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Abstract
Given two c-projectively equivalent metrics on a Kähler manifold, we show that
canoncially constructed Poisson-commuting integrals of motion of the geodesic flow,
linear and quadratic in momenta, also commute as quantum operators. The methods
employed here also provide a proof of a similar statement in the case of projective
equivalence. We also investigate the addition of potentials, i.e. the generalization to
natural Hamiltonian systems. We show that commuting operators lead to separation
of variables for Schrödinger’s equation.
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1 C-projective geometry, integrals and quantization rules

Definition 1.1 A Kähler manifold (of arbitrary signature) is a manifold M2n of real
dimension 2n endowed with the following objects:

• a (pseudo-)Riemannian metric g and its associated Levi-Civita connection ∇,
• a complex structure J , i.e. an endomorphism on the space of vector fields with

J 2 = −Id,
• g and J must be compatible in the sense that g(J X , Y ) = −g(X , JY ) and

∇ J = 0,
• we denote by � the two-form �(X , Y ) = g(J X , Y ).
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Definition 1.2 A regular curve γ : I → M is called J -planar if there exist functions
A, B : I → R such that

∇γ̇ γ̇ = A(t) γ̇ + B(t)J (γ̇ ) (1)

is fulfilled on I . Here γ̇ denotes the tangent vector to γ .

This is a natural generalization of geodesics on (pseudo-)Riemannianmanifolds that
in arbitrary parametrization are solutions of the equation ∇γ̇ γ̇ = A(t) γ̇ . Similarly,
the property of a curve to be J -planar survives under reparametrization.

Definition 1.3 Let g, g̃ be two Kähler metrics (of arbitrary signature) on (M, J ). They
are called c-projectively equivalent if and only if every J -planar curve of g is also
a J -planar curve of g̃. (If every J -planar curve of g is also a ˜J -planar curve of g̃
and vice versa then the complex structures J , ˜J coincide up to a sign, so we did not
restrict ourselves in defining c-projective equivalence for the case where both metrics
are Kähler w.r.t. the same complex structure.)

This is the Kähler analogue of projective equivalence on (pseudo-)Riemannian
manifolds and it was proposed by Otsuki and Tashiro [13]. For a thorough introduc-
tion to c-projective geometry see [4]. For completeness, we recall the definition of
projective equivalence, since Theorem 2.3 is the projective analogue of Theorem 2.2.
Since their proofs run in parallel, all statements about the projective setting will be
phrased as remarks placed after their c-projective counterparts.

Definition 1.4 Let g, g̃ be two (pseudo-)Riemannian metrics on a manifold M. They
are called projectively equivalent if and only if every unparametrized geodesic of g is
also an unparametrized geodesic of g̃.

1.1 The tensor A

Theorem 1.5 (see [6], and also [4, Section 5]) Two (pseudo-)Riemannian metrics g, g̃
that are Kähler on a manifold (M, J ) are c-projectively equivalent if and only if the
tensor

Ai
j
def=

∣

∣

∣

∣

det g̃

det g

∣

∣

∣

∣

1
2(n+1)

g̃il gl j , where g̃il g̃lm = δi
m,

satisfies the equation

∇k Ai j = λi g jk + λ j gik + λ̄i� jk + λ̄ j�ik, (2)

where

λ
def= 1

4
tr A, λi

def= ∇iλ and λ̄i = J j
i λ j .
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1568 J. Schumm

Here and throughout the rest of the paper we use the Einstein sum convention. An
index preceded by a comma is meant to indicate a covariant derivative. Raising and
lowering indices is always by means of g: λi = gi jλ j , where gis gs j = δi

j . A covari-
ant (c-)projectively equivalent metric g̃, as stated above will be the sole exception:
g̃is g̃s j = δi

j .

Remark 1.6 (projective case [2]) Two (pseudo-)Riemannianmetrics g, g̃ on amanifold
M are projectively equivalent if and only if the tensor

Ai
j
def=

∣

∣

∣

∣

det g̃

det g

∣

∣

∣

∣

1
n+1

g̃il gl j , where g̃il g̃lm = δi
m, (3)

satisfies the equation

∇k Ai j = λi g jk + λ j gik with λ
def= 1

2
tr A, λi

def= ∇iλ. (4)

Definition 1.7 We shall call Hermitian (g-self-adjoint and J -commuting) solutions of
(2) c-projectively compatible or simply c-compatiblewith (g, J ). Likewise, symmetric
solutions of (4) shall be called projectively compatible or simply compatible with g.

1.2 Conserved quantities of the geodesic flow

Throughout this paper we shall canonically identify symmetric contravariant tensors
with polynomials on T ∗M via the isomorphisms � and #:

� : T a1...al �→ T a1...al pa1 . . . pal ,

# : T a1...al pa1 . . . pal �→ T (a1...al ).

By the parentheseswemean symmetrisationwith the appropriate combinatorial factor:
T (a1...al ) = 1/l!∑(b1...bl )=π(a1...al )

T b1...bl , where π means any permutation.
Let (g, J , A) be c-compatible on M and consider the one-parameter family

t

K i j def= √

det(tId − A) (tId − A)−1i
l gl j . (5)

Throughout this paper the root is to be taken in such a way that we simply halve the
powers of the eigenvalues in det(tId− A). This is well defined because all eigenvalues
of A are of even multiplicity. In particular,

√
det(tId − A) can be negative and it is

smooth also near points where det(tId− A) = 0. With the tensors
t

K we associate the

functions
t

I : T ∗M → R

t

I
def= t

K i j pi p j . (6)
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Theorem 1.8 (Topalov [14], see also [4, Section 5]) Let (g, J , A) be c-compatible.

Then for any pair of real numbers (v,w) the quantities
v

I and
w

I Poisson-commute, i.e.

{ v

I ,
w

I } = 0.

Remark 1.9 The quantities
t

K are well-defined for all values of t : if we denote by

2n the dimension of the manifold, then
t

K is a polynomial of degree n − 1. This is a
consequence of J 2 = −Id, the antisymmetry of J with respect to g, the commutativity

of A with J and the construction of
t

K from A. In particular the coefficient of tn−1 of
t

K i j is gi j , which can be easily confirmed when looking at (5) in a frame such that A
is in Jordan normal form.

Remark 1.10 (projective case) Let (g, A) be compatible. We shall define

t

K i j def= det(tId − A) (tId − A)−1i
l gl j

for the projective case. Then for any pair s, t ∈ R the quantities
s

I
def= s

K i j pi p j

and
t

I
def= t

K i j pi p j are commuting integrals of the geodesic flow for g [2, 12]. The
projective and the c-projective cases differ merely by the power of the determinant.

For a c-compatible structure (g, J , A) there also exists a one-parameter family of
commuting integrals of the geodesic flow that are linear in momenta given by

t

L = t

V j p j ,
t

V j = J j
k gki∇i

√

det(tId − A). (7)

The commutation relations

{ t

L,
s

I } = 0 (8)

also hold. The number of functionally independent integrals within the family
t

I is
equal to the degree of the minimal polynomial of A. The number of functionally

independent integrals within
t

L is equal to the number of nonconstant eigenvalues of

A. Furthermore the integrals
t

I are functionally independent from
t

L , see [4, Section
5]. Thus the canonically constructed integrals are sufficient in number for Liouville-
integrability of the geodesic flow if all eigenvalues of A are non-constant (then they are
automatically pairwise different and each eigenvalue is of multiplicity two [4, Lemma
5.16]).

1.3 Quantization rules and commutators of operators

We adopt the quantization rules introduced by Carter [5] and Duval and Valent [7,
Section 3]. The formulae they give construct differential operators that are independent
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1570 J. Schumm

of coordinate choice and symmetricwith respect to the scalar product (the bar indicates
complex conjugation)

〈φ,ψ〉 =
∫

M
ϕ̄ψ

on the completion of the spaceH(M) of compactly supported half-densities onM. For
more details and a reasoning we refer to [5, 7] and the references therein. It is sufficient
for our purposes to recall the quantization formulae they give: for a homogeneous
polynomial Pm : T ∗M → R of degree m we construct its symmetric contravariant
tensor via # and compose with the covariant derivative:

P0 �→ ̂P0
def= P#

0 Id,

P1 �→ ̂P1
def= i

2

(

(P#
1 ) j ◦∇ j + ∇ j ◦(P#

1 ) j ),

P2 �→ ̂P2
def= − ∇ j ◦(P#

2 ) jk ◦∇k,

P3 �→ ̂P3
def= − i

2

(∇ j ◦(P#
3 ) jkl ◦∇k ◦∇l + ∇ j ◦∇k ◦(P#

3 ) jkl ◦∇l
)

.

(9)

For polynomials that are not homogeneous the quantization shall be done by quantiz-
ing the homogeneous parts and adding the results. So far we have been considering
polynomials of degree two on the cotangent bundle of degree atmost two and covariant
tensors of valence at most (2, 0). These correspond to differential operators of degree
at most 2. But the commutator of two such second order operators generally is an
operator of order three. Later on we can facilitate the expression for the commutator
of the quantum operators of two polynomials of degree two by using the quantum
operator of the Poisson bracket of the two polynomials of degree two.

2 Results

The main result of this paper is a quantum version of Theorem 1.8: using the quanti-
zation rules (9) from [5] and [7] we construct differential operators from symmetric
covariant tensors and show that these differential operators commute.

Let (g, J , A) be c-compatible and
t

K ,
t

I denote the associated Killing tensors and
integrals of the geodesic flow. By (9) their associated quantum operators are

t

̂I ( f )
def= − ∇ j ◦

t

K jk ◦∇k f .

(The different letters I and K must not confuse the reader, for
t

I # = t

K .)

Remark 2.1 Recalling Remark 1.9,
t

̂I is a polynomial of degree n − 1 in t and its lead
coefficient is −�g , the negative of the Laplace–Beltrami operator of g.
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Theorem 2.2 Let (g, J , A) be c-compatible. Then for any pair (v,w) the operators
v

̂I

and
w

̂I commute, i.e. [
v

̂I ,
w

̂I ] = 0.

This is a new result for both the Riemannian as well as the pseudo-Riemmanian
case.

Theorem 2.3 Let (g, A) be projectively compatible. Then for any pair (v,w) the oper-

ators
v

̂I and
w

̂I commute, i.e. [
v

̂I ,
w

̂I ] = 0.

Remark 2.4 Theorem 2.3 was already proven by Matveev [10, 11]. The proof that
we give however uses only C3-smoothness whereas the original proof used C8. The
proof that will be given here runs in parallel with the proof of Theorem 2.2. A series
of remarks to the proof of Theorem 2.2 will thus provide the proof of Theorem 2.3,
giving the intermediate steps for the projective case and pointing out the analogues
and differences.

We then improve the result of Theorem 2.2 by adding potential terms to these sec-
ond order differential operators, finding commuting quantum observables for certain
natural Hamiltonian systems.

Theorem 2.5 Let (g, J , A) be c-compatible. Let

t

̂I
def= − ∇ j ◦

t

K jk ◦∇k,
t

K i j def= √

det(tId − A) (tId − A)−1i
l gl j

be as in Theorem 2.2. Let

t

̂L = i

2

(∇ j ◦
t

V j + t

V j ◦∇ j
)

,
t

V j = J j
k gki∇i

√

det(tId − A) (10)

be the differential operators associated with the canonical Killing vector fields of

g. Let
nc
E = {�1, . . . , �r } be the set of non-constant eigenvalues of A. Let

c
E =

{�r+1, . . . , �r+R} be the set of constant eigenvalues and E = nc
E ∪ c

E. Denote by

m(�i ) the algebraic multiplicity of �i . Let the family of potentials
t

U , parametrized by
t, be given by

t

U =
r+R
∑

i=1

∏

�l∈E\{�i }

(t − �l)
m(�l )/2

(�i − �l)m(�l )/2
(t − �i )

m(�i )/2−1 fi (11)

with d fl ◦ A = �ld fl for all l = 1, . . . , r + R and with d fl proportional to d�l for

all l for which �l is non-constant. Let associated operators
t

̂U act on functions by

mere multiplication, i.e. for any point p we have (
t

̂U ( f ))(p) = t

U (p) f (p). Then the
operators

t

̂Q
def=

t

̂I +
t

̂U ,
t

̂L (12)
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1572 J. Schumm

commute within the one-parameter-families as well as crosswise, i.e. for all values of
t, s ∈ R:

[
t

̂Q,
s

̂Q] = [
t

̂Q,
s

̂L] = [
t

̂L,
s

̂L] = 0. (13)

Remark 2.6 Recalling Remark 1.9,
t

̂Q is a polynomial of degree n − 1 in t , whose
lead coefficient is the Schrödinger operator −�g + ̂U , where U is simply a name

introduced for the lead coefficient of
t

U .

Remark 2.7 Since
t

V j = J j
k gki∇i

√
det(tId − A) is a Killing vector field for any

choice of the real parameter t [4, Section 5], we have
t

̂L = i
2 (∇ j ◦

t

V j + t

V j ◦∇ j ) =
i

t

V j ◦∇ j .

Remark 2.8 1.Wedonot discusswhether the
t

U are smooth at all points of themanifold.
Smoothness is guaranteed at points that have a neighbourhood in which the number of
different eigenvalues is constant (seeDefinition 2.11 of regular points below), provided
that the fi are smooth.

2. Formula (11) generally allows
t

U to be complex-valued. The conditions under which
t

U is real for any choice of t ∈ R are the following: for any real eigenvalue �i of A the
corresponding function fi must be real-valued. For all pairs (�i , � j = �̄i ) of complex-
conjugate eigenvalues of A the corresponding functions fi and f j must be complex
conjugate to each other: fi = f̄ j .

3. The potentials that are admissible to be added to the quantum operators are the
same that may be added to the Poisson commuting integrals. In the proof we show
that the quantization imposes no stronger conditions on the potential than classical
integrability and then use the the conditions imposed by the Poisson-brackets to find
the allowed potentials.

Theorem 2.9 Let (g, J , A) be c-compatible and A semi-simple. Let
t

̂I ,
t

̂L be as in
Theorem 2.5. Then, for the operators

t

̂Q
def=

t

̂I +
t

̂U ,
t

̂L (14)

the commutation relations [
t

̂Q,
s

̂Q] = [
t

̂Q,
s

̂L] = 0 are satisfied if and only if the
potentials are of the form (11) with the sole exception that a function of t alone may

be added to
t

U.

A result similar to Theorems 2.5 and 2.9 for projective geometry has been published
in [2, Theorem 8]. Lemma 3.15 explains how this theorem is similar in nature to the
ones at hand.
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Corollary 2.10 Let (g, J , A),
t

̂I ,
t

̂L,
t

̂U be as in Theorem 2.5. Let ̂I(l), ̂L(l), ̂U(l) be the

coefficients of tl in
t

̂I ,
t

̂L,
t

̂U respectively. Then the commutation relations

[

t

̂I +
t

̂U , ̂I(l) + ̂U(l)
] = [

t

̂I +
t

̂U , ̂L(l)
] = [

t

̂L, ̂I(m) + ̂U(m)

]

= [

t

̂L, ̂L(l)
] = [

t

̂L, ̂I(m) + ̂U(m)

] = 0,

(15)

[

̂I(l) + ̂U(l), ̂I(m) + ̂U(m)

] = [

̂L(l), ̂L(m)

] = [

̂I(l) + ̂U(l), ̂L(m)

] = 0 (16)

hold true for any value of t and any values l, m ∈ {1, . . . , n − 1}.
Equations (16) are equivalent to

[

t

̂I +
t

̂U ,
s

̂I +
s

̂U
] = [

t

̂L,
s

̂L
] = [

t

̂I +
t

̂U ,
s

̂L
] = 0. (17)

Equations (15), (16), (17) remain true if a function of t alone is added to
t

̂U and

constants c(l) are added to ̂U(l). If all eigenvalues of A are non-constant and
t

̂I ,
t

̂V are
as in Theorem 2.5 then no other than the described ̂U(l) can be found such that the
commutation relations above hold.

Lastly, we shall show how the search for common eigenfunctions of the operators
can be reduced to differential equations in lower dimension in appropriate coordi-
nates around regular points. In particular, if all eigenvalues of A are non-constant we
can reduce it to ordinary differential equations only. Moreover, the case where all
eigenvalues of A are non-constant provides an example of reduced separability of
Schrödinger’s equation as described in [1].

Definition 2.11 Let (g, J , A) be c-compatible. A point x ∈ M is called regular with
respect to A if in a neighbourhood of x the number of different eigenvalues of A is
constant and for each eigenvalue � either d� �= 0 or � is constant in a neighbourhood
of x . The set of regular points shall be denoted by M0.

Definition 2.12 Let (g, J , A)be c-compatible onM.A local normal coordinate system
for M is a coordinate system where (g, J , A) assume the form of Example 2.13.
Existence of such coordinates in the neighbourhood of regular points is guaranteed by
[3, Theorem 1.6].

Example 2.13 (General example for c-compatible structures (g, J , ω, A) [3, Exam-
ple 5]) Let 2n � 4 and consider an open subset W of R

2n of the form W =
U ×V × S1× · · · × SL × SL+1× · · · × SL+Q for open subsets V , U ⊆ R

r, Sγ ⊆
R
4mcγ for γ = 1, . . . , L and Sγ ⊆ R

2mcγ for γ = L + 1, . . . , L + Q. Let t1, . . . , tl
be the coordinates on V and let the coordinates on U be separated into l complex
coordinates z1, . . . , zl and q real coordinates xl+1, . . . , xl+q and introduce the tuple
(χ1, . . . , χr ) = (z1, z̄1, . . . , zl , z̄l , xl+1, . . . , xl+q). Suppose the following data is
given on these open subsets:
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1574 J. Schumm

• Kähler structures (gγ , Jγ , ωγ ) on Sγ for γ = 1, . . . , L + Q.
• For each γ = 1, . . . , L + Q, a parallel Hermitian endomorphism Aγ : T Sγ →

T Sγ for (gγ , Jγ ). Forγ = 1, . . . , L , A has a pair of complex conjugate eigenvalues
cγ , c̄γ of equal algebraic multiplicitym(cγ ) = m(c̄γ ). For γ = L +1, . . . , L + Q,
A has a single real eigenvalue cγ of algebraic multiplicity m(cγ ).

• Holomorphic functions σ j (z j ) for 1 � j � l and smooth functions σ j (x j ) for
l + 1 � j � r .

Moreover, we choose one-forms α1, . . . , αr on S = S1× · · · × SL+Q that satisfy

dαi = (−1)i
L+Q
∑

γ=1

ωγ (Ar−i
γ · , ·) (18)

where Ar−i
γ denotes the (r − i)th power of Aγ .

To facilitate the expressions for the c-compatible structure that will be con-
structed, the following expressions shall be introduced: the tuple E = (�1, . . . , �n)

= (σ1, σ̄1, . . . , σl , σ̄l , σl+1, . . . , σl+q , c1, c̄1, . . . , cL , c̄L , cL+1, . . . , cL+Q) contains
the designated eigenvalues for A. Their algebraic multiplicities shall be denoted by
(m(�l), l = 1, . . . , r + R)= (2, . . . , 2, m(c1), m(c̄1), . . .). The non-constant eigen-

values shall be collected in order in
nc
E = (�1, . . . , �r ) = (σ1, σ̄1, . . . , σl , . . . , σ̄l , σl+1,

. . . , σl+q) and the collection of constant eigenvalues shall be referenced as
c
E = E \ nc

E .
The quantity �i for i = 1, . . . , r is given by �i = ∏

�∈nc
E\{�i }

(�i − �). The function

μi denotes the elementary symmetric polynomial of degree i in the variables
nc
E and

μi (�̂s) denotes the elementary symmetric polynomial of degree i in the variables
nc
E \{�s}. We shall further define the one-forms ϑ1, . . . , ϑr on W via ϑi = dti + αi .

Suppose that at every point of W the elements of
nc
E are mutually different and

different from the constants c1, c̄1, . . . , cL+Q and their differentials are non-zero.
Then (g, ω, J ) given by the formulae

g =
r

∑

i=1

εi�idχ
2
i +

r
∑

i=0

(−1)iμi

L+Q
∑

γ=1

gγ (Ar−i
γ · , ·)

+
r

∑

i, j=1

[ r
∑

s=1

μi−1(̂�s)μ j−1(̂�s)

εs�s

(

∂�s

∂χs

)2]

ϑiϑ j ,

ω =
r

∑

i=1

dμi ∧ϑi +
r

∑

i=0

(−1)iμi

L+Q
∑

γ=1

ωγ (Ar−i
γ · , ·),

(19)
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Geodesic flows of c-projectively equivalent metrics… 1575

dχi ◦ J = − 1

εi�i

∂�i

∂χi

r
∑

j=1

μ j−1(�̂i )ϑi ,

ϑi ◦ J = (−1)i−1
r

∑

j=1

ε j�
r−i
j

(

∂� j

∂χ j

)−1

dχ j

(20)

is Kähler, where (ε1, . . . , ε2l , ε2l+1, . . . , εr ) = (−1/4, . . . ,−1/4,±1, . . . ,±1)
determine the signature of g.

With local coordinates
γ

y on Sγ we write αi = ∑

γ,q
γ

αiqd
γ

yq and Aγ =
∑

p,q(Aγ )
q
p d

γ

y p⊗∂γ
yq
. Then the endomorphism A given by

A =
r

∑

s=1

�s dχs ⊗∂χs +
r

∑

i, j=1

(μiδ1 j − δi( j−1)) ϑi ⊗∂t j

+
L+Q
∑

γ=1

∑

p,q

(Aγ )
q
p d

γ

y p⊗
(

∂γ
yq

−
r

∑

i=1

γ

αiq∂ti

)

(21)

is c-compatible with (g, J , ω).

Remark 2.14 (ω as an exterior derivative) The formula forω in (19) can at least locally
be expressed in a very concise manner: Since Aγ is parallel and ωγ is closed for all
γ = 1, . . . , L + Q, we can at least locally find a one-form α0 on S such that

dα0 =
L+Q
∑

γ=1

ωγ (Ar
γ · , ·).

Then if we define the one-form ϑ0 on W simply as ϑ0 = α0, it is easy to check that

ω = d
r

∑

i=0

μiϑi .

Theorem 2.15 ([3, Theorem 1.6 / Example 5]) Suppose (g, J , A) are c-compatible on
M of real dimension 2n. Assume that in a small neighbourhood W ⊆ M0 of a regular
point, A has

• r = 2l + q non-constant eigenvalues on W which separate into l pairs of
complex-conjugate eigenvalues �1, �̄1, . . . , �l , �̄l : W → C and q real eigen-
values �l+1, . . . , �l+q : W → R,

• R = 2L + Q constant eigenvalues which separate into L pairs of complex conju-
gated eigenvalues c1, c̄1, . . . , cL , c̄L and Q real eigenvalues cL+1, . . . , cL+Q,

then the Kähler structure (g, J , ω) and A are given on W by the formulas of Example
2.13.
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1576 J. Schumm

A local description of Kähler structures (g, J , ω) with Riemannian signature that
admit a Hermitian solution of 4 goes back to [1], using the language of Hamiltonian
2-forms.

Theorem 2.16 Let (g, J , A) be c-compatible on M. Let A be semi-simple and let all
constant eigenvalues be real. Let (g, J , ω, A) be given by the formulas of Example
2.13 and adopt the naming conventions of Example 2.13.

Let ψ be a simultaneous eigenfunction of

t

̂Q
def= − ∇ j ◦

t

K jk ◦∇k +
t

̂U ,
t

K i j def= √

det(tId − A) (tId − A)−1i
l gl j

and

t

̂L = i

2

(∇ j ◦
t

V j + t

V j ◦∇ j
)

,
t

V j = J j
k gki∇i

√

det(tId − A)

for all t , where

t

U =
r+R
∑

i=1

∏

�l∈E\{�i }

(t − �l)
m(�l )/2

(�i − �l)m(�l )/2
(t − �i )

m(�i )/2−1 fi (22)

with d fl ◦ A = �ld fl for all l = 1, . . . , r + R and with d fl proportional to d�l for all l
for which �l is non-constant. Then there exist constants λ̃0, . . . , λ̃r+R−1, ω1, . . . , ωr ,
such that ψ satisfies the following ODE:

− 1

εk�
′
k

∂χk �
′
k

∏

�γ ∈ c
E

(�k − �γ )m(�γ )/2 ∂χk ψ

+
r

∑

i, j=1

εk(−�k)
2r−i− j

(�′
k)

2

∏

�γ ∈ c
E

(�k − �γ )m(�γ )/2 ωiω j + frψ =
n−1
∑

i=0

λi�
i
k,

i∂tq ψ = ωqψ

(23)

for q = 1, . . . , r , where the λi are given by

n−1
∑

i=0

λi s
i =

∏

�γ ∈ c
E

(s − �γ )m(�γ )/2−1
r+R−1
∑

j=0

λ̃ j

and ψ also fulfills the partial differential equations:
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r+R−1
∑

j=0

λ̃ j�
j
γ = −

∏

�c∈
c
E\{�γ }

(�γ − �c)

[

1

|det gγ |1/2 ∂ γ
yi

gi j
γ |det gγ |1/2 ∂ γ

y j
ψ

−i
r

∑

q=1

1

|det gγ |1/2 ∂ γ
yi

gi j
γ |det gγ |1/2 γ

αq jωqψ

−i
r

∑

q=1

gi j
γ

γ

αqiωq∂ γ
y j

ψ

−
r

∑

p,q=1

gi j
γ

γ

αqi
γ

α pjωqωpψ

]

+ 1
∏

�c∈
c
E\{�γ }(�γ − �c)m(�c)/2−1

fγ ψ (24)

for γ = r + 1, . . . , r + R.
The converse is also true: If a function ψ satisfies equations (23) and (24) for some

constants λ̃0, . . . , λ̃r+R−1, ω1, . . . , ωr , then it is an eigenfunction of
t

̂Q and
t

̂L.

A particular application of Theorem 2.16 is in the treatment of the Laplace–Beltrami
operator in the case where the number of integrals is maximal: if M is compact and
Riemannian its eigenfunctions providemeans to construct a countable basis in L2(M),
see e.g. [8]. Because the integrals are self-adjoint and commute pairwise aswell aswith
the Laplace–Beltrami operator they leave each others eigenspaces invariant and thus
there exists a countable basis of L2(M) that consists of simultaneous eigenfunctions of
the commuting operators. In our case, since� is within the span of our one-parameter
family of operators we can find such basis by solving the simultaneous eigenvalue
problems corresponding to the integrals only. In the case where all eigenvalues of A
are non-constant this reduces to ODE.

3 Proof of the results

3.1 Basic facts

We shall provide some formulae that will be used throughout the proof of Theorem
2.2. We will be mainly working with (2). Unless it is stated otherwise we are working
in the c-projective setting with only some remarks providing the analogue formulae
for the projective setting.

We start by computing the covariant derivative of det(A). By using Jacobi’s formula
d det M = tr(Ad(M)dM), we get
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∇k det(A) = det(A)A−1q
r ∇k Ar

q

= det(A)A−1q
r

[

λr gqk + λqδr
k + grs λ̄s�qk + λ̄q grs�sk

]

=4 det(A)A−1s
kλs .

(25)

Equation (2) was used to expand the covariant derivative of A and then the properties
of J interacting with g were exploited to obtain this.

Lemma 3.1 ([4, Section 5]) A and thus tId − A and (tId − A)−1 are self-adjoint

with respect to ∇2λ: A−1 j
l λ j,k = A−1 j

kλ j,l . The last claim is of course true only if
(tId − A)−1 exists.

That is, if we consider the second derivative of λ in the way that it maps two vector
fields ξ, η to a scalar function on M then we have ∇2λ(Aξ, η) = ∇2λ(ξ, Aη) for all
(ξ, η).

Proof of Lemma 3.1 Without loss of generality we may assume that A is invertible.
Otherwise we may choose ε such that εId − A is invertible. Then we can apply the
same procedure that we will apply to ln det A to ln det(εId − A) instead. We can
therefrom show that (εId − A)−1 is self-adjoint with respect to ∇2λ. And thus by
linear algebra εId − A and consequentially A are also ∇2λ-self-adjoint.

Now to the main argument: We compute the second covariant derivative of ln det A
using (25), (2), the general identity dA−1 = A−1 ·(dA) · A−1 as well as the antisym-
metry of J with respect to g:

1

4
∇k∇l ln det A = λ j A−1 j

pg psλs A−1q
l gqk + λ j A−1 j

k A−1q
l λq

+ λ j A−1 j
pg ps λ̄s A−1q

l �qk

− λ j A−1 j
p J p

k λ̄q A−1q
l + A−1 j

l λ j,k .

(26)

The left-hand side is symmetricwith respect to (k, l). The first, second and fourth terms
on the right-hand side are symmetric as well. The third term vanishes. Consequently
the last term must be symmetric as well. Thus A−1 is self-adjoint with respect to∇2λ.
By means of linear algebra, the self-adjointness with respect to λ j,k is also true for
(tId− A) or (tId− A)−1. The latter of course is only true, provided that t is not chosen
to be within the spectrum of A. This concludes the proof of Lemma 3.1. ��
Remark 3.2 (projective setting) The formula A j

l λ j,k = A j
kλ j,l is true for the pro-

jective setting as well. Performing the same computations as in Lemma 3.1 gives
the intermediate results ∇k det(tId − A) = −2 det(tId − A)(tId − A)−1s

kλs and
1
2∇k∇l ln det A = λ j A−1 j

pg psλs A−1q
l gqk + λ j A−1 j

k A−1q
l λq + A−1 j

l λ j,k to which
the same logic is applied as in the c-projective case.

Lemma 3.3 Let S be an endomorphism on the space of vector fields on M with the
following properties: J ◦ S = S ◦ J , A◦ S = S ◦ A, ∇2λ(S · , ·) = ∇2λ( · , S ·) and
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g(S · , ·) = g( · , S ·). Then the formula

Rr
i jk Arl Si j − Rr

i jl Ark Si j = 0 (27)

is valid.

The sign of the Riemann tensor is chosen so that Ri
jkl = ∂k�

i
l j − ∂l�

i
k j +�i

ks�
s
l j −

�i
ls�

s
k j . It is obviously not essential for the formula but the proof would need a few

changes in the signs.

Proof of Lemma 3.3 In the proof we reuse and extend the ideas used in the proof of
equation (12) in [9]. We inspect the second derivative of A:

Rr
jkl Air + Rr

ikl Ar j = (∇l∇k − ∇k∇l)Ai j

= λi,l g jk − λi,k g jl + λ j,l gik − λ j,k gil

+ λ̄i,l� jk − λ̄i,k� jl + λ̄ j,l�ik − λ̄ j,k�il .

(28)

The first equality is the Ricci identity and is true for any (0, 2)-tensor. The second
equality comes from differentiating (2). We continue by adding the equation with
itself three times after performing cyclic permutations of ( j, k, l). The three terms
rising from the first term on the left-hand side of (28) vanish due to the Bianchi
identity. On the right-hand side only terms involving λ̄ remain:

Rr
ikl Ar j + Rr

i jk Arl + Rr
il j Ark

= (+ λ̄i,l� jk + λ̄i,k�l j + λ̄i, j�kl

− λ̄i,k� jl − λ̄i,l�k j − λ̄i, j�lk
) + (i ↔ j)

(29)

+ (i ↔ j) means that the preceding term is to be added again, but with indices i and
j interchanged. We now multiply this equation with Si j . Since S is g-self-adjoint and
commutes with J , we have λ̄i, j Si j = 0. Using this and using again that S commutes
with J , the right-hand side simplifies as follows:

Rr
ikl Ar j Si j + Rr

i jk Arl Si j + Rr
il j Ark Si j = 4

(

S j
k λ j,l − S j

l λ j,k
)

.

S ◦ A is g-self-adjoint because S and A are g-self-adjoint and commute. As a conse-
quence, we have that Rr

ikl Ar j Si j vanishes on the left-hand side. Further utilizing the
symmetry of the curvature tensor as well as the self-adjointness of S with respect to
∇2λ we reach the desired result:

Rr
i jk Arl Si j − Rr

i jl Ark Si j = 0. ��

Remark 3.4 (projective case) In the projective case Lemma 3.3 also holds true. The
procedure involves the same steps as in the proof of Lemma 3.3. Removing the terms
involving � from (28) gives the intermediate step for the projective case. Equation
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(29) trivially simplifies to Rr
ikl Ar j + Rr

i jk Arl + Rr
il j Ark = 0. After multiplication

with Si j the first term vanishes with the same argument as in the c-projective case and
the result is obtained. Since the proof of Corollary 3.5 involves only linear algebra,
the arguments are exactly the same in the projective and the c-projective case.

Corollary 3.5 Linear algebra applied to (27) provides the formula

(vId − A)−1lr
Rk

jir Si j − (vId − A)−1kr
Rl

jir Si j = 0. (30)

Proof Consider the endomorphism Rr
i jl Si j on the space of vector fields. Raising and

lowering indices in (27) shows that it commuteswith A. Consequently it also commutes
with (vId − A) and thus with (vId − A)−1. Standard index manipulations using the
symmetries of the curvature tensor imply the result. ��

3.2 Proof of Theorem 2.2

The family
t

̂I is a polynomial in t and therefore continuous. It is therefore sufficient
to show that the commutator vanishes for all v and w that are not in the spectrum of
A. Otherwise we can consider two sequences (vn)n∈N and (wn)n∈N where none of the
elements of the sequence are in the spectrum of A and that converge to v and w. Then

for each of the pairs (vn, wm) from the sequences the commutator [
vn
̂I ,

wm
̂I ] will vanish

and consequently it will vanish in the limit (m, n) → ∞.
Equations (3.12), (3.13) and (3.14) in [7] give us the general formula for the com-

mutator of two operators formed from arbitrary homogeneous polynomials P2, Q2 of
degree two on T ∗M:

[̂P2, ̂Q2] = i ̂{P2, Q2} + 2

3

(∇ j B jk
P2,Q2

)∇k . (31)

Here {P2, Q2} is the Poisson bracket of the two homogeneous polynomials P2 and
Q2 (of degree two) on T ∗M. {P2, Q2} is a polynomial of degree three in momenta.
We recall that the “hat” over {P2, Q2} is explained in (9): This polynomial is mapped
to a differential operator according to

·̂ : P3 �→ ̂P3
def= − i

2

(∇ j ◦ P jkl
3 ◦∇k ◦∇l + ∇ j ◦∇k ◦ P jkl

3 ◦∇l
)

where for a given polynomial P3 the quantities P jkl
3 are chosen so that they are

symmetric and P3 = P jkl
3 p j pk pl .

The tensor Bkl
P2,Q2

is given by the formula

B jk
P2,Q2

= Pl[ j∇l∇m Qk]m + Pl[ j Rk]
mnl Qmn − (P ↔ Q)

− ∇l Pm[ j∇m Qk]l − Pl[ j Rlm Qk]m .
(32)
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The brackets around the indices mean taking the antisymmetric part. In the third term
∇l acts only on P . The subtraction of (P ↔ Q) is meant to act upon the two leftmost
terms. For the two rightmost terms the antisymmetrization w.r.t. ( j ↔ k) is the same
as if one were to antisymmetrize these terms w.r.t. (P ↔ Q). For formula (32) the sign
of Ri

jkl = ∂k�
i
l j − ∂l�

i
k j + �i

ks�
s
l j − �i

ls�
s
k j is important. But the reader may forget

about it at once because it is not needed for our further investigations, as will be seen
in the upcoming Lemmas 3.8 and 3.10.

We plug the operators
v

̂I and
w

̂I into formula (31). Using Theorem 1.8 by Topalov
we get

[
v

̂I ,
w

̂I ] = 2

3

(∇ j B jk
v

I ,
w

I

)∇k . (33)

Remark 3.6 i ̂{P2, Q2} in formula (31) is a differential operator of order three while
the other term on the right-hand side is a differential operator of order one. Therefore

it is a necessary condition for the quantities
v

I and
w

I to Poisson-commute in order for
their associated differential operators to commute. This is of course a well-known fact.

Remark 3.7 (projective case) The fact that
t

K is a family of Killing tensors polynomial
of degree n − 1 in t and that their corresponding quadratic polynomials on T ∗M
Poisson commute pairwise can be found in [2]. Employing this instead of Theorem
1.8 brings proof in the projective case to the point where only equation (34) needs to
be verified.

It remains to prove that

∇ j B jk
v
I ,

w
I

= ∇ j

(

( v

K l[ j∇l∇m
w

K k]m − (v ↔ w)
) − ∇l

v

K m[ j∇m
w

K k]l

+ ( v

K l[ j Rk]
mnl

w

K mn − (v ↔ w)
) − v

K l[ j Rlm
w

K k]m)

= 0.
(34)

The proof will be split into three steps: first we show that
v

K l[ j Rk]
mnl

w

K mn

− (v ↔ w) = 0. In the second step we show that
v

K l[ j Rlm
w

K k]m = 0. This will
be done in Lemmas 3.8 and 3.10. These will reduce (34) to

∇ j
( v

K l[ j∇l∇m
w

K k]m − (v ↔ w) − ∇l
v

K m[ j∇m
w

K k]l) = 0 (35)

which we will show in the last step.

Lemma 3.8
v

K l[ j Rk]
mnl

w

K mn − (v ↔ w) = 0.

Proof of Lemma 3.8 It follows from Lemma 3.1 that in Corollary 3.5 we may take

S = √
det(wId − A)(wId − A)−1, i.e. Si j = w

K i j . Plugging this into equation (30)
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and multiplying with
√
det(vId − A) gives

2
v

K l[ j Rk]
mnl

w

K mn = 0. (36)

Interchanging v andw, subtracting the result from this and dividing by 2 provesLemma
3.8. ��
Remark 3.9 (projective case)Lemma3.8 is true in the projective and c-projective cases.
The proof for the projective case only requires to take S = det(wId− A)(wId − A)−1

and multiplying with det(vId − A) instead of
√
det(vId − A).

Lemma 3.10
v

K l[ j Rlm
w

K k]m = 0

Proof of Lemma 3.10 If we let S = Id in Corollary 3.5, then in formula (30) the mul-
tiplication with Si j = gi j means contraction of the Riemann tensor to the negative of
the Ricci tensor. Raising and lowering indices yields that (vId− A)−1 commutes with
the Ricci tensor when both are considered as endomorphisms on the space of vector
fields:

(vId − A)−1r
l Rk

r − (vId − A)−1k
r Rr

l = 0. (37)

Of course, (wId − A)−1 commutes with (vId − A)−1 and the Ricci tensor as well, so
by multiplying (37) with (wId − A)−1l

j and using the commutativity gives

(wId − A)−1k
r Rr

l (vId − A)−1l
j − (vId − A)−1k

r Rr
l (wId − A)−1l

j = 0. (38)

After multiplication of (38) with
√
det(vId − A) det(wId − A) and raising and low-

ering indices, Lemma 3.10 is proven. ��
Remark 3.11 (projective case) Replacing the multiplication of

√
det(vId − A)√

det(wId − A) with det(vId − A) det(wId − A) is the only difference between the
proof of Lemma 3.10 in the projective and c-projective cases.

Having establishedLemmas3.8 and3.10wenowcompute the terms
v

K l[ j∇l∇m
w

K k]m

− (v ↔ w) and∇m
v

K l[ j∇l
w

K k]m separately and then show that (35) is fulfilled to prove
Theorem 2.2.

We introduce a shorthand notation:

� = grad λ = (gi jλ j ), �̄ = Jgrad λ,
t

M = (tId − A)−1

for any t outside the spectrum of A.
We get

∇k det(tId − A) = − 4 det(tId − A)
t

Ms
kλs
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in the same way as we have obtained formula (25). Using this, the general matrix
identity dC−1 = C−1 ·dC ·C−1 and (2), the covariant derivative of the Killing tensor

t

K evaluates to

∇k
t

K jl = √

det(tId − A)
[ − 2

t

Ms
kλs

t

M j
r grl + t

M j
pλ

p
t

Ml
k

+ t

M j
k

t

Ml
qλq − t

M j
pg ps λ̄s

t

Ml
q J q

k − t

Ml
r grq λ̄q

t

M j
p J p

k

]

.

(39)

Contracting the indices k and l we get

∇k
t

K jk = √

det(tId − A)
[ − 2

t

M j
l

t

Ml
sλ

s + t

M j
l λl tr(

t

M )
]

. (40)

For the derivative of this expression we receive

∇l∇m
t

K km = √

det(tId − A)
[

2
t

Mr
l λrλs gts

t

Mm
t

t

Mk
m + 2

t

Mq
l

t

Mr
qλrλs gts

t

Mk
t

+ 2
t

Mr
l λ̄r λ̄s gts

t

Mm
t

t

Mk
m + 2

t

Mq
l

t

Mr
q λ̄r λ̄s gts

t

Mk
t

− t

Mr
l λrλs gst

t

Mk
l tr(

t

M ) − t

Mr
l λ̄r λ̄s gst

t

Mk
l tr(

t

M )

− 2
t

Mk
m g(

t

M�,
t

M�) − 2
t

Mk
r

t

Mr
l g(

t

M�,�)

+ t

Mk
l g(

t

M�,�) tr(
t

M ) − 2λs,l g
ps

t

M p
t

t

Mk
p

+ λs,l g
ps

t

Mk
ptr(

t

M )
]

.

(41)

We shall denote by (
w

M�)k the k-th component of
w

M (�). Now multiplying the pre-

vious equation with
v

K l j and antisymmetrizing with respect to ( j ↔ k) and (v ↔ w)

gives

v

K l[ j∇l∇m
w

K k]m − (v ↔ w) = 1

2

√

det(vId − A)
√

det(wId − A)

· [[[

2(
v

M
w

M�) j (
w

M 2�)k + 2(
v

M
w

M 2�) j (
w

M�)k

− (
v

M
w

M�) j (
w

M�)k tr(
w

M )
]

+ (�↔ �̄)
] − ( j ↔ k)

] − (v ↔ w). (42)

Here (�↔ �̄) indicates that the previous bracket shall be added with � replaced
by �̄, ( j ↔ k) indicates antisymmetrization with respect to j and k, likewise for
(v ↔ w). In (42) the terms from (41) involving second derivatives of λ have cancelled
out as a consequence of Lemma 3.1. When forming the right-hand side expression
of (42) the terms of the second to the last row of (41) cancel each other out after the
antisymmetrization ( j ↔ k) due to (vId − A) and (wId − A) commuting and being
self-adjoint to g.
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Remark 3.12 (projective case) To get the formula for
v

K l[ j∇l∇m
w

K k]m − (v ↔ w) in
the projective case we perform the same steps, using (4) instead of the c-projective
formula (2). The next three equations give projective analogues of the formulae (39),
(41) and (42):

∇k
t

Kjl = det(tId − A)
[ − 2

t

Ms
kλs

t

M j
r grl + t

M j
pλ

p
t

Ml
k + t

M j
k

t

Ml
qλq]

,

(43)

∇l∇m
t

K km = det(tId − A)
[ t

Mr
l λrλs gts

t

Mm
t

t

Mk
m + t

Mq
l

t

Mr
qλrλs gts

t

Mk
t

− t

Mr
l λrλs gst

t

Mk
l tr(

t

M )

− t

Mk
m g(

t

M�,
t

M�) − t

Mk
r

t

Mr
l g(

t

M�,�)

+ t

Mk
l g(

t

M�,�) tr(
t

M )

− λs,l g
ps

t

M p
t

t

Mk
p + λs,l g

ps
t

Mk
ptr(

t

M )
]

,

v

K l[ j∇l∇m
w

K k]m − (v ↔ w) = 1

2
det(vId − A) det(wId − A)

· [[

(
v

M
w

M�) j (
w

M 2�)k + (
v

M
w

M 2�) j (
w

M�)k

− (
v

M
w

M�) j (
w

M�)k tr(
w

M )
]

− ( j ↔ k)
] − (v ↔ w). (44)

general matrix identity

(vId − A)−1− (wId − A)−1= (w − v) ·(vId − A)−1 ·(wId − A)−1

which reads
v

M − w

M = (w − v)
v

M
w

M in our shorthand, as well as the trace applied to
this matrix identity we expand (42):

v

K l[ j∇l∇m
w

K k]m − (v ↔w) = 1

2

√

det(vId − A)
√

(wId − A) · [[[

(w − v)−1

[

2(
v

M�) j (
w

M 2�)k − 2(
w

M�) j (
w

M 2�)k

+ 2(
v

M
w

M�) j (
w

M�)k − 2(
w

M 2�) j (
w

M�)k

− (
v

M�) j (
w

M�)k tr(
w

M ) + (
w

M�) j (
w

M�)k tr(
w

M )
]]

− (v ↔ w)
] − ( j ↔ k)

] + (�↔ �̄).
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We strike out terms that cancel after antisymmetrization w.r.t. ( j ↔ k):

= 1

2

√

det(vId − A)
√

det(wId − A) · [[

(w − v)−1

· [

2(
v

M�) j (
w

M 2�)k + 2(
v

M
w

M�) j (
w

M�)k

− (
v

M�) j (
w

M�)k tr(
w

M )
]

− (v ↔ w)
] − ( j ↔ k)

] + (�↔ �̄).

We expand (v ↔ w) and ( j ↔ k). The sign of the antisymmetrization is caught in the
prefactor (w − v)−1:

= 1

2

√

det(vId − A)
√

det(wId − A)(w − v)−1

·[2( v

M�) j (
w

M 2�)k + 2(
w

M�) j (
v

M 2�)k

+2(
v

M
w

M�) j (
w

M�)k + 2(
w

M
v

M�) j (
v

M�)k

−2(
v

M�)k(
w

M 2�) j − 2(
w

M�)k(
v

M 2�) j

−2(
v

M
w

M�)k(
w

M�) j − 2(
w

M
v

M�)k(
v

M�) j

−(
v

M�) j (
w

M�)k tr(
w

M ) − (
w

M�) j (
v

M�)k tr(
v

M )

+(
v

M�)k(
w

M�) j tr(
w

M ) + (
w

M�)k(
v

M�) j tr(
v

M )
]

+(�↔ �̄).

We can now apply
v

M − w

M = (w −v)
v

M
w

M and tr(
v

M )− tr(
w

M ) = (w −v)tr(
v

M
w

M ) in
the opposite direction as before, pairing terms (1,8), (2,7), (3,6), (4,5), (9,12), (10,11)
in the bracket:

= 1

2

√

det(vId − A)
√

det(wId − A)

· [[ − 2(
v

M 2
w

M�) j (
w

M�)k − 2(
v

M�) j (
v

M
w

M 2�)k

+ (
v

M�) j (
w

M�)k tr(
v

M · w

M )
]

− ( j ↔ k)
] + (�↔ �̄).

(45)

Remark 3.13 (projective case) Performing the same steps on (44) gives

v

K l[ j∇l∇m
w

K k]m − (v ↔ w) = 1

2
det(vId − A) det(wId − A)

· [[ − (
v

M 2
w

M�) j (
w

M�)k − (
v

M�) j (
v

M
w

M 2�)k

+ (
v

M�) j (
w

M�)k tr(
v

M · w

M )
] − ( j ↔ k)

]

(46)
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for the projective scenario.

We have now worked
v

K l[ j∇l∇m
w

K k]m − (v ↔ w) into a suitable form. From (39) we

now compute ∇m
v

K l[ j∇l
w

K k]m :

∇m
v

K l[ j∇l
w

K k]m = 1

2

√

det(vId − A)
√

det(wId − A)

· [[ − 2(
v

M 2
w

M�) j (
w

M�)k − 2(
v

M�) j (
v

M
w

M 2�)k

+ (
v

M�) j (
w

M�)k tr(
v

M · w

M )
]

− ( j ↔ k)
] − (�↔ �̄).

(47)

In this equation ( j ↔ k) yields the same result as (v ↔ w).

Remark 3.14 (projective case) By means of (43) the projective analogue of (47) eval-
uates to

∇m
v

K l[ j∇l
w

K k]m = 1

2
det(vId − A) det(wId − A)

· [[ − 2(
v

M 2
w

M�) j (
w

M�)k − 2(
v

M�) j (
v

M
w

M 2�)k

+ (
v

M�) j (
w

M�)k tr(
v

M · w

M )
] − ( j ↔ k)

]

.

(48)

We see that the right-hand side expression is equal to the right-hand side expression
of (46). Thus if we plug (46) and (48) into (35) then both terms cancel each other and
(35) is satisfied without even having to carry out the differentiation, concluding the
proof of Theorem 2.3. The fact that in the projective case B jk

v
I ,

w
I
vanishes, whereas in the

c-projective case ∇ j B jk
v
I ,

w
I
vanishes but B jk

v
I ,

w
I
does not is the most significant difference

between the projective and the c-projective cases.

We now compare (45) and (47): they are the same except that the first is sym-
metric with respect to (�↔ �̄) while the latter is antisymmetric. Subtracting both
consequently yields

v

K l[ j∇l∇m
w

K k]m − (v ↔ w) − ∇m
v

K l[ j∇l
w

K k]m

= √

det(vId − A)
√

det(wId − A)

· [ − 2(
v

M 2
w

M �̄) j (
w

M �̄)k − 2(
v

M �̄) j (
v

M
w

M 2�̄)k

+ (
v

M �̄) j (
w

M �̄)k tr(
v

M · w

M )
] − (v ↔ w).

(49)

It remains to show that (35) is fulfilled, that is to apply ∇ j to this expression and show
that it vanishes. In the computation we use
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• the compatibility condition (2),
• Jacobi’s formula for the derivative of the determinant,
• d(A−1) = −A−1 ·d(A) · A−1

to expand the left-hand side expression of (35). We then immediately strike out terms
that vanish individually due to the self-adjointness of A with respect to g and the
antisymmetry of J with respect to g:

∇ j
( v

K l[ j∇l∇m
w

K k]m −(v ↔ w) − ∇m
v

K l[ j∇l
w

K k]m)

= − 2
√

det(vId − A)
√

det(wId − A)

·[2g(
v

M
w

M �̄,
v

M
w

M �̄)(
w

M� − v

M�)k

−2g(
v

M
w

M �̄,
w

M �̄ − v

M �̄)(
v

M
w

M�)k

+2g(�̄,
v

M
w

M �̄)
]

(
v

M
w

M (
w

M� − v

M�))k

−2g(�̄,
w

M �̄ − v

M �̄)(
v

M 2
w

M 2�)k

+λ̄s gls
v

Mm
l

w

Mt
m

v

M j
t λ̄p, j g

pq
w

Mk
q

−λ̄s gls
w

Mm
l

v

Mt
m

w

M j
t λ̄p, j g

pq
v

Mk
q

+λ̄s g ps
v

M j
pλ̄t, j g

tr
w

Ml
r

v

Mm
l

w

Mk
m

−λ̄s g ps
w

M j
pλ̄t, j g

tr
v

Ml
r

w

Mm
l

v

Mk
m

+tr(
v

M
w

M ) · [

g(�̄,
v

M
w

M �̄)(
w

M� − v

M�)k

−g(�̄,
w

M �̄ − v

M �̄)(
v

M
w

M�)k

+λ̄s g ps
v

M j
pλ̄t, j g

tr
w

Mk
r − λ̄s g ps

w

M j
pλ̄t, j g

tr
v

Mk
r

]

. (50)

As a consequence of Lemma 3.1 the terms involving second derivatives of λ cancel
each other out in this expression. The other terms cancel each other out after applying
v

M − w

M = (w − v)
v

M
w

M . Thus Theorem 2.2 is proven.

3.3 Addition of potential: Proof of Theorems 2.5 and 2.9

3.3.1 Four equivalent problems

Let (g, J , A) be c-compatible.

Lemma 3.15 Let K = gi j pi p j ,

t

I
def= t

K jk p j pk,
t

K i j def= √

det(tId − A) (tId − A)−1i
l gl j
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and

t

L = t

V j p j ,
t

V j = J j
k gki∇i

√

det(tId − A)

as well as the corresponding differential operators according to the quantization rules
stated earlier.

Then the following four problems are equivalent: describe all functions U,
t

U , such
that

(1) { s

I + s

U , K + U } = 0 and { s

I + s

U ,
t

L} = 0 for all t, s ∈ R,

(2) [
s

̂I +
s

̂U , ̂K + ̂U ] = 0 and [
s

̂I +
s

̂U ,
t

̂L] = 0 for all t, s ∈ R,

(3) { s

I + s

U ,
t

I + t

U } = 0 and { s

I + s

U ,
t

L} = 0 for all t, s ∈ R,

(4) [
s

̂I +
s

̂U ,
t

̂I +
t

̂U ] = 0 and [
s

̂I +
s

̂U ,
t

̂L] = 0 for all t, s ∈ R.

Proof of Lemma 3.15 To do so, we show that

i. { t

I + t

U , K + U } = 0 for all t ∈ R ⇔ [
t

̂I +
t

̂U , ̂K + ̂U ] = 0 for all t ∈ R ⇔
t

K i
j
∂U
∂xi = ∂

t
U

∂x j for all t ∈ R,

ii. { t

I + t

U , K + U } = 0 for all t ∈ R ⇔ { t

I + t

U ,
s

I + s

U } = 0 for all s, t ∈ R,

iii. { t

I + t

U ,
s

I + s

U } = 0 for all s, t ∈ R ⇔ [
t

̂I +
t

̂U ,
s

̂I +
s

̂U ] = 0 for all s, t ∈ R

⇔ t

K i
j
∂

s
U

∂xi = s

K i
j
∂

t
U

∂xi for all s, t ∈ R,

iv. { t

I + t

U ,
s

L} = 0 for all t, s ∈ R ⇔ [
t

̂I +
t

̂U ,
s

̂L] = 0 for all t, s ∈ R ⇔ d
t

U (
s

V ) = 0
for all s, t ∈ R.

It is implied that all equations are to hold for all choices of its parameters, we shall
not specify it each and every time again.

To iii: We use the linearity of the commutator:

[
s

̂I +
s

̂U ,
t

̂I +
t

̂U ] = [
s

̂I ,
t

̂I ] + [
s

̂I ,
t

̂U ] + [
s

̂U ,
t

̂I ] + [
s

̂U ,
t

̂U ]. (51)

The term [
s

̂I ,
t

̂I ] vanishes due to Theorem 2.2 and [
s

̂U ,
t

̂U ] vanishes trivially since
the operators corresponding to the potentials act merely by multiplication. In [7] or

by direct computation we have [
s

̂I ,
t

̂U ] = ̂{ s

I ,
t

U }. Consequently [
s

̂I +
s

̂U ,
t

̂I +
t

̂U ] =
̂{ s

I ,
t

U } + ̂{ s

U ,
t

I }. Since quantization is a linear map and only the zero polynomial is

mapped to a vanishing differential operator, we have that [
s

̂Q,
t

̂Q] = 0 if and only

if { s

I ,
t

U } + { s

U ,
t

I } = 0. This in turn is true if and only if { s

I ,
t

U }# + { s

U ,
t

I }# =
0. Expressing this in terms of

t

K ,
t

U ,
s

K ,
s

U and lowering an index and rearranging

terms yields
t

K i
j
∂

s
U

∂xi = s

K i
j
∂

t
U

∂xi . Likewise using the fact that { s

I ,
t

I } = 0, we have

{ t

I + t

U ,
s

I + s

U } = { s

I ,
t

U } + { s

U ,
t

I }.
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Statement i can be seen analogously to iii, since K lies in the span of
t

K .
To ii: It suffices to show the equivalence of the rightmost equations of items i and

iii: Fix an arbitrary value for t in
t

K i
j
∂

s
U

∂xi = s

K i
j
∂

t
U

∂xi and choose pairwise different
values (s1, . . . , sn) for s. Add the resulting equations, weighting the i th equation
with (−1)n−1μn−1(̂si )/

∏

i �= j (si − s j ). Here μn−1(̂si ) is the elementary symmetric
polynomial of degree n − 1 in the variables (s1, . . . , si−1, si+1, . . . , sn). On the right-

hand side this gives the coefficient of sn−1 of
s

K which is the identity operator (when

considered as a (1,1)-tensor) acting on the differential of
t

U . On the left hand side we

identify the sum
∑n

i=1(−1)n−1μn−1(̂si )/
(∏

i �= j (si − s j )
)

∂
si
U

∂xi with the differential of

U and thus arrive at
t

K i
j
∂U
∂xi = ∂

t
U

∂x j . For the other direction, consider two arbitrary
values s and t and the equations

t

K i
j
∂U

∂xi
= ∂

t

U

∂x j
,

s

K i
j
∂U

∂xi
= ∂

s

U

∂x j
. (52)

We muliply the first equation with
s

K j
k , and use the commutativity of

t

K with
s

K (again
considered as mapping one-forms to one-forms):

t

K j
k

s

K i
j
∂U

∂xi
= s

K j
k

∂
t

U

∂x j
. (53)

Now we can use the second equation of (52) to replace
s

K i
j
∂U
∂xi with

∂
s
U

∂x j arriving back

at
t

K i
j
∂

s
U

∂xi = s

K i
j
∂

t
U

∂xi , as we desired.

To iv: Whenever one applies the quantization rules (9) to a linear polynomial
s

L and

a polynomial
t

I of second degree in the momentum variables on T ∗M and takes the
commutator of the operators, then combining equations (3.8) and (3.9) from [7] gives
us the formula

[
t

̂I ,
s

̂L] = i
̂{ t

I ,
s

L} − i

2
∇ j

( t

K jk∇k(∇l
s

V l)
)

. (54)

It can be obtained via explicit calculation. The second term on the right-hand side of

(54) acts on functions by mere multiplication. It vanishes in our case because
t

V is a
Killing vector field and thus divergence free. To show that the first term on the right-

hand side of (54) vanishes we use that
̂{ t

I ,
s

L} = −∇ j ◦({ t

I ,
s

V }#) jk ◦∇k . So, we must

show that { t

I ,
s

V }# vanishes in order for ̂{ t

I ,
s

L} to vanish. Inspection of the components

of { t

I ,
s

L}# reveals that they are simply the components of the Lie derivative of
t

K with

respect to
t

V :
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({ t

I ,
s

V }#) jk = s

V i∂i
t

K jk − ∂i (
s

V j )
t

K ik − ∂i (
s

V k)
t

K ji = (L s
V

t

K ) jk .

Applying the Leibniz rule gives

(L s
V

t

K ) jk = L s
V

(
√

det(tId − A)
)

(tId − A)−1i
l gl j

+ √

det(tId − A) (L s
V
(tId − A)−1)i

l gl j

+ √

det(tId − A) (tId − A)−1i
l (L s

V
g)l j .

From this we see that, since the flow of
s

V preserves A (and thus det A and functions

thereof) [3, Lemma2.2] and since
s

V also is aKilling vector field, the term
̂{ t

I ,
s

V } in (54)
vanishes. Using this, a direct calculation immediately reveals that both { t

I + t

U ,
s

L} = 0

and [
t

̂I +
t

̂U ,
s

̂L] = 0 reduce to the same expression, namely d
t

U (
s

V ) = 0 for all s, t ∈ R.
��

Lemma 3.16 Let (g, J , A) be c-compatible and
t

K be defined as in (5). Consider a
simply connected domain where the number of different eigenvalues of A is constant.

Let A be semi-simple. Let
nc
E = {�1, . . . , �r } be the set of non-constant eigenvalues

of A. Let
c
E = {�r+1, . . . , �r+R} be the set of constant eigenvalues and E = nc

E ∪ c
E.

Denote by m(�i ) the algebraic multiplicity of �i . Let U be a function such that
t

K i
j
∂U
∂xi

is exact for all values of t and let
t

U be such that

t

K i
j
∂U

∂xi
= ∂

t

U

∂x j
(55)

is satisfied for all values of t . Then up to addition of a function of the single variable

t the family of functions
t

U (t, x) may be written as

t

U =
∏

�l∈
c
E

(t − �l)
m(�l )/2−1

t

˜U (56)

where
t

˜U is a polynomial of degree r − 1 in t . Equally
t

U can be written as

t

U =
r+R
∑

i=1

∏

�l∈E\{�i }

(t − �l)
m(�l )/2

(�i − �l)m(�l )/2
(t − �i )

m(�i )/2−1 fi (57)

where fi are functions on M. The functions fi may however not be chosen arbitrarily.
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Proof of Lemma 3.16 Because we assumed that A is semi-simple, we can factorize
t

K

into
t

K = ∏r+R
l=1 (t − �l)

ml/2−1
t

˜K , with
t

˜K being a polynomial of degree r + R − 1.

∏

�l∈
c
E

(t − �l)
m(�l )/2−1

t

˜K i
j
∂U

∂xi
= ∂

t

U

∂xi
for all t ∈ R. (58)

We used that for the non-constant eigenvalues �1, . . . , �r the multiplicities are 2 [3,
Lemma 2.2]. Thus in the product on the left-hand side all factors corresponding to non-
constant eigenvalues are equal to 1. We observe that upon addition of a function of the

single variable t to
t

U the equation above is still satisfied. This allows us to choose an

arbitrary point x0 and an arbitrary function U0(t) and assume that
t

U (x0, t) = U0(t).
Since the left-hand side of (58) is a polynomial in t and is exact for all t , each of the
coefficients must be exact. This allows us to integrate the terms of (58) individually:

t

U (t, x) = U0(t) +
∫ x

x0

t

K (dU ) = U0(t) +
∏

�l∈
c
E

(t − �l)
m(�l )/2−1

r
∑

i=0

t i
∫ x

x0

˜K(i)(dU ).

(59)

The last step of this calculation makes use of the fact that if �l is of multiplicityml � 4
then �l is constant [3, Lemma 2.2]. The integral is meant to be taken along any path

connecting x0 and x and the ˜K(i) is the coefficient of t i in
t

˜K . Again
t

˜K and ˜K(i) are
considered as (1, 1) tensors mapping one-forms to one-forms. So for any value of t

the value of
t

U at x is uniquely defined by its value at x0 and the function U . Formula

(59) proves the claim that
t

U can be written in the form (56) where on the right-hand
side U0(t) takes the role of the possible addition of a function of t alone. Evidently,

we have
t

˜U (x) = ∑r+R
i=0 t i

∫ x
x0

˜K(i)(dU ). Since
t

˜U is a polynomial of degree r + R − 1
it is uniquely defined by its values at the r + R different eigenvalues of A. Via the
Lagrange interpolation formula we have

t

˜U =
r+R
∑

i=1

∏

�l∈E\{�i }

(t − �l)

(�i − �l)
f̃i (60)

for some functions f̃i . Introducing fi = ∏

�l∈E\{�i }(�i − �l)
m(�l )/2−1 f̃i the potential

U can be written as

t

U =
r+R
∑

i=1

∏

�l∈E\{�i }

(t − �l)
m(�l )/2

(�i − �l)m(�l )/2
(t − �i )

m(�i )/2−1 fi (61)

concluding the proof of Lemma 3.16. ��
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Lemma 3.17 Let (g, J , A) be c-compatible and
t

K as in (5). Let A be semi-simple.

Let
nc
E = {�1, . . . , �r } be the set of non-constant eigenvalues of A. Let

c
E = {�r+1,

. . . , �r+R} be the set of constant eigenvalues and E = nc
E ∪ c

E. The multiplicity of �l

is denoted by m(�l). Let

t

U =
r+R
∑

i=1

∏

�l∈E\{�i }

(t − �l)
m(�l )/2

(�i − �l)m(�l )/2
(t − �i )

m(�i )/2−1 fi (62)

and let

t

K i
j
∂U

∂xi
= ∂

t

U

∂x j
(63)

be satisfied for all values of t . Then for all values of i the relation d fi ◦ A = �id fi

must be satisfied. In other words: The differentials of the functions fi are eigenvectors
of A with eigenvalues �i , where A is considered as to map one-forms to one-forms.

Proof of Lemma 3.17 We consider
t

K as a (1, 1) tensor field. Using our assumption

that A is semi-simple we rewrite equation (63) in terms of the quantities
t

˜U , f̃i and
t

˜K
defined by

t

˜U =
r+R
∑

i=1

∏

�l∈E\{�i }

(t − �l)

(�i − �l)
f̃i ,

fi =
∏

�l∈E\{�i }
(�i − �l)

m(�l )/2−1 f̃i ,

t

K =
∏

�l∈E\{�i }
(t − �l)

m(�l )/2−1
t

˜K .

Then we use the fact that eigenvalues of multiplicity ml � 4 are constant [3, Lemma
2.2] and equation (63) transforms into

t

˜K (dU ) = d
t

˜U (64)

by dividing out the common factors.

The right-hand side can be rewritten: consider
t

˜U where, rather than choosing a
constant value for the parameter t we fill in the lth eigenvalue of A. Then we have
�l
˜U = f̃l . Taking the differential and rearranging the terms gives

d f̃l − ∂
t

˜U

∂t

∣

∣

∣

∣

t=�l

d�l = d
�l
˜U − ∂

t

˜U

∂t

∣

∣

∣

∣

t=�l

d�l = d
t

˜U |t=�l . (65)
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We evaluate (64) at t = �l and plug in (65):

�l
˜K (dU ) = d f̃l − ∂

t

˜U

∂t

∣

∣

∣

∣

t=�l

d�l . (66)

Because we assumed A to be semi-simple we can decompose dU into one-forms υl

such thatυl ◦ A = �lυl . From the definition of
t

˜K wehave that
t

˜K(υl) = ∏

�m∈E\{�l }(t−
�m)υl , again because we assumed A to be semi-simple. Evaluating at t = �k yields

�k
˜K (υl) =

(

∏

�m∈E\{�l }
(�k − �m)

)

υl . (67)

In particular this means that if k �= l then
�k
˜K (d�l) is zero. Plugging this into 66 we get

that on the left hand side only
�l
˜K (dU ) =

�l
˜K (υl), which we express via (67):

(

∏

�m∈E\{�l }
(�l − �m)

)

υl = d f̃l − ∂
t

˜U

∂t

∣

∣

∣

∣

t=�l

d�l . (68)

Since d�l ◦ A = �ld�l [3, Lemma 2.2] andυl ◦ A = �lυl we have that d f̃l ◦ A = �ld f̃l .
The way in which f̃l was constructed then implies d fl ◦ A = �ld fl , concluding the
proof of Lemma 3.17. ��

Lemma 3.18 Let (g, J , A) be c-compatible,
t

K as in (5) and
t

V as in (7).
nc
E = {�1,

. . . , �r } denotes the set of non-constant eigenvalues of A.
c
E = {�r+1, . . . , �r+R}

denotes the set of constant eigenvalues and E = nc
E ∪ c

E. The multiplicity of �l is
denoted by m(�l). Let

t

U =
r+R
∑

i=1

∏

�l∈E\{�i }

(t − �l)
m(�l )/2

(�i − �l)m(�l )/2
(t − �i )

m(�i )/2−1 fi . (69)

Let furthermore d fl ◦ A = �ld fl for all values of l = 1, . . . , r + R. Let d
t

U (
s

V ) = 0

be satisfied for all values of s, t ∈ R. Then d
t

U (
s

V ) = 0 is satisfied for all values of
s, t ∈ R if and only if for each eigenvalue �k of A the differential d fk is proportional
to d�k at all points where d�k �= 0.

Corollary 3.19 If �l is a non-constant real eigenvalue and d�l �= 0 in the neighbour-
hood of a given point then locally fl can be expressed as a smooth function of �l .
Likewise if �l is a non-constant complex eigenvalue and d�l �= 0 in the neighbour-
hood of a given point then locally fl can be expressed as a holomorphic function of
�l .
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Proof of Lemma 3.18 The condition d
t

U (
s

V ) = 0 for all s, t ∈ R is equivalent to

d
t

U (span {Jgrad �i , i = 1, . . . , r}) = 0, because span { t

V , t ∈ R} = span {Jgrad �i ,

i = 1, . . . , r}. From (69) we see that d
t

U involves (with some coefficients) only
the differentials of the eigenvalues of A and the differentials of the functions fi .

Thus d
t

U (Jgrad �i ) is a linear combination of d� j and d f j applied to Jgrad �i . But
d� j (Jgrad �i ) is zero for all values of i, j : if i = j , then d� j (Jgrad �i ) = 0 due to
the fact that J is antisymmetric with respect to g and if i �= j then d� j (Jgrad �i ) = 0,
because A is g-self-adjoint and grad �i and grad � j are eigenvectors of A with differ-

ent eigenvalues. Thus d
t

U (Jgrad �i ) is a linear combination of {d f j (Jgrad �i ), j =
1, . . . , r + R}. But because we assumed that for all l, d fl ◦ A = �ld fl and because
Agrad �i = �igrad �i [3, Lemma 2.2] and A commutes with J and is g-self-adjoint

we get that d
t

U (Jgrad �i ) is some coefficient times d fi (Jgrad �i ).
From (69) we see that this coefficient is

∏

�l∈E\{�i }

(t − �l)
m(�l )/2

(�i − �l)m(�l )/2
(t − �i )

m(�i )/2−1.

But for a given value of t this can only vanish at points on M where t is equal to an
eigenvalue of A. So at each point on the manifold we can choose a value for t such
that this expression is non-zero and thus d fi (Jgrad �i ) must vanish for all values of
i . If we consider a value i such that �i is constant then d fi (Jgrad �i ) = 0 is trivially
satisfied. If �i is non-constant then its multiplicity is 2 [3, Lemma 2.2] and at all points
where d�i �= 0 the set {grad �i , Jgrad �i } is an orthogonal basis of the �i -eigenspace
of A. It follows that at such points d fi may be written as a linear combination of d�i

and d�i ◦ J . Plugging this decomposition into d fi (Jgrad �i ) = 0 we conclude that
d fi is proportional to d�i at all points where d�i �= 0 and Lemma 3.18 is proven. ��

Lemma 3.20 Let (g, J , A) be c-compatible.
nc
E = {�1, . . . , �r } denotes the set of

non-constant eigenvalues of A.
c
E = {�r+1, . . . , �r+R} denotes the set of constant

eigenvalues and E = nc
E ∪ c

E. The multiplicity of �l is denoted by m(�l). Let

t

K i j def= √

det(tId − A) (tId − A)−1i
l gl j ,

t

V j = J j
k gki∇i

√

det(tId − A)

and

t

U =
r+R
∑

i=1

∏

�l∈E\{�i }

(t − �l)
m(�l )/2

(�i − �l)m(�l )/2
(t − �i )

m(�i )/2−1 fi (70)

with d fl ◦ A = �ld fl for all l = 1, . . . , r and d fl proportional to d�l for all l for
which �l is non-constant.
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Then

t

K i
j
∂

s

U

∂xi
= s

K i
j
∂

t

U

∂xi
for all s, t ∈ R and d

t

U (
s

V ) = 0 for all s, t ∈ R. (71)

Proof of Lemma 3.20 d
t

U (
s

V ) = 0 for all s, t ∈ R is fulfilled because d fi and d�i

evaluate to zero when applied to Jgrad � j for all i, j = 1, . . . , r + R.

To see
t

K i
j
∂

s
U

∂xi = s

K i
j
∂

t
U

∂xi , we compute d
t

U using the fact that non-constant eigen-
values of A are of multiplicity 2 [3, Lemma 2.2]:

d
t

U =
r+R
∑

i=1

∏

�l∈E\{�i }

(

t − �l

�i − �l

)m(�l )/2

(t − �i )
m(�i )/2−1

[

d fi −
∑

�p∈E\{�i }

m(�p)/2

�i − �p
fid�i

]

−
r+R
∑

i=1

∏

�l∈E\{�k }

t − �l

(�i − �l)m(�l )/2

∑

�p∈nc
E\{�i }

∏

�l∈E\{�p}
(t − �l)

m(�l )/2 fi
d�p

�p − �i
.

(72)

Considering
s

K as a (1, 1)-tensor mapping one-forms to one-forms and using that for
all i = 1, . . . , r : d�i ◦ A = �id�i and d fi ◦ A = �id fi we have

s

K (d�i ) =
(

∏

�l∈E\{�i }
(s − �l)

ml/2
)

(s − �i )
mi /2−1d�i ,

s

K (d fi ) =
(

∏

�l∈E\{�i }
(s − �l)

ml/2
)

(s − �i )
mi /2−1d fi .

(73)

Again we consider
s

K as a (1, 1)-tensor acting on the differential of
t

U . By combining
(72) and (73) and using that the non-constant eigenvalues have multiplicity 2 we get

s

K (d
t

U ) =
r+R
∑

i=1

∏

�l∈E\{�i }

(

(s − �l)(t − �l)

�i − �l

)ml/2

((t − �i )(s − �i ))
mi /2−1

×
[

d fi −
∑

p �=i

m p/2

�i − �p
fid�i

]

−
r+R
∑

i=1

∏

�l∈E\{�k }

1

(�i − �l)ml/2

×
∑

�p∈nc
E\{�i }

∏

�l∈E\{�p}
((s − �l)(t − �l))

ml/2 fi
d�p

�p − �i
.

(74)

The right-hand side is apparently symmetric when exchanging s and t and as a con-

sequence
t

K i
j
∂

s
U

∂xi = s

K i
j
∂

t
U

∂xi is fulfilled, concluding the proof of Lemma 3.20. ��
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Proof of Theorem 2.5 The theorem results as a combination of the proofs of Lemmata
3.15 and 3.20. ��

Proof of Theorem 2.9 Combining the proofs of Lemmata 3.15, 3.16, 3.17, 3.18 and
3.20. ��

3.4 Proof of Theorem 2.16: common eigenfunctions

We first show that ψ is an eigenfunction of
s

̂L for all values of s if and only if it is
an eigenfunction of ∂ti for all values of i . A direct computation from (19), (20), (21)
shows that

s

̂Lψ =
∏

�p∈ c
E

(s − �p)
m(�p)/2

r
∑

q=1

sr−q∂tq ψ. (75)

Now suppose that ψ is an eigenfunction of
s

̂L for all values of s and denote the

eigenvalue by
s
ω. Then

s
ω must be a polynomial in s of degree r + R − 1, because

s

̂L is
a polynomial in s of degree r + R − 1. From the equation above we see that

s
ω must

have a zero of order m(�p)/2 at s = �p for all constant eigenvalues �p. Thus we can

write
s
ω = ∏

�p∈ c
E
(s −�p)

m(�p)/2 ∑r
q=1 sr−q iωq . But because polynomials are equal

if and only if all their coefficients are equal we get that
s

̂Lψ = s
ω for all s ∈ R if and

only if i∂tq ψ = ωqψ for q = 1, . . . , r .
To obtain the other separated equations we work with the family of second order

differential operators
s

K . Since the metric is not given in terms of the coordinate basis
and the one-forms α and ϑ are not unique it poses an obstruction to using the standard

formula for the Laplacian and
t

̂K . The workaround is quick and simple though.
Let {Xi , i = 1, . . . , n} be a set of n linearly independent differentiable vector fields

on a manifold Mn and denote by {β i, i = 1, . . . , n} its dual basis, i.e. β i (X j ) = δi
j .

We shall denote by T the matrix relating the coordinate vector fields ∂i and the vector
fields Xi : T i

j Xi = ∂ j . Then for an arbitrary symmetric (2, 0)-tensor the following
formula is easily obtained via the product rule for partial derivatives:

1√|det g| ∂i
√|det g| s

K i j∂ j = det T√|det g| Xs

√|det g|
det T

T s
i

s

K i j T k
j X j

− Xs(T
s

i )
s

K i j T k
j Xk + Xs(det T )

det T
T s

i

s

K i j T k
j X j

(76)

where on the right-hand side the X ’s are to be interpreted as the directional derivative
in the sense Xs = (T −1)i

s ∂i and in the last two terms Xs( ·) is meant as to only act
on the expression in the parentheses.
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The quantity det g
det T 2 is simply the determinant of the matrix with (i, j)th component

g(Xi , X j ) and T s
i

s

K i j T k
j are the components of

s

K in the basis {Xi , i = 1, . . . , n}.
If {Xi , i = 1, . . . , n} are the coordinate vector fields belonging to some coordinate
system then the last two terms cancel out and one arrives at the well-known fact that
the left-hand side expression is independent of the choice of coordinates.

In our case we choose (Xi ) = (

∂χi , ∂ti , ∂γ
yi

−∑r
p=1

γ

α pi∂tp

)

. The dual basis consists

of the one-forms (dχi , dti + αi , d
γ

yi ). Taking i as the column index and j as the row
index we have the components T i

j given by

⎛

⎝

Id 0 0
0 Id 0
0 ∗ Id

⎞

⎠ ,

where the ∗-block contains the components of αl as the lth column and the Id-blocks
are of dimensions equal to the number of χ -, t- and y-coordinates.

From this we can conclude that Xs(T s
i ) = (T −1)

j
s ∂ j T s

i = 0 because the one-
forms α do not depend on the t-variables. Furthermore, det T = 1 and thus Xs(det T )

= 0 for all values of s.
For our specific case (76) simplifies to

1√|det g| ∂i
√|det g| s

K i j∂ j = det T√|det g| Xs

√|det g|
det T

T s
i

s

K i j T k
j X j . (77)

Here
√|det g|
det T is the determinant of the matrix of g in the basis (dχi , dti , d

γ

yi ) and

T s
i K i j T k

j is the matrix of
s

K in the basis (Xi ). These quantities can be obtained from
the formulae (19), (20) and (21). We can then express the vector fields (Xi ) in terms
of the coordinate basis to get the following result (we use that Aγ = �γ Id, because
we assumed that A is semi-simple and that all constant eigenvalues are real):

∇i
s

K i j∇ j = 1√|det g| ∂i
√|det g| s

K i j∂ j

=
∑

�k∈nc
E

∏

�l∈E\{�k }(s − �l)
m(�l )/2

εk�k
∏

�γ ∈ c
E
(�γ − �k)

m(�γ )/2�′
k

∂χk �
′
k

∏

�γ ∈ c
E

(�γ − �k)
m(�γ )/2∂χk

+
r

∑

i, j=1

∑

�k∈nc
E

εk(−�k)
2r−i− j

�k(�
′
k)

2

∏

�l∈E\{�k }
(s − �l)

m(�l )/2∂ti ∂t j

+
∑

γ :�γ ∈ c
E

1
√| det gγ | ∂γ

yi

√|det gγ |
(

∏

�l∈E

(s − �l)
m(�l )/2(sId − Aγ )−1

∏

�k∈nc
E

(Aγ − �k Id)
−1g−1

γ

)i j

∂γ
y j
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−
∑

γ :�γ ∈ c
E

1
√| det gγ | ∂γ

yi

√| det gγ |
(

∏

�l∈E

(s − �l)
m(�l )/2(sId − Aγ )−1

∏

�k∈nc
E

(Aγ − �k Id)
−1g−1

γ

)i j r
∑

q=1

γ

αq j∂tq

−
∑

γ :�γ ∈ c
E

(

∏

�l∈E

(s − �l)
m(�l )/2(sId − Aγ )−1

∏

�k∈nc
E

(Aγ − �k Id)
−1g−1

γ

)i j r
∑

q=1

γ

αqi∂tq ∂γ
y j

−
∑

γ :�γ ∈ c
E

(

∏

�l∈E

(s − �l)
m(�l )/2(sId − Aγ )−1

∏

�k∈nc
E

(Aγ − �k Id)
−1g−1

γ

)i j r
∑

p,q=1

γ

αqi
γ

α pj∂tq ∂tp .

(78)

If now we suppose that ψ simultaneously satisfies the family of eigenvalue equations

− ∇i
s

K i j∇ jψ + s

Uψ = s

λψ (79)

then the left-hand side is a polynomial in s and for the equations to hold
s

λ must be a

polynomial of degree n − 1 in s as well and we shall write
s

λ = ∑n−1
l=0 λl sl . Because

of our assumption that all constant eigenvalues are real and that A is semi-simple,
we have Aγ = cγ Id = �r+γ Id for γ = 1, . . . , R. Thus for all values of γ where

m(�γ ) > 2 the left-hand side of −∇ j
s

K jk∇kψ + s

Uψ = s

λψ has a zero of multiplicity

m(�γ )/2−1 at s = �γ . We can thus write
s

λ = ∏

�γ ∈ c
E
(s −�γ )m(�γ )/2−1

s

λ̃where
s

λ̃ is a

polynomial of degree r + R − 1 in s.
s

λ̃ can be written as
s

λ̃ = ∑r+R−1
j=0 s j λ̃ j . Because

we assumed that the eigenvalue equation (79) is satisfied for all values of s we can split
(79) into n equations, one for each coefficient. We choose a non-constant eigenvalue

�k ∈ nc
E and multiply the equation for the coefficient of sl with �l

k . We do this for all

n equations and add them up. If we use ∇i
s

K i j∇ j = 1√|det g|∂i
√|det g| s

K i j∂ j in (79)

then the result of these steps is equal to replacing ∇i
s

K i j∇ jψ via (78) and substituting
s with �k . We end up with

−1

εk�
′
k

∂χk �
′
k

∏

�γ ∈ c
E

(�k − �γ )m(�γ )/2∂χk ψ

−
r

∑

i, j=1

εk(−�k)
2r−i− j

(�′
k)

2

∏

�γ ∈ c
E

(�k − �γ )m(�γ )/2∂ti ∂t j + frψ =
n−1
∑

i=0

λi�
i
k .

(80)

123



Geodesic flows of c-projectively equivalent metrics… 1599

Because ∂tq ψ = iωqψ , ψ satisfies the ordinary differential equations that have been
claimed.

To obtain the separated partial differential equations that we have claimedwe divide

−∇ j
s

K jk∇kψ + s

Uψ = s

λψ by
∏

�γ ∈ c
E
(s − �γ )m(�γ )/2−1. Then we choose a constant

eigenvalue �γ and evaluate the result at s = �γ ∈ c
E in the same way as before:

r+R−1
∑

j=0

λ̃ j�
j
γ = −

∏

�c∈
c
E\{�γ }

(�γ − �c)

[

1

|det gγ |1/2 ∂ γ
yi

gi j
γ |det gγ |1/2∂ γ

y j
ψ

−
r

∑

q=1

1

|det gγ |1/2 ∂ γ
yi

gi j
γ |det gγ |1/2 γ

αq j∂tq ψ −
r

∑

q=1

gi j
γ

γ

αqi∂tq ∂ γ
y j

ψ

+
r

∑

p,q=1

gi j
γ

γ

αqi
γ

α pj∂tq ∂tpψ

]

+ 1
∏

�c∈
c
E\{�γ }(�γ − �c)m(�c)/2−1

fγ ψ.

(81)

Again: using ∂ti ψ = iωiψ gives us the desired result.
The last thing to prove is to show that if ψ fulfills (23) and (24) for some constants

λ̃0, . . . , λ̃r+R−1, ω1, . . . , ωr then it is also an eigenfunction of
s

̂K for all real values s.
To do so, we use ∂ti ψ = iωiψ to obtain (80) and (81) from (23) and (24). Then for
all non-constant eigenvalues �k we multiply the corresponding equation of (23) by

∏

�i ∈E\{�k }

(

s − �i

�k − �i

)m(�i )/2

and for each constant eigenvalue �γ we multiply the corresponding equation of (81)
by

∏

�i ∈E\{�γ }

(

s − �i

�k − �i

)

∏

�i ∈
c
E

(s − �γ )mγ /2−1

and add up the results. Thenwe use the product rule for differentiation and the lagrange

interpolation formula for polynomials and arrive at
s

̂Kψ = ∑n−1
k=1 λkskψ . Theorem

2.16 is proven.

4 Summary

We have generalized the integrals that Topalov [14] found for the geodesic flow of
c-compatible structures (g, J , A) to certain natural Hamiltonian systems. We have
proven that these integrals also commute in the quantum sense. The result was then
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generalized to a class of natural Hamiltonian systems: in the case where the tensor A is
semi-simple we have described all potentials that may be added to the kinetic energy
term such that the resulting functions on T ∗M still Poisson-commute pairwise and
their quantum operators commute pairwise as well. The potentials that are admissible
in the quantum problem are the same as in the classic case. In the case that A is not
semi-simple we could present some potentials that may be added to the kinetic energy
such that the modified integrals still commute in both the classical and the quantum
sense; it is however not clear whether there exist more and this shall be subject to
further investigation. We have tackled the question of the separation of variables for
common eigenfunctions of the constructed differential operators in the case where A
is semi-simple and all constant eigenvalues are real. If all eigenvalues of A are non-
constant we get complete reduction to ordinary differential equations. The case where
A has constant non-real eigenvalues or Jordan blocks still needs investigation.
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