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Abstract
Let d be a positive integer. We show a finiteness theorem for semialgebraic RL

triviality of a Nash family of Nash functions defined on a Nash manifold, general-
ising Benedetti–Shiota’s finiteness theorem for semialgebraicRL equivalence classes
appearing in the space of real polynomial functions of degree not exceeding d. We also
prove Fukuda’s claim, Theorem 1.3, and its semialgebraic version Theorem 1.4, on
the finiteness of the local R types appearing in the space of real polynomial functions
of degree not exceeding d.

Keywords Polynomial function · Nash function · Topological equivalence ·
Semialgebraic equivalence
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1 Introduction

Let d be a positive integer, and let us denote by P(n, 1, d; R) the set of polynomial
functions fromR

n toR of degree not exceeding d. The space P(n, 1, d; R) is identified
with the Euclidean space R

L+1, regarded as the coefficient space of all polynomials
in P(n, 1, d; R). This L is given as n+dCd − 1.
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On finiteness theorems of polynomial functions S215

We say that two polynomials f , g : R
n → R are topologically RL equivalent

(respectively topologically R equivalent), if there exist homeomorphisms σ : R
n →

R
n and τ : R → R such that τ ◦ f = g ◦σ (respectively f = g ◦σ ). Furthermore

we say that two polynomials f , g : R
n → R are semialgebraically RL equivalent

(respectively semialgebraically R equivalent) if we can take the σ and τ as semialge-
braic homeomorphisms (respectively σ semialgebraic).

In [7], Fukuda established the following finiteness theorem for polynomials in
P(n, 1, d; R).

Theorem 1.1 (Fukuda’s finiteness theorem) The number of topological RL types
appearing in P(n, 1, d; R) is finite.

On the other hand, Benedetti and Shiota strengthened Fukuda’s finiteness theorem
in [2] as follows.

Theorem 1.2 (Benedetti–Shiota’s finiteness theorem) The number of semialgebraic
RL types appearing in P(n, 1, d; R) is finite.

Based on the above finiteness theorems and their proofs, we discuss finiteness
properties for RL or R equivalence of polynomials in Sect. 4. In this introduction
we mention two local results from those finiteness properties. Let us denote the
polynomials without free term by P0(n, 1, d; R) = { f ∈ P(n, 1, d; R) | f (0) = 0},
naturally identified with the Euclidean space R

L . We say that two polynomials
f , g ∈ P(n, 1, d; R) are locally topologically R equivalent at 0 ∈ R

n, and write
R0, if there exists a local homeomorphism σ : (U ⊂ R

n, 0) → (V ⊂ R
n, 0) between

two open neighbourhoods of the origin, such that f/U = g/V ◦σ ; and that two polyno-
mials f , g ∈ P(n, 1, d; R) are locally semialgebraically R equivalent at 0 ∈ R

n, and
writeR0, if we can take the σ as a local semialgebraic homeomorphism. Then we will
prove the following new finiteness results for the local R0 equivalence of polynomial
functions. For the reasons given in Sect. 4.4, we call the first result Fukuda’s local R
finiteness theorem.

Theorem 1.3 (Fukuda’s local R finiteness theorem [9]) The number of local topolog-
ical R0 types appearing in P0(n, 1, d; R) is finite. In addition, each topological R0
equivalence class in P0(n, 1, d; R) is a semialgebraic subset of P0(n, 1, d; R).

Theorem 1.4 (Local semialgebraic R0 finiteness theorem) The number of local semi-
algebraic R0 types appearing in P0(n, 1, d; R) is finite.

As a generalisation of the above finiteness results (Theorems 1.1 and 1.2) for
topological or semialgebraic RL equivalence classes appearing in the space of real
polynomial functions of a fixed degree, we shall show the following result in Sect. 5.

Theorem 1.5 Let { ft : M → R | t ∈ J } be a Nash family of Nash functions defined
on a Nash manifold M with a semialgebraic parameter space J . Namely, the function
F : M× J → R defined by F(x, t) ..= ft (x) is a Nash function. Then there exists a
finite subdivision of J into Nash open simplices J = Q1 ∪ · · · ∪ Qu such that
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S216 S. Koike, L. Paunescu

{ ft : M → R | t ∈ Qi }

is semialgebraically RL trivial over each Qi .

For the definition of a Nash open simplex, see Sect. 3.3.
For the reader’s convenience, we recall several classic notions. Firstly, in Sect. 2,

that of Whitney’s regularity and of stratified mappings, followed by the notion of
controlled tube systems for stratifications. At the end of this section we introduce the
semialgebraic and Nash properties which will be used to prove our results. Secondly,
in Sect. 3, we recall Thom’s 1st and 2nd Isotopy Lemmas and Shiota’s semialgebraic
versions of Thom’s Isotopy Lemmas as tools to establish topologicalRL triviality and
semialgebraic RL triviality, respectively.

2 Preliminaries

2.1 Whitney-regularity and stratifiedmapping

Let X ,Y be disjoint C1 submanifolds of R
m, and let y0 be a point in Y ∩ X . We say

that the pair (X ,Y ) satisfies Whitney’s condition (b) at y0, if for any sequences {xi }
in X and {yi } in Y which tend to y0 such that the tangent planes Txi X tend to some
dim X -plane τ ⊂ R

n and the secants x̂i yi tend (in the projective space P
m−1) to some

line �, then we have � ⊂ τ . If (X ,Y ) satisfies Whitney’s condition (b) at any point
of Y , we say that X is Whitney (b)-regular over Y . For the properties of the Whitney
regularity, see Whitney [28, 29], Mather [20] and Trotman [26, 27].

Let A ⊂ R
m admit aC1 stratification S(A) satisfying the frontier condition, namely

if X ∩ Y �= ∅ for X ,Y ∈ S(A), then we have X ⊃ Y . We say that the stratification
S(A) of A is a Whitney stratification, if for any strata X ,Y ∈ S(A) with X ⊃ Y , X
is Whitney (b)-regular over Y . In the sequel we will assume the frontier condition
whenever we consider stratifications of subsets in Euclidean spaces.

Let X ,Y be disjoint C1 submanifolds of R
m, and let y0 be a point in Y ∩ X . Let

f : X ∪ Y → R
r be a mapping such that both restricted mappings f |X : X → R

r

and f |Y : Y → R
r are C1 and of constant ranks. We say that the pair (X ,Y ) satisfies

Thom’s condition (a f ) at y0, if for any sequence {xi } in X tending to y0 such that
ker d( f |X )xi tends to κ , then we have ker d( f |Y )y0 ⊂ κ , where ker d( f |X)x denotes
the kernel of the differential of f |X at x . If (X ,Y ) satisfies Thom’s condition (a f ) at
any point of Y , we say that X is Thom (a f )-regular over Y or Thom regular over Y .
For the properties of the Thom (a f ) regularity, see [10, 12, 20, 25].

Let A ⊂ R
m and B ⊂ R

r and let f : A → B be a mapping. Assume that A and B
admit C1 stratifications S(A) and S(B) respectively. We call f a stratified mapping,
if for any stratum X ∈ S(A), there exists a stratumU ∈ S(B) such that f |X : X → U
is a surjective C1 submersion. In this paper, we assume all stratified mappings to be
surjective. We call the stratified mapping f : (A, S(A)) → (B, S(B)) Thom regular,
if for any X ,Y ∈ S(A) with X ⊃ Y , X is Thom (a f )-regular over Y .
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On finiteness theorems of polynomial functions S217

2.2 Controlled tube system

Let M be a C2 manifold, and let N be a C2 submanifold of M . A tube at N in M is a
triple T = (|T |, π, ρ), where |T | is an open neighbourhood of N in M , π : |T | → N
is a submersive C2 retraction, and ρ is a nonnegative C2 function on |T | such that
ρ−1(0) = N and each point x of N is the unique critical point (nondegenerate) of
the restriction of ρ to π−1(x). In the case when N is an open submanifold of M , we
let T = (|T |, π, ρ) where |T | = N , π = idN and ρ = 0 for convenience. Here idN
denotes the identity mapping idN : N → N .

Let A ⊂ M , and let S(A) = {Xi } be a C2 stratification of A (the strata are C2

submanifolds). A tube system for the stratification {Xi } consists of one tube Ti =
(|Ti |, πi , ρi ) at each Xi . We say that a tube system {Ti } is controlled if for any i and
j with Xi ⊂ X j , the following commutative relations hold:

πi ◦π j (x) = πi (x), ρi ◦π j (x) = ρi (x) for x ∈ |Ti | ∩ |Tj |.

We call {Ti } weakly controlled if the first relation holds.
Let M and P be C2 manifolds, let f : A → B be a mapping between A ⊂ M

and B ⊂ P . Let S(A) = {Wk} and S(B) = {V ′
j } be C2 stratifications, and let

{Tk = (|Tk |, πk, ρk)} and {T ′
j = (|Tj |′, π ′

j , ρ
′
j )} be tube systems for {Wk} and {V ′

j },
respectively. We call {Tk} controlled over {T ′

j } if {Tk} satisfies the following relations:
(1) For any k and � with Wk ⊂ W�, πk ◦π�(x) = πk(x) on |Tk | ∩ |T�|.
(2) For any k and �withWk ⊂ W� and f (Wk)∪ f (W�) ⊂ V ′

j for some j , ρk ◦π�(x) =
ρk(x) on |Tk | ∩ |T�|.

(3) For any k and j with f (Wk) ⊂ V ′
j , f |Wk of class C2 and f (|Tk |) ⊂ |T ′

j | and
f ◦πk = π ′

j ◦ f on A ∩ |Tk |.

2.3 Semialgebraic and Nash properties

In this subsection we recall some important semialgebraic and Nash properties which
can be useful tools when we apply Thom’s Isotopy Lemmas to a family of polynomial
functions or more generally to a family of Nash functions. We first recall the notions
of a Nash manifold and of a Nash mapping.

Let s = 1, 2, . . . ,∞, ω. A Cs submanifold of R
m is called a Cs Nash manifold,

if it is semialgebraic in R
m. In this paper, a submanifold always means a regular

submanifold. By Malgrange [19], a C∞ Nash manifold is a Cω manifold. We simply
call a C∞ Nash manifold a Nash manifold.

Let M ⊂ R
m and N ⊂ R

n be Cs Nash manifolds. A Cr mapping f : M → N ,
r � s, is called a Cr Nash mapping, if the graph of f is semialgebraic in R

m ×R
n.

It is known also by [19] that a C∞ Nash mapping is a Cω mapping. We simply call a
C∞ Nash mapping a Nash mapping.

Let A ⊂ R
m and B ⊂ R

n be semialgebraic sets. A continuous mapping f : A → B
is called a semialgebraic mapping, if the graph of f is semialgebraic inR

m ×R
n. Note

that we demand the continuity for a semialgebraic mapping in this paper.
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S218 S. Koike, L. Paunescu

Theorem 2.1 (Tarski–Seidenberg Theorem [21]) Let A be a semialgebraic set in R
k,

and let f : R
k → R

s be a semialgebraic mapping. Then f (A) is semialgebraic in R
s.

Throughout this paper a Nash open simplexmeans a Nash manifold which is Nash
diffeomorphic to an open simplex in some Euclidean space.

Theorem 2.2 (Łojasiewicz’s Semialgebraic Triangulation Theorem [17, 18]) Given a
finite system of bounded semialgebraic sets Xα in R

q , there exist a simplicial decom-
position R

q = ⋃
a Ca and a semialgebraic automorphism τ of R

q such that

(1) each Xα is a finite union of some of the τ(Ca),
(2) τ(Ca) is aNashmanifold inR

q and τ induces aNash diffeomorphismCa → τ(Ca)

for every a, in other words, τ(Ca) is a Nash open simplex for every a.

Remark 2.3 (1) Concerning the proof of Semialgebraic Triangulation Theorem, see
also Hironaka [11] or Coste [4].

(2) There is a Nash embedding of R
q into R

q+1 via Sq ⊂ R
q+1. Let us remark that

a semialgebraic subset of R
q can be regarded as a bounded semialgebraic subset of

R
q+1.

The existence of a finite Whitney stratification of Nash class for a semialgebraic
set was established by Łojasiewicz [17, 18].

We next recall Fukuda’s Lemma in [7], concerning the existence of compatible
Whitney stratifications related to a Nash stratified mapping.

Lemma 2.4 (Fukuda’s Lemma) Let M and N be Nash manifolds, and let f : M → N
be a Nash mapping. Given semialgebraic subsets A1, . . . , Aa of M and semialgebraic
subsets B1, . . . , Bb of N, there exist finite Whitney stratifications of Nash class S(M)

of M compatible with A1, . . . , Aa and S(N ) of N compatible with B1, . . . , Bb such
that f : (M, S(M)) → (N , S(N )) is a Nash stratified mapping.

3 Thom’s Isotopy Lemmas

Thom’s Isotopy Lemmas have been used widely in singularity theory, e.g. to establish
the topological stability theory, to show the topological triviality of a family of sets
or mappings, to solve the finite C0 determinacy problem of map-germs, and so on.
Therefore they are not always given in the same form. In this section we mention
Thom’s Isotopy Lemmas and their semialgebraic versions in a suitable form for our
purposes.

3.1 Thom’s 1st and 2nd isotopy Lemmas

Thom’s 1st and 2nd Isotopy Lemmaswere presented byRené Thom [25] as very useful
tools in singularity theory as mentioned above. For the detailed proofs, see Mather
[20] or Gibson, Wirthmüller, du Plessis and Looijenga [10]. We also mention Fukuda
[7] and du Plessis and Wall [6] as further references.
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Now let us recall Thom’s Isotopy Lemmas. Let M , N and I be C∞ manifolds, let
f : M → N and q : N → I be C∞ mappings, and let A ⊂ M and B ⊂ N be closed
subsets such that f (A) ⊂ B.

Theorem 3.1 (Thom’s 1st Isotopy Lemma) Let q|B : B → I be proper. Suppose that
B admits a locally finite C∞ Whitney stratification S(B) such that q : (B, S(B)) →
(I , {I }) is a stratified mapping. Then the stratified set (B, S(B)) is locally C0 trivial
over I .

Theorem 3.2 (Thom’s 2nd Isotopy Lemma) Let I be connected, and f |A : A → N
and q|B : B → I be proper. Suppose that A and B admit locally finite C∞ Whitney
stratifications S(A) and S(B) respectively such that f : (A, S(A)) → (B, S(B)) is a
Thom regular stratified mapping and q : (B, S(B)) → (I , {I }) is a stratified mapping.
Then the stratified mapping f is topologically trivial over I , namely, there are home-
omorphisms H : (q ◦ f )−1(P0)× I → A and h : q−1(P0)× I → B, for some P0 ∈ I ,
preserving the natural stratifications such that h−1 ◦ f ◦H = f |(q◦ f )−1(P0) × idI and
q ◦h : q−1(P0)× I → I is the canonical projection, where idI is the identity map on
I .

3.2 Semialgebraic versions of Thom’s isotopy Lemmas

Shiota established in [23] semialgebraic versions of Thom’s Isotopy Lemmas. We
recall them in this subsection.

Let A ⊂ R
a, B ⊂ R

b be semialgebraic subsets, let I be a Nash open simplex, and
let f : A → B and q : B → I be proper Nash mappings.

Theorem 3.3 (Shiota’s semialgebraic version of Thom’s 1st Isotopy Lemma) Sup-
pose that B admits a finite Whitney stratification of Nash class S(B) such that
q : (B, S(B)) → (I , {I }) is a stratified mapping. Then the stratified set (B, S(B))

is semialgebraically trivial over I .

Theorem 3.4 (Shiota’s semialgebraic version ofThom’s 2nd IsotopyLemma) Suppose
that A and B admit finite Whitney stratifications of Nash class S(A) and S(B) respec-
tively such that f : (A, S(A)) → (B, S(B)) is a Thom regular stratified mapping
and q : (B, S(B)) → (I , {I }) is a stratified mapping. Then the stratified mapping
f is semialgebraically trivial over I , namely, there are semialgebraic homeomor-
phisms H : (q ◦ f )−1(P0)× I → A and h : q−1(P0)× I → B, for some P0 ∈ I ,
preserving the natural stratifications such that h−1 ◦ f ◦H = f |(q◦ f )−1(P0) × idI and
q ◦h : q−1(P0)× I → I is the canonical projection.

3.3 Semialgebraic triviality after finite subdivision

Let A ⊂ R
a, B ⊂ R

b be semialgebraic sets, let Q be a Nash open simplex and let
f : A → B and q : B → Q be proper Nash mappings. Let us assume that A and
B admit finite Whitney stratifications of Nash class S(A) and S(B), respectively. In
addition, we assume that f : (A, S(A)) → (B, S(B)) and q : (B, S(B)) → (Q, {Q})
are stratified mappings. Under this setting, we prepare some notations.
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Notation 3.5 For t ∈ Q, let At and Bt denote (q ◦ f )−1(t) ∩ A and q−1(t) ∩ B,
respectively, and let

S(A)t
..= {(q ◦ f )−1(t) ∩ X | X ∈ S(A)} and S(B)t

..= {q−1(t) ∩ Y | Y ∈ S(B)}.

Note that for any t ∈ Q, S(A)t and S(B)t are stratifications of At and Bt , respec-
tively, and ft ..= f |At : (At , S(A)t ) → (Bt , S(B)t ) is a stratifiedmapping. Then, using
the same argument as in the proof of [13, Proposition 4.5] together with Theorem 3.4,
we can show the following lemma.

Lemma 3.6 Suppose that, for any t ∈ Q, the stratified mapping ft ..= f |At : (At ,

S(A)t ) → (Bt , S(B)t ) is (a ft )-regular. Then, subdividing Q into finitely many Nash
open simplices if necessary, the stratified mapping f : (A, S(A)) → (B, S(B)) is
semialgebraically trivial over Q (in the sense of Theorem 3.4).

Sketch of the proof Similarly to the proof of the original Thom’s 2nd Isotopy Lemma,
the cotrolled tube systems also take an important roll in the proof of the semialgebraic
version. In fact, we can weaken the assumptions of the Whitney’s regularity and the
Thom’s regularity in the semialgebraic version of Thom’s 2nd Isotopy Lemma as
follows:

There exist a cotrolled C2-Nash tube system {T B
j = (|T B

j |, π B
j , ρB

j )} for {Uj ∈
S(B)} and a C2-Nash tube system {T A

i = (|T A
i |, π A

i , ρA
i )} for {Xi ∈ S(A)} controlled

over {T B
j } such that

(1) for each j , q ◦π B
j = q on B ∩ |T B

j |;
(2) for any j and j ′ with Uj ⊂ Uj ′ ,

(∗) (π B
j , ρB

j )|Uj ′∩|T B
j | : Uj ′ ∩ |T B

j | → Uj ×R is a C2 submersion;

(3) for any i and i ′ with f (Xi ) ⊂ Uj , f (Xi ′) ⊂ Uj ′ and Xi ⊂ Xi ′ , if Uj = Uj ′ , then

(∗) (π A
i , ρA

i )|Xi ′∩|T A
i | : Xi ′ ∩ |T A

i | → Xi ×R is a C2 submersion,

and if Uj �= Uj ′ , then for any x ∈ Xi ′ ∩ |T A
i |,

(∗∗) d(π A
i |Xi ′ )x : ker d( f |Xi ′ )x → ker d( f |Xi )π A

i (x) is surjective.

If Uj ′ (respectively Xi ′ ) is Whitney (b)-regular over Uj (respectively Xi ), then
condition (∗) in (2) (respectively (3)) is satisfied for any tube system by shrinking the
tube if necessary. Note that our S(A) and S(B) are Whitney stratications. On the other
hand, if Xi ′ is Thom (a f )-regular over Xi , then condition (∗∗) in (3) is satisfied for any
controlled tube systems by shrinking the tubes if necessary. We are assuming here a
weaker condition than Thom (a f )-regularity, namely we are assuming (a ft )-regularity
for any t ∈ Q.

Let X , Y ∈ S(A) with X ⊂ Y , and let U , V ∈ S(B) with U ⊂ V such that
f (X) ⊂ U and f (Y ) ⊂ V . Assume that X and U admit C2-Nash tube systems
TX = (|TX |, πX , ρX ) and TU = (|TU |, πU , ρU ) such that f ◦πX = πU ◦ f in Y ∩|TX |
and q ◦πU = q in B ∩ |TU |. Let 
 be the set of y ∈ Y ∩ |TX | such that q ◦ f (y) = t

123



On finiteness theorems of polynomial functions S221

and d(πX |Yt )y : ker d( ft |Yt )y → ker d( ft |Xt )πX (y) is not surjective. Then, under the
assumption of (a ft )-regularity for any t ∈ Q, we can show that q ◦ f (
 ∩ X) is
a semialgebraic subset of Q of dimension less than dim Q, where 
 denotes the
closure of 
 in A. Repeating the same argument after taking a finite subdivision of
the parameter space into Nash open simplices (using Theorem 2.2), we can show the
following assertion.

Assertion 3.7 Subdividing Q into finitely many Nash open simplices and shrinking the
tube TX if necessary, for any y ∈ Y ∩ |TX |,
(∗∗) d(πX |Y )y : ker d( f |Y )y → ker d( f |X )πX (y) is surjective.

Let us assume that a cotrolled C2-Nash tube system {T B
j = (|T B

j |, π B
j , ρB

j )} for

{Uj ∈ S(B)} satisfying (1) and a C2-Nash tube system {T A
i = (|T A

i |, π A
i , ρA

i )} for
{Xi ∈ S(A)} controlled over {T B

j } are given. Then, using Assertion 3.7 and Theorem
2.2, we can show that the latter condition in (3) including (∗∗) is satisfied after taking a
finite subdivision of Q into Nash open simplices and shrinking the tubes if necessary.

On the other hand, the existence theorem of a controlled Cr -Nash tube system
(r < ∞) is shown in [23, Lemma II.6.10] (see also [23, Lemmas I.1.3 and I.1.3′]).
Modifying the proof, we can show the existence of a controlled C2-Nash tube system
{T B

j } for {Uj ∈ S(B)} satisfying (1) and a C2-Nash tube system {T A
i } controlled over

{T B
j }, under our setting. Therefore, taking a finite subdivision of Q into Nash open

simplices if necessary, the hypothesis of the semialgebraic version of Thom’s 2nd
Isotopy Lemma with the weakened assumptions is satisfied. Then the statement of the
lemma follows from this modified Isotopy Lemma. �

4 Finiteness for some equivalences of polynomial functions

4.1 Finiteness forR0L0-equivalence of polynomial functions

In this subsection we consider some restricted versions of Theorems 1.1 and 1.2.
Let us recall P0(n, 1, d; R) ..= { f ∈ P(n, 1, d; R) | f (0)= 0}. We say that two
polynomials f , g ∈ P(n, 1, d; R) are topologically R0L0 equivalent (respectively
semialgebraically R0L0 equivalent), if there exist homeomorphisms (respectively
semialgebraic homeomorphisms) σ : R

n → R
n with σ(0) = 0 and τ : R → R

with τ(0) = 0 such that τ ◦ f = g ◦σ on R
n.

If we apply the same argument as in the proof of Theorem 1.1 we can show that the
number of topological RL types appearing in P0(n, 1, d; R) is finite. Then, by taking
the stratifications S1 and S2 ofR

n × P0(n, 1d; R) andR× P0(n, 1, d; R) so that S1 and
S2 are compatible with {0}× P0(n, 1, d; R) where 0 ∈ R

n and {0}× P0(n, 1, d; R)

where 0 ∈ R, respectively, we conclude that σ preserves 0 ∈ R
n and τ preserves

0 ∈ R. Actually when restricted to P0(n, 1, d; R), the fact that τ preserves 0 ∈ R is a
consequence of the fact that σ preserves 0 ∈ R

n. Thus we have shown the following
stronger result.

Theorem 4.1 The number of topological R0L0 types appearing in P0(n, 1, d; R) is
finite.
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Using a similar argument to the proof of the above theorem with the semialge-
braic versions of Thom’s Isotopy Lemmas, we can show the following theorem in the
semialgebraic case.

Theorem 4.2 The number of semialgebraic R0L0 types appearing in P0(n, 1, d;
R) is finite.

4.2 Finiteness forRL-equivalence of polynomial function germs

We say that two polynomials f , g : R
n → R are locally topologically RL equivalent

at 0 ∈ R
n and write RL0, if there exist local homeomorphisms σ : (U ⊂ R

n, 0) →
(V ⊂ R

n, 0),U , V two open neighbourhoods of 0 ∈ R
n, and τ : (J ⊂ R, f (0)) →

(K ⊂ R, g(0)), J , K two open intervals, such that for their appropriate restrictions we
have τ ◦ f = g ◦σ . Similarly, two polynomials f , g : R

n → R are locally semialge-
braically RL equivalent at 0 ∈ R

n if we can take the σ and τ as local semialgebraic
homeomorphisms, and write RL0.

In the case of f , g ∈ P0(n, 1, d; R) the above equivalence relation RL0, is in
fact the local version of the previous R0L0 equivalence relation, i.e. RL0 coincides
with R0L0 in this case. In this paper local will mean only local at 0 ∈ R

n and at
the corresponding images, and the meaning of local will be as described above, i.e.
equivalence of germs of polynomial functions at 0 ∈ R

n.
In the original version of [7], Fukuda proved the following finiteness theorem for

local topologicalRL equivalence classes appearing in the P0(n, 1, d; R). This theorem
is an immediate consequence of Theorem 4.1.

Theorem 4.3 The number of local topologicalR0L0 types appearing in P0(n, 1, d; R)

is finite.

As a corollary of Theorem 4.3, we have the following.

Corollary 4.4 (Fukuda’s local RL0 finiteness theorem) The number of local topologi-
cal RL0 types appearing in P(n, 1, d; R) is finite.

Example 4.5 Let I = [0, 1] be a closed interval, let ft : (R, 0) → R, t ∈ I , be the
polynomial defined by ft (x) ..= t2 − x2, and let

F ..= { ft ∈ P(1, 1, 2; R) | t ∈ I }.

Then there is a unique local topological RL0 type appearing in F, but the local topo-
logical R0 types appearing in F have the cardinal number of the continuum since the
R0 equivalence preserves the image. This example shows, in particular, that Fukuda’s
finiteness result, Theorem 1.1, cannot be generalised to R0.

Using a similar argument to the proof of Theorem 4.3 with the semialgebraic ver-
sions of Thom’s Isotopy Lemmas, we can show the following finiteness theorem.

Theorem 4.6 Thenumberof local semialgebraicR0L0 types appearing in P0(n, 1, d; R)

is finite.
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We have a similar corollary also in the semialgebraic case.

Corollary 4.7 (Local semialgebraicRL0 finiteness theorem)The number of local semi-
algebraic RL0 types appearing in P(n, 1, d; R) is finite.

4.3 General setting for finiteness of polynomial functions

Let (X ,∼X ) and (Y ,∼Y ) be two sets endowedwith some equivalence relations, and let
π : X → Y be a surjective mapping. If a ∼X b implies π(a)∼Y π(b) (or respectively
π(a)∼Y π(b) implies a ∼X b ) then whenever the quotient space of X is finite, the
quotient space of Y is finite (or respectively, whenever the quotient space of Y is finite,
the quotient space of X is finite). In particular, in the case when f ∼X g if and only if
f̃ ..= π( f )∼Y g̃ ..= π(g), the quotient space of Y is finite if and only if the quotient
space of X is finite. We are going to apply these observations for the relations and
situations mentioned below.

For a ∈ R
n, let μa denote the translation in the direction �a on R

n, and for c ∈ R,

let τc denote the translation in the direction �c on R.

[1] Local equivalence case

Local topological equivalence of polynomials

Case 1. Let X = P×R
n = P(n, 1, d; R)×R

n, Y = P0 = { f ∈ P | f (0)= 0}, and
π( f , a) = f̃ = f ◦μa − f (a) = τ− f (a) ◦ f ◦μa , so that f̃ (0) = 0. Consider the case
where ∼X= R�L is the local right-left equivalence with translation (defined below)
τ ◦ f ◦φ = g, where φ is a local homeomorphism and τ is a translation on R, and
∼Y= R0 is the local topological right equivalence.

Given ( f , a), (g, b) ∈ P(n, 1, d; R)×R
n, we say that they are locally topologically

R�L equivalent if there exists a local homeomorphism φ : (Rn, b) → (Rn, a) such that
τg(b)− f (a) ◦ f ◦φ = g. Therefore we have

(τ− f (a) ◦ f ◦μa)◦(μ−a ◦φ ◦μb) = τ−g(b) ◦g ◦μb.

Since μ−a ◦φ ◦μb is a local homeomorphism (Rn, 0) → (Rn, 0), f̃ and g̃ are locally
topologically R0 equivalent.

Conversely, assume that f̃ and g̃ are locally topologicallyR0 equivalent. Then there
exists a local homeomorphism φ : (Rn, 0) → (Rn, 0) such that (τ− f (a) ◦ f ◦μa)◦φ =
τ−g(b) ◦g ◦μb. Thereforewehave τg(b)− f (a) ◦ f ◦(μa ◦φ ◦μ−b) = g. Sinceμa ◦φ ◦μ−b

is a local homeomorphism (Rn, b) → (Rn, a), i.e. ( f , a) and (g, b) areR�L equivalent
in our sense.

We have shown that ( f , a)∼X (g, b) if and only if π( f , a) = f̃ ∼Y g̃ = π(g, b).

Case 2. Let X = P , Y = P0 = P0(n, 1, d; R) and π( f ) = f̃ = f − f (0) =
τ− f (0) ◦ f , i.e. the case when both a = b = 0. Consider the case when ∼X= R�L
is the local right-left equivalence with translation as above, and ∼Y= R0 is the local
topological right equivalence.
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Using a similar argument to Case 1, we can easily show in this case that f ∼X g if
and only if f̃ ∼Y g̃.

Case 3. Let X = P , Y = P0 = P0(n, 1, d; R) and π( f ) = f̃ = f − f (0) =
τ− f (0) ◦ f . Both equivalences are the local topological right-left equivalence RL.

Using a similar argument to the global topological equivalence case below, we can
show also in this local case that f ∼X g if and only if f̃ ∼Y g̃.

By the above observations and discussions, we have the following.

Note 4.8 (i) Consider Case 1: By Theorem 1.3, the number of local topological R0
orbits in P0 is finite. Therefore the number of local topological R�L orbits in P×R

n

is finite.

(ii) Consider Case 2: By Theorem 1.3, the number of local topologicalR0 orbits in P0
is finite. Therefore the number of local topological R�L orbits in P is finite.

(iii) Consider Case 3: By Theorem 4.3, the number of local topological RL orbits in
P0 is finite. Therefore the number of local topological RL orbits at 0 ∈ R

n in P is
finite. This is also a consequence of the previous fact (ii).

Local semialgebraic equivalence of polynomials In the semialgebraic equivalence
case, we can show a similar note to Note 4.8, using Theorems 1.4 and 4.6.

[2] Global equivalence case

Topological equivalence of polynomial functions
Let X = P = P(n, 1, d; R), Y = P0 = { f ∈ P | f (0)= 0} and π( f ) = f̃ =
f − f (0) = τ− f (0) ◦ f . Both equivalences are the topological right-left equivalences
RL.

Let f , g ∈ P(n, 1, d; R). Assume that f and g are topologically RL equivalent.
Then there exist homeomorphismsφ : R

n → R
n andψ : R → R such thatψ ◦ f ◦φ =

g. Therefore we have

(τ−g(0) ◦ψ ◦τ f (0))◦(τ− f (0) ◦ f )◦φ = τ−g(0) ◦g.

It follows that f̃ and g̃ are topologically RL equivalent.
Conversely, assume that f̃ and g̃ are topologically RL equivalent. Then there exist

homeomorphisms φ : R
n → R

n and ψ : R → R such that ψ ◦(τ− f (0) ◦ f )◦φ =
τ−g(0) ◦g. Therefore we have (τg(0) ◦ψ ◦τ− f (0))◦ f ◦φ = g. Hence f and g are
topologically RL equivalent.

It follows that f ∼X g if and only if f̃ ∼Y g̃.
We have the following note in the global topological equivalence case.

Note 4.9 ByTheorem1.1, the number of topologicalRL orbits in P is finite. Therefore
the numbers of topological RL orbits in P and P0 are simultaneously finite.

Semialgebraic equivalence of polynomial functions
In this case we can show a similar note to Note 4.9, using Theorem 1.2.
The above considerations show that one can concentrate on proving finiteness

results for P0 = P0(n, 1, d; R), for instance all local cases are a consequence of
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the local topological right equivalence on P0. Examples 4.5 and 4.14 show that we do
not have local or global finiteness for the R equivalence in P(n, 1, d; R).

4.4 Finiteness forR-equivalence of polynomial function germs

The finiteness results may hold for a stronger equivalence than topological RL equiv-
alence. In fact, after proving Theorem 4.3, Fukuda in his lectures [9] pointed out that
the following local finiteness theorem holds.

Theorem 1.3 (Fukuda’s local R0 finiteness theorem) The number of local topological
R0 types appearing in P0(n, 1, d; R) is finite. In addition, each local topological R0
equivalence class in P0(n, 1, d; R) is a semialgebraic subset of P0(n, 1, d; R).

Apart from mentioning the result in [9], it seems that Fukuda has not written up its
statement and his idea of proof (we could not find the result in the published literature).
Thereforewe decided to give a proof for Fukuda’s localRfiniteness result in this paper.
The latter semialgebraicness statement follows from the proof of the first one.

Before we start the proof, we prepare for some notion.We say that two polynomials
f , g : (Rn, 0) → (R, 0) are locally topologically R-IL equivalent, if there exist local
homeomorphisms σ : (Rn, 0) → (Rn, 0) and τ : (Im( f ), 0) → (Im(g), 0) such that
τ ◦ f = g ◦σ , where Im( f ) denotes the image of f .

Remark 4.10 Suppose that f , g ∈ P0(n, 1, d; R) are locally topologically R-IL
equivalent with local homeomorphisms σ : (Rn, 0) → (Rn, 0) and τ : (Im( f ), 0) →
(Im(g), 0). If τ is the identity mapping on Im( f ) around 0 ∈ R, then f and g are
locally topologically R0 equivalent.

Proof of Theorem 1.3 Using the Curve Selection Lemma, we can easily see the follow-
ing.

Property 4.11 Let f : (Rn, 0) → (R, 0) be a Cω function germ. Suppose that 0 ∈ R
n

is a singular point of f . Then the singular points set S( f ) of f is contained in f −1(0)
as germs at 0 ∈ R

n.

Asmentioned before, P0(n, 1, d; R) is naturally identifiedwith the Euclidean space
R

L. Let us express the correspondence by R
L � r ↔ fr ∈ P0(n, 1, d; R). Using

Theorem 2.1, we can show that {( fr (S( fr )), r) ∈ R×R
L} is a semialgebraic subset

of R×R
L . Therefore we have the following observation from Theorem 2.2.

Observation 4.12 Let Q ⊂ R
L be a Nash manifold of dimension �. Then

{( fr (S( fr )), r) ∈ R×Q | fr ∈ P0(n, 1, d; R)}\{0}×Q ∩ {0}×Q

is a semialgebraic subset of {0}×Q of dimension less than �, where the closure is
taken in R×Q.

Let F : (Rn ×R
L, {0}×R

L) → (R, {0}) be a polynomial function defined by
F(x, r) ..= fr (x). Then we define the map

 : (Rn ×R
L, {0}×R

L) → (R×R
L, {0}×R

L)

123



S226 S. Koike, L. Paunescu

by  ..= (F, idRL ), namely (x, r) = ( fr (x), r). Let q : R×R
L → R

L be the
canonical projection. For Q ⊂ R

L, we set FQ
..= F |Rn×Q .

Let us consider the situation when Thom’s 2nd Isotopy Lemma (Theorem 3.2) is
applicable to the above map-germs  and q after stratifying R

n ×R
L near {0}×R

L

and R×R
L near {0}×R

L and taking a finite subdivision of R
L into connected Nash

manifolds (in order to see Theorem 4.3, that is the finiteness for local topological RL
types appearing in P0(n, 1, d; R)). Note that for f ∈ P0(n, 1, d; R), Im( f ) = {0} as
germs at 0 ∈ R if and only if f is a 0-mapping. Set {0-map} ⊂ R

L as Q0. Therefore we
consider the situation when  and q are stratified in the following way. Namely, there
exists a finite partition of R

L\Q0 into connected Nash manifolds R
L\Q0 = ⋃u

i=1 Qi

such that for each i = 1, . . . , u, there are closed semialgebraic neighbourhoods Ai of
{0}×Qi in R

n ×Qi and Ci of {0}×Qi in R×Qi with the following properties:
Set Bi ..= Ci ∩ Im(|Ai ).

(1) (Case I) If f ∈ Qi takes both positive and negative values as a function germ at
0 ∈ R

n, then we have Ci ⊂ Im(|Ai ).
(Case II) If f ∈ Qi does not take negative values as a function germ at 0 ∈ R

n,
then we have Ci ∩ {y ∈ R | y � 0}×Qi ⊂ Im(|Ai ).

(Case III) If f ∈ Qi does not take positive values as a function germ at 0 ∈ R
n,

then we have Ci ∩ {y ∈ R | y � 0}×Qi ⊂ Im(|Ai ).

(2) |Ai : Ai → Bi and q|Bi : Bi → Qi are proper.
(3) Ai and Bi admit finite Whitney stratifications of Nash class S(Ai ) and S(Bi ),

respectively, such that  : (Ai , S(Ai )) → (Bi , S(Bi )) is a Thom regular stratified
mapping and q : (Bi , S(Bi )) → (Qi , {Qi }) is a stratified mapping.

By Theorem 2.2 and Lemma 2.4, taking a finite subdivision of Qi and substratifying
S(Ai ) and S(Bi ) if necessary, we may assume that

(4) The stratification S(Ai ) is compatible with {0}×Qi , {(S( fr ), r) | r ∈ Qi } and
F−1
Qi

(0), the stratificationS(Bi ) is compatiblewith {0}×Qi and { fr (S( fr )), r) | r ∈
Qi }, and Qi is a Nash open simplex.

By Observation 4.12 and Theorem 2.4, after taking a finite subdivision of Qi into
Nash open simplices if necessary, we can assume that

{( fr (S( fr )), r) ∈ R×Qi | fr ∈ P0(n, 1, d; R)}\{0}×Qi ∩ {0}×Qi = ∅,

1 � i � u. Taking a further subdivision of Qi into finite Nash open simplices if
necessary,wemay assume that ifU∩{0}×Qi �= ∅ forU ∈ S(Bi ), thenU = {0}×Qi ,
and that

{
( fr (S( fr )), r) ∈ R×Qi | fr ∈ P0(n, 1, d; R)

} = U

as set-germs at {0}×Qi , if it is not empty. In addition, if V ∩ {0}×Qi �= ∅ for
V ∈ S(Bi ), then V ⊃ {0}×Qi = U . Let us denote by V1 and V2 such two adjacent
strata of S(Bi ) toU in Case I, and by V such only one adjacent stratum of S(Bi ) toU
in Cases II and III. We set V0 ..= U .
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In order to see Theorem 1.3 holds, it suffices to show that for r1, r2 ∈ Qi , i =
1, . . . , u, fr1 and fr2 are topologicallyR equivalent. Since Qi is a Nash open simplex,
there is a Nash diffeomorphism τ : Qi → �i between Qi and an open simplex �i

in some Euclidean space. Let s1 = τ(r1) and s2 = τ(r2), and let h : I → �i be the
homotopy defined by h(t) = (1 − t)s1 + ts2 for t ∈ I = (−η, 1 + η). Here η is a
sufficiently small positive number such that if we set J ..= τ−1 ◦h(I ), J ⊂ Qi where
the closure is taken in R

L . Then J is a Nash curve without end points. Therefore
R
n × J and R× J are Nash manifolds of dimension n + 1 and 2, respectively.
We consider the restriction of q ◦ over J ⊂ R

L :

(
Ai ∩ R

n × J , {0}× J
) ̃−−−−→ (

Bi ∩ R× J , {0}× J
) q̃−−−−→ J .

We define the vector field v on J by v ..= D(τ−1 ◦h)
(

∂
∂t

)
. Note that v is tangent to

J ⊂ R
L .

Whenwe show the local topological triviality of { fγ }γ∈J using Thom’s 2nd Isotopy
Lemma, we lift the vector field v on J to a neighbourhood Di of {0}× J in Bi ∩R× J
by dq̃ and then to a neighbourhood Ei of {0}× J in Ai ∩R

n × J by d(q̃ ◦ ̃) so that the
first lifted vector field is controlled by a controlled tube system {T ′

j = (|T ′
j |, π ′

j , ρ
′
j )}

for {Vj ∈ S(Bi ∩R× J )} and the second lifted vector field is controlled by a controlled
tube system {Tk = (|Tk |, πk, ρk)} for {Wk ∈ S(Ai ∩ R

n × J )} controlled over {T ′
j }.

As the neighbourhood Di of {0}× J in Bi∩R× J , we take [−ε0, ε0]× J , [0, ε0]× J
and [−ε0, 0]× J (ε0 > 0) in Cases I, II and III, respectively. Here we take ε0 >

0 sufficiently small so that [−ε0, ε0]× J ⊂ V1 ∪ V0 ∪ V2, [0, ε0]× J ⊂ V ∪ V0
and [−ε0, 0]× J ⊂ V ∪ V0 in Cases I, II and III, respectively. Let V̂0 ..= {0}× J ,
V̂1 ..= (0, ε0)× J , V̂2 ..= (−ε0, 0) × J , V̂3 ..= {ε0}× J and V̂4 ..= {−ε0}× J . We
consider canonical tubular neighborhood systems (in Di ⊂ R× J ) for {V̂ j } as follows:
T̂ ′
0 = (|T̂ ′

0|, π̂ ′
0, ρ̂

′
0) where |T̂ ′

0| ..= {(y, s) | ρ̂′
0(y, s) � ε21}, 0 < ε1 � ε0, π̂ ′

0(y, s) =
(0, s) and ρ̂′

0(y, s) = y2; T̂ ′
3 = (|T̂ ′

3|, π̂ ′
3, ρ̂

′
3) where |T̂ ′

3| ..= {(y, s) | ρ̂′
3(y, s) < ε23},

0 < ε3 � ε0, π̂ ′
3(y, s) = (ε0, s) and ρ̂′

3(y, s) = (y − ε0)
2; T̂ ′

4 = (|T̂ ′
4|, π̂ ′

4, ρ̂
′
4) where|T̂ ′

4| ..= {(y, s) | ρ̂′
4(y, s) < ε24}, 0 < ε4 � ε0, π̂ ′

4(y, s) = (−ε0, s) and ρ̂′
4(y, s) = (y+

ε0)
2; T̂ ′

1 = (|T̂ ′
1|, π̂ ′

1, ρ̂
′
1)where |T̂ ′

1| = V̂1, π̂ ′
1 = idV̂1 and ρ̂′

1 = 0; T̂ ′
2 = (|T̂ ′

2|, π̂ ′
2, ρ̂

′
2)

where |T̂ ′
2| = V̂2, π̂ ′

2 = idV̂2 and ρ̂′
2 = 0. Thenwe define the first lifted vector fieldw of

v on Di byw(y, s) ..= (0, v(s)). This is a vector field controlled by the controlled tube
system of Nash class {T̂ ′

j | j = 0, 1, 2, 3, 4}, {T̂ ′
j | j = 0, 1, 3} and {T̂ ′

j | j = 0, 2, 4}
for {V̂ j ∈ S([−ε0, ε0]× J )}, {V̂ j ∈ S([0, ε0]× J )} and {V̂ j ∈ S([−ε0, 0]× J )} in
Cases I, II and III, respectively. Actually, dρ̂′

j (w) = 0, j = 0, 1, 2, 3, 4. In particular,
w is tangent to {(y, s) ∈ Di | y = constant} in Cases I, II and III.

LetW0
..= {0}× J ⊂ R

n × J , and letW1, . . . ,Wd ∈ S(Ai ) be all the adjacent strata
to W0. As the neighbourhood Ei of {0}× J in Ai ∩ R

n × J , we take ̃−1(Di ) ∩ Ai .
We may assume that Ei ⊂ W0 ∪ W1 ∪ · · · ∪ Wd . Let D̊i be (−ε0, ε0)× J , [0, ε0)× J
and (−ε0, 0]× J in Cases I, II and III, respectively, and let E̊i

..= ̃−1(D̊i ) ∩ Ai . We
further let D̆i

..= {±ε0}× J , {ε0}× J and {−ε0}× J in Cases I, II and III, respectively,
and let Ĕi

..= ̃−1(D̆i ) ∩ Ai . Set S(E̊i )
..= {W ∩ E̊i |W ∈ S(Ai )} and S(Ĕi )

..=
{connected components of Ĕi }. Define S(Ei )

..= S(E̊i ) ∪ S(Ĕi ).
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Now we lift the vector field w on Ei so that the lifted vector field β is controlled
by a controlled tube system of Nash class {T̂k = (|T̂k |, π̂k, ρ̂k)} for {Ŵk ∈ S(Ei )} con-
trolled over {T̂ ′

j }. The flows of β and w yield the topological triviality of { fγ }γ∈J .
By construction, the flow of w yields the triviality keeping “y = constant". Since
{0}× J ∈ S(Ei ), β is tangent to {0}× J . Therefore fr1 and fr2 are locally topo-
logically R-IL0 equivalent with local homeomorphisms σ : (Rn, 0) → (Rn, 0) and
τ : (Im( f ), 0) → (Im(g), 0) such that τ is the identity mapping on Im( f ). It follows
from Remark 4.10 that fr1 and fr2 are locally topologically R0 equivalent. �
Remark 4.13 Let us regard P0(n, 1, d; R) as a family of polynomials, indexed by
r ∈ R

L . From the proof of Theorem 4.3 using Thom’s 2nd Isotopy Lemma, we can
see that a finiteness result for the local RL triviality of the family P0(n, 1, d; R)

holds. On the other hand, we cannot see from the proof of the above theorem whether
a finiteness result for the local R triviality of the family P0(n, 1, d; R) holds or not.

In the proof of Theorem 1.3 we could assume that

{( fr (S( fr )), r) ∈ R×Qi | fr ∈ P0(n, 1, d; R)}\{0}×Qi ∩ {0}×Qi = ∅.

Therefore there exists a positive constant ε0 > 0 such that in Cases I, II and III,
[−ε0, ε0]× J , [0, ε0]× J and [−ε0, 0]× J , respectively, is contained in

Bi ∩ R× J\{( fs(S( fs)), s) ∈ R× J | fs ∈ P0(n, 1, d; R)}\{0}× J ,

where the closure is taken in R× J . Remember that J ⊂ Qi , where the closure is
taken in R

L . In general, even if we take a positive constant ε0 > 0 arbitrarily small, in
Cases I, II and III, [−ε0, ε0]×Qi , [0, ε0]×Qi and [−ε0, 0]×Qi , respectively, may
not be contained in

Bi\{( fr (S( fr )), r) ∈ R×Qi | fr ∈ P0(n, 1, d; R)}\{0}×Qi .

In addition, taking a finite subdivision of Qi into Nash open simplices, we cannot
avoid this situation. Therefore we cannot always see a localR triviality over Qi , using
a similar argument to the case of local R equivalence.

Example 4.14 Let I = [0, 1] be a closed interval, let gt : (R, 0) → (R, 0), t ∈ I , be a
polynomial defined by gt (x) ..= t2 − (x − t)2, and let

G ..= {gt ∈ P0(1, 1, 2; R) | t ∈ I }.

Then the number of local topological R types appearing in G is 2, but the global
topological R types appearing in G as global polynomial functions have the cardinal
number of the continuum. Note this family is R equivalent in P(n, 1, 2; R) with the
family in Example 4.5.

By [24, Fact 2.1] ([23, Theorem II.7.1]), we have the following fact in the case of
semialgebraic equivalence.
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Theorem 4.15 Let X ⊂ Y ⊂ R
n be semialgebraic sets, and let f , g : Y → R be

semialgebraic functions with f −1(0) = g−1(0) = X. If the germs of f and g at X are
semialgebraically RL equivalent, then the germs of f and g are semialgebraically R
equivalent or the germs of f and −g are so. Here we can choose the semialgebraic
homeomorphisms of equivalence to be the identity mapping on X.

As a corollary of this theorem, we have the following result.

Corollary 4.16 Let f , g ∈ P0(n, 1, d; R). If f and g are locally semialgebraically
R0L0 equivalent, then f and g are locally semialgebraically R0 equivalent or f and
−g are locally semialgebraically R0 equivalent.

Proof Suppose that f , g ∈ P0(n, 1, d; R) are locally semialgebraicallyR0L0 equiva-
lent. Therefore there exist semialgebraic homeomorphisms σ : U → V with σ(0) = 0
and τ : P → Q with τ(0) = 0 such that τ ◦ f ◦σ = g, where U and V (respectively
P and Q) are open semialgebraic neighbourhoods of 0 in R

n (respectively 0 in R).
Set f̃ ..= f ◦σ and g̃ ..= g|U . Then f̃ , g̃ : U → R are semialgebraic functions, and
f̃ −1(0) = g̃−1(0) denoted by X after this. In addition, f̃ and g̃ are locally semialge-
braicallyR0L0 equivalent. Here the source homeomorphismof the local semialgebraic
R0L0 equivalence is the identity mapping onU . Therefore f̃ and g̃ are locally semial-
gebraically R0L0 equivalent as function germs at X ⊂ U . By Theorem 4.15, f̃ and g̃
are semialgebraically R0 equivalent or f̃ and −g̃ are semialgebraically R0 equivalent
as function germs at X . Since we can choose the semialgebraic homeomorphisms of
equivalence to be the identity mapping on X , it follows that f and g are semialge-
braically R0 equivalent or f and −g are semialgebraically R0 equivalent as function
germs at 0 ∈ R

n. �
Combining this corollary with Theorem 4.6, we have the following finiteness the-

orem in the semialgebraic case.

Theorem 1.4 The number of local semialgebraicR0 types appearing in P0(n, 1, d; R)

is finite.

We may call the above result Shiota’s local semialgebraic R0 finiteness theorem.
At the end of this subsection, we make an interesting remark on R0 equivalence of

polynomial function germs, which was shown by Shiota.

Remark 4.17 Shiota proved that there exist two homogeneous polynomials f , g :
(R7, 0) → (R, 0) of the same degree with isolated singularities which are locally
topologically R0 equivalent but not locally semialgebraically R0 equivalent. (See
[23, Example II.7.9] or [24, Fact 2.3]).

5 A generalisation

In this section we treat a generalisation of the Fukuda–Benedetti–Shiota theorem. We
can read Fukuda’s finiteness theorem (respectively Benedetti–Shiota’s one) from its
proof as a finiteness result on topological RL triviality (respectively semialgebraic
RL one) for a polynomial family of polynomial functions as follows:
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Theorem 5.1 Given a polynomial family of polynomial functions from R
n to R, there

exists a finite subdivision of the parameter space into Nash open simplices such that
over each Nash open simplex the family of polynomial functions is topologically RL
trivial (respectively semialgebraically RL trivial).

We define the notions of topologicalRL equivalence and semialgebraicRL equiv-
alence for Nash functions defined on a Nash manifold M in a similar way to the above
polynomial case with M = R

n. Then we can generalise Theorem 5.1 to the following
form.

Theorem 1.5 Let { ft : M → R | t ∈ J } be a Nash family of Nash functions defined
on a Nash manifold M with a semialgebraic parameter space J . Namely, the function
F : M× J → R defind by F(x, t) ..= ft (x) is a Nash function. Then there exists a
finite subdivision of J into Nash open simplices J = Q1 ∪ · · · ∪ Qu such that

{ ft : M → R | t ∈ Qi }

is semialgebraically RL trivial over each Qi .

Remark 5.2 In the case where M = R
n, Bochnak, Coste and Roy showed in [3] a

finiteness theorem for semialgebraic triviality of a semialgebraic family of semialge-
braic functions defined onR

n. This is a generalisation of the Fukuda–Benedetti–Shiota
theorem from the polynomial function case to the semialgebraic function case. On the
other hand, Theorem 1.5 is a generalisation of it to a finiteness result for semilagebraic
triviality of a Nash family of Nash functions defined on a general Nash manifold.

Proof of Theorem 1.5 The Fukuda–Benedetti–Shiota theorem is an algebraic result.
When we show the global triviality using the 2nd Thom’s Isotopy Lemma (Theorem
3.2) or its semialgebraic version (Theorem 3.4), we can consider the projectivisation
in order to get the properness of mappings. On the other hand, Theorem 1.5 is a
generalisation of the Fukuda–Benedetti–Shiota theorem to the Nash case. We first
reduce the Nash case to the algebraic one in the proof of Theorem 1.5. This reduction
process follows from similar arguments to those discussed in [14, 15].

Let us consider the composition of the mapping (F, idJ ) : M× J → R× J defined
by (F, idJ )(x, t) ..= ( ft (x), t) and the canonical projection q : R× J → J . Here we
recall a useful result by Shiota.

Theorem 5.3 (Shiota [22]) A Nash manifold is Nash diffeomorphic to a nonsingular,
affine algebraic variety.

By this theorem, we can replace the Nash manifold M with a nonsingular, affine
algebraic varietyW .On the other hand, byTheorem2.2, J is a finite unionofNashopen
simplices, and a Nash open simplex is Nash diffeomorphic to some Euclidean space.
Therefore, in order to show our finiteness result, we may assume from the beginning
that J is an Euclidean space R

d. Then the above composed mapping becomes the
following:

W ×R
d �−−−−→ R×R

d q−−−−→ R
d .
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Note that � : W ×R
d → R×R

d is a Nash family of Nash mappings between non-
singular, affine algebraic varieties.

We next apply the Artin–Mazur theorem (Artin and Mazur [1], Coste, Ruiz and
Shiota [5], Shiota [22]) for a Nash family of Nash mappings, modified to our situation.
For an algebraic variety X ⊂ R

p, we denote by Reg(X) the smooth part of X .

Theorem 5.4 (Artin–Mazur Theorem) Let W ⊂ R
m be the above nonsingular alge-

braic variety, and let � : W ×R
d → R×R

d be the above Nash mapping. Then there
exists a Nash mapping H : W ×R

d → R
b with the following property:

Let τ : (W ×R
d)×(R×R

d)×R
b → W ×R

d andπ : (W ×R
d)×(R×R

d)×R
b →

R×R
d be the canonical projections, let G = (�, H) : W ×R

d → (R×R
d)×R

b be
the Nash mapping defined by G(x, t) = (�(x, t), H(x, t)), and let X be the Zariski
closure of graph G. Then there is a union L of some connected components of X with
dim L = dim X and L ⊂ Reg(X) such that τ |L : L → W ×R

d is a t-level preserving
Nash diffeomorphism and (π |L)◦(τ |L)−1 = �.

Therefore we can regard the Nash family of Nash mappings � : W ×R
d → R×R

d

between nonsingular, algebraic varieties as the restriction of some canonical projection
π to a union of connected components L of an algebraic variety X . In this way, we
can reduce the Nash case to the algebraic case.

We next consider the projectivisation so that the mappings π and q between pro-
jectivisated spaces are proper. Let us denote by RP[r ] the product of r real projective
lines RP1× · · · ×RP1. We recall that W is an algebraic variety in R

m. We denote
by X̂ the projectivisation of X in (RP[m] ×RP[d])×(RP1×RP[d])×RP[b]. In this
paper we regard R

r ⊂ RP[r ] and L ⊂ X ⊂ X̂ .
Let

π̂ : (RP[m] ×RP[d])×(RP1×RP[d])×RP[b] → RP1×RP[d]

and q̂ : RP1×RP[d] → RP[d] be the canonical projections. We set �̂ ..= π̂ |X̂ . Then
we consider the composition of projections

(RP[m] ×RP[d])×(RP1×RP[d])×RP[b] ⊃ X̂
�̂−−→ RP1×RP[d]

q̂−→ RP[d].

Note that X̂ is an algebraic variety and �̂ is a family of polynomial functions defined
on X̂ with the parameter space RP[d]. Using a similar argument to Fukuda [7, 8] on
(a ft )-regular stratification with Łojasiewicz’s Semialgebraic Triangulation Theorem
and Fukuda’s Lemma for a stratified mapping, we have the following assertion.

Assertion 5.5 There exist finite Whitney stratifications of Nash class S(X̂) and
S(RP1×RP[d]) of X̂ andRP1×RP[d], respectively, and a finite subdivision of RP[d]
into Nash open simplices RP[d] = R1 ∪ R2 ∪ · · · ∪ Re which satisfy the following:

(1) Let S(RP[d]) = {R1, R2, . . . , Re}. Then the projections

�̂ : (X̂ , S(X̂)) → (
RP1×RP[d], S(RP1×RP[d])

)
,

q̂ : (
RP1×RP[d], S(RP1×RP[d])

) → (
RP[d], S(RP[d])

)
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are proper stratified mappings.
(2) For any t ∈ Ri , 1 � i � e, the stratified mapping

�̂t : (X̂t , S(X̂)t ) → (
(RP1×RP[d])t , S(RP1×RP[d])t

)

is (a�̂t
)-regular.

(3) The stratification S(X̂) is compatible with L ⊂ X and (q ◦�)−1(Ri ), 1 � i � e,
and the stratification S(RP1×RP[d]) is compatible with �̂(X̂), �̂(L) = π(L),
R×R

d and q−1(Ri ) = Ri ×RP[d], 1 � i � e.
(4) The stratification S(RP[d]) is compatible with R

d. (Therefore let us assume that
R
d = R1 ∪ R2 ∪ · · · ∪ Rc for c < e after this.)

We set X̂ (i) ..= X̂ ∩ (q ◦�̂)−1(Ri ), S(X̂ (i)) ..= {(q ◦�̂)−1(Ri ) ∩ W |W ∈ S(X̂)},
�̂(i) ..= �̂|X̂ (i) , S(RP1× Ri )

..= {̂q−1(Ri ) ∩ U | U ∈ S(RP1×RP[d])} and q̂(i) ..=
q̂|RP1×Ri , 1 � i � c. Let us apply Lemma 3.6 to the composition of stratified
mappings

(
X̂ (i), S(X̂ (i))

) �̂(i)−−−−→ (
RP1× Ri , S(RP1× Ri )

) q̂(i)

−−−−→ (Ri , {Ri }),

1 � i � c. Then, subdividing Ri into finitely many Nash open simplices if necessary,
the stratified mapping

�̂(i) : (
X̂ (i), S(X̂ (i))

) → (
RP1× Ri , S(RP1× Ri )

)

is semialgebraically trivial over Ri , 1 � i � c. Let Li
..= L ∩ (q ◦�̂)−1(Ri ). By

construction, S(X̂ (i)) is compatible with Li and S(RP1× Ri )) is compatible with
�̂(Li ) = π(Li ) and R× Ri , 1 � i � c. Therefore π |Li : Li → R× Ri is semialge-
braically trivial over Ri , 1 � i � c. It follows that there exists a finite subdivision of
J into Nash open simplices J = Q1 ∪ · · · ∪ Qu such that

{ ft : M → R | t ∈ Qi }

is semialgebraically RL trivial over each Qi . This completes the proof of Theorem
1.5. �
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