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Abstract
We find all K-stable smooth Fano threefolds in the family No. 2.22.

Keywords Fano threefolds · K-stability · Kähler–Einstein metric
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Let X be a smooth Fano threefold. Then X belongs to one of the 105 families, which
are labeled as No. 1.1, No. 1.2, . . ., No. 9.1, No. 10.1. See [2], for the description of
these families. If X is a general member of the family No.N, then [2, Main Theorem]
gives

X is K-polystable ⇐⇒ N /∈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2.23, 2.26, 2.28, 2.30, 2.31, 2.33, 2.35, 2.36,

3.14, 3.16, 3.18, 3.21, 3.22, 3.23,

3.24, 3.26, 3.28, 3.29, 3.30, 3.31,

4.5, 4.8, 4.9, 4.10, 4.11, 4.12,

5.2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

The goal of this note is to find all K-polystable smooth Fano threefolds in the fam-
ily No. 2.22. This family contains both K-polystable and non-K-polystable smooth
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K-stable Fano threefolds of rank 2 and degree 30 835

Fano threefolds, and a conjectural characterization of all K-polystable members has
been given in [2, Section 7.4]. We will confirm this conjecture—this will complete
the description of all K-polystable smooth Fano threefolds of Picard rank 2 and degree
30 started in [2].

Starting from now, we suppose that X is a smooth Fano threefold in the family
No. 2.22. Then X can be described both as the blow-up of P

3 along a smooth twisted
quartic curve, and the blow-up of V5, the unique smooth threefold No. 1.15, along
an irreducible conic.More precisely, there are a smooth twisted quartic curveC4 ⊂ P

3,
a smooth conic C ⊂ V5, and a commutative diagram

X
π φ

P
3 ψ

V5,

where π is the blow-up of P
3 along C4, φ is the blow-up of V5 along C , andψ is given

by the linear system of cubic surfaces containing C4. Here, V5 is embedded in P
6 as

described in [2, Section 5.10]. All smooth Fano threefolds in the family No. 2.22 can
be obtained in this way.

The curve C4 is contained in a unique smooth quadric surface Q ⊂ P
3, and φ

contracts the proper transform of this surface. Note that

Aut(X) ∼= Aut(P3,C4) ∼= Aut(Q,C4).

Choosing appropriate coordinates on P
3, we may assume that Q is given by x0x3 =

x1x2, where [x0 : x1 : x2 : x3] are coordinates on P
3. Fix the isomorphism Q ∼= P

1× P
1

given by

([u : v], [x : y]) �→ [xu : xv : yu : yv],

where ([u : v], [x : y]) are coordinates in P
1× P

1. Swapping [u : v] and [x : y] if nec-
essary, we may assume that C4 is a divisor of degree (1, 3) in Q, so that C4 is given
in Q by

u f3(x, y) = vg3(x, y)

for some non-zero cubic homogeneous polynomials f3(x, y) and g3(x, y).
Let σ : C4 → P

1 be the map given by the projection ([u : v], [x : y]) �→ [u : v].
Then σ is a triple cover, which is ramified over at least two points. After an appropriate
change of coordinates [u : v], we may assume that σ is ramified over [1 : 0] and [0 : 1].
Then both f3 and g3 have multiple zeros in P

1. Changing coordinates [x : y], we
may assume that these zeros are [0 : 1] and [1 : 0], respectively. Keeping in mind that
the curve C4 is smooth, we see that C4 is given by

u(x3 + ax2y) = v(y3 + by2x)
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836 I. Cheltsov, J. Park

for some complex numbers a and b, after a suitable scaling of the coordinates. If
a = b = 0, then the curve C4 is given by ux3 = vy3, which gives Aut(X) ∼=
Aut(Q,C4) ∼= Gm�µ2. In this case, the threefold X is known to be K-polystable [2,
Section 4.4].

Example Suppose that ab = 0, but a 	= 0 or b 	= 0. We can scale the coordinates
further and swap them if necessary, and assume that the curve C4 is given by

ux3 = v(y3 + y2x).

In this case, the threefold X is not K-polystable [2, Section 7.4].

A conjecture in [2, Section 7.4] says that the non-K-polystable Fano threefold
described in this example is the unique non-K-polystable smooth Fano threefold in
the family No. 2.22. Let us show that this is indeed the case. To do this, wemay assume
that a 	= 0 and b 	= 0. Then, scaling the coordinates, we may assume that C4 is given
by

u(x3 + λx2y) = v(y3 + λy2x) (�)

for some non-zero complex number λ. Since the curve C4 is smooth, we must have
λ 	= ±1. Moreover, if λ = ±3, then we can change the coordinates on Q in such a
way that C4 would be given by ux3 = v(y3 + y2x), so that X is not K-polystable in
this case.

We know from [2] that X is K-stable if C4 is given by (�) with λ general. In
particular, we know from [2, Section 4.4] that the threefold X is K-stable when λ =
±√

3. Our main result is the following theorem.

Theorem Suppose that C4 is given in (�) with λ /∈ {0,±1,±3}. Then X is K-stable.

Let us prove this theorem. We suppose that C4 is given by (�) with λ /∈ {0,±1,±3}.
Then the triple cover σ : C4 → P

1 is ramified in four distinct points P1, P2, P3, P4,
which implies that Aut(Q,C4) is a finite group, since

Aut(Q,C4) ⊂ Aut(C4, P1 + P2 + P3 + P4).

Without loss of generality, we may assume that

P1 = ([1 : 0], [0 : 1]) = [0 : 1 : 0 : 0],
P2 = ([0 : 1], [1 : 0]) = [0 : 0 : 1 : 0],

where we use both the coordinates on Q ∼= P
1× P

1 and P
3 simultaneously.

Observe that the group Aut(Q,C4) contains an involution τ that is given by

([u : v], [x : y]) �→ ([v : u], [y : x]).

123



K-stable Fano threefolds of rank 2 and degree 30 837

Let us identify Aut(P3,C4) = Aut(Q,C4) using the isomorphism Q ∼= P
1× P

1 fixed
above. Then τ is given by [x0 : x1 : x2 : x3] �→ [x3 : x2 : x1 : x0]. Note that τ swaps P1
and P2, and the τ -fixed points inC4 are ([1 : 1], [1 : 1]) and ([1 : − 1], [1 : − 1]), which
are not ramification points of the triple cover σ . This shows that τ swaps the points P3
and P4. In fact, the group Aut(Q,C4) is larger than its subgroup 〈τ 〉 ∼= µ2. Indeed,
one can change coordinates ([u : v], [x : y]) on Q so that

P1 = ([1 : 0], [0 : 1]),
P4 = ([0 : 1], [1 : 0]),

and the curve C4 is given by

u(x3 + λ′x2y) = v(y3 + λ′y2x)

for some complex number λ′ /∈ {0,±1,±3}. This gives an involution ι ∈ Aut(Q,C4)

such that ι(P1) = P4 and ι(P2) = P3. Let G be the subgroup 〈τ, ι〉 ⊂ Aut(Q,C4) =
Aut(P3,C4). Then G ∼= µ2

2. Note that the group Aut(P3,C4) can be larger for some
λ ∈ C\{0,±1,±3}. For instance, if λ = ±√

3, then Aut(P3,C4) ∼= A4, c.f. [2,
Example 4.4.6].

The G-action on C4 is faithful, so that the curve C4 does not contain G-fixed
points. Hence, the quadric Q does not contain G-fixed points, since otherwise Q
would contain a G-invariant curve of degree (1, 0), which would intersect C4 by a
G-fixed point. So, in particular, we see that P

3 contains finitely many G-fixed points.
Since the G-action on P

3 is given by 4-dimensional linear representation of the group
G, we conclude this representation splits as a sum of four distinct one-dimensional
representations, which implies that the space P

3 contains exactly four G-fixed points.
Denote these points by O1, O2, O3, O4. These four points are not co-planar. For every
1 � i < j � 4, let Li j be the line in P

3 that passes through Oi and Oj . Then the
lines L12, L13, L14, L23, L24, L34 are G-invariant, and they are the only G-invariant
lines in P

3. For each 1 � i � 4, let 	i be the plane in P
3 determined by the three

points {O1, O2, O3, O4}\{Oi }. Then the four planes 	1, 	2, 	3, 	4 are the only
G-invariant planes in P

3.

Remark Each plane 	i intersects C4 at four distinct points. Indeed, if |	i ∩C4| < 4,
then 	i ∩ C4 is a G-orbit of length 2, and 	i is tangent to C4 at both the points of
this orbit. Therefore, without loss of generality, we may assume that the intersection
	i ∩ C4 is just the fixed locus of the involution τ . Then 	i ∩ C4 = ([1 : 1], [1 : 1]) ∪
([1 : − 1], [1 : − 1]), so that 	i |Q is a smooth conic that is given by

a(vx − uy) = b(ux − vy)

for some [a : b] ∈ P
1. But the conic	i |Q cannot tangentC4 at the points ([1 : 1], [1 : 1])

and ([1 : − 1], [1 : − 1]), so that |	i ∩C4| = 4.

The curve C4 contains exactly three G-orbits of length 2, and these G-orbits are
just the fixed loci of the involutions τ , ι, τ ◦ ι described earlier. Let L , L ′ and L ′′ be
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838 I. Cheltsov, J. Park

the three lines in P
3 such that L ∩ C4, L ′ ∩ C4 and L ′′ ∩ C4 are the fixed loci of the

involutions τ , ι and τ ◦ ι, respectively. Then L , L ′ and L ′′ are G-invariant lines, so that
they are three lines among L12, L13, L14, L23, L24, L34. In fact, it easily follows from
Remark that the lines L , L ′, L ′′ meet at one point. Therefore, we may assume that
L ∩ L ′ ∩ L ′′ = O4 and L = L14, L ′ = L24, L ′′ = L34. Then

	1 ∩ C4 = (L ′ ∩ C4) ∪ (L ′′ ∩ C4),

	2 ∩ C4 = (L ∩ C4) ∪ (L ′′ ∩ C4),

	3 ∩ C4 = (L ∩ C4) ∪ (L ′ ∩ C4).

On the other hand, the intersection 	4 ∩ C4 is a G-orbit of length 4.

Since C4 is G-invariant, the action of the group G lifts to the threefold X , so that
we also identify G with a subgroup of the group Aut(X). Let E be the π -exceptional
surface, let Q̃ be the proper transform of the quadric Q on the threefold X , let H1, H2,
H3 and H4 be the proper transforms on X of the G-invariant planes 	1, 	2, 	3 and
	4, respectively, and let H be the proper transform on X of a general hyperplane in
P
3. Then

− KX ∼ 2Q̃ + E ∼ Q̃ + 2H1 ∼ Q̃ + 2H2 ∼ Q̃ + 2H3 ∼ Q̃ + 2H4 ∼ 4H − E,

and the surfaces E , Q̃, H1, H2, H3, H4 are G-invariant. Observe that Q̃ ∼= Q ∼=
P
1× P

1, and H1, H2, H3, H4 are smooth del Pezzo surfaces of degree 5.

Claim Let S be a possibly reducible G-invariant surface in X such that −KX ∼Q

μS + 
, where 
 is an effective Q-divisor, and μ is a positive rational number such
that μ > 4/3. Then S is one of the surfaces Q̃, H1, H2, H3, H4.

Proof This follows from the fact that the cone Eff (X) is generated by E and Q̃. ��
Suppose X is not K-stable. Since Aut(X) is finite, the threefold X is not K-

polystable. Then, by [3, Corollary 4.14], there is a G-invariant prime divisor F over
X with β(F) � 0, see [2, Section 1.2] for the precise definition of β(F). Let us seek
for a contradiction.
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K-stable Fano threefolds of rank 2 and degree 30 839

Let Z be the center of F on X . Then Z is not a surface by [2, Theorem 3.7.1], so
that Z is either a G-invariant irreducible curve or a G-fixed point. In the latter case,
the point π(Z) must be one of the G-fixed points O1, O2, O3, O4, so that the point
Z is not contained in Q̃ ∪ E . Let us use the Abban–Zhuang theory [1] to show that Z
does not lie on Q̃ ∪ E in the former case.

Lemma The center Z cannot be contained in Q̃ ∪ E.

Proof We suppose that Z ⊂ Q̃ ∪ E . Then Z is an irreducible G-invariant curve,
because neither Q̃ nor E contains G-fixed points. Let us use notations introduced
in [2, Section 1.7]. Namely, we fix u ∈ R�0. Then

− KX − uQ̃ ∼R (4 − 2u)H + (u − 1)E ∼R (1 − u)Q̃ + 2H ,

so that − KX − uQ̃ is nef for 0 � u � 1, and not pseudo-effective for u > 2. Thus,
we have

P( − KX − uQ̃) =
{

− KX − uQ̃ if 0 � u � 1,

(4 − 2u)H if 1 � u � 2,

and

N ( − KX − uQ̃) =
{
0 if 0 � u � 1,

(u − 1)E if 1 � u � 2.

If Z ⊂ Q̃, then [2, Corollary 1.7.26] gives

1 � AX (F)

SX (F)
� min

{
1

SX (Q̃)
,

1

S(W Q̃•,•; Z)

}

,

where

SX (Q̃) = 1

(−KX )3

2∫

0

vol(−KX − uQ̃) du = 1

(−KX )3

2∫

0

(
P(−KX − uQ̃)

)3
du

and

S
(
W Q̃•,•; Z

) = 3

(−KX )3

{ 2∫

0

(
P(−KX − uQ̃)2 · Q̃) · ordZ

(
N (−KX − uQ̃)|Q̃

)
du

+
2∫

0

∞∫

0

vol
(
P(−KX − uQ̃)|Q̃ − vZ

)
dvdu

}

.
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840 I. Cheltsov, J. Park

Therefore, we conclude that S(W Q̃•,•; Z) � 1, because SX (Q̃) < 1, see [2, Theo-
rem 3.7.1]. Similarly, if Z ⊂ E , then we get S(WE•,•; Z) � 1.

Fix an isomorphism Q̃ ∼= Q ∼= P
1× P

1 such that E |Q̃ is a divisor in Q̃ of degree
(1, 3). For (a, b) ∈ R

2, let OQ̃(a, b) be the class of a divisor of degree (a, b) in
Pic(Q̃)⊗R. Then

P(−KX − uQ̃)|Q̃ ∼R

{
OQ̃(3 − u, u + 1) if 0 � u � 1,

OQ̃(4 − 2u, 4 − 2u) if 1 � u � 2.

Therefore, if Z = E ∩ Q̃, then

S
(
W Q̃•,•; Z

) = 1

10

{ 2∫

1

2(4 − 2u)2(u − 1) du

+
1∫

0

∞∫

0

vol
(
OQ̃(3 − u − v, u + 1 − 3v)

)
dvdu

+
2∫

1

∞∫

0

vol
(
OQ̃(4 − 2u − v, 4 − 2u − 3v)

)
dvdu

}

= 2

30
+ 1

10

{ 1∫

0

u+1
3∫

0

2(u + 1 − 3v)(3 − u − v) dvdu

+
2∫

1

4−2u
3∫

0

2(4 − 2u − 3v)(4 − 2u − v) dvdu

}

= 161

540
.

To estimate S(W Q̃•,•; Z) in the case when Z ⊂ Q̃ and Z 	= E ∩ Q̃, observe that
|Z − 
| 	= ∅, where 
 is the diagonal curve in Q̃. Indeed, this follows from the fact
that Q̃ contains neither G-invariant curves of degree (0, 1) nor G-invariant curves of
degree (1, 0), which in turns easily follows from the fact that the curve C4 ∼= P

1 does
not have G-fixed points. Thus, if Z ⊂ Q̃ and Z 	= E ∩ Q̃, then
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K-stable Fano threefolds of rank 2 and degree 30 841

S
(
W Q̃•,•; Z

)
� 1

10

2∫

0

∞∫

0

vol
(
P(−KX − uQ̃)|Q̃ − v


)
dvdu

= 1

10

{ 1∫

0

∞∫

0

vol
(
OQ̃(3 − u − v, u + 1 − v)

)
dvdu

+
2∫

1

∞∫

0

vol
(
OQ̃(4 − 2u − v, 4 − 2u − v)

)
dvdu

}

= 1

10

{ 1∫

0

u+1∫

0

2(u + 1 − v)(3 − u − v) dvdu

+
2∫

1

4−2u∫

0

2(4 − 2u − v)2dvdu

}

= 17

30
.

Therefore, Z 	⊂ Q̃, and hence Z ⊂ E and Z 	= Q̃ ∩ E .
One has E ∼= Fn for some integer n � 0. It follows from the argument as in the

proof of [2, Lemma 4.4.16] that n is either 0 or 2. Indeed, let s be the section of
the projection E → C4 such that s2 = −n, and let l be its fiber. Then −E |E ∼ s+ kl
for some integer k. But

− n + 2k = E3 = − c1(NC4/P3
) = − 14,

so that k = (n − 14)/2. Then

Q̃|E ∼ (2H − E)|E ∼ s + (k + 8) l = s + n + 2

2
l,

which implies that Q̃|E � s. Moreover, we know that Q̃|E is a smooth irreducible
curve, since the quadric surface Q is smooth. Thus, since Q̃|E 	= s, we have

0 � Q̃|E ·s =
(

s + n + 2

2
l
)

· s = − n + n + 2

2
= 2 − n

2

so that n = 0 or n = 2. Now, let us show that S(WE•,•; Z) < 1 in both cases.
For u � 0,

− KX − uE ∼ 2Q̃ + (1 − u)E,

123



842 I. Cheltsov, J. Park

so that − KX − uE is pseudo-effective if and only if u � 1, and it is nef if and only
if u � 1/3. Furthermore, if 1/3 � u � 1, then

P( − KX − uE) = (2 − 2u)(3H − E)

and N ( − KX − uE) = (3u − 1)Q̃. Thus, if n = 0, we have

P( − KX − uE)|E =
{

(1 + u)s + (9 − 7u) l if 0 � u � 1/3,

(2 − 2u)s + (10 − 10u) l if 1/3 � u � 1.

Similarly, if n = 2, then

P( − KX − uE)|E =
{

(1 + u)s + (10 − 6u) l if 0 � u � 1/3,

(2 − 2u)s + (12 − 12u) l if 1/3 � u � 1.

Recall that Z 	= Q̃ ∩ E . Moreover, we have Z � l, since π(Z) is not one of the
G-fixed points O1, O2, O3, O4. Thus, using [2, Corollary 1.7.26], we get

S
(
WE•,•; Z

) = 1

10

1∫

0

∞∫

0

vol(P(u)|E − vZ) dvdu � 1

10

1∫

0

∞∫

0

vol(P(u)|E − vs) dvdu,

because the divisor |Z − s| 	= ∅.
Consequently, if n = 0, then

S
(
WE•,•; Z

)

� 1

10

{
1
3∫

0

∞∫

0

vol
(
(1 + u)s + (9 − 7u) l − vs

)
dvdu

+
1∫

1
3

∞∫

0

vol
(
(2 − 2u)s + (10 − 10u) l − vs

)
dvdu

}

= 1

10

{
1
3∫

0

1+u∫

0

2(1 + u − v)(9 − 7u) dvdu

+
1∫

1
3

2−2u∫

0

2(2 − 2u − v)(10 − 10u) dvdu

}

= 1783

3240
.
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Similarly, if n = 2, then

S
(
WE•,•; Z

)

� 1

10

{
1
3∫

0

∞∫

0

vol
(
(1 + u)s + (10 − 6u) l − vs

)
dvdu

+
1∫

1
3

∞∫

0

vol
(
(2 − 2u)s + (12 − 12u) l − vs

)
dvdu

}

= 1

10

{
1
3∫

0

1+u∫

0

2(1 + u − v)(9 + v − 7u) dvdu

+
1∫

1
3

2−2u∫

0

2(2 − 2u − v)(10 + v − 10u) dvdu

}

= 157

270
.

In both cases, we have S(WE•,•; Z) < 1, which is a contradiction. ��
Now, we prove our main technical result using the Abban–Zhuang theory, see also

[2, Section 1.7].

Proposition The center Z is not contained in H1 ∪ H2 ∪ H3 ∪ H4.

Proof We first suppose that Z ⊂ H1 ∪ H2 ∪ H3. Without loss of generality, we may
assume that Z ⊂ H1. Then π(Z) ⊂ 	1. Therefore, we see that one of the following
two subcases are possible:

• either π(Z) is one of the G-fixed points O2, O3, O4, or
• Z is a G-invariant irreducible curve in H1.

We will deal with these subcases separately. In both subcases, we let S = H1 for
simplicity. Recall that S is a smooth del Pezzo surface of degree 5, the surface S is
G-invariant, and the action of the group G on the surface S is faithful. Note also that
Z 	⊂ Q̃ by Lemma.

Let us use notations introduced in [2, Section 1.7]. Take u ∈ R�0. Then

− KX − uS ∼R (4 − u)H − E ∼R Q̃ + (2 − u)H ∼R (u − 1)Q̃ + (2 − u)(3H − E).

Let P(u) = P( − KX − uS) and N (u) = N ( − KX − uS). Then

P(u) =
{

− KX − uS if 0 � u � 1,

(2 − u)(3H − E) if 1 � u � 2,
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844 I. Cheltsov, J. Park

and

N (u) =
{
0 if 0 � u � 1,

(u − 1)Q̃ if 1 � u � 2.

Note that SX (S) < 1, see [2, Theorem3.7.1]. In fact, one can compute SX (S) = 17/30.
Let ϕ : S → 	1 be the birational morphism induced by π . Then ϕ is a G-equi-

variant blow-up of the four intersection points 	1 ∩C4. Let 
 be the proper transform
on S of a general line in 	1, and let e1, e2, e3, e4 be ϕ-exceptional curves, and let 
i j
be the proper transform on the surface S of the line in 	1 that passes through ϕ(ei )
and ϕ(e j ), where 1 � i < j � 4. Then the cone NE(S) is generated by the curves e1,
e2, e3, e4, 
12, 
13, 
14, 
23, 
24, 
34. Recall also that

	1 ∩ C4 = (L24 ∩C4) ∪ (L34 ∩C4).

Therefore,wemay assume that L24∩C4 = ϕ(e1)∪ϕ(e2) and L34∩C4 = ϕ(e3)∪ϕ(e4),
so that we have ϕ(
12) = L24 and ϕ(
34) = L34.

Observe that, the group PicG(S) is generated by the divisor classes 
, e1 + e2,
e3 + e4, because both L24 ∩ C4 and L34 ∩ C4 are G-orbits of length 2. Therefore, if
Z is a curve, then ϕ(Z) is a curve of degree d � 1, so that

Z ∼ d
 − m12(e1 + e2) − m34(e3 + e4)

for some non-negative integers m12 and m34, which gives

Z ∼ (d − 2m12)
 + m12(2
 − e1 − e2 − e3 − e4) + (m12 − m34)(e3 + e4)

∼ (d − 2m12)(
12 + e1 + e2) + m12(
12 + 
34) + (m12 − m34)(e3 + e4)

and

Z ∼ (d − 2m34)
 + m34(2
 − e1 − e2 − e3 − e4) + (m34 − m12)(e1 + e2)

∼ (d − 2m34)(
34 + e3 + e4) + m34(
12 + 
34) + (m34 − m12)(e1 + e2).

Moreover, if Z 	= 
12 and Z 	= 
34, then d − 2m12 = Z ·
12 � 0 and d − 2m34 =
Z ·
34 � 0. Hence, if Z is a curve, then |Z − 
12| 	= ∅ or |Z − 
34| 	= ∅.

On the other hand, if Z is a curve, then [2, Corollary 1.7.26] gives

1 � AX (F)

SX (F)
� min

{
1

SX (S)
,

1

S(WS•,•; Z)

}

= min

{
30

17
,

1

S(WS•,•; Z)

}

,

where

S
(
WS•,•; Z

) = 3

(−KX )3

2∫

0

∞∫

0

vol(P(u)|S − vZ) dvdu,
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because Z 	⊂ Q̃. Moreover, if S(WS•,•; Z) = 1, then [2, Corollary 1.7.26] gives

1 � AX (E)

SX (E)
= 1

SX (S)
= 30

17
,

which is absurd. Thus, if Z is a curve, then S(WS•,•; Z) > 1, which gives

1 < S
(
WS•,•; Z

) = 1

10

2∫

0

∞∫

0

vol(P(u)|S − vZ) dvdu

� max

{
1

10

2∫

0

∞∫

0

vol(P(u)|S − v
12) dvdu,
1

10

2∫

0

∞∫

0

vol(P(u)|S − v
34) dvdu

}

,

because |Z − 
12| 	= ∅ or |Z − 
34| 	= ∅. Note also that

S
(
WS•,•; 
12

) = 1

10

2∫

0

∞∫

0

vol(P(u)|S − v
12) dvdu

= 1

10

2∫

0

∞∫

0

vol(P(u)|S − v
34) dvdu.

Hence, if Z is a curve, then the second statement in [2, Corollary 1.7.26] gives

1 < S
(
WS•,•; Z

)
� S

(
WS•,•; 
12

) = 1

10

2∫

0

∞∫

0

vol(P(u)|S − v
12) dvdu.

Let us compute S(WS•,•; 
12). For 0 � u � 1 and v � 0, we have

P(u)S − v
12 = (−KX − uS)|S − v
12 ∼R (4 − u − v)
 − (1 − v)(e1 + e2) − e3 − e4.

Therefore, if 0 � v � 1, then this divisor is nef, and its volume is u2 + 2uv − v2 −
8u − 4v + 12. Similarly, if 1 � v � 2 − u, then its Zariski decomposition is

P(u)|S − v
12 ∼R (4 − u − v)
 − e3 − e4︸ ︷︷ ︸
positive part

+ (v − 1)(e1 + e2)︸ ︷︷ ︸
negative part

,

so that its volume is u2 + 2uv + v2 − 8u − 8v + 14. Likewise, if 2− u � v � 3− u,
then the Zariski decomposition of the divisor P(u)|S − v
12 is

P(u)
∣
∣
S − v
12 ∼R (3 − u − v)(2
 − e3 − e4)︸ ︷︷ ︸

positive part

+ (v − 1)(e1 + e2) + (v − 2 + u)
34︸ ︷︷ ︸
negative part

,
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so that its volume is 2(3 − u − v)2. If v > 3 − u, then P(u)|S − v
12 is not pseudo-
effective, so that the volume of this divisor is zero. Thus, we have

1

10

1∫

0

∞∫

0

vol(P(u)|S − v
12) dvdu

= 1

10

1∫

0

3−u∫

0

vol(P(u)|S − v
12) dvdu

= 1

10

{ 1∫

0

1∫

0

(
u2 + 2uv − v2 − 8u − 4v + 12

)
dvdu

+
1∫

0

2−u∫

1

(
u2 + 2uv + v2 − 8u − 8v + 14

)
dvdu

+
1∫

0

3−u∫

2−u

2(3 − u − v)2dvdu

}

= 107

120
.

Similarly, if 1 � u � 2, then

P(u)|S − v
12 ∼R (6 − 3u − v)
 + (v + u − 2)(e1 + e2) + (u − 2)(e3 + e4).

If 0 � v � 2−u, this divisor is nef, and its volume is 5u2+2uv−v2−20u−4v+20.
Likewise, if 2 − u � v � 4 − 2u, then its Zariski decomposition is

P(u)|S − v
12 ∼R (4 − 2u − v)(2
 − e3 − e4)︸ ︷︷ ︸
positive part

+ (v − 2 + u)(e1 + e2 + 
34)︸ ︷︷ ︸
negative part

,

and its volume is 2(4 − 2u − v)2. If v > 4 − 2u, this divisor is not pseudo-effective,
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so that

1

10

2∫

1

∞∫

0

vol(P(u)|S − v
12) dvdu

= 1

10

2∫

1

4−2u∫

0

vol(P(u)|S − v
12) dvdu

= 1

10

{ 2∫

1

2−u∫

0

(
5u2 + 2uv − v2 − 20u − 4v + 20

)
dvdu

+
2∫

1

4−2u∫

2−u

2(4 − 2u − v)2dvdu

}

= 13

120
.

Therefore, we see that

S
(
WS•,•; 
12

) = 1

10

2∫

0

∞∫

0

vol(P(u)|S − v
12) dvdu

= 1

10

1∫

0

∞∫

0

vol(P(u)|S − v
12) dvdu

+ 1

10

2∫

1

∞∫

0

vol(P(u)
∣
∣
S − v
12) dvdu

= 107

120
+ 13

120
= 1,

which implies, in particular, that Z is not a curve.
Hence, we see that π(Z) is one of the points O2, O3, O4.Without loss of generality,

wemayassume that eitherπ(Z) = O2 orπ(Z) = O4, so that Z ∈ 
12 in both subcases.
Now, using [2, Theorem 1.7.30], we see that

1 � AX (F)

SX (F)
� min

{
1

S(WS,
12•,•,• ; Z)
,

1

S(WS•,•; 
12)
,

1

SX (S)

}

= min

{
1

S(WS,
12•,•,• ; Z)
, 1

}

,
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where S(WS,
12•,•,• ; Z) is defined in [2, Section 1.7]. In fact, [2, Theorem 1.7.30]
implies the strict inequality S(WS,
12•,•,• ; Z) < 1, because SX (S) < 1. Let us compute
S(WS,
12•,•,• ; Z).

For 0 � u � 2 and v � 0, let P(u, v) be the positive part of the Zariski decompo-
sition of the divisor P(u)|S − v
12, and let N (u, v) be its negative part.

If 0 � u � 1, then

P(u, v) =

⎧
⎪⎨

⎪⎩

(4 − u − v)
 − (1 − v)(e1 + e2) − e3 − e4 if 0 � v � 1,

(4 − u − v)
 − e3 − e4 if 1 � v � 2 − u,

(3 − u − v)(2
 − e3 − e4) if 2 − u � v � 3 − u,

and

N (u, v) =

⎧
⎪⎨

⎪⎩

0 if 0 � v � 1,

(v − 1)(e1 + e2) if 1 � v � 2 − u,

(v − 1)(e1 + e2) + (v − 2 + u)
34 if 2 − u � v � 3 − u.

Similarly, if 1 � u � 2, then

P(u, v) =

⎧
⎪⎨

⎪⎩

(6 − 3u − v)
 + (v + u − 2)(e1 + e2) + (u − 2)(e3 + e4)

if 0 � v � 2 − u,

(4 − 2u − v)(2
 − e3 − e4) if 2 − u � v � 4 − 2u,

and

N (u, v) =
{
0 if 0 � v � 2 − u,

(v − 2 + u)(e1 + e2 + 
34) if 2 − u � v � 4 − 2u.

Recall from [2, Theorem 1.7.30] that

S
(
WS,
12•,• ; Z) = FZ

(
WS,
12•,•

) + 3

(−KX )3

2∫

0

∞∫

0

(P(u, v) ·
12)2dvdu

for

FZ
(
WS,
12•,•

) = 6

(−KX )3

2∫

0

∞∫

0

(P(u, v) ·
12) ordZ
(
N ′
S(u)|
12+ N (u, v)|
12

)
dvdu,

where N ′
S(u) is the part of the divisor N (u)|S whose support does not contain 
12,

so that N ′
S(u) = N (u)|S in our case, which implies that ordZ (N ′

S(u)|
12) = 0 for
0 � u � 2, because Z /∈ Q̃. Thus, if π(Z) = O2, then Z /∈ 
34 ∪ e1 ∪ e2, which
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gives FZ (WS,
12•,• ) = 0. On the other hand, if π(Z) = O4, then Z = 
12 ∩ 
34 and
Z /∈ e1 ∪ e2, so that

FZ
(
WS,
12•,•

) = 1

5

2∫

0

∞∫

0

(P(u, v) ·
12) ordZ
(
N (u, v)|
12

)
dvdu

= 1

5

{ 1∫

0

3−u∫

2−u

(6 − 2u − 2v + 6)(v − 2 + u) dvdu+

+
2∫

1

4−2u∫

2−u

(8 − 4u − 2v + 8)(v − 2 + u) dvdu

}

= 1

12
.

Therefore, we see that

S
(
WS,
12•,• ; Z)

� 1

12
+ 1

10

2∫

0

∞∫

0

(P(u, v) ·
12)2dvdu

= 1

12
+ 1

10

{ 1∫

0

1∫

0

(2 − u + v)2dvdu +
1∫

0

2−u∫

1

(4 − u − v)2dvdu

+
1∫

0

3−u∫

2−u

(6 − 2u − 2v)2dvdu

+
2∫

1

2−u∫

0

(2 − u + v)2dvdu

+
2∫

1

4−2u∫

2−u

(8 − 4u − 2v)2dvdu

}

= 1.

However, as we alreadymentioned, one has S(WS,
12•,• ; Z) < 1 by [2, Theorem 1.7.30].
The obtained contradiction concludes that Z ⊂ H4.

Since Z 	⊂ H1 ∪ H2 ∪ H3, the center Z must be a G-invariant curve on H4.
Moreover, π(Z) cannot be one of the lines determined by the points O1, O2, O3 on
	4. This implies that π(Z) is a curve of degree d � 2 on 	4.

We keep the same notations as in the beginning of the proof, i.e., put S = H4 and
let ϕ : S → 	1 be birational morphism induced by π . As before, ϕ is a G-equivariant
blow-up of the four intersection points 	4 ∩ C4 which consist of a G- orbit of length
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4. We also denote by 
 the proper transform on S of a general line in 	4 and by e1,
e2, e3, e4 the four ϕ-exceptional curves. In addition, denote by C the proper transform
of a general conic passing through the four points 	4 ∩ C4.

Since the group PicG(S) is generated by the divisor classes 
, e1 + e2 + e3 + e4,
we have

Z ∼ d
 − m(e1 + e2 + e3 + e4).

where m is a non-negative integer. By taking intersection with the proper transforms
of the lines on 	4 passing through ϕ(ei ), ϕ(e j ), we obtain d � 2m. Since d � 2, this
implies that |Z − C| 	= ∅. Note that C 	⊂ Q̃. By the same argument as before, we
obtain

1 < S
(
WS•,•; Z

) = 1

10

2∫

0

∞∫

0

vol(P(u)|S − vZ) dvdu

� 1

10

2∫

0

∞∫

0

vol(P(u)|S − vC) dvdu = S
(
WS•,•;C

)
,

where P(u) is the positive part of −KX − uS as before. Let us compute S(WS•,•;C).
Similarly to the notations used earlier in the proof, we denote by P(u, v) the positive

part of the Zariski decomposition of the divisor P(u)|S −vC for 0 � u � 2 and v � 0,
and we denote by N (u, v) its negative part. If 0 � u � 1, then

P(u, v) =
{

(4 − u − 2v)
 − (1 − v)(e1 + e2 + e3 + e4) if 0 � v � 1,

(4 − u − 2v)
 if 1 � v � 4−u
2 ,

and

N (u, v) =
{
0 if 0 � v � 1,

(v − 1)(e1 + e2 + e3 + e4) if 1 � v � 4−u
2 .

Similarly, if 1 � u � 2, then

P(u, v) =
{

(6 − 3u − 2v)
 + (v + u − 2)(e1 + e2 + e3 + e4) if 0 � v � 2 − u,

(6 − 3u − 2v)
 if 2 − u � v � 6−3u
2 ,

and

N (u, v) =
{
0 if 0 � v � 2 − u,

(v + u − 2)(e1 + e2 + e3 + e4) if 2 − u � v � 6−3u
2 .

123



K-stable Fano threefolds of rank 2 and degree 30 851

This gives

1 < S
(
WS•,•;C

) = 1

10

{ 1∫

0

1∫

0

(P(u)|S − vC)2dvdu +
1∫

0

4−u
2∫

1

(
(4 − u − 2v)


)2
dvdu

+
2∫

1

2−u∫

0

(P(u)|S − vC)2dvdu

+
2∫

1

6−3u
2∫

2−u

(
(6 − 3u − 2v)


)2
dvdu

}

= 1

10

{ 1∫

0

1∫

0

(4 − u − 2v)2 − 4(1 − v) dvdu

+
1∫

0

4−u
2∫

1

(4 − u − 2v)2dvdu

+
2∫

1

2−u∫

0

(6 − 3u − 2v)2 − 4(2 − u − v) dvdu

+
2∫

1

6−3u
2∫

2−u

(6 − 3u − 2v)2dvdu

}

= 23

40
,

which is a contradiction. This completes the proof of the proposition. ��

Corollary Both Z and π(Z) are irreducible curves, and π(Z) is not entirely contained
in 	1 ∪ 	2 ∪ 	3 ∪ 	4 ∪ Q.

Using [2, Lemma 1.4.4], we see that αG,Z (X) < 3/4. Now, using [2, Lemma
1.4.1], we see that there are a G-invariant effective Q-divisor D on the threefold X
and a positive rational number μ < 3/4 such that D ∼Q −KX and Z is contained in
the locus Nklt(X , μD). Moreover, it follows from Claim that Nklt(X , μD) does not
contain G-irreducible surfaces except maybe for Q̃, H1, H2, H3, H4. Now, applying
[2, Corollary A.1.13] to (P3, μπ(D)), we see that π(Z) must be a G-invariant line in
P
3. But this is impossible by Corollary, since all G-invariant lines in P

3 are contained
in 	1 ∪ 	2 ∪ 	3 ∪ 	4.

The obtained contradiction completes the proof of our Theorem.
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