC,1
sufficiently small so that the resulting trigonometric polynomials FC still satisfy the
property from Lemma 4.1 for the same values t j , j = 1, 2, . . . , � + 1. Furthermore,
the addition of εC,1 should not introduce any new non-generic crossings. This can
be achieved by choosing the values for the different εC,1’s successively, i.e., for an
arbitrary ordering of the componentsC1, C2, . . . , C|C| wefirst choose εC1,1 such that it
removes tangential intersection points involving strands from C1 without introducing

123



All links are semiholomorphic Page 11 of 20 85

a b

c d

Fig. 3 The elimination of non-generic crossings. (a)A tangential intersection between strands fromdifferent
components gets eliminated. (b)An intersection between more than two strands from different components
gets eliminated. (c)A tangential intersection between strands from the same component gets eliminated. (d)
An intersection between more than two strands, all of which are from the same component, is eliminated

new ones, then we choose εC2,1 and so on. We also add a small constant to every FC

that is constant. Such components only consist of a single vertical strand. Adding a
small constant guarantees that none of them are involved in any non-generic crossings.

Note that sufficient values for εC,1 canbe found explicitly knowing the values of t for
which we have generic or non-generic crossings as well as maxima and minima of the
functions FC ((t + 2π j)/sC ) − FC ′((t + 2π j ′)/sC ′), C, C ′ ∈ C, j ∈ {1, 2, . . . , sC },
j ′ ∈ {1, 2, . . . , sC ′ }. Alternatively, since we can check numerically if the FC ’s are
generic or not, we can take εC,1 to be an element of a non-zero sequence converging
to 0 and if the resulting FC is non-generic, we redefine εC,1 to be the next element in
that sequence.

By taking FC (t + εC,2) instead of FC (t) as the trigonometric polynomial for the
componentC with appropriately chosen small εC,2, we obtain a parametrizationwhere
every singular crossing that involves more than two strands only involves strands from
the same component. This is achieved by choosing εC,2 �= εC ′,2 if C �= C ′ and each
εC,2 sufficiently small. We do not introduce any new non-generic crossing in doing
this, since the intersection is transverse, the curves are real analytic and the intersection
does not involve any constant strands. The effect is shown in Fig. 3 (b). How small we
have to choose each εC,2 can be determined from the values of t for which there are
crossings. Note in particular that the εC,2’s can be chosen such that the condition from
Lemma 4.1 is still satisfied for the same values t j , j = 1, 2, . . . , �+1, as before. Note
that we find the values of εC,2 successively. We choose a value for one component C
and only then decide on the value for the next component C ′ and so on.

Thus the only remaining non-generic crossings are between strands of the same
component. Suppose we have a tangential intersection between (C, j) and (C, j ′)
at t = t ′k . Then we add ε cos(t − (t ′k + 2π j)/sC ) to FC , where as usual ε is small
and its sign is determined by the sign of FC ((t + 2π j)/sC ) − FC ((t + 2π j ′)/sC )

in a neighbourhood of t = t ′k . By adding ε cos(t − (tk + 2π j)/sC ) we know that
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FC ((t + 2π j)/sC ) − FC ((t + 2π j ′)/sC ) is non-zero in a neighbourhood of t = t ′k
(independent of ε) for all ε of the correct sign and sufficiently small modulus. We have
thus reduced the number of tangential intersections by one, see Fig. 3 (c). Proceeding
like this we eliminate all tangential intersections between strands. This includes tan-
gential intersections that are part of non-generic crossings with more than two strands.
Again we can choose ε sufficiently small, so that Lemma 4.1 is still satisfied for t j ,
j = 1, 2, . . . , � + 1.
Thus the only remaining non-generic crossings are crossings that involve more than

two strands and all of them are from the same component. Suppose we have such a
crossing at t = t ′k and two of the strands involved in that crossing are (C, j) and
(C, j ′). Then we add ε′cos(t − ϕ), where ϕ = t ′k/sC − π + π( j ′ − j)/sC . This
value is chosen so that cos((t ′k + 2π j)/sC − ϕ) = cos((t ′k + 2π j ′)/sC − ϕ), while
cos((t ′k + 2π j)/sC − ϕ) �= cos((t ′k + 2π j ′′)/sC − ϕ) for all j ′′ /∈ { j, j ′}. Thus after
adding ε′cos(t − ϕ) we still have a crossing at t = t ′k between (C, j) and (C, j ′),
but no other strand is involved in that crossing. Hence it is a generic crossing. The
other strands that used to be part of that crossing have been moved aside and could
form other non-generic crossings with more than two strands. Therefore, we have not
necessarily reduced the number of non-generic crossings in this step. However, we
have reduced the sum of the number of strands involved in a non-generic crossing
c, with the sum going over all non-generic crossings c. Thus repeating this step we
can eliminate all non-generic crossings and obtain a generic parametrization FC . This
elimination process is illustrated in Fig. 3 (d).

It is more difficult to give an explicit formula for a sufficient value of ε′. Since we
are not particularly concerned with achieving an optimal run-time for our algorithm,
we may again resort to the approach of using a non-zero sequence converging to 0 and
checking at each value of ε′ if the resulting parametrisation is generic and satisfies
Lemma 4.1.

Let now F̃C , C ∈ C, denote the generic trigonometric polynomials that we obtain
from this procedure and let Bsing = ∏�′

j=1 τi j be the singular braid that is parametrized

by the F̃C ’s.

Lemma 4.2 There is a choice of signs ε j ∈ {±1} such that the input braid B is braid

isotopic to
∏�′

j=1 σ
ε j
i j

.

Proof We have selected the values of the different parameters εC,1, εC,2, ε and ε′ so
that the F̃C ’s still satisfy the condition from Lemma 4.1 for the same values t j , j =
1, 2, . . . , �+1, as the original FC ’s. Therefore byLemma 4.1, there exist trigonometric
polynomials G̃C , C ∈ C, such that F̃C + i G̃C parametrizes a braid B ′ that is braid
isotopic to B. Since the F̃C ’s are generic, this is equivalent to Bsing being obtained
from a braid diagram of B ′ by forgetting information about signs of crossings, with
B ′ a braid that is isotopic to B. Thus the value of ε j is the sign of the corresponding
crossing in the braid B ′. �

Note that throughout Step 2 we only add terms of degree 0 or 1 with respect to ei t

and e−i t and the degree 1 terms are only necessary for components with more than one
strand. Therefore, the degrees of the trigonometric polynomials FC are not affected
by the procedure above and the degree of F̃C is equal to the degree of FC .
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4.2 Trigonometric interpolation (Step 5)

For a given generic collection of trigonometric polynomials F̃C the roots of

g(u, ei t ) =
∏

C∈C

sC∏

j=1

(
u − F̃C

(
2t + 2π j

sC

))
(1)

form a singular braid B2
sing that is the square of the singular braid Bsing. Both of these

singular braids have s = ∑
C∈C sC strands.

Let tk , k = 1, 2, . . . , �′, denote the values of t ∈ [0, 2π ] for which there are sin-
gular crossings in Bsing. By a shift of the variable t , we can always guarantee that
tk �= π for all k. Denote by (C1(k), j1(k)) and (C2(k), j2(k)) the two strands that
form the crossing at t = tk . Which of these strands carries which label is not impor-
tant, but by convention we choose the labels so that F̃C1(k)((t + 2π j1(k))/sC1(k)) <

F̃C2(k)((t + 2π j2(k))/sC2(k)) for all t ∈ (tk − ε, tk) for some small ε > 0.
Note that g from equation (1) has only real roots and is therefore a real polynomial.

Since all roots of g( · , ei t ) are simple when t �= tk , k = 1, 2, . . . , �′, there is a critical
point of g between each neighbouring pair of roots of g, i.e., if u1, u2 ∈ R are roots of
g( · , ei t ) and there is no root of g( · , ei t ) in the open interval (u1, u2), there is a unique
critical point c ∈ (u1, u2). We call sign(g(c, ei t )) the sign of the critical point c. As
t varies, the critical points of g( · , ei t ) move on the real line, but they remain distinct
and maintain their sign for all t �= tk , k = 1, 2, . . . , �′.

At t = tk two roots and their intermediate critical point c collide. We say that c is
the critical point associated with the crossing.

Step 5 of Algorithm 1 is to solve the following trigonometric interpolation problem
(∗): The set of data points takes the form (tk, yk, zk), k = 1, 2, . . . , �′, where tk ,
k = 1, 2, . . . , �′, are as above the values of t for which there are crossings of Bsing.
The value yk is such that yk/cos(tk/2) is a non-zero real number that has the same
sign as the critical point associated with the crossing at t = tk .

We know from Lemma 4.2 that for every crossing of Bsing = ∏�′
k=1 τ jk there is a

choice of sign εk ∈ {±1} such that B ′ = ∏�′
k=1 σ

εk
jk

is braid isotopic to B and thus
closes to the desired link. The value of zk is set to εk .

The Interpolation Problem (∗) Find a trigonometric polynomial Ã : S1 → C such

that Ã(ei tk ) = yk/cos(tk/2) and
∂ arg( Ã)

∂t (ei tk ) = zk for all k ∈ {1, 2, . . . , �′}.
Since

∂ arg( Ã)

∂t
(eitk ) =

(
Re( Ã)∂ Im( Ã)/∂t − Im( Ã)∂Re( Ã)/∂t

| Ã|2
)∣∣∣∣

t=tk

, (2)

the interpolation problem above can be written as an interpolation where the values of
the data points correspond to values of the desired function Ã and its first derivative.
Such an interpolation always has a solution that can be found via explicit formulas
such as the one in [14]. The degree of the solution is equal to �′.
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We then define A(ei t ) ..= Ã(ei2t ) cos(t), which satisfies A(ei tk/2) = yk and
∂ arg(A)

∂t (ei tk/2) has the same sign as εk for all k ∈ {1, 2, . . . , �′}.
Since A is odd, i.e., A(ei (t+π)) = −A(ei t ), it automatically also satisfies

A(ei (tk/2+π)) = −yk and ∂ arg(A)
∂t (ei (tk/2+π)) also has the same sign as εk for all

k ∈ {1, 2, . . . , �′}.

5 Weakly isolated singularities

In this section we prove that Algorithm 1 does what it is supposed to do: It constructs
weakly isolated singularitieswith the desired link as the link of the singularity. Thereby
we establish a proof of Theorem 1.1.

We use the same notation as in the previous sections. F̃C is a generic trigono-
metric parametrization of the singular braid Bsing = ∏�′

k=1 τ jk . Let εk ∈ {±1},
k = 1, 2, . . . , �′, and let A : S1 → C be the trigonometric polynomial found via the
interpolation procedure in Step 5 of Algorithm 1. Let g, pk and f = pk + rm A(ei t )
be defined as in the description of Algorithm 1.

Lemma 5.1 For every fixed and sufficiently small r∗ > 0 the vanishing set of
f |r=r∗ : C× S1→ C is the closed braid

∏�′
k=1 σ

εk
jk

.

Proof The vanishing set of f |r=r∗ corresponds (up to an overall scaling in the u-
coordinate) to the vanishing set of g+rm−2ks∗ A, which equals (gt )

−1(−rm−2ks∗ A(ei t )).
Since gt is monic and real and its critical points are distinct for all values of t ∈

[0, 2π ], there is a diffeomorphism h : C× S1→ C× S1 that is the identity outside of
{(u, ei t ) : |u| < R} for some R > 0 and that preserves the fibers of the projection map
onto the second factor C× S1→ S1, and a disk D such that (gt (h))−1(R) ∩ D is the
union of the real line ({(u, ei t ) : Im(u) = 0} ∩ D) and s − 1 straight, “vertical” lines
orthogonal to the real line for every t ∈ [0, 2π ]. This is displayed in Fig. 4. Note that
the vertical lines intersect the real line in the critical points of gt . Since the critical
points vary with t , so do the vertical lines.

Let tk , k = 1, 2, . . . , 2�′, denote the values of t for which there are crossings of
B2
sing. Note that for k � �′ these differ from the values of tk in the previous section,

corresponding to the crossings of Bsing, by a factor of 1/2. By symmetry we have
tk+�′ = tk + π . Figure5 shows subsets of the complex plane in a neighbourhood of
a singular crossing at t = tk , and at t = tk + π . The black lines are the preimage set
(gt (h))−1(R) with the horizontal line being a segment of the real line. The red points
are the roots of gt at values t = tk − 2ε, t = tk − ε, t = tk , t = tk + ε and t = tk + 2ε.
By symmetry the corresponding roots at tk+�′ are the same. The blue points indicate
the roots of gt (h) + δA(ei t ), which are the preimage points (gt (h))−1(−δA(ei t )), for
some small δ > 0.

By construction A(ei tk ), k = 1, 2, . . . , �′, is real and has the same sign as the
critical point associated with the crossing at t = tk . Hence the two preimage points
(gtk (h))−1(−δA(ei tk )) lie on the real line on opposite sides of the vertical line for all
values of δ = rm−2ks > 0 as indicated in the lower part of Fig. 5 (c).
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Since the derivative of the argument of A is non-zero at t = tk , there is a
neighbourhood U of tk independent of δ such that t = tk is the only point in the
neighbourhood where arg(δA) is 0 or π . Thus t = tk is the only point in U , for which
the roots of gt + δA(ei t ) lie on g−1

t (R). The two roots (which are the preimage points
(gtk (h))−1(−δA(ei tk ))) lie on opposite sides of the vertical line at t = tk and cannot
cross the vertical line while t is in U .

Recall that a crossing only occurs when two strands have the same Re(u)-coordi-
nate. Since the two preimage points remain on opposite sides of the vertical line
throughout U , there is no crossing between the strands that are formed by the two
preimage points (gt (h))−1(−δA(ei t )) in a neighbourhood of the original crossing for
all sufficiently small δ > 0.

Thus all crossings at t = tk , k = 1, 2, . . . , �′, are resolved as in Fig. 6 (a), that is,
there are no more crossings in the lower half of the braid.

By symmetry A(ei tk+�′ ) = A(ei (tk+π)), k = 1, 2, . . . , �′, is real and has the opposite
sign as the critical point associated with the crossing at t = tk+�′ . Therefore, the two
preimage points (gt (h))−1(−δA(ei t )) both lie on the vertical line, one “above” (with
positive imaginary part) the real line and one “below” (negative imaginary part), see
the upper part of Fig. 5 (c). Furthermore, we know that the sign of ∂ arg(A)/∂t is the
sign of the desired crossing. Suppose that that sign is positive. Then the point above
the real line is moving from right to left and the point below is moving from left to
right, relative to the motion of the vertical line. That is, there is an ε > 0 such that for
all t ∈ (tk+�′ − ε, tk+�′) the point above the real line is in the upper right quadrant and
the point below is in the lower left quadrant, while for all t ∈ (tk+�′ , tk+�′ + ε) the
point above the real line is in the upper left quadrant and the point below the real line
is in the lower right quadrant.

Recall again that there is a crossing if and only if the two points have the same
Re(u)-coordinate. This means that in (tk+�′ − ε, tk+�′ + ε) there is a unique crossing,
which occurs at t = tk+�′ . By our sign convention the sign of this crossing is positive
as the point below the real line passing the point above the real line from left to right.

Fig. 4 The preimage (gt (h))−1(R) in the complex plane for a fixed value of t ∈ [0, 2π ] and the disk D
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Fig. 5 The motion of the roots of gt (in red) and of gt + rm−2ks A (in blue) in the complex plane in a
neighbourhood of singular crossings at t = tk and t = tk + π , k ∈ {1, 2, . . . , �′}. For each subfigure the
lower part shows the behaviour near t = tk and the upper part shows the behaviour near t = tk + π . (a) At
t = tk − ε and t = tk + π − ε. (b) At t = tk − ε/2 and t = tk + π − ε/2. (c) At t = tk and t = tk + π .
(d) At t = tk + ε/2 and t = tk + π + ε/2. (e) At t = tk + ε and t = tk + π + ε

Likewise, if the desired sign εk of the crossing is negative, then the point above the
real line is moving from left to right and the point below is moving from right to left.
That is, there is an ε > 0 such that for all t ∈ (tk+�′ − ε, tk+�′) the point above the real
line is in the upper left quadrant and the point below is in the lower right quadrant,
while for all t ∈ (tk+�′ , tk+�′ + ε) the point above the real line is in the upper right
quadrant and the point below the real line is in the lower left quadrant. Thus there is
a unique crossing at t = tk+�′ and it has a negative sign.

In either case we obtain a classical crossing of the required sign as in Fig. 6 (b). Note
that the ε-neighbourhood can be chosen independently of δ and thus independently of
r , so that we have the correct crossing for all small values of r . Outside of the discussed
neighbourhoods of tk , k = 1, 2, . . . , 2�′, we can guarantee that there are no crossings
when r is sufficiently small. It follows that the zeros of gt (h) + rm−2ks A(ei t ) form a
closed braid in C× S1 as t varies from 0 to 2π .
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Fig. 6 Resolution of singular crossings. (a) A singular crossing is resolved into two strands without a
crossing. (b) A singular crossing is resolved into a classical crossing with sign εk

Since the singular crossings in the first half of B2
sing at t = tk , k = 1, 2, . . . , �′, are

all resolved into strands without crossings and the singular crossings in the second
half of B2

sing at t = tk + π , k = 1, 2, . . . , �′, are resolved as desired, i.e., τ jk �→ σ
εk
jk
,

the braid formed by the roots of gt (h) + rm−2ks A(ei t ) is represented by the word∏�′
k=1 σ

εk
jk
, which by construction is braid isotopic to the braid B that we used as input.

Since h is a diffeomorphism that preserves the fibers of the projection map onto the
second factorC× S1→ S1, the roots of gt +rm−2ks A(ei t ) form a braid that is isotopic
to B as a closed braid. �

Lemma 5.2 The constructed semiholomorphic polynomial f has a weakly isolated
singularity whose link is the closure of the given braid B.

Proof At v = 0 we have that f (u, v) = us, so that the origin is the only critical point
with v = 0.

We have shown that the roots of f ||v|=r form a braid as t varies from 0 to 2π for
small values of r > 0. In particular, all roots of f ||v|=r are simple, which means that
∂ f /∂u �= 0 on f −1(0)\{O}. Thus f has a weakly isolated singularity at the origin.

We also have that f −1(0) ∩ (C×r S1) is isotopic to the closed braid B for all
sufficiently small values of r . As r goes to zero, the u-coordinates of all strands
converges to zero. As in [8] we can construct an explicit isotopy between the projection
of f −1(0) ∩ (C×r S1) to S3

r and f −1(0) ∩ S3
r for small values of r , which shows that

the closure of B is the link of the singularity. �
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6 Upper bounds on the degree

In this section we prove Theorem 1.2 and Corollary 1.3. The proof of the upper bound
on the degree of the constructed polynomials is very similar to the one of the bound
obtained in [8].

Proof of Theorem 1.2 Since FC is found via trigonometric interpolation, its degree (as
a trigonometric polynomial) is equal to �x/2�, where x is the number of data points
used in the interpolation and �y� is the floor function that maps any real number y to
the largest integer less than or equal to y. As in [8] we need sC� data points for the
interpolation for FC , so that the degree of FC is �sC�/2�. (In [8] this was erroneously
stated as �(sc� − 1)/2�.)

We can assume that � > 1, since the closure of the braid is not an unknot. As
observed in Sect. 4.1 the degree of F̃C is equal to the degree of FC . The degree of g
is

∑
C∈Cmax{sC , 2 deg(FC )} � s�. Thus k = ��/2� is a choice that guarantees that

pk is a polynomial, where �y� is the smallest integer bigger than or equal to y.
The degree of pk is then equal to 2ks � s(� + 1).
The trigonometric polynomial Ã is found via trigonometric interpolation, where

for every singular crossing of Bsing there is one data point for the value of Ã and one
data point for its derivative. The degree of Ã is then equal to �′, where �′ is the number
of singular crossings of Bsing [14]. Recall that �′ could be strictly greater than �.

Singular crossings of Bsing correspond to intersections of the curves parametrized
by F̃C , which correspond to the zeros of certain complex polynomials on the unit circle
as in [8]. It was shown in [8] that the number of singular crossings that involve two
strands from the same component C is bounded above by (sC + 1)sC�. (Following the
mistake in [8] mentioned above this bound was originally stated as (sC +1)(sC�−1).)

It is also shown in [8] that there are at most �sC sC ′ singular crossings with one
strand from the component C and the other strand from a component C ′ �= C . The
total number of singular crossings and the degree of Ã is bounded from above by

deg( Ã) �
∑

C∈C
(sC + 1)sC� + 1

2

∑

C∈C

∑

C ′ �=C

�sC sC ′

=
∑

C∈C
(sC + 1)sC� + 1

2

∑

C∈C
�sC (s − sC )

=
∑

C∈C

1

2
s2C� + s�

(
1 + s

2

)
.

We need to choose m, which will equal the degree of f , to be greater than the
degree of pk and at least the degree of A. The degree of A is 2 deg( Ã) + 1 and the
degree of pk was at most s(� + 1). Thus
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m =
∑

C∈C
s2C� + s�(2 + s) + 1 > 2s� > s(� + 1)

is a sufficient choice.
Therefore, the degree of f , may be chosen to be

deg( f ) �
∑

C∈C
s2C� + s�(2 + s) + 1. �

If the closure of B is a knot, we have that |C| = 1 and sC = s. Corollary 1.3 follows
immediately.

In practice, the degree of the constructed polynomials is significantly lower than the
proven upper bound. This is mostly because of the part of the proof of Theorem 1.2,
where we bound the number of singular crossings of Bsing. This number corresponds
to a sum of the number of zeros of certain complex polynomials on the unit circle.
The upper bound is obtained by considering the degree of these polynomials, but of
course it is extremely rare that a polynomial has all of its roots on the unit circle.

Theorem 1.2 gives a bound on the degree of the polynomials constructed with our
algorithm. Polynomials that are obtained using different methods may have higher or
significantly lower degree. We may for example compare our degree bound with an
example by Lee Rudolph [17]. He found an explicit semiholomorphic polynomial

f (u, v) = u3 − 3v2 v2(1 + v2 − v2)u − 2(v2 + v2)

with an isolated singularity and whose link is the closure of 3-strand braid
σ1σ

−1
2 σ1σ

−1
2 , the figure-eight knot. As in Theorem 1.1 the degree with respect to

the variable u is equal to the number of strands, namely 3. However, its total degree is
only 7, which is significantly lower than the bound obtained from Theorem 1.2, which
is 97.

We would like to emphasize that this discrepancy is not necessarily a sign of weak-
ness of our algorithm.After all, it does generally producepolynomials of comparatively
low degree and not just for the figure-eight knot, but for any link type. The proven
upper bound should be understood as a worst case scenario that almost never occurs.
Thus Theorem 1.2 is not so much about obtaining an ideal, sharp bound (although that
is an interesting question) as it is about obtaining a bound in terms of topological data
at all, an improvement on the result by Akbulut and King.
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