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Abstract
In p-adic analysis one can find an analog of the classical gamma function defined
on the ring of p-adic integers. In 1975, Morita defined the p-adic gamma function
�p by a suitable modification of the function n �→ n!. In this note we prove that for
any given prime number p the Morita p-adic gamma function �p is differentially
transcendental over Cp(X). The main result is an analog of the classical Hölder’s
theorem, which states that Euler’s gamma function � does not satisfy any algebraic
differential equation whose coefficients are rational functions.
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1 Introduction

The problem of classifying functions in terms of closed-form expressions has a long
history. Depending on the context we consider some set of basic functions and a
list of admissible operations. Closed-form expressions use only a finite number of
those admissible operations. Similarly we can ask if a given equation or a system of
equations have a closed-form solution.We distinguish algebraic functions as solutions
of polynomial equations. A function which is not algebraic is called transcendental.
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B Elżbieta Adamus
esowa@agh.edu.pl

1 Faculty of Applied Mathematics, AGH University of Science and Technology, al. A. Mickiewicza 30,
30-059 Kraków, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40879-023-00602-7&domain=pdf
https://orcid.org/0000-0003-3533-6279


7 Page 2 of 8 E. Adamus

In a similar way we can classify functions using differential field extensions. If
A is a differential ring we denote by A{Y } the ring of differential polynomials in
the indeterminate Y . It is exactly the polynomial ring A[Yi ] in the indeterminates Yi ,
i ∈ N∪{0}, togetherwith the unique derivation determined byY ′

i
..= Yi+1 andY ..= Y0.

We distinguish differentially algebraic functions as solutions of algebraic differential
equations. The corresponding complement is the class of differentially transcendental
functions. Of course all differentially transcendental functions are transcendental. An
example of a transcendental but not differentially transcendental function is ex, which
is a solution of the differential equation y′(x) − y(x) = 0.

Another examples of closed-form expressions are elementary functions. The notion
was introduced by Joseph Liouville in the 1830s. This class of functions is closed
under arithmetic operations, composition and differentiation, but not under integration.
There are many well-known examples of elementary functions with non-elementary
antiderivative, e.g. e−x2, sin xx or sin x2. In general, the integral of a function expressible
in closed-form may not be so. Liouville in fact considered a wider class of functions,
namely Liouvillian functions. All algebraic functions are elementary and the class of
Liouvillian functions contains all elementary functions and their integrals. All Liou-
villian functions are differentially algebraic, but not conversely. This leads us to the
characterization of linear differential equations solvable by quadratures or solvable
in finite terms by means of their differential Galois group. With a given homoge-
neous linear differential equation we associate a differential field extension, namely
the Picard–Vessiot extension. This extension is Liouvillian if and only if the iden-
tity component of its differential Galois group is solvable. In particular algebraic
functions correspond to finite differential Galois groups. For more detailed informa-
tion see for example [1, Chapter 6]. Solutions of the Bessel’s differential equation
x2y′′(x) + xy′(x) + (x2 − a2) y(x) = 0, a ∈ C, may be not Liouvillian. The com-
putation of the Galois group of the Bessel equation can be found in [7, Appendix].
And finally there exist functions such as Euler’s gamma function �(z), which are not
solutions of any algebraic differential equation.

The Galois theory also has its topological version. This theory was developed
by Khovanskii (see for example [6]). It uses the monodromy group instead of the
Galois group. In case of algebraic functions the monodromy group is isomorphic to
the Galois group of the associated extension of the field of rational functions. For
a detailed information see [6, Section 4.4.3]. The monodromy group is defined for
many functions for which the Galois group is not. This approach to studying functions
representable by quadratures involves topological obstructions related to branching.
One can consider evenwider class of functions than those representable byquadratures,
namely meromorphic functions. In [6, Chapter 5], Khovanskii pointed out that the
composition of functions is not an algebraic operation and that in differential algebra
this operation is replaced with a differential equation describing it. However, this
does not work for functions like �(z). Topological Galois theory is dealing with such
functions. However, this method uses branching, so it cannot be used to prove that a
particular single-valued meromorphic function is not representable by quadratures.

A satisfactory Galois theory for linear differential equations was developed by Ellis
Kolchin under the assumption that the subfield of constants of a considered differential
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field is algebraically closed. This theory is known as the Picard–Vesssiot theory. This
theory can be also developed in case of formally real differential fields with a real
closed field of constants and over formally p-adic differential fields with a p-adically
closed field of constants (see [4]). As a result it is possible to characterise formally real
Liouvillian extensions of real differential fields with a real closed field of constants
(see [2]). These results have been generalized for partial differential real and p-adic
fields in [3].

In this note we prove that for any given prime number p the Morita p-adic gamma
function �p is differentially transcendental over Cp(X).

2 Preliminaries

If K ⊂ L is a differential field extension, then an element f ∈ L is called differentially
algebraic over K if there is a non-zero differential polynomial P ∈ K {Y } such that
P( f ) = 0. If f is not differentially algebraic over K thenwe say that f is differentially
transcendental over K .

One can consider the field of rational functions C(z) of a single complex variable
z as a differential field equipped with the standard derivation d

dz . Functions which are
differentially transcendental over C(z) are also called transcendentally transcenden-
tal or hypertranscendental. A well-known example of a differentially transcendental
function is Euler’s gamma function �(z). If we consider the Euler integral

∫ ∞

0
t z−1e−t dt,

it converges absolutely on {z ∈ C :Re(z) > 0}. For any z ∈ C such that Re(z) > 0
we define

�(z) =
∫ ∞

0
t z−1e−t dt .

Using the equality �(z) = �(z+1)
z one can extend the definition on the set C\Z�0,

where Z�0 = {k ∈ Z : k � 0}. Observe that �(z + n) is holomorphic for z ∈ C such
that Re(z) > −n. We use the identity theorem for holomorphic functions to obtain the
meromorphic function � : C\Z�0 → R+. Hölder’s theorem states that � does not
satisfy any algebraic differential equation whose coefficients are rational functions.
For a proof see the paper by Totik [10].

Theorem 2.1 (Hölder, 1887) The gamma function � is differentially transcendental
over C(z).
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3 TheMorita p-adic gamma function

In p-adic analysis one can find an analog of the classical gamma function defined on
the ring of p-adic integers. In 1975 in [8], Morita defined the p-adic gamma function
�p by a suitable modification of the function n �→ n!.

We denote byZp andQp the ring of p-adic integers and the field of p-adic numbers,
respectively. By Z

×
p we denote the group of invertible elements in Zp and by Cp we

denote the completion of the algebraic closure of the field Qp. The factorial function
n �→ n! cannot be extended by continuity to a function f : Zp → Qp, such that
f (n) = n f (n − 1) for all integers greater than 0. When p is odd, one needs to
consider the restricted factorial n!∗ given by

n!∗ =
∏

1� j�n
p � j

j

and use the generalization of the Wilson congruence, namely

∏
a� j<a+pν

p � j

j ≡ −1 mod pν,

where a and ν � 1 are integers. As a consequence we obtain that

f (n) ..= (−1)n
∏

1� j<n
p � j

j, n � 2,

satisfies f (a) = f (a + mpν) mod pν for m ∈ Z, m � 1.
The Morita p-adic gamma function is the continuous function f : Zp → Zp

extending

f (n) ..= (−1)n
∏

1� j<n
p � j

j = (−1)n(n − 1)!∗,

for n � 2. One can observe that the values of �p belong to Z
×
p . Recall that Zp =

pZp ∪Z
×
p , where Z

×
p = {x ∈ Zp : ‖x‖p = 1} and pZp = {x ∈ Zp : ‖x‖p < 1} is the

only maximal ideal of the ring Zp. What is more

�p(x + 1) = h p(x) ·�p(x), where h p(x) =
{

− x; x ∈ Z
×
p ,

− 1; x ∈ pZp.
(1)

It can be proved that one can also define �2 and that the formula given above holds
also for p = 2. For more detailed information see [9, Section 7.1.7].
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4 Main result

Let us note that �p may be extended to a nonempty ball of Cp, so it is a locally
analytic function on Cp. It has a power series expansion that converges for ‖x‖p <

p−(2p−1)/(p(p−1)). Details can be found in [5]. Consider the field Cp(X) of rational
functions with coefficients in Cp. We claim the following.

Theorem 4.1 For a given prime number p, the Morita p-adic gamma function �p is
differentially transcendental over Cp(X).

In the following proof we consider the antilexicographical ordering of monomials
in Cp(X)[Y0,Y1, . . . ,Yn]. If we consider α, β ∈ Z

n+1, α � 0, β � 0, then α > β

if in the vector difference α − β the leftmost nonzero entry is negative. For Y =
(Y0,Y1, . . . ,Yn) we write Y α > Y β if α > β. Thus we have Y0 < Y1 < · · · < Yn .

Proof Suppose on the contrary, that �p is not differentially transcendental over
Cp(X). If �p is differentially algebraic over Cp(X), then so is its restriction
g : pZp → Z

×
p , for all x ∈ pZp, g(x) = �p(x). Hence there exists a polynomial

P ∈ Cp[X ][Y0,Y1, . . . ,Yn] such that P(X ,Y0,Y1, . . . ,Yn) �≡ 0 and

P(x, g(x), g′(x), . . . , g(n)(x)) = 0 for all x ∈ pZp. (2)

Without loss of generality one can assume that P contains a monomial having a non-
zero power of one of the indeterminates Y0,Y1, . . . ,Yn . This is due to the fact that P
cannot define a function which is zero on g(pZp). Let q(X)Ya0

0 Ya1
1 . . . Yan

n , where q ∈
Cp[X ], be the leading term of P , i.e. the one with the biggest (a0, a1, . . . , an) ∈ Z

n+1

with respect to the antilexicographical ordering. Let us denote it by LT(P). Assume
that from all such polynomials we choose P which is minimal, in the sense that it
has a minimal leading term LT(P) and moreover deg q is minimal and the leading
coefficient of q is 1.

For every x ∈ pZp we have 1 = ‖1‖p �= ‖x‖p < 1. Hence ‖x + 1‖p =
max {‖x‖p, 1} = 1 and that is equivalent to x + 1 ∈ Z

×
p . By (1) for every x ∈ pZp

we obtain

�p(x + p) = − (x + p − 1)�p(x + p − 1)

= (−1)2(x + p − 1)(x + p − 2)�p(x + p − 2)

= (−1)p−1(x + p − 1)(x + p − 2) · · · (x + 1)�p(x + 1)

= (−1)p(x + p − 1)(x + p − 2) · · · (x + 1)�p(x).

Consequently,

g(x + p) = f (x)g(x) for all x ∈ pZp, (3)

123



7 Page 6 of 8 E. Adamus

where f (x) = (−1)p(x + p − 1)(x + p − 2) · · · (x + 1). We compute

g′(x + p) = f ′(x)g(x) + f (x)g′(x),
g′′(x + p) = f ′′(x)g(x) + 2 f ′(x)g′(x) + f (x)g′′(x),

· · ·

g(n)(x + p) =
n∑

k=0

f (n−k)(x)g(k)(x).

By (2) and (3) for every x ∈ pZp we have

P

(
x + p, f (x)g(x), f ′(x)g(x) + f (x)g′(x), . . . ,

n∑
k=0

f (n−k)(x)g(k)(x)

)
= 0.

We define

Q(X ,Y0,Y1, . . . ,Yn)

..= P

(
x + p, f (x)Y0, f ′(x)Y0 + f (x)Y1, . . . ,

n∑
k=0

f (n−k)(x)Yk

)
.

Consequently, Q(x, g(x), g′(x), . . . , g(n)(x)) = 0 for every x ∈ pZp. Since P
is minimal, P must divide Q. Applying the Euclidean algorithm to LT(P) and
LT(Q) = q(X + p) · f (X)a0+a1+···+anY a0

0 Ya1
1 . . . Yan

n we conclude that there exists
R(X) ∈ Cp[X ] such that

Q(X ,Y0,Y1, . . . ,Yn) = R(X)P(X ,Y0,Y1, . . . ,Yn). (4)

More precisely, R(X) = q(X+p)
q(X)

· f (X)a0+a1+···+an . Since deg f � 1 and a0 + a1 +
· · · + an �= 0, then deg R � 1. Cp is algebraically closed, so the nonzero polynomial
R must have a root x0 ∈ Cp. Substituting x0 into (4) we obtain

P

(
x0 + p, f (x0)Y0, f ′(x0)Y0 + f (x0)Y1, . . . ,

n∑
k=0

f (n−k)(x0)Yk

)
= 0.

If f (x0) �= 0, then X − x0 − p divides P , a contradiction with the minimality of P .
Therefore f (x0) = 0. A change of variables then yields

P(x0 + p, 0, Z1, . . . , Zn) = 0,
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for some x0 ∈ {1 − p, 2 − p, . . . ,−1}. Substituting X = x0 + p and Y0 = 0 into (4)
gives us

P

(
x0 + 2p, 0, f (x0 + p)Y1, . . . ,

n∑
k=1

f (n−k)(x0 + p)Yk

)

= R(x0 + p)P(x0 + p, 0,Y1, . . . ,Yn) = 0.

After performing a suitable change of variables we obtain

P(x0 + 2p, 0, Z1, . . . , Zn) = 0.

By induction

P(x0 + mp, 0, Z1, . . . , Zn) = 0 for all m ∈ Z, m � 1.

Hence P(X , 0, Z1, . . . , Zn) = 0 and Y0 divides P . We obtain a contradiction with
the minimality of P . Thus g is differentially transcendental over Cp(X). As a result
�p is differentially transcendental over Cp(X). �
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