
European Journal of Mathematics (2023) 9:12
https://doi.org/10.1007/s40879-023-00610-7

RESEARCH ART ICLE

A Galvin–Hajnal theorem for generalized cardinal
characteristics

Chris Lambie-Hanson1

Received: 2 March 2022 / Revised: 29 September 2022 / Accepted: 8 October 2022 /
Published online: 15 February 2023
© The Author(s) 2023

Abstract
We prove that a variety of generalized cardinal characteristics, including meeting
numbers, the reaping number, and the dominating number, satisfy an analogue of the
Galvin–Hajnal theorem, and hence also of Silver’s theorem, at singular cardinals of
uncountable cofinality.
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Silver’s theorem · Galvin–Hajnal theorem

Mathematics Subject Classification 03E04 · 03E05 · 03E17

1 Introduction

One of the seminal results in cardinal arithmetic, and one of the first indications that
there are nontrivial ZFC constraints on the behavior of the continuum function at
singular cardinals, is Silver’s theorem.

Theorem 1.1 (Silver [21]) Suppose that κ is a singular cardinal of uncountable cofi-
nality, η < cf (κ) is an ordinal, and the set of cardinals

{μ < κ | 2μ � μ+η}

is stationary in κ . Then 2κ � κ+η.

Silver’s original proof of this theorem involves a generic ultrapower argument; a
purely combinatorial argument for the theoremwas soon provided byBaumgartner and
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Prikry [1]. Around the same time, a generalization of Silver’s theorem was proven by
Galvin and Hajnal. The following statement of (a corollary of) their theorem involves
the notion of the Galvin–Hajnal rank ‖ϕ‖S of a function ϕ; see Definition 2.1 below
for its formal definition.

Theorem 1.2 (Galvin–Hajnal [4]) Suppose thatκ is a singular cardinal of uncountable
cofinality, 〈κi | i < cf (κ)〉 is an increasing, continuous sequence of cardinals converg-
ing to κ , S ⊆ cf (κ) is stationary, and ϕ : S → On is a function such that, for all i ∈ S,
we have 2κi � κ

+ϕ(i)
i . Then 2κ � κ+‖ϕ‖S .

This theorem does indeed generalize Silver’s theorem, since, as we shall see, given
any stationary subset S of a regular uncountable cardinal θ , and given any ordinal
η < θ , if ϕ is the constant function on S taking value η, then ‖ϕ‖S = η.

One of the central aspects of research into cardinal arithmetic is the study of certain
methods of measuring the “size” of the power set of a cardinal κ that are in a sense
finer than simply looking at the value of 2κ. At singular cardinals, these methods come
from two primary sources, with some overlap between the two:

• Shelah’s PCF theory;
• generalizations of cardinal characteristics of the continuum to singular cardinals.

Certain of these methods are known to satisfy versions of Silver’s theorem or the
Galvin–Hajnal theorem. For example, in [19, Chapter 2, Claim 2.4], Shelah proves a
variation of Theorem 1.2 involving PCF-theoretic pseudopowers ppJ (κ) and ppJ (κi )

in place of the cardinals 2κ and 2κi ; in [18, Lemma 3.8], Rinot proves a version of
Silver’s theorem for covering numbers; and in [12], Kojman proves that certain density
numbers satisfy an analogue of Silver’s theorem (see Sect. 3 for details).

In this paper, we prove versions of the Galvin–Hajnal theorem for a variety of cardi-
nal characteristics of the continuum generalized to singular cardinals of uncountable
cofinality, focusing in particular on meeting numbers, the reaping number, and the
dominating number. Before proceeding to a summary of our results, let us say a few
words about our approach to cardinal characteristics at singular cardinals in general.
There are often multiple natural ways to generalize familiar cardinal characteristics of
the continuum to singular cardinals. For example, when defining the dominating num-
ber dκ at a singular cardinal κ , any of the following possible definitions of dκ seems
potentially reasonable (see the end of this introduction for any undefined notation):

• cf (κκ,<0), where, given f , g ∈ κκ , we let f <0 g if and only if |{i < κ | g(i) �
f (i)}| < κ;

• cf (κκ,<1), where, given f , g ∈ κκ , we let f <1 g if and only if {i < κ | g(i) �
f (i)} is bounded below κ;

• cf (cf (κ)κ,<2), where, given f , g ∈ cf (κ)κ , we let f <2 g if and only if |{i <

cf (κ) | g(i) � f (i)}| < cf (κ).

In all such choices that we face here, we opt for the definition that emphasizes the
cardinality of κ over its cofinality, as, at least in this context, this seems to bewhat gives
rise to the most genuinely new behavior at the singular cardinal κ . So, for instance,
we will define dκ to be what is called cf (κκ,<0) above. (It is not difficult to show that
what is called cf (cf (κ)κ,<2) above is in fact nothing other than dcf (κ).)
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We also note here that in this paper we are only considering cardinal characteristics
at a singular cardinal κ that are provably strictly greater than κ . In particular, we are not
considering the boundingnumberbκ , the splitting number sκ , or the almost disjointness
number aκ , since, at least when generalized in accordance with the principles laid out
in the previous paragraph, these cardinal characteristics are provably at most bcf (κ),
scf (κ), and acf (κ), respectively (though we will have more to say about the almost
disjointness number in Sect. 6).

A slightly suboptimal but succinct summary of our main results can be stated as
follows (we refer the reader to Sect. 2 for the definition of canonical function and to
Sect. 5 for the precise definition of the cardinal characteristics under consideration):

Main Corollary Suppose that

• κ is a singular cardinal with cf (κ) = θ > ω;
• 〈κi | i < θ〉 is an increasing, continuous sequence of cardinals converging to κ;
• β is an ordinal for which the canonical function on θ of rank β, ϕθ

β , exists;

• μθ � κ+β for all μ < κ;
• S ⊆ θ is stationary;
• cc is one of the cardinal characteristics m(θ, κ), d(θ, κ), rκ , or dκ , and, for all

i < θ , cci is the corresponding cardinal characteristic m(cf (κi ), κi ), d(cf (κi ), κi ),
rκi , or dκi ;

• for all i ∈ S, we have cci � κ
+ϕθ

β(i)

i .

Then cc � κ+β .

The slight suboptimality in this statement comes from the assumption that μθ �
κ+β for all μ < κ . As we will see, a weaker hypothesis, in which μθ is replaced by
some cardinal characteristic that is provably at mostμθ, is sufficient for our results; the
precise weakening depends on the specific cardinal characteristic under consideration
and will require some further notation to state, so we leave the exact details for the
statement of Main Theorem at the end of Sect. 5.

The structure of the remainder of the paper is as follows. In Sect. 2, we review the
definitions and facts regarding canonical functions and the Galvin–Hajnal rank that
we will need for our results. In Sect. 3, we recall certain notions of density. This is
important for two reasons: first, because the analogue of Silver’s theorem for density
numbers proven in [12] was direct inspiration for this paper, and secondly and more
immediately, these density numbers will appear in the precise formulations of our
results. After this, we begin with the proof of our Main Theorem. The proofs of our
various analogues of the Galvin–Hajnal theorem all have the same general shape,
so in Sect. 4 we develop an abstract framework that will apply to all of our specific
instances. In Sect. 5, we apply this abstract framework to our cardinal characteristics
under consideration to obtain our Main Theorem, which is precisely stated at the end
of the section. Finally, in Sect. 6, we record some questions that remain open and
sketch a consistent negative answer to the question about whether a version of Silver’s
theorem holds for the existence of Aronszajn trees at double successors of singular
cardinals.
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1.1 Notation and conventions

Unless otherwise noted, we believe our notation and terminology to be standard. We
refer the reader to [11] for any undefined notions or notations from set theory, and we
refer the reader to [2] for an introduction to cardinal characteristics of the continuum,
generalizations of which form the subject of this paper.

If X is a set and � is a binary relation on X , then cf (X ,�) denotes the minimal
cardinality of a subset Y ⊆ X such that, for all x ∈ X , there is y ∈ Y for which
x � y. If θ is a regular uncountable cardinal, then NSθ denotes the nonstationary
ideal on θ . If S ⊆ θ is a stationary set, then, formally, NSθ � S is the ideal on θ

generated by NSθ ∪ {θ \ S}; in practice, we will typically think of NSθ � S as the ideal
of nonstationary subsets of S, considered as an ideal on S. If X is a set and κ is a
cardinal, then [X ]κ ..= {y ⊆ X | |y| = κ}. If X and Y are two sets, then Y X denotes
the set of all functions with domain Y and codomain X .

To facilitate clean statements of hypotheses, we adopt the convention that 0 is not
a limit ordinal.

2 Canonical functions and the Galvin–Hajnal rank

Suppose that S is an infinite set and I is a proper ideal on S. As usual, we let I +
denote the set of I -positive subsets of S, i.e., I + ..= P(S)\ I . Given two functions
ϕ,ψ ∈ SOn, we write ϕ <I ψ to denote the assertion that the set {i ∈ S | ψ(i) � ϕ(i)}
is in I . Define =I , �i , etc. in the obvious way. We will be particularly interested in
the case in which S is a stationary subset of a regular uncountable cardinal θ and
I = NSθ � S, i.e., I is the collection of nonstationary subsets of S. In this context,
given two functions ϕ,ψ ∈ SOn, we will write ϕ <S ψ instead of ϕ <NSθ�S ψ (and
similarly with �S , =S , etc.). In particular, for functions ϕ,ψ ∈ θOn, ϕ <θ ψ will
denote ϕ <NSθ ψ . Note that ϕ <S ψ if and only if there is a club C ⊆ θ such that, for
all i ∈ C ∩ S, we have ϕ(i) < ψ(i).

Fix for the remainder of this section a regular uncountable cardinal θ . Given a
stationary set S ⊆ θ , the corresponding relation <S is well-founded and therefore has
a rank function, which yields what is known as the Galvin–Hajnal rank.

Definition 2.1 ([4]) Suppose that θ is an uncountable regular cardinal and S ⊆ θ is
stationary. The Galvin–Hajnal rank of a function ϕ ∈ SOn, denoted ‖ϕ‖S , is defined
by recursion on <S by letting

‖ϕ‖S
..= sup

{‖ψ‖S + 1 | ψ ∈ SOn and ψ <S ϕ
}

for all ϕ ∈ SOn.

It is readily verified by recursion on ‖ϕ‖S that, for all stationary T ⊆ S ⊆ θ and
all ϕ ∈ SOn, we have ‖ϕ‖S � ‖ϕ � T ‖T . In general, it is quite possible to have strict
inequality here. However, if ϕ is what is known as a canonical function, this inequality
is in fact always an equality. With this in mind, let us now recall the definition of and
some basic facts about canonical functions.
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By recursion on ordinals α, attempt to define the canonical function on θ of rank
α, ϕθ

α ∈ θOn, as follows. If β is an ordinal and ϕθ
α has been defined for all α < β,

then let ϕθ
β be the least upper bound for 〈ϕθ

α | α < β〉 with respect to <θ , if such a least

upper bound exists. In other words, ϕθ
β ∈ θOn is a function such that

• ϕθ
β is a <θ -upper bound for 〈ϕθ

α | α < β〉;
• if ψ is another <θ -upper bound for 〈ϕθ

α | α < β〉, then ϕθ
β �θ ψ .

If such a least upper bound does not exist, then ϕθ
β is undefined (and therefore ϕθ

γ is
undefined for all γ > β as well).

Note that ϕθ
β is not uniquely determined, but is unique up to =θ -equivalence. We

will let �θ
β denote the set of all canonical functions on θ of rank β. We will slightly

abuse notation and use ϕθ
β to denote an arbitrary element of �θ

β . We will always be
working in contexts that are invariant under =θ -equivalence, so this will not result
in any loss of generality. The following well-known fact (see [14, Section 1] for an
introduction to canonical functions of rank less than θ+) shows that, for all β < θ+,
there are canonical functions on θ of rank β.

Fact 2.2 Let β < θ+, and let e : θ → β be a surjection. Then the function ϕ ∈ θ θ

defined by letting f (i) = otp(e[i]) for all i < θ is in �θ
β .

The following proposition follows almost immediately from the definition of canon-
ical function.

Proposition 2.3 Suppose that β is an ordinal for which ϕθ
β is defined, ψ ∈ θOn, and

the set S ..= {i < θ | ψ(i) < ϕθ
β(i)} is stationary in θ . Then there is a stationary S′ ⊆ S

and an α < β such that ψ(i) � ϕθ
α(i) for all i ∈ S′.

Proof Suppose not. Then, for all α < β, there is a clubCα ⊆ θ such that ϕθ
α(i) < ψ(i)

for all i ∈ S ∩ Cα . Define a function τ ∈ θOn by letting

τ(i) =
{

ψ(i) if i ∈ S,

ϕθ
β(i) if i ∈ θ \ S.

Then, by our assumptions, τ is a<θ -upper bound for 〈ϕθ
α | α < β〉, so, by the definition

of canonical function we must have ϕθ
β �θ τ , contradicting the fact that S ⊆ θ is

stationary and, for all i ∈ S, we have τ(i) = ψ(i) < ϕθ
β(i). ��

The following basic facts will be relevant to our arguments. Throughout the remain-
der of the paper, given a function ϕ taking ordinal values, we let ϕ + 1 denote the
function ψ defined by setting dom(ψ) = dom(ϕ) and ψ(i) = ϕ(i) + 1 for all
i ∈ dom(ϕ).

Proposition 2.4 Suppose that β > 0 is an ordinal such that ϕθ
β is defined.

(1) ϕθ
β+1 is defined and ϕθ

β+1 =θ ϕθ
β + 1.
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(2) If β is a limit ordinal, then there is a club C ⊆ θ such that ϕθ
β(i) is a limit ordinal

for all i ∈ C.

Proof (1) Clearly, ϕθ
β + 1 is a <θ -upper bound for 〈ϕθ

α | α �β〉. Moreover, if ψ is any

other <θ -upper bound, then there must be a club C ⊆ θ such that ϕθ
β(i) + 1 � ψ(i)

for all i ∈ C , and therefore ϕθ
β + 1�θ ψ . It follows that ϕθ

β+1 =θ ϕθ
β + 1.

(2) Suppose for sake of contradiction thatβ is a limit ordinal and yet there is a stationary
set S ⊆ θ such that ϕθ

β(i) = γi +1 is a successor ordinal for all i ∈ S. Define a function

ψ ∈ θOn by letting

ψ(i) =
{

γi if i ∈ S,

ϕθ
β(i) otherwise

for all i < θ . By Proposition 2.3, we can find a stationary S′ ⊆ S and an ordinal α < β

such that ψ(i) � ϕθ
α(i) for all i ∈ S′, and hence, by removing a nonstationary subset

from S′ if necessary, we can assume that ψ(i) + 1 � ϕθ
α+1(i) for all i ∈ S′. But, by

our definition of ψ , we have ψ(i) + 1 = ϕθ
β(i) for all i ∈ S′, and hence ϕθ

α+1 
<θ ϕθ
β ,

contradicting the fact that α + 1 < β. ��
Proposition 2.5 Suppose that θ is a regular uncountable cardinal, β is an ordinal such
that ϕθ

β is defined, and S ⊆ θ is stationary. Then ‖ϕθ
β � S‖S = β.

Proof The proof is by induction on β, so we assume that, for all α < β and all
stationary T ⊆ θ , we have ‖ϕθ

α � T ‖T = α. Since ϕθ
α <θ ϕθ

β for all α < β, it follows

that ‖ϕθ
β � S‖S � β.

For the opposite inequality, fix a function ψ ∈ SOn with ψ <S ϕθ
β � S; it suffices

to show that ‖ψ‖S < β. An application of Proposition 2.3 yields a stationary T ⊆ S
and an α < β such that ψ(i) � ϕθ

α(i) for all i ∈ T . By the induction hypothesis, we
have ‖ϕθ

α � T ‖T = α, so it follows that ‖ψ � T ‖T � α. But then, since T ⊆ S, this
implies that ‖ψ‖S � α < β, as desired. ��

We now recall two results from [10], the first of which is already implicit in [19].

Theorem 2.6 ([10, Corollary 2.3]) Suppose that A is an infinite set, I is an ideal on
A, and 〈μa | a ∈ A〉 is a sequence of regular cardinals such that μa > |A|+ for all
a ∈ A. Then there exist a set B ∈ I +, a regular cardinal λ > |A|+, and a sequence
�f = 〈 fα | α < λ〉 such that �f is <I�B-increasing and <I�B-cofinal in

∏
a∈B μa.

Our statement of the next theorem is less general than its statement in [10]; we
focus on ideals of the form NSθ � S rather than the arbitrary normal ideals of [10].

Theorem 2.7 ([10, Main Theorem]) Suppose that

(1) κ is a singular cardinal and cf (κ) = θ > ω;
(2) 〈κi | i < θ〉 is an increasing, continuous sequence of cardinals converging to κ;
(3) 〈μi | i < θ〉 is an increasing sequence of regular cardinals such that, for some

function ϕ ∈ θOn, we have μi = κ
+ϕ(i)
i for all i < θ ;
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(4) S ⊆ θ is stationary;
(5) λ is a regular cardinal and �f = 〈 fα | α < λ〉 is a <S-increasing and <S-cofinal

sequence from
∏

i∈S μi .

Then λ � κ+‖ϕ�S‖S .

Putting these two results together yields the following corollary.

Corollary 2.8 Suppose that θ is a regular uncountable cardinal, S ⊆ θ is stationary,
and β is an ordinal such that ϕθ

β is defined. Suppose also that κ is a singular car-
dinal, cf (κ) = θ , and 〈κi | i < θ〉 is an increasing, continuous sequence of cardinals
converging to κ with κ0 > θ . Then there is a stationary S′ ⊆ S and a sequence

�f = 〈 fα | α < λ〉 from
∏

i∈S′ κ
+ϕθ

β(i)+1

i such that

(1) �f is <S′ -increasing and <S′ -cofinal in
∏

i∈S′ κ
+ϕθ

β(i)+1

i ;
(2) λ � κ+β+1.

In particular, there exists a <S′ -cofinal subset F ⊆ ∏
i∈S′ κ

+ϕθ
β(i)+1

i such that |F| �
κ+β+1.

Proof ByProposition 2.4, we haveϕθ
β+1 = ϕθ

β +1. For each i ∈ S, letμi
..= κ

+ϕθ
β(i)+1

i .
Then, applying Theorem2.6 to the set S, the ideal NSθ � S, and the sequence 〈μi | i ∈ S〉
of regular cardinals, we obtain a stationary S′ ⊆ S, a regular cardinal λ > |A|+, and a
sequence �f = 〈 fα | α < λ〉 such that �f is <S′ -increasing and <S′ -cofinal in

∏
i∈S′ μi .

Then Theorem 2.7 implies that λ � κ
+‖ϕθ

β+1�S′‖S′ , so, by Proposition 2.5, we have
λ � κ+β+1. ��

3 Density

In this section, we recall some notions of density that will play a role throughout the
paper. The first of these notions was the subject of Kojman’s [12].

Definition 3.1 ([12]) Suppose that θ � μ are infinite cardinals. The θ -density of μ,
denoted d(θ, μ), is the minimal cardinality of a set Y ⊆ [μ]θ that is dense in ([μ]θ,⊆),
i.e., for all x ∈ [μ]θ, there is y ∈ Y such that y ⊆ x .

If θ < μ, then [μ]θ denotes the set of x ∈ [μ]θ such that sup(x) < μ, and the
lower θ - density of μ, denoted d(θ, μ), is the minimal cardinality of a set Y ⊆ [μ]θ
that is dense in ([μ]θ,⊆).

Remark 3.2 In [12], the θ -density of μ is denoted by D(μ, θ). We have chosen the
notation d(θ, μ) tomatch the established notationm(θ, μ) formeeting numbers, which
are among the cardinal characteristics considered here. Our notation for both density
numbers and meeting numbers follows [17].

Note that, if θ < μ, then d(θ, μ) = μ · ∑ν<μ d(θ, ν). Therefore, if νθ � μ for all
ν < μ, then d(θ, μ) = μ.
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12 Page 8 of 21 C. Lambie-Hanson

As remarked in [12], if cf (μ) 
= cf (θ), then

d(θ, μ) = d(θ, μ) = μ ·
∑

ν<μ

d(θ, ν).

In particular, if cf (μ) 
= cf (θ) and νθ � μ for all ν < μ, then d(θ, μ) = μ.
If cf (μ) = cf (θ), then a routine diagonalization argument shows that d(θ, μ) �

μ+.

The main result of [12] is a version of Silver’s theorem for the density number
d(cf (κ), κ); this result served as direct motivation for the initial work that led to the
results of this paper. Our main result here, when applied to the density number, will
generalize and slightly improve upon the results of [12].

If I is an ideal over a set X , then the density of I , which we will denote d(I ), is
the minimal cardinality of a set Y ⊆ I + such that, for all S ∈ I +, there is T ∈ Y such
that T \ S ∈ I . We will particularly be interested in densities of the form d(NSθ � S),
where S is a stationary set of a regular uncountable cardinal θ . Concretely, d(NSθ � S)

is the minimal cardinality of a collection T of stationary subsets of S such that, for
every stationary S′ ⊆ S, there is T ∈ T such that T \ S′ is nonstationary in θ .

Finally, we introduce a notion of density that, in a sense, combines the two notions
introduced in this section thus far.

Definition 3.3 Suppose that θ and κ are infinite cardinals, with θ regular, and suppose
that S ⊆ θ is stationary. Then the stationarity density of Sκ , which we denote by
dstat(Sκ), is the minimal cardinality of a family F of functions such that

(1) every f ∈ F is a function from a stationary subset of S to κ;
(2) for every function g from a stationary subset of S to κ , there is f ∈ F such that

the set

{
i ∈ dom( f ) | i /∈ dom(g) or f (i) 
= g(i)

}

is nonstationary. (Less precisely but more evocatively, f is contained in g modulo
a nonstationary set.)

In analogywith lower density, we define the lower stationary density of Sκ , denoted
dstat(Sκ), in the same way as dstat(Sκ), except that, in item (2), we only consider
functions whose ranges are bounded below κ (and hence we can require that all of our
functions in F also have ranges bounded below κ).

Remark 3.4 Note that d(NSθ � S) � dstat(Sκ). Also, whenever T ⊆ S are stationary
subsets of θ , we have

• d(NSθ � T ) � d(NSθ � S);
• dstat(T κ) � dstat(Sκ);
• dstat(T κ) � dstat(Sκ).
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4 The general framework

The cardinal characteristics we consider in this paper all have the following form: a
setX and a binary relation� onX are fixed, and the relevant cardinal characteristic is
then cf (X,�), i.e., the minimal cardinality of a subset Y ⊆ X such that, for all x ∈ X,
there is y ∈ Y such that x � y.

Because of the structural similarity of these cardinal characteristics, the inductive
steps in the proofs of our main results end up being essentially the same, so in this
section we prove a general lemma that we can directly apply to all of the specific
situations under consideration here, and that we expect will find application beyond
the scope of this paper, as well.

In order to state and prove our general lemma, let us fix some objects and notation
for the remainder of this section:

• κ is a singular cardinal and cf (κ) = θ > ω;
• 〈κi | i < θ〉 is an increasing, continuous sequence of cardinals converging to κ , with

κ0 > θ ;
• X is a set and � is a binary relation on X;
• for each i < θ , Xi is a set and �i is a binary relation on Xi ;
• for each i < θ , πi : X → Xi is a function;
• e : NS+

θ → Card is a function such that, for all stationary T ⊆ S ⊆ θ , we have
e(T ) � e(S).

Remark 4.1 To help orient the reader, let us preview here some of the eventual interpre-
tations of these objects. In a typical application, wemight haveX = P(κ),Xi = P(κi ),
and πi (x) = x ∩ κi , or X = κκ , Xi = κi κi , and πi (x) is a modification of x � κi to
ensure that it takes values in κi . The function e will typically (though not always)
output one of the density numbers introduced in Sect. 3.

In this context, if S ⊆ θ is stationary and β is an ordinal for which the canonical
functionϕθ

β is defined (recall the discussionof canonical functions followingDefinition
2.1), then let �(S, β) denote the following assertion:

If Z and 〈Yi | i ∈ S〉 are such that
(1) Z ⊆ X and Yi ⊆ Xi for all i ∈ S;

(2) |Yi | � κ
+ϕθ

β(i)

i for all i ∈ S;
(3) for all z ∈ Z, there is a club C ⊆ θ such that, for all i ∈ C ∩ S, there is

y ∈ Yi for which πi (z) �i y;

then there is Y ⊆ X such that |Y| � κ+β + d(NSθ � S)+ e(S) and, for all z ∈ Z,
there is y ∈ Y for which z � y.

Let�∗(S, β) be defined in the same way, except, in the conclusion, we only require
|Y| � κ+β + e(S).

Lemma 4.2 Suppose that S ⊆ θ is stationary and �(T , 0) holds for all stationary
T ⊆ S. Then, for all ordinals β for which the canonical function ϕθ

β is defined,
�(S, β) holds.
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12 Page 10 of 21 C. Lambie-Hanson

Proof The proof is by induction on β, simultaneously for all stationary S ⊆ θ . Thus,
fix an ordinal β for which ϕθ

β is defined and a stationary set S ⊆ θ . By the hypothesis of
the lemma, we can assume that β > 0, and by the inductive hypothesis, we can assume
that �(T , α) holds for all α < β and all stationary T ⊆ S. Fix Z and 〈Yi | i ∈ S〉 as
in the hypothesis of �(S, β); we will find Y ⊆ X as in its conclusion. For each i ∈ S,

enumerate Yi as
〈
yi,ξ | ξ < κ

+ϕθ
β(i)

i

〉
(with repetitions if |Yi | < κ

+ϕθ
β(i)

i ).
Suppose first that β = β ′ + 1 is a successor ordinal. By Proposition 2.4, we can

assume that ϕθ
β = ϕθ

β ′ + 1. Then, by Corollary 2.8, we can fix a stationary S′ ⊆ S

and a <S′ -cofinal family F ⊆ ∏
i∈S′ κ

+ϕθ
β(i)

i such that |F| � κ+β . For each f ∈
F, let Yi, f

..= {yi,ξ | ξ < f (i)}, and note that |Yi, f | � κ
+ϕθ

β′ (i)
i . Let Z f be the set

of z ∈ Z for which there is a club C ⊆ θ such that, for all i ∈ C ∩ S′, there
is y ∈ Yi, f such that πi (z) �i y. Recalling that d(NSθ � S′) � d(NSθ � S) and
e(S′) � e(S), apply �(S′, β ′) to Z f and 〈Yi, f | i ∈ S′〉 to find Y f ⊆ X such that
|Y f | � κ+β ′+d(NSθ � S)+ e(S) and, for all z ∈ Z f , there is y ∈ Y f such that z � y.

Let Y = ⋃
f ∈F Y f ; we claim that Y is as desired. It is evident that Y ⊆ X and

|Y| � κ+β + d(NSθ � S) + e(S), so it remains to verify that, for all z ∈ Z, there is
y ∈ Y such that z � y. For this, it suffices to show that Z ⊆ ⋃

f ∈F Z f . To this end,
fix z ∈ Z. By assumption, there is a club C ⊆ θ such that, for all i ∈ C ∩ S′, there is
ξi < κ

+ϕθ
β(i)

i for which πi (z) �i yi,ξi . Define a function g ∈ ∏
i∈S′ κ

+ϕθ
β(i)

i by letting

g(i) =
{

ξi if i ∈ C,

0 otherwise

for all i ∈ S′. Since F is <S′ -cofinal in
∏

i∈S′ κ
+ϕθ

β(i)

i , we can find f ∈ F such that
g <S′ f , i.e., there is a club D ⊆ θ such that, for all i ∈ D ∩ S′, we have g(i) < f (i).
But then, for all i ∈ D ∩ C ∩ S′, we have ξi < f (i) and πi (z) �i yi,ξi , so D ∩ C
witnesses that z is in Z f , and we are done.

Finally, suppose that β is a limit ordinal. By Proposition 2.4, we can assume that
ϕθ

β(i) is a limit ordinal for all i ∈ S. Let T be a collection of stationary subsets of S
such that |T| = d(NSθ � S) and, for every stationary S′ ⊆ S, there is T ∈ T such that

T \ S′ ∈ NSθ . For each α < β and each i ∈ S, let Yα
i

..= {
yi,ξ | ξ < κ

+ϕθ
α(i)

i

}
. For each

α < β and each T ∈ T, let ZT ,α be the set of all z ∈ Z for which there is a club C ⊆ θ

such that, for all i ∈ C ∩ T , there is y ∈ Yα
i such that πi (z) �i y. Apply �(T , α) to

ZT ,α and 〈Yα
i | i ∈ T 〉 to find YT ,α ⊆ X such that |YT ,α| � κ+α + d(NSθ � S) + e(S)

and, for all z ∈ ZT ,α , there is y ∈ YT ,α such that z � y.
Let Y = ⋃ {YT ,α | T ∈T, α <β}; we claim that Y is as desired. As in the successor

case, it suffices to verify that Z ⊆ ⋃{ZT ,α | T ∈T, α <β}. To this end, fix z ∈ Z. By

hypothesis, we can find a club C ⊆ θ such that, for all i ∈ C ∩ S, there is ξi < κ
+ϕθ

β(i)

i
for which πi (z) �i yi,ξi . For each such i , use the fact that ϕθ

β(i) is a limit ordinal to

find γi < ϕθ
β(i) such that ξi < κ

+γi
i . Define a function ψ ∈ θOn by letting
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ψ(i) =
{

γi if i ∈ C ∩ S,

ϕθ
β(i) otherwise

for all i < θ . By Proposition 2.3, we can find a stationary S′ ⊆ C ∩ S and an α < β

such that γi = ψ(i) � ϕθ
α(i) for all i ∈ S′. We can subsequently find a T ∈ T and a

club D ⊆ θ such that D ∩ T ⊆ S′. Then, for all i ∈ D ∩ T , we have yi,ξi ∈ Yα
i and

πi (z) �i yi,ξi , so D witnesses that z is in ZT ,α , and we are done. ��
Notice that the only place in which the value of d(NSθ � S) plays a role in the proof

of Lemma 4.2 is in the case in which β is a limit ordinal (in the successor case it only
makes an appearance via the inductive hypothesis). Therefore, if β < ω and�∗(T , 0)
holds for all stationary T ⊆ θ , then we can do away with d(NSθ � S) in the conclusion
of the lemma. More precisely, the proof of the successor case of Lemma 4.2 yields the
following corollary.

Corollary 4.3 Suppose that S ⊆ θ is stationary and �∗(T , 0) holds for all stationary
T ⊆ S. Then �∗(S, n) holds for all n < ω.

The translation from Lemma 4.2 and Corollary 4.3 to our main results will happen
via the following corollary.

Corollary 4.4 Suppose that

(1) β is an ordinal for which ϕθ
β is defined;

(2) S ..= {
i < θ | cf (Xi ,�i ) � κ

+ϕθ
β(i)

i

}
is stationary in θ ;

(3) �(T , 0) holds for all stationary T ⊆ S.

Then cf (X ,�) � κ+β+ d(NSθ � S) + e(S). If, moreover, β < ω and �∗(T , 0) holds
for every stationary T ⊆ S, then cf (X ,�) � κ+β + e(S).

Proof By Lemma 4.2, we know that�(S, β) holds. Let Z = X and, for each i ∈ S, let

Yi ⊆ Xi be such that |Yi | � κ
+ϕθ

β(i)

i and Yi is �i -cofinal in Xi . In particular, for all
z ∈ Z and all i ∈ S, there is y ∈ Yi such that πi (z) �i y. Therefore, applying�(S, β)

to Z and 〈Yi | i ∈ S〉 yields a set Y ⊆ X such that |Y| � κ+β + d(NSθ � S) + e(S) and,
for all z ∈ Z , there is y ∈ Y such that z � y, i.e., Y is �-cofinal in X.

For the “moreover” clause, if β < ω and �∗(T , 0) holds for every stationary
T ⊆ S, then Corollary 4.3 implies that �∗(S, β) holds. Applying �∗(S, β) to the Z
and 〈Yi | i ∈ S〉 of the previous paragraph then yieldsY ⊆ X such that |Y| � κ+β+e(S)

and Y is �-cofinal in X. ��

5 Specific instances

We now turn to applications of the general framework introduced in the previous
section to particular cardinal characteristics at singular cardinals. Let us fix for this
entire section cardinals κ and θ such thatω < θ = cf (κ) < κ , as well as an increasing,
continuous sequence of cardinals 〈κi | i < θ〉 converging to κ , with κ0 > θ .
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12 Page 12 of 21 C. Lambie-Hanson

Each cardinal characteristic ccκ we consider will entail a choice of a set X and a
binary relation � on X such that ccκ = cf (X,�). The sets 〈Xi | i < θ〉 and relations
〈�i | i < θ〉 will be defined analogously, so that ccκi = cf (Xi ,�i ) for each i < θ .
We will also have natural restriction operations πi : X → Xi for each i < θ . Together
with an appropriate choice of function e : NS+

θ → Card, these assignments give rise
to instances of the formulas �(S, β) and �∗(S, β) from the previous section. The
primary work of this section will consist of proving that all of these instances of
�∗(T , 0) hold; Corollary 4.4 will then directly yield our main results.

We will begin by introducing each of the cardinal characteristics we will be con-
sidering and specifying the appropriate assignments for X, �, 〈(Xi ,�i , πi ) | i < θ〉,
and e for each characteristic. We will then prove a lemma indicating that, for all of
these assignments, the corresponding instance of �∗(T , 0) holds for every stationary
T ⊆ θ .

We note that for some of the cardinal characteristics, wewill only defineXi ,�i , and
πi for limit ordinals i < θ . Since the clubs C in the statement of �(S, β) can always
be assumed to consist entirely of limit ordinals, this is sufficient for our purposes.

5.1 Meeting numbers

The first cardinal characteristics we consider are the meeting numbers.

Definition 5.1 ([17]) Suppose that σ � λ are infinite cardinals. Then the meeting
number m(σ, λ) is the minimal cardinality of a collection Y ⊆ [λ]σ such that, for all
x ∈ [λ]σ, there is y ∈ Y such that |x ∩ y| = σ .

The meeting number m(σ, λ) is of special interest when cf (σ ) = cf (λ), in which
case a routine diagonalization argument implies that m(σ, λ) > λ. A result of Matet
indicates that Shelah’s Strong Hypothesis, a statement in PCF theory, is equivalent to
the statement that all such meeting numbers take their minimal possible value:

Theorem 5.2 (Matet, [16, Theorem 1.1]) The following are equivalent:

(1) Shelah’s Strong Hypothesis;
(2) for every singular cardinal λ of countable cofinality, m(ℵ0, λ) = λ+;
(3) for all infinite cardinals σ < λ, we have m(σ, λ) = λ+ if cf (σ ) = cf (λ) and

m(σ, λ) = λ if cf (σ ) 
= cf (λ).

Wenowspecify assignments to define a version of the formula�∗(T , 0) appropriate
for the meeting number. Let X = [κ]θ and, for each limit ordinal i < θ , let Xi =
[κi ]cf (i). Define relations � on X and �i on Xi by letting x � y iff |x ∩ y| = θ

and x �i y iff |xi ∩ yi | = cf (i) for all limit ordinals i < θ . It is then evident that
m(θ, κ) = cf (X,�) and m(cf (i), κi ) = m(cf (κi ), κi ) = cf (Xi ,�i ) for all limit
i < θ .

For each limit ordinal i < θ , define a map πi : X → Xi as follows. For any
i < θ and x ∈ X, if sup(x ∩ κi ) = κi , then let πi (x) be an arbitrary unbounded
subset of x ∩ κi of order type cf (i). If sup(x ∩ κi ) < κi , then simply let πi (x) be an
arbitrary element of Xi . Note that, for every x ∈ X that is unbounded in κ , the set
{i < θ | sup(x ∩ κi ) = κi } is a club in θ .

Let e : NS+
θ → Card be the constant function taking value

∑
j<θ m(θ, κ j ).
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5.2 Density

As mentioned above, a version of Silver’s theorem for density is proven in [12]. We
include density here for completeness, since our results are slightly more general than
those of [12].

We are interested in particular in the number d(θ, κ). The setup for density will be
similar to that for the meeting number. Again let X = [κ]θ and, for each limit ordinal
i < θ , let Xi = [κi ]cf(i). Define relations � on X and �i on Xi by letting x � y or
x �i y iff x ⊇ y. Then d(θ, κ) = cf (X,�) and d(cf (κi ), κi ) = cf (Xi ,�i ) for all
limit i < θ .

Define maps πi : X → Xi for limit ordinals i < θ exactly as in the case of the
meeting number in the previous subsection. Let e : NS+

θ → Card be the constant
function taking value d(θ, κ) = ∑

j<θ d(θ, κ j ) (recall Definition 3.1).

5.3 The reaping number

Definition 5.3 Let λ be an infinite cardinal.

(1) If x, y ∈ [λ]λ, then we say that x splits y if |y ∩ x | = |y \ x | = λ.
(2) A family Y ⊆ [λ]λ is unreaped if there is no single x ∈ [λ]λ that splits every

element of Y.
(3) The reaping number rλ is the minimum cardinality of an unreaped family in [λ]λ.

A standard diagonalization argument shows that rλ > λ for every infinite cardinal
λ.

Let X = [κ]κ and, for each i < θ , let Xi = [κi ]κi. Define a relation � on X by
letting x � y iff x does not split y, i.e., either |y ∩ x | < κ or |y\x | < κ . Similarly,
for each i < θ , define �i on Xi by letting x �i y iff x does not split y. Then it is
evident that rκ = cf (X,�) and rκi = cf (Xi ,�i ) for all i < θ .

For each i < θ , define amap πi : X → Xi as follows. For all x ∈ X, if |x ∩κi | = κi ,
then let πi (x) = x ∩ κi . Otherwise, let πi (x) = κi . Note that, for all x ∈ [κ]κ, the set
of i < θ for which |x ∩ κi | = κi , and hence for which πi (x) = x ∩ κi , is a club in θ .
Finally, as in the case of density, let e : NS+

θ → Card be the constant function taking
value d(θ, κ).

5.4 The dominating number

Definition 5.4 Suppose that λ is an infinite cardinal.

(1) If f , g ∈ λOn, then f <∗g if and only if |{η < λ | g(η) � f (η)}| < λ.
(2) The dominating number dλ is the minimal cardinality of a family F ⊆ λλ such

that for every g ∈ λλ, there is f ∈ F such that g <∗ f .
(3) More generally, for any limit ordinal σ , dλ,σ is the minimal cardinality of a family

F ⊆ λσ such that, for every g ∈ λσ , there is f ∈ F such that g <∗ f .

Proofs of the following basic facts can be found in [7].

Proposition 5.5 ([7, Claim 3.2 and Lemma 3.1]) Suppose that λ is an infinite cardinal.
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(1) dλ > λ and cf (dλ) > λ.
(2) dλ = dλ,cf (λ).

The proofs of [7, Claim 3.2 and Lemma 3.1] can be routinely adapted to yield the
following generalization of the preceding proposition.

Fact 5.6 Suppose that λ is an infinite cardinal and σ is a limit ordinal.

(1) dλ,σ > λ and cf (dλ,σ ) > λ.
(2) dλ,σ = dλ,cf (σ ).

Recently, Shelah proved that, if κ is a singular strong limit cardinal, then dκ always
attains its maximal possible value. More precisely, he proved the following theorem:

Theorem 5.7 ( [20, Claim 1.5 (2)]) Suppose that κ is a singular cardinal and μcf(κ) <

κ for all μ < κ . Then dκ = 2κ .

Wenowspecify assignments to define a version of the formula�∗(T , 0) appropriate
for the dominating number. LetX = κθ and, for each limit ordinal i < θ , letXi = κi i .
Let � and �i be the relations <∗ on X and Xi , respectively. By Proposition 5.5 and
Fact 5.6, we have dκ = cf (X,�) and, for all limit i < θ , we have dκi = cf (Xi ,�i ).

For each limit ordinal i < θ , define a map πi : X → Xi as follows. For all x ∈ X

and all η < κi , let

πi (x)(η) =
{

x(η) if x(η) < i,

0 otherwise.

Note that we do indeed haveπi (x) ∈ κi i = Xi , as desired. Finally, let e : NS+
θ → Card

be defined by letting e(S) = dstat(Sκ) for all stationary S ⊆ θ (recall this notation
from Definition 3.3).

5.5 The general lemma

We now show that, in all of the cases introduced in this section, the corresponding
version of �∗(T , 0) holds for all stationary T ⊆ θ . Note that we may assume that
ϕθ
0 (i) = 0 for all i < θ , so clause (2) in the definition ofψ(T , 0) asserts that |Yi | � κi

for all i ∈ T .

Lemma 5.8 For any cardinal characteristic cc ∈ {m(θ, κ),D(κ, θ), rκ , dκ }, the cor-
responding formula �∗(T , 0) holds for every stationary T ⊆ θ .

Proof We begin with some general preliminaries and then split into cases depending
on the cardinal characteristic under consideration.

Fix a stationary set T ⊆ θ ; we may assume that every element of T is a limit
ordinal. Fix assignments for X, �, 〈(Xi ,�i , πi ) | i < θ〉, and e corresponding to one
of the cardinal characteristics introduced in this section. To verify �∗(T , 0), fix a set
Z ⊆ X and, for each i ∈ T , a set Yi ⊆ Xi such that
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• for all i ∈ T , |Yi | � κi ;
• for all z ∈ Z, there is a club C ⊆ θ such that, for all i ∈ C ∩ T , there is y ∈ Yi for
which πi (z) �i y.

For each i ∈ T , enumerate Yi as 〈yi,ξ | ξ < κi 〉 (with repetitions if |Yi | < κi ). We will
find Y ⊆ X such that |Y| � κ + e(T ) and, for all z ∈ Z, there is y ∈ Y for which
z � y. Our method for doing this will depend on the precise cardinal characteristic.

Case 1: m(θ, κ). Recall that in this case e(T ) = ∑
j<θ m(θ, κ j ). Therefore, for each

j < θ , we can fix a familyW j ⊆ [T ×κ j ]θ such that

• |W j | � e(T );
• for all u ∈ [T ×κ j ]θ, there is w ∈ W j such that |w ∩ u| = θ .

Let W ..= ⋃
j<θ W j . For each w ∈ W, let y∗

w = ⋃ {yi,ξ | (i, ξ) ∈ w}, and note that

y∗
w ∈ [κ]�θ .
Also, for each j < θ , let Y∗

j ⊆ [κ j ]θ be such that |Y∗
j | � e(T ) and, for all x ∈ [κ j ]θ,

there is y ∈ Y∗
j such that |y ∩ x | = θ . Finally, let

Y ..=
⋃

j<θ

Y∗
j ∪ ({y∗

w | w ∈ W j } ∩ [κ]θ ).

We claim that Y is as desired. It is evident that Y ⊆ X and |Y| � κ + e(T ). It
remains to show that, for all z ∈ Z, there is y ∈ Y such that z � y, i.e., |y ∩ z| = θ .
To this end, fix z ∈ Z. If there is j < θ such that z ⊆ κ j , then there is y ∈ Y∗

j such
that |y ∩ z| = θ , and we are done. Therefore, we may assume that z is unbounded in
κ . By assumption, there is a club C ⊆ θ such that, for all i ∈ C ∩ T , we have

• sup(z ∩ κi ) = κi , and hence πi (z) is an unbounded subset of z ∩ κi of order type
cf (i);

• there is ξi < κi for which πi (z) �i yi,ξi , i.e., |yi,ξi ∩ πi (z)| = cf (i).

Since each i ∈ T is a limit ordinal, we can apply Fodor’s lemma to find a fixed j < θ

and a stationary T ′ ⊆ C ∩ T such that ξi < κ j for all i ∈ T ′. Let u = {(i, ξi ) | i ∈ T ′}.
Thenu ∈ [T ×κ j ]θ, so, byour choice ofW j ,we canfindw ∈ W j such that |w∩u| = θ .
It follows that the set T ′′ ..= {i ∈ T ′ | (i, ξi ) ∈ w} is unbounded in θ .

Consider the set y∗
w

..= ⋃ {yi,ξ | (i, ξ) ∈ w}. Note that, for all i ∈ T ′′, we know
that πi (z) is an unbounded subset of z ∩ κi of order type cf (i), and we know that
|yi,ξi ∩ πi (z)| = cf (i). It follows that yi,ξi ∩ πi (z) is an unbounded subset of z ∩ κi ,
and therefore y∗

w ∩ z is an unbounded subset of z. In particular, y∗
w ∈ Y and z � y∗

w,
as desired.

Case 2: d(θ, κ). The argument in this case is very similar to that in the previous case, so
we suppress somedetails. Since e(T ) = d(θ, κ) = ∑

j<θ d(θ, κ j ),we canfix, for each

j < θ , a familyW j ⊆ [T ×κ j ]θ that is dense in ([T ×κ j ]θ,⊆) and has cardinality at
most e(T ). LetW ..= ⋃

j<θ W j and, for each w ∈ W, let y∗
w

..= ⋃ {yi,ξ | (i, ξ) ∈ w}.
Also, for each j < θ , fix Y∗

j ⊆ [κ j ]θ that is dense in ([κ j ]θ,⊆) and has cardinality

at most e(T ). Let Y ..= ⋃
j<θ Y

∗
j ∪ ({y∗

w | w ∈ W j } ∩ [κ]θ ).

123



12 Page 16 of 21 C. Lambie-Hanson

It is evident that Y ⊆ X and |Y| � κ + e(T ). To verify that Y is as desired, fix
z ∈ Z. We must find y ∈ Y such that y ⊆ z. If there is j < θ such that z ⊆ κ j , then
there is y ∈ Y∗

j such that y ⊆ z, and we are done. Thus, suppose that z is unbounded
in κ . Then there is a club C ⊆ θ such that, for all i ∈ C ∩ T , we have

• sup(z ∩ κi ) = κi ;
• there is ξi < κi for which yi,ξi ⊆ πi (z).

We can again find a stationary T ′ ⊆ C ∩ T and a fixed j < θ such that ξi < κ j for
all i ∈ T ′. Let u = {(i, ξi ) | i ∈ T ′}, and find w ∈ W j such that w ⊆ u. As before,
the set T ′′ ..= {i ∈ T ′ | (i, ξi ) ∈ w} is unbounded in θ ; moreover, w is precisely
{(i, ξi ) | i ∈ T ′′}. Therefore, y∗

w = ⋃ {yi,ξi | i ∈ T ′′} ⊆ z. It also follows exactly as in
the previous case that y∗

w is unbounded in κ and is therefore an element of Y.

Case 3: rκ . In this case, e(T ) = d(θ, κ). Therefore, for each j < θ , we can fix as in
the previous case a set W j ⊆ [T ×κ j ]θ such that W j is dense in ([T ×κ j ]θ,⊆) and
|W j | � d(T ). LetW = ⋃

j<θ D j and, for eachw ∈ D, let y∗
w = ⋃ {yi,ξ | (i, ξ) ∈ w}.

Finally, let Y = {y∗
w | w ∈ D} ∩ [κ]κ .

We claim that Y is as desired. It is evident that Y ⊆ [κ]κ and |Y| � e(T ). It remains
to verify that no element of Z splits every element of Y. To this end, fix z ∈ Z. By
assumption, we can find a club C ⊆ θ such that, for all i ∈ C ∩ T , we can find ξi < κi

such that either |yi,ξi ∩ πi (z)| < κi or |yi,ξi \πi (z)| < κi . We can also assume that, for
all i ∈ C , we have |z ∩ κi | = κi , and hence πi (z) = z ∩ κi .

Find a stationary S0 ⊆ C ∩ T such that either

(1) for all i ∈ S0, |yi,ξi ∩ πi (z)| < κi ; or
(2) for all i ∈ S0, |yi,ξi \πi (z)| < κi .

Without loss of generality, assume that (1) holds (the proof is symmetric if (2) holds).
For each limit ordinal i ∈ S0, we can find j(i) < i such that max{ξi , |yi,ξi ∩πi (z)|} <

κ j(i). Since S0 is a stationary subset of θ , we can therefore find a stationary S1 ⊆ S0
and a fixed j < θ such that j(i) = j for all i ∈ S1.

Let u = {(i, ξi ) | i ∈ S1}. Then u ∈ [θ ×κ j ]θ , so we can find w ∈ W j ⊆ W such
that w ⊆ u. Note that {i ∈ S1 | (i, ξi ) ∈ w} must be unbounded in θ , so we have
|y∗

w| = κ , and hence y∗
w ∈ Y. Moreover,

y∗
w ∩ z =

⋃

(i,ξ)∈w

(yi,ξ ∩ z) =
⋃

(i,ξ)∈w

(yi,ξ ∩ πi (z)) ⊆
⋃

i∈S1

(yi,ξi ∩ πi (z)).

Since |yi,ξi ∩ πi (z)| < κ j for all i ∈ S1 and κ j > θ = |S1|, it follows that |y∗
w ∩ z| �

κ j < κ , so z does not split y∗
w, i.e., we have z � y∗

w, as desired.

Case 4: dκ . In this case, e(T ) = dstat(T κ). Therefore, we can fix a familyH such that

• |H| = e(T );
• every element of H is a function from a stationary subset of T to κ whose range
is bounded below κ;

• for every function g from a stationary subset of T to κ such that the range of
g is bounded below κ , there is a function h ∈ H such that {i ∈ dom(h) | i /∈
dom(g) or h(i) 
= g(i)} is nonstationary in θ .
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Recall also that, for each i ∈ T and each ξ < κi , we have yi,ξ ∈ κi i .
For each h ∈ H, define a function y∗

h ∈ κθ as follows. Let T ′ = dom(h). Since the
range of h is bounded below κ , we know that, for all sufficiently large i ∈ T ′, we have
h(i) < κi , and hence yi,h(i) is defined. Therefore, for all sufficiently large i ∈ T ′ and
all η < κi , we have yi,h(i)(η) < i . Therefore, by Fodor’s lemma, for each η < κ , we
can find a j < θ such that

{
i ∈ T ′ | η < κi , h(i) < κi and yi,h(i)(η) = j

}

is stationary in θ . Let y∗
h (η) be the least such j .

Let Y = {y∗
h | h ∈ H}. We claim that Y is as desired. It is evident that Y ⊆ κθ and

|Y| � e(T ). It remains to verify that, for every z ∈ Z, there is y ∈ Y such that z <∗y.
To this end, fix z ∈ Z. By assumption, we can find a club C ⊆ θ such that, for all
i ∈ C ∩ T , there is ξi < κi for which πi (z)<∗yi,ξi . For each i ∈ C ∩ T , let

Ei = {
η < κi | yi,ξi (η) � πi (z)(η)

}
,

and note that |Ei | < κi . By two applications of Fodor’s lemma, we can find a j < θ

and a stationary T ′ ⊆ C ∩ T such that max{ξi , |Ei |} < κ j for all i ∈ T ′. Then the
map from T ′ to κ defined by sending each i ∈ T ′ to ξi has range bounded below κ , so
we can find h ∈ H and a club D ⊆ θ such that, letting T ′′ = dom(h), the following
statement holds: for all i ∈ D ∩ T ′′, we have i ∈ T ′ and h(i) = ξi .

We claim that z <∗y∗
h . To see this, first let E ..= ⋃

i∈D∩T ′′ Ei , and note that |E | �
θ ·κ j < κ . It therefore suffices to show that z(η) < y∗

h (η) for all η ∈ κ \ E . To this end,
fix η ∈ κ \ E . Fix � < θ such that η < κ� and z(η) < �. Then, for all i ∈ D ∩ T ′′ \�,
we have πi (z)(η) = z(η). Moreover, for all such i , we have η /∈ Ei , and hence
z(η) < yi,ξi (η) = yi,h(i)(η). Recall that y∗

h (η) was defined in such a way that there is
a stationary set T ∗ ⊆ T ′′ such that y∗

h (η) = yi,h(i)(η) for all i ∈ T ∗. Since D is a club
in θ , we can fix i∗ ∈ (D ∩ T ∗)\�. But then we have z(η) < yi∗,h(i∗)(η) = y∗

h (η), as
desired. ��

Combining the results of this and the previous section, we obtain the precise state-
ment of our main result.

Main Theorem Suppose that

• κ is a singular cardinal and cf (κ) = θ > ω;
• 〈κi | i < θ〉 is an increasing, continuous sequence of cardinals converging to κ;
• β is an ordinal for which ϕθ

β exists;
• S ⊆ θ is stationary;
• cc is one of the cardinal characteristics m(θ, κ), d(θ, κ), rκ , or dκ , and, for each

i < θ , cci is the corresponding cardinal characteristic m(cf (κi ), κi ), d(cf (κi ), κi ),
rκi , or dκi ;

• for all i ∈ S, we have cci � κ
+ϕθ

β(i)

i .

Then:
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(1) If cc = m(θ, κ), then cc � κ+β + ∑
j<θ m(θ, κ j ) + d(NSθ � S). Moreover, if

β < ω, then cc � κ+β + ∑
j<θ m(θ, κ j ).

(2) If cc = d(θ, κ) or cc = rκ , then cc � κ+β + d(θ, κ) + d(NSθ � S). Moreover, if
β < ω, then cc � κ+β + d(θ, κ).

(3) If cc = dκ , then cc � κ+β + dstat(Sκ).

Proof This follows directly from Lemma 5.8 and Corollary 4.4. ��

6 Open questions

Throughout this section, κ will denote an arbitrary infinite cardinal. We feel that the
most prominent cardinal characteristic at singular cardinals that is not covered by our
results here is the ultrafilter number, a close relative of the reaping number.

Definition 6.1 The ultrafilter number uκ is the minimal size of a base for a uniform
ultrafilter over κ . In other words, it is the minimal cardinal λ for which there exists a
uniform ultrafilter U over κ and a familyX ⊆ U such that |X| = λ and, for all Y ∈ U ,
there is X ∈ X such that |X \Y | < κ .

It is provable that uκ > κ , and the ultrafilter number at singular cardinals has been
extensively studied (cf. [6, 7, 9], among others).

Question 6.2 Does a version of our Main Theorem hold for the ultrafilter number?

We briefly mentioned the almost disjointness number in the introduction; we feel
that some interesting questions can be formulated around it. We first recall the relevant
definitions.

Definition 6.3 An almost disjoint family over κ is a familyA ⊆ [κ]κ such that, for all
distinct A, B ∈ A, we have |A ∩ B| < κ . Such a family is a maximal almost disjoint
family (MAD family) over κ if, moreover, there is no almost disjoint family B over κ

with A � B.

There are trivial ways to form MAD families over κ (as an extreme case, {κ} is a
MAD family over κ). The almost disjointness number aκ is defined to be the minimal
cardinality of a nontrivial MAD family over κ . It remains to specify what nontriviality
means. The most natural solution seems to be to say that a MAD family is nontrivial if
and only if its cardinality is greater than cf (κ) (this is the approach taken, for instance,
in [13]). Under this definition, it is not difficult to prove that aκ � acf (κ). However,
there always exist MAD families over κ of cardinality strictly greater than κ , so one
could also declare that a MAD family over κ is nontrivial if and only if its cardinality
is greater than κ . Let us denote the version of the almost disjointness number arising
from this more stringent definition of nontriviality by a∗

κ .

Question 6.4 Does a version of our Main Theorem hold for a∗
κ?

The most immediate specific incarnation of this question would be the following:
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Question 6.5 Suppose thatκ is a singular strong limit cardinal of uncountable cofinality
and there is a stationary subset S ⊆ κ consisting of singular cardinals such that, for all
μ ∈ S, there is a MAD family over μ of cardinality μ+. Must there be a MAD family
over κ of cardinality κ+?

Definition 6.6 A graph G is universal for graphs of size κ if, for every graph H with at
most κ-many vertices, there is an induced subgraph of G that is isomorphic to H . Let
ugκ denote the minimal number of vertices in a graph G that is universal for graphs
of size κ .

Question 6.7 Does a version of our Main Theorem hold for ugκ?

We are also interested in whether analogues of Silver’s theorem hold for statements
that are not naturally formulated as statements about cardinal characteristics but which
are consequences of 2κ = κ+. We record here some particularly prominent examples.

Definition 6.8 The polarized partition relation
(

κ+
κ

) → (
κ+
κ

)1,1
2 is the assertion that,

for every function c : κ+×κ → 2, there are sets A ∈ [κ+]κ+
and B ∈ [κ]κ such that

c � A × B is constant. The negation of this relation is denoted by
(

κ+
κ

)
�

(
κ+
κ

)1,1
2 .

Erdős, Hajnal, and Rado prove in [3] that, if 2κ = κ+, then
(

κ+
κ

)
�

(
κ+
κ

)1,1
2 .

On the other hand, Garti and Shelah prove in [5] that, assuming the consistency of
a supercompact cardinal, the positive relation

(
κ+
κ

) → (
κ+
κ

)1,1
2 consistently holds

for a singular strong limit cardinal κ (in their result, κ can have either countable or
uncountable cofinality).

Question 6.9 Suppose that κ is a singular cardinal of uncountable cofinality and there
is a stationary set S ⊆ κ consisting of singular cardinals such that, for all μ ∈ S, we

have
(

μ+
μ

)
�

(
μ+
μ

)1,1

2
. Must it be the case that

(
κ+
κ

)
�

(
κ+
κ

)1,1
2 ?

In an early draft of this paper, we included here a question about Aronszajn trees
at double successors of singular cardinals. We then realized that existing work of
Golshani and Mohammadpour [8] provides an answer to this question, so we give a
very brief account of this here.

Recall that, for a regular uncountable cardinal λ, a λ-Aronszajn tree is a tree of
height λ with no levels or branches of cardinality λ. If λ = μ+, then a λ-Aronszajn
tree T is special if there is a function f : T → λ that is injective on chains. Note
that a special μ+-Aronszajn tree remains special in any outer model in which μ+ is
preserved. By a result of Specker [22], if μ is regular and μ<μ = μ, then there is a
special μ+-Aronszajn tree. In particular, if 2κ = κ+, then there is a κ++-Aronszajn
tree. Therefore, the nonexistence of Aronszajn trees at the double successor of a
singular strong limit cardinal requires a failure of the Singular Cardinals Hypothesis.
In an earlier draft of this paper, we asked whether the existence of κ++-Aronszajn
trees satisfies a version of Silver’s theorem. Here, we give a consistent negative answer
to this question that follows almost immediately from the work in [8].
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Theorem 6.10 Suppose that κ is supercompact and λ > κ is measurable. Then there
is a forcing extension in which κ is a singular cardinal of uncountable cofinality, there
are μ++-Aronszajn trees for all μ < κ , but there are no κ++-Aronszajn trees.

Proof sketch We can assume that GCH holds in V . Therefore, by the aforementioned
result of Specker, there is a specialμ++-Aronszajn tree for allμ. By the techniques of
[15], we can arrange so that the supercompactness of κ is preserved after adding any
number of Cohen subsets to κ by forcing with an Easton-support iteration of length
κ with the property that, for all α < κ , either the αth iterand is forced to be trivial
or α is inaccessible and the αth iterand is forced to be of the form Add(α, β) for
some β < κ . Moreover, this iteration can be defined so that it preserves all cardinals.
(More precisely, we can let f : κ → Vκ be a Laver function and, for all α < κ , let
the αth iterand be forced to be trivial unless α is inaccessible, f (α) is a cardinal, and
f [α] ⊆ Vα , in which case the αth iterand is forced to be Add(α, f (α)).)
Let V1 be the extension of V by this forcing iteration. Since V and V1 have the

same cardinals, it remains true in V1 that there is a special μ++-Aronszajn tree for
all μ. Moreover, in V1 it is the case that the supercompactness of κ is preserved after
adding any number of Cohen subsets to κ .

Let δ < κ be a regular uncountable cardinal. By the results of [8] (in particular
the results of Sects. 4 and 5 of that paper), there is in V1 a forcing notion R with the
following properties:

• R preserves all cardinals below κ+;
• VR

1 |� cf (κ) = δ;
• VR

1 |� 2κ = λ = κ++;
• VR

1 |� there are no κ++-Aronszajn trees.

Since R preserves all cardinals below κ+, it remains true in VR

1 that there is a special
μ++-Aronszajn tree for all μ < κ . Therefore, VR

1 is the desired forcing extension. ��
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