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Abstract

We develop intersection theory in terms of the B-group of a reduced analytic space.
This group was introduced in a previous work as an analogue of the Chow group;
it is generated by currents that are direct images of Chern forms and it contains all
usual cycles. However, contrary to Chow classes, the B-classes have well-defined
multiplicities at each point. We focus on a B-analogue of the intersection theory based
on the Stiickrad—Vogel procedure and the join construction in projective space. Our
approach provides global B-classes which satisfy a Bézout theorem and have the
expected local intersection numbers. We also introduce B-analogues of more classical
constructions of intersections using the Gysin map of the diagonal. These constructions
are connected via a B-variant of van Gastel’s formulas. Furthermore, we prove that
our intersections coincide with the classical ones on cohomology level.
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1 Introduction

Let Y be a smooth manifold of dimension n. Assume that 1, ..., i, are cycles on
Y of pure codimensions 1, .. ., k., respectively, let k :== «1 + - - - 4+ «,, and let V be
the set-theoretic intersection V = |u1| N --- N |, |. If ; intersect properly, that is, if
codim V = «, then there is a well-defined intersection cycle

M1y «on 0y Mr =ijVj,

where V; are the irreducible components of V and m; are integers. In the nonproper
case there is no canonical intersection cycle. However, following Fulton—-MacPherson,
see [12], there is an intersection product w1 -y - - - -y U, Which is an element in the
Chow group A,,—, (V); that is, the product is represented by a cycle on V of dimension
n — « that is determined up to rational equivalence. For instance, the self-intersection
of aline L in P” is obtained by intersecting L with a perturbation of L. If n = 2 one
gets an arbitrary point on L, whereas if n > 3 the intersection is empty.

In case Y = P” there is an intersection product due to Stiickrad and Vogel [16,18],
that in general consists of components of various dimensions. For instance the self-
intersection of a line is actually the line itself independently of n. However, in general
a nonproper intersection has so-called moving components, that are only determined
up to rational equivalence. There is a relation to the classical (Fulton—-MacPherson)
intersection product via van Gastel’s formulas [14], see also [11].

Tworzewski [17], introduced, for x € V, local intersection numbers

ety .oy bp,x), £€=0,...,dimV, (1.1)

see also [1,2,13] and Sect. 3 below. In the proper case € (i1, ..., Uy, X) is precisely
the multiplicity at x of the proper intersection (1 -y --- -y u, for £ =dim V and 0
otherwise. In the nonproper case the intersection numbers may be nonzero also for
£ < dim V. In general no representative of the classical intersection product, cf. [6,
Remark 1.4], or representative of the Stiickrad—Vogel product, can represent these
numbers at all points.

The main objective of this paper is to introduce a product of cycles in P” that at
each point carries the local intersection numbers and at the same time have reasonable
global properties, such as respecting the Bézout formula. To this end we must extend
the class of cycles, and our construction is based on the Z-module §Z(X) of generalized
cycles on a (reduced) analytic space X introduced in [4]. It is the smallest class of
currents on analytic spaces that is closed under multiplication by components of Chern
forms and under direct images under proper holomorphic mappings. It turns out that
generalized cycles inherit a lot of geometric properties and preferably can be thought of
as geometric objects. Actually we are primarily interested in a certain natural quotient
group B(X) of §Z(X). Each u in §Z(X) has a well-defined Zariski support || C X
that only depends on its class in B(X). For a subvariety V < X there is a natural
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Nonproper intersection products and generalized cycles 1339

identification of B(V) with elements in B(X) that have Zariski support on V. The
group of cycles Z(X) is naturally embedded in B(X). Given u € B(X) also its
restriction 1y u to the subvariety V is an element in B(X). Each element in §Z(X),
and in B(X), has a unique decomposition into sums of irreducible components. Each
irreducible element has in turn a unique decomposition into components of various
dimensions. We let B (X) denote the elements in B(X) of pure dimension k. We
also introduce a notion of effective generalized cycle u in GZ(X), and class in B(X),
generalizing the notion of effective cycle. Each u in G§Z(X), and in B(X), has a well-
defined multiplicity, mult, u, at each point x € X, that is an integer and nonnegative
if w is effective. Moreover, for each u in §Z;(X), or in Bi(X), there is a unique
decomposition

W = [fix + Lmov, (1.2)

where wgx is an ordinary cycle of dimension k, whose irreducible components are

called the fixed components of ., and ey, Whose irreducible components, the moving

components, have Zariski support on varieties of dimension strictly larger than k.
Each w in G2 (P"), or in By (P™), has the degree

deg u :=/ oA, (1.3)
IP)n

where  is the first Chern class of O(1) — PV, for instance represented by the Fubini—
Study metric form. If u = o + @1 + - - -, where uy has pure dimension k, then

degp = deguo +degpui + -

For each point x € P” and uy, ..., ur € B(U) for some open subset U C P” there

are Z-valued functions ey (u1, ..., ur, x), £ =0, 1,..., that are Z-multilinear in u;,

only depend on the germs of 1; at x, and which coincide with the local intersection

numbers (1.1) if u; are cycles. We say that €, (i1, - . ., [, X) are the local intersection

numbers of 1, ..., u, at x. If u; are effective, then these numbers are nonnegative.
Our main result concerns a Z-multilinear mapping

BP") x -« xBP") = BP"), L1, .ees e > L1® - Oy (1.4)

We say that the image is the e-product of i1, ..., u,. It is obtained, roughly speaking,
in the following way: We first choose representatives for the B-classes i1, . . ., iy, then
form a Stiickrad—Vogel-type product of them. Even for cycles, this product depends
on several choices. Taking a suitable mean value, we get a generalized cycle that
turns out to define an element in B(P") that is independent of all choices. If u;
are cycles, then the fixed components in the Stiickrad—Vogel product appear as fixed
components of (e --- eu,. The formal definition, Definition 6.6, is expressed in
terms of a certain Monge—Ampere type product, that can be obtained as a limit of
quite explicit expressions, see Sect. 6. Here is our main result.
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1340 M. Andersson et al.

Theorem 1.1 The Z-multilinear mapping (1.4) has the following properties. To begin
with, |L1e - eu,| C ﬂ;zl [l pie - - o, is commutative, and

multx(ﬂl"".ﬂr)ﬁZGZ(/le---,Mrax)v xEPna ZZO,I,..., (15)

where ()¢ denotes the component of dimension L. If j1; have pure dimensions and
r
p::Zdim,uj—(r—l)n20, (1.6)
1

then

deg(iu1e -+ op,) =[] deg ;. (1.7)

If uj are effective, then i e - - - o 1, is effective and

deg(uie - o) < [ degpuj. (1.8)
If L1, ..., Uy are cycles that intersect properly, then
1@ - @y = [L1-Pn - PA . (1.9)

One should keep in mind that the e-product of r factors is not a repeated e-product
of two factors. In general, the e-product of two factors is not associative, see Exam-
ple 8.10.

Notice that p equals n — (n — dim 1 + - - - +n — dim w,), which is the “expected
dimension” of the intersection. The Bézout formula (1.7) may hold even if p < 0: For
instance, if 1; are different lines through the point a, then their e-product is a so that
both sides of (1.8) are 1, see Example 8.8. Moreover, if we take a linear embedding
P s P"’, n’ > n, and consider w; as elements in B(IP’”/), then the product is
unchanged. In particular, the e-self-intersection of a k-plane is always the k-plane
itself.

The e-self-intersection of the cuspidal curve Z = {x; — xox5 = 0} in P? is in the
classical sense represented by nine points on Z obtained as the divisor of a generic
meromorphic section of Op2 (3) restricted to Z. The fixed part of the self-intersection
in the Stiickrad—Vogel sense is the curve itself plus 3 times the point ¢ = [1, 0, 0],
whereas the moving part consists of another three points on Z that are determined up
to rational equivalence on Z. Our product Z e Z consists of the the fixed part Z + 3a
of the Stiickrad—Vogel (SV)-product and a moving component p of dimension zero
and degree 3; we think of u as three points “moving around” on Z, cf. Example 8.13.
In this case the local intersection numbers are carried by the fixed components. In
general also moving components can contribute, see, e.g., Example 8.6.

We also consider another intersection product that is a B-variant of the classical
nonproper intersection product in [12]: For any regular embedding 7, in [4] we intro-
duced a B-analogue of the Gysin mapping i' used in [12], see Sect. 2.7 below. Let
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Nonproper intersection products and generalized cycles 1341

i:P" - P*'x ... xP" = (P")" be the diagonal embedding in (P"*)". In analogy
with the classical intersection product in [12] we define, for pure-dimensional u;,
L@y @y e =LK X L)

in B(P"). We have the following relation to the e-product.

Theorem 1.2 Assume that juy, ..., € BP") have pure dimensions. Let V =
ﬂj |ij| and let p be as in (1.6). Then

dim V
K1 -B@nry - " BE@r) Ur = Z WP A (e oy )g.
£=max(p,0)
In particular, pt1- g@ny - - - ~B@r) Uy = 1 P -+ -pn iy if @1, ..., w1, are cycles that

intersect properly, see (1.9).

In [4, Section 10] we introduced cohomology groups H **(V) for a reduced sub-
variety V < P" of pure dimension d that coincide with usual de Rham cohomology
H**(V) when V is smooth. There are natural mappings Ax(V) — ﬁd_k’d_k(V)
and By (V) — HI-kd=k(y),

Theorem 1.3 Assume that Zy, ..., Z, are cycles in PN and let V. = ﬂj |Z;].

The images in H**(V) of the Chow class Zy-pn --- -pn Z, and the B-class
Zi-@ry - BE@n) Zr coincide.

The plan of the paper is as follows. Sections 2 through 4 mainly contain material
from [4] and well-known facts from [12], as well as the definition of local intersection
numbers and of the notion of an effective generalized cycle. The product -gy) is
introduced in Sect. 5. In Sect. 6 we define the e-product and prove Theorem 1.1,
whereas the connection to the - g pn)-product is worked out in Sect. 7. Finally we have
collected several examples in Sect. 8.

2 Preliminaries

Throughout this section X is a reduced analytic space of pure dimension n. We will
recall some basic notions from intersection theory that can be found in [12], and some
notions and results from [4]; however the material in Sect. 2.4 and Lemma 2.1 are
new. We formulate statements in terms of coherent sheaves, rather than schemes.

2.1 Currents and cycles
We say that a current u on X of bidegree (n — k, n — k) has (complex) dimension
k.If f: X’ — X is a proper mapping of analytic spaces, then f* is well-defined on

smooth forms, and f is well-defined on currents and preserves dimension, see [7, III
Corollary 2.4.11] or [5]. If w is a current on X’ and 7 is a smooth form on X, then

NAfeit = f(fnAwp). 2.1
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1342 M. Andersson et al.

If 1« has order zero then f, u has order zero. If V < X is a subvariety, then

lvf*ﬂzf*(lf—lvﬂ)- (2.2)

If V — X has dimension k, then its associated Lelong current (current of integration)
[V] has dimension k. We will often identify V and [V]. An analytic k-cycle i on X
is a formal locally finite linear combination ) a;jVj, where a; € Z and V; C X are
irreducible analytic sets of dimension k. We denote the Z-module of analytic k-cycles
on X by Z¢(X). The support |u| of u € Zx(X) coincides with the support of its
associated Lelong current. Recall that mult, u = €, ., where £, u denotes the Lelong
number (of the Lelong current) of u € Z;(X) at x, and mult,  is the multiplicity of
u at x, see [9, Chapter 2.11.1].
If f: X’— X is a proper mapping, then we have a mapping

fer 2 (X)) = Zp(X), (2.3)

and the Lelong current of the direct image f u is the direct image of the Lelong current
of w. If i: V < X is a subvariety, then u € Z; (V) can be identified with the cycle
isit € Zk(X). The cycle u € Zy(X) is rationally equivalent to 0 on X, u ~ 0, if
there are finitely many subvarieties i;: V; < X of dimension k + 1 and non-trivial
meromorphic functions g; on V; such that!

=Y (ip)«ldivg;l =Y (ij)«ddlog|g;j|* = ) dd“(log|g;*[V;]).
J J J

We denote the Chow group of cycles Z;(X) modulo rational equivalence by Ay (X).
If f: X’— X is a proper morphism and p ~ 0 in A (X"), then fyou ~ 0 in Ag(X)
and there is an induced mapping fix: Ap(X') — Ax(X).

2.2 Chern and Segre forms

Recall that to any Hermitian line bundle? L — X there is an associated (total) Chern
form® €(L) = 1 + ¢1(L) and that two Hermitian metrics give rise to Chern forms
whose difference is dd¢y for a smooth form y on X. We let ¢(L) denote the associated
cohomology class.

Assume that £ — X is a Hermitian vector bundle, and let 7 : P(E) — X be the
projectivization of E, i.e., the projective bundle of lines in E. Let L = O(—1) be the
tautological line bundle in the pullback 7*E — IP(E), and let ¢(L) be the induced
Chern form on P(E). Since 7 is a submersion, S(E) = m,(1/¢(L)) is a smooth form

I Here d¢ = (8 — 9)/4mi so that dd€ log |z|2 = [0] in C, writing [0] rather than [{0}] for the point mass
at 0.

2 All line bundles and vector bundles and morphism between them are assumed to be holomorphic.

3 For Chern and Segre forms (and classes), the index k denotes the component of bidegree (k, k), i.e., of
(complex) dimension n — k.
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Nonproper intersection products and generalized cycles 1343

on X called the Segre form of E. If E is a line bundle, then P(E) ~ X and hence
C(E) = 1/5(E). 2.4)

For a general Hermitian E — X we take (2.4) as the definition of its associated Chern
form. If f: X’ — X is a proper mapping, then

C(f°E) = freu(E). 2.5

Since 7 is a submersion two different metrics on E give rise to Segre forms and Chern
forms that differ by dd¢y for a smooth form y on X. The induced cohomology classes
are denoted by s(E) and c(E), respectively. There are induced mappings

Ar(X) = Ar—e(X), at> ce(E)Na.

2.3 Generalized cycles

Generalized cycles on X were introduced in [4] and all statements in this subsection
except Lemma 2.1 are proved in [4, Sections 3 and 4]. We say that a current p is a
generalized cycle if it is a locally finite linear combination over Z of currents of the
form t.o, where 7: W — X is a proper map, W is smooth and connected, and « is a
product of components of Chern forms for various Hermitian vector bundles over W,
ie.,

o« =T (EDA - AT, (Ep), 2.6)

where E; are Hermitian vector bundles over W. One can just as well use components
of Segre forms, and one can in fact assume that all £; are line bundles.

Notice that a generalized cycle is areal closed current of order zero with components
of bidegree (*, x). We let G2 (X) denote the Z-module of generalized cycles of (com-
plex) dimension k (i.e., of bidegree (n — k, n — k)) and we let SZ(X) = @ SZx(X).
If © € GZ(X) and y is a component of a Chern form on X, then y Au € GZ(X). If
E — X is a Hermitian vector bundle we thus have mappings G2, (X) — GZy_¢(X)
defined by u > ¢ (E) A .

Ifi: V — X isasubvariety and u € G2(X), then 1y u € GZ(X). More precisely,
if

=Y (.o, X))
J

where 7;: W; — X, then

lyp = Z (Tj)stj.

5 (WHcv
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1344 M. Andersson et al.

Each subvariety of X is a generalized cycle so we have an embedding
2 (X) = G2y (X).

Given p € GZ(X) there is a smallest variety || C X, the Zariski support of w, such
that u vanishes outside [u|. If f: X’ — X is proper, then we have a natural mapping

fe: (X)) = G2k (X)
that coincides with (2.3) on Z. If i: V — X is a subvariety, then
ix: 92k (V) = GZ¢(X) (2.8)

is an injective mapping whose image is precisely those i € G2 (X) suchthat || C V.
Thus we can identify GZ(V) with generalized cycles in X that have Zariski support
on Z. We have

Dimension principle Assume that i € G2y (X) has Zariski support on a variety V. If
dimV =k, then u € Zx(X). If dimV < k, then u = 0.

A nonzero generalized cycle u € GZ(X) is irreducible if || is irreducible and 1y u =
0 for any proper analytic subvariety V < |u|. If u has Zariski support V C X it
is irreducible if and only if V is irreducible and w has a representation (2.7) where
7;(W;) = V for each j. An irreducible u € GZ(X) has the decomposition u =
Wp~- 1+ o, wk € G2 (X), where p is the dimension of |u]. Each u € §Z(X)
has a unique decomposition

=
£

where (¢ are irreducible with different Zariski supports.

If0 - S — E — Q — 0is ashort exact sequence of Hermitian vector bundles
over X, then we say that ¢(E) — ¢(S§)Ac(Q) is a B-form. If B is a component of
a B-form, then there is a smooth form y on X such that dd“y = B. We say that
w € 9Z¢(X) is equivalent to 0 in X, u ~ 0, if u is a locally finite sum of currents of
the form

p=Tt(BAa) = ddT(y Ae), (2.9)

where t: W — X is proper, 8 is a component of a B-form, « is a product of compo-
nents of Chern or Segre forms, and y is a smooth formon W. If u = wo + - - - + wn,
where pur € G2 (X), we say that u ~ 0 if ux ~ O for each k. Let B(X) denote the Z-
module of generalized cycles on X modulo this equivalence. A class u € B(X)
has pure dimension k, n € By(X), if u has a representative in GZ;(X). Thus
B(X) = @y Br(X). The mapping Z(X) — B(X) is injective so we can consider
Z(X) as a subgroup of B(X).
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Nonproper intersection products and generalized cycles 1345

If w € B(X) and & € GZ(X) is a representative for w, then the Zariski support
[m| € X of w is the union of the Zariski supports of the irreducible components
of & that are nonzero in B(X). Moreover, © € B(X) is irreducible if there is a
representative & € GZ(X) that is irreducible. The decomposition into irreducible
components, as well as the decomposition into components of different dimensions,
extend from GZ(X) to B(X).

If0—- S - E — Q — 0is a short exact sequence of Hermitian vector bundles
and & € GZ(X), then

CUE)AIL ~ (€(S)NC(Q) ¢ ATL. (2.10)

In particular, if E and E’ are the same vector bundle with two different Hermitian
metrics, then ¢y (E) AL ~ C¢(E') A1 so we have mappings

Br(X) = Br—o(X), pr> ce(E)Ap.
If f: X’— X is a proper mapping, then we have a natural mapping
fe: B(X') = B(X).
Ifi: V < X is a subvariety, then
ix: B(V) > B(X) (2.11)

is injective, and we can identify its image with the elements in B(X) that have Zariski
support on V.

Each u € By (X) (and u € GZ (X)) has a unique decomposition (1.2) where jgx
is a cycle of pure dimension k and the irreducible components of ey have Zariski
supports of dimension strictly larger than k. We say that the irreducible components
of wgx are fixed and that the irreducible components of (yey are moving.

We will need the following simple lemma.

Lemma 2.1 Assume that (i1, . .., |, are generalized cycles on reduced analytic spaces
Xi,.... X, Let pj: X1x --- x X, — X; be the natural projections. Then

H1X e Xy = PTIAA === AP

is a generalized cycle on X1x --- xX,. If uj ~ 0 in X; for some j, then
U1 X o Xy ~0in XX -+ X X,

In particular, for uj € B(X;), j =1,...,r, there is a well-defined py x - -+ x u, €
BXix -+ xX,).

Proof Assume that j1; = (7j)«c;, where 7;: W; — X; are proper and «; are prod-
ucts of components of Chern forms. Let 7r;j: Wy x --- x W, — W; be the natural
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1346 M. Andersson et al.

projections. Then mr{a A - - - Amfa, is a product of components of Chern forms on
Wix --- x W, and

PLX o Xy = PTUAA - APy = (T1X -+ X T (o A -+ - AT ),

and hence it is a generalized cycle on X|x --- x X,. If, say, u; ~ 0, we may
assume, cf. (2.9), that u; = (t1)«(BA 1), where § is a component of a B-form.
Then also 7|8 is a component of a B-form. Now p| x - -+ X u, is the push-forward
of tBAmfay ATtSas A - - AmFa, and thereforeitis equivalentto Oin Xy x - -+ x X,
by definition. O

2.4 Effective generalized cycles

We say that a generalized cycle u is effective if it is a positive current, see, e.g., [10,
Chapter III, Definition 1.13]. Clearly effectivity is preserved under direct images.

Lemma2.2 Let 4 = g + o + -+ be the decomposition of u € GZ(X) into its
irreducible components. Then w is effective if and only if each u; is effective.

Proof The if-part is clear. For the converse, let V be an irreducible subvariety of X.
We already know that 1y u is a generalized cycle. It is not hard to see that it is positive
if w is positive. It is also part of the Skoda—El Mir theorem, see, e.g., [10, Chapter III,
Theorem 2.3]. Now let V; be the Zariski supports of the various j; and assume that Vj
has minimal dimension. Then Vj N V; has positive codimension in V; for each j # k.
By the definition of irreducibility it follows that 1y, u = 1y, ux = i We conclude
that iy is positive for each k such that V} has minimal dimension. Let V'’ be the union
of these V. and let i’ be the sum of the remaining irreducible components. Clearly u’
is positive in X\ V'. Let A = iaj Ad| A - - - Aia, Aa, for smooth (1, 0)-forms aj and
some r. It follows that A A i/ is positive outside V' by definition. However, 1y’ = 0
and so AAp = AATx\yu is positive. Since A is arbitrary, we conclude that 1" is
positive. Now the lemma follows by induction. O

We say that u € B(X) is effective if it has arepresentative i1 € GZ(X) that is effective.
It follows that u is effective if and only each of its irreducible components is effective.
Moreover, the multiplicities of an effective 1 € B(X) are nonnegative.

2.5 The Segre and B-Segre class

The material in this subsection is found in [4, Section 5] or in [12]. Let J — X be
a coherent ideal sheaf over X with zero set Z. First assume that X is irreducible. If
d = 0 on X, then we define the Segre class s(J, X) = so(d, X) = 1x € A, (X).
Otherwise, let 7 : X’ — X be a modification such that 7* is principal®. For instance
X’ can be the blow-up of X along J, or its normalization. Let D be the exceptional
divisor, and let L p be the associated line bundle that has a section o0 that defines D

4 In this paper, 7*J denotes the ideal sheaf on X generated by the pullback of local generators of J.
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Nonproper intersection products and generalized cycles 1347

and hence generates 7*J. Then

1

5@, X) =Y (=)/m(ci(Lp)/N[D]) = ”*(W

N [D]>;
jz0
it is a well-defined element in A, (X). If X has irreducible components X1, X», ...,
then s(J, X) = s(d, X1)+s(d, X2)+- - -. Notice that s(J, X) has support in Z so that
it can be identified with an element s(J, X) in A, (Z). If J is the sheaf associated with
the subscheme V of X, then s(J, X) coincides with the classical Segre class s(V, X),
cf. [12, Corollary 4.2.2].
We can define the B-Segre class S(d, X) in an analogous way by just interpreting
N as the ordinary wedge product. However, we are interested in more explicit rep-
resentations and also in a definition of a B-Segre class on © € B(X). To this end
we assume that the ideal sheaf J — X is generated by a holomorphic section o of a
Hermitian vector bundle £ — X. If X is projective one can always find such a o for
any coherent ideal sheaf J — X. We shall consider Monge—Ampere products on a
generalized cycle u.

Theorem 2.3 Assume that o is a holomorphic section of E — X and let J be the
associated coherent ideal sheaf with zero set Z. For each u € GZ(X) the limits

(dd€log o)A p = lin%(ddc log(lo|* + 6))k/\ w, k=0,1,2,...,
€e—

exist and are generalized cycles with Zariski support on |j1|. The generalized cycles
M Ap = 1z(@d loglo|H A p), k=0,1,2,...,

have Zariski support on Z 0 || If w ~ O, then M A ~ 0. If g is a holomorphic
section of another vector bundle that also defines J, then M A ~ M ,f A .

Incase i = 1x we write M} rather than M7 1x. Welet M°Ap = M§ A+ M7 A+

Definition 2.4 Assume that J — X is defined by the section o of the Hermitian
vector bundle £ — X. Given u € B(X) and a representative & € SZ(X), we let the
B-Segre class Sk (d, ) be the class in B(X) defined by M Aft. We let S(J, ) =
So(d, ) + 813, ) + -+ -

Notice that M,‘(’/\ZI has support in Z N || so that we may identify S(J, u) with an
elementin B(Z N |ui|),in B(Z),orin B(|u|). If u = 1x wedenote S(J, u) by S(J, X).

Remark 2.5 1f k = max (0, dim u — dim(Z N [u])), then

S@, 1) = 8@, ) + Siew1 (@, ) + - -+ + Sdim u (3, 1.
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Indeed, S¢(d, i) has dimension dim p — £ and Zariski support ZN ||, s0 S¢(d, u) =0
if dim Z N < dim p — € by the dimension principle. Moreover, clearly S¢(J, ) = 0
for degree reasons if £ > dim pu.

If J vanishes identically on ||, then it follows from the definition that S(J, n) =

One can define M A v by a limit procedure without applying 1z, see [4, Proposi-
tion 5.7 and Remark 5.9].

Proposition 2.6 Let o be a holomorphic section of a Hermitian bundle E — X and
let

o _ € e 12vk _
Mk’e—m(dd |O'|), k—0,1,2,...

If u € GZ(X), then

M Ap=lim M7 Ap, k=0.1.2,... (2.12)

Moreover, M°A =), M7 A is the value at . = 0, via analytic continuation from
Rex > 0, of

M“/\Mz( - ZA+Za| || A(dd€ log |o|?)*~ 1)/\,u

Example2.7 If n € G2(X) and y An € GZ(U), where U C X is open and y is a
smooth form in U, then by (2.12)

MA(yAR) =y AMAL (2.13)
in U.

Example2.8 Tf f: X' — X is proper, 1’ € SZ(X’), and u = fiu/, then (2.1) and
(2.12) imply that

MoAw = f(MTOA L. (2.14)

Let & be a section of a vector bundle in a neighborhood U C X of x such that & defines
the maximal ideal at x. Notice that if 1 € G2 (X), then by Theorem 2.3, M& A v is a
generalized cycle with Zariski support at x and its image in B(X) is independent of
the choice of section & defining the maximal ideal. In view of the dimension principle,
see Sect. 2.3, M A = M,f A = a[x] for some real number a. We say that a is the
multiplicity, mult, u, of u at x, i.e.,

multxuzf MéA L. (2.15)
u
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It is an integer that is independent of the choice of neighborhood U and only depends
on the class of u in B(X). If u is effective (i.e., represented by a positive current), then
mult, x is the Lelong number of w at x and hence nonnegative, see [4, Section 6].

Example 2.9 Tf © € GZ(X) is of the form u = y A i’ in a neighborhood of x, where
y is a closed smooth form of positive degree and 1’ € GZ(X), then mult,u = 0. In
fact, by (2.13), Mé A u = y A M A i/ which must vanish by the dimension principle,
since Mé A 1/ has support at x and y has positive degree.

2.6 Segre numbers

LetJ — X be a coherent ideal sheaf over X of codimension p. In [13,17] Tworzewski,
and Gaffney and Gassler, independently introduced, at each pointx € X, alist of num-
bers (e, (d, X, x), ..., e,(d, X, x)), called Segre numbers in [13]. The Segre numbers
generalize the Hilbert—Samuel multiplicity at x in the sense that if J has codimension
n at x then e,(d, X, x) is the Hilbert—Samuel multiplicity at x. The definitions in
[13,17], though slightly different, are both of geometric nature. There is also a purely
algebraic definition, [1,2]. In [6] were introduced semi-global currents whose Lelong
numbers are precisely the Segre numbers. These currents are generalized cycles.

We can define Segre numbers for J over a generalized cycle u© € GZ(X): In a
neighborhood U of a given point x we can take a section o of a trivial Hermitian
bundle such that o generates J and define the Segre numbers

ex(d, , x) =multy(M{ Ap), k=x«, ... dimu,

where « is as in Remark 2.5. In view of Theorem 2.3, these numbers are independent
of the choice of neighborhood U and of section o, and only depend on the class of & in
B(X). If © = 1y, then ex(d, u, x) coincides with e (g, X, x), see [6, Theorem 1.1].

2.7 Regular embeddings and Gysin mappings

Assume now that X is smooth and that J — X is locally a complete intersection of
codimension «. This means that t: Z5 <> X is a regular embedding, where Zg is
the non-reduced space of codimension « defined by J. Then the normal cone NgX
is a vector bundle over the reduced space i: Z < X and hence there is a well-
defined cohomology class ¢(NgX) on Z. Therefore there is a well-defined mapping,
the classical Gysin mapping®

AKX = Aiee(Z), it = (N3 X) V5@, i)k (2.16)

where the lower index k — k denotes the component of dimension k — x. We have the
analogous B-Gysin mapping

' Be(X) > Bro(2), st = (c(NgX)AS@. 1))k (2.17)

5 Since this is a map to Ay, (Z), to be formally correct, we must insert i4 in the formula defining & of.
Sect. 2.5.
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Our main interest is when J defines a submanifold; in this case Z = Zg and i = «.

By suitable choices we can represent (2.17) by a mapping on GZ(X): Assume that
J is defined by a section o of a Hermitian vector bundle £ — X and let E’ be the
pull-back to Z. There is a canonical holomorphic embedding ¢: NgX — E’, see [4,
Section 7]. Let us equip NgX with the induced Hermitian metric and let c(NgX) be
the associated Chern form, cf. Sect. 2.2. Then we have the concrete mapping

U G2(X) = G2 (2), st = @NgX)AMOA 0k
which induces the mapping (2.17). We recall [4, Propositions 1.4 and 1.5].
Proposition 2.10 IfJ — X defines a regular embedding, then

8@, X) =s(NgX)N[Zgl, Sk(d, X) = sk— (NgX)A[Zy]

in B(X), where [Zg] is (the Lelong current of) the fundamental cycle associated to J.
If o defines J, then

M° ='§(N3X)/\[Zg], Mlg :@(_K(Ng)()/\[Zg]

in G2(X).

Example 2.11 Leti: Z — X be the inclusion of a smooth submanifold of codimension
« and suppose that u € G2 (X) is a smooth form. Then, in view of Proposition 2.10,

ivitn = (?(NZX) A?(NZX)A[Z]AM)k_K =[Z]Apu.
Thus, i'u = i*u is the usual pullback.

2.8 Intersection with divisors and the Poincaré-Lelong formula on a generalized
cycle

See [4, Section 8] for proofs of the statements in this subsection. Let 2 be a meromor-
phic section of a line bundle L — X. We say that div / intersects the generalized cycle
w properly if h is generically holomorphic and nonvanishing on the Zariski support
|| of each irreducible component j; of . If div s and w intersect properly there
is a generalized cycle div & - u with Zariski support on |div 2| N || that we call the
proper intersection of div h and .

If t: W — X such that u = 1., where « is a product of components of Chern or
Segre forms, then div i - = 7 ([divt*h]A@). Thendivh - ~ 0if u ~ 0 so that
the intersection has meaning for u € B(Y). If i is holomorphic, i.e., div /4 is effective,
then, in a local frame for L,

divh-p = dd°(log || ) = lim (dd* log(1h12 +€)Ap), (2.18)
€—>

@ Springer



Nonproper intersection products and generalized cycles 1351

where |h], is the norm of the holomorphic function obtained from any fixed local
frame for L so that dd€ log|h|, is well-defined. It follows that div & - u is effective
if both div and p are effective. In light of (2.18) it is natural to write div A - as
[div A]A .

Proposition 2.12 (The Poincaré—Lelong formula on a generalized cycle) Let h be a
nontrivial meromorphic section of a Hermitian line bundle L — X. Assume that div h
intersects |u properly. Then

dd®(log |h|* ) = [divh1Ap — Ci(L) A 1.

Remark2.13 If divh does not intersect p properly we define [divhi]Ap =
> ldivalA u,}, where ,u;. are the irreducible components of . that div & intersects
properly, see [4, Section 9].

2.9 Mappings into cohomology groups

In this subsection we assume that X is projective, in particular compact, cf. [4, Sec-
tion 10]. Let kK (X) be the equivalence classes of d-closed (k, k)-currents i on X of
order zero such that ¢ ~ Oif there is a current y of order zero such that u = dy.If X is
smooth there is a natural isomorphism Hn—kn—k (X) — H"kn=k(X C);the surjec-
tivity is clear and the injectivity follows since a closed current of order zero locally has
a potential of order zero. If i : X < M is an embedding into a smooth manifold M of
dimension N, then there is a natural mapping i, : H"*"%(X) - HN=*N-k(p C)
induced by the push-forward of currents.
There are natural cycle class mappings

Ax: Ae(X) — H'F"7Rx), k=0,1,..., 2.19)
and, [4, Equation (10.8)],
Ax(c(E)Np) = c(E)ANAxpu,

in H (X), where the right-hand side is represented by the wedge product of a smooth
form and a current. There are natural mappings

By: Bir(X) = H" k" *kx) k=o0,1,..., (2.20)

and clearly By (c(E)Aun) = c(E)A Bxpu.
Example 2.14 Assume that i is a meromorphic section of a Hermitian line bundle L —

X such that div & intersects 1 € G2 (X) properly. It follows from Proposition 2.12
that [div 2] A and €1 (L) A p coincide in H"—k+1n=k+1(x),
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Letusrecall [4, Proposition 1.6], that the images of Ay (X) and B (X) in Hn—kn—k (X)
coincide. We have the commutative diagram

2y (X) —— B(X)

l 2

Ar(X) Ax ﬁn_k‘n_k(X).

Example 2.15 1t follows from the dimension principle that A, (X) = Z,(X) = B, (X).
If X has the irreducible components X1, X», ..., then the image in H 0’O(X ) of the
cycle a; X1 +axX, + - -+ on X is the d-closed (0, 0)-current a11x, +azlx, +---.
It follows that the mappings into H 0.0(X) are injective.

More generally, we have [4, Proposition 1.7].

Proposition 2.16 Assume that J — X defines a regular embedding Zy — X of
codimension k and let u be a cycle. The images in H**(Z) of the Gysin and the
B-Gysin mappings of u, (2.16) and (2.17), coincide.

3 Local intersection numbers

Let Y be a smooth manifold, let i1, . .., i, be generalized cycles on Y of pure dimen-
sions and let d = dim w1 + - - - + dim w,-. Following the ideas of Tworzewski [17] we
define the local intersection numbers at x, cf. Lemma 2.1 and Sect. 2.6,

6[(“17--'3Mrsx) :Zed—f(3A9M1X XM}’si(-x))v Ezovls---vds

where i: Y — Y := Y x --- xY is the parametrization x — (x,...,x) of the
diagonal A in Y and Jo — Y’ is the ideal sheaf that defines A. Notice that if
E — Y x --- xY is a Hermitian vector bundle and o is a section of E that generates
da,then MOA (1 x - -+ X u,) is a global generalized cycle such that

€e(iury .oy phpy X) =multi oy Mg_y A (g X -+ X jiy) (3.1

for £ < d. More invariantly we have, cf. Definition 2.4,

€1, v vy iy, x) = multy () Sg—e(da, L1 X -+ X pp). (3.2)

Given a point x, (3.1) holds as soon as o defines Ja in a neighborhood of the point
i(x) so we can assume that o is a section of a trivial bundle. If the w; are cycles,
therefore these numbers coincide with the local intersection numbers (1.1) introduced
by Tworzewski in [17], cf. Sect. 2.6 and [6, Section 10].

Remark 3.1 Tworzewski, [17], proved that there is a unique global cycle u such that the
sum of its multiplicities, of its components of various dimensions, at each pointx € V

@ Springer



Nonproper intersection products and generalized cycles 1353

coincides with the sum of the local intersection numbers at x. Since this definition
is local, it cannot carry global information. For instance, the self-intersection, in this
sense, of any smooth curve Z in P2 is just the curve itself, and therefore the Bézout
formula, cf. (1.7), is not satisfied unless Z is a line.

4 The B-Stiickrad-Vogel class in PY

Let PM be the projectivization of (C%“ vy Letn = (1, ..., nm) be atuple of linear
forms on CM+! in general position. As usual we identify the ; with sections of the line
bundle L = O(1) — PM and 5 with a section of E := B L. Similarly to Sect. 2.8
we let |n7], be the norm of the holomorphic tuple obtained from any fixed local frame
for L so that dd€ log |n|, is well-defined. Let Z be the plane of codimension m that n
defines and let J — PM be the associated radical ideal sheaf.

Let 1 be a fixed generalized cycle in P of pure dimension d. For a generic choice
ofa = (ay,...,aq) € (]P’m’l)d, the successive intersections® by divisors, cf. Sect. 2.8,
in

v A = 1z[div(ax-mIALx z[div(ag—1-1)]

] 4.1)
A AlxzIldiviar- mIalx zu
fork =0, ..., d are proper, and
d
VVITAR = Z vZ'ﬂ/\,u 4.2)
k=0

is the resulting Stiickrad—Vogel (SV) cycle, cf. [4, Section 9].

Proposition 4.1 If we take the mean value of (4.2) over (Pm=hd i respect to
normalized Haar measure, then we get the generalized cycle

MYIA =1z 4 1zdd log 3 Ap + -+ + 1z(dd log [n]2)? A pe.
Proof With the convention in Remark 2.13 we can write
v TA = 1z[div (ag- mIA [V (@x—1-m]IA - Aldiviar-mIA .

Now the proposition follows from [4, Proposition 9.3]. O

By [4, Proposition 9.5], the class of M7 Ay in B(PM) only depends on J, L, and p
and not on the choice of generators 7.

Definition 4.2 For i € B(PM), we let V(J, L, u), the B-SV-class of L and J on p,
be the class of MLTA p in B(PM).

6 We let 17 as well as [div(a; - n)] act on the whole current on its right, i.e., 1zy A == 1z(y Ap) etc.
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Notice that ML A 11 has support in Z N || so that we may identify V (d, L, 1) with
an element in B(Z N |u|), cf. [4, Definition 9.6].

Let U ¢ PM be an open set where we have a local frame e for L. For instance,
each nontrivial section of L vanishes on a hyperplane H and thus gives rise to a local
frame in the open set PM\ H. In U we have that

MY A =M'Ap (4.3)

with the metric on Ly such that |e] = 1, cf. [4, Remark 8.2]. It follows that local
statements that hold for M" A . must hold for M%"A i as well. In particular, if
defines the maximal ideal at x € PM, then, in view of (2.15),

META = multe - [x]. 4.4)
By (2.12) and (4.3), in U we have the regularization

L,n _ € c1.12\k _
Mk AU = gﬂ)w(dd |7]|0) AW, k—O, 1,2,... (45)

In particular, M,{L’”/\u is effective if p is; indeed ddc|n|% is a positive (1, 1)-form.
We have the Fubini—Study norm |£| = ||€]|/||x]| on L = O(1), where || - || denotes
the Euclidean norm on C¥+!

Proposition 4.3 With the norm above M A is the value at A = 0 of the current
valued function

aln*AdInl
— P+ > LT A (ddlogn2) T ) A (46)
&, il

a priori defined when Re 1. > 0.

Proof The statement follows directly from Proposition 2.6 in a set where we have a
local frame for L if we replace each occurrence of || in (4.6) by |n|,. However one
can verify, cf. [3, Proof of Lemma 2.1], that the value at A = 0 is independent of the
choice of norm on L, and thus the proposition follows. O

Notice that the Fubini-Study form @ = dd° log |x|%> = dd°log ||x||2 represents the
first Chern class w = ¢1(L). We have van Gastel’s formulas for generalized cycles [4,
Theorem 9.7],

1 J
METAp = Z (m) AMIAp 4.7)
ji=o0
and
1 J L,
M'Ap = Z (1+_6> AM; A . (4.8)
j=0
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From [4, Proposition 9.12] we get, cf. (1.3),

Proposition 4.4 Assume that © € GZ4(X). We have the mass formula
deg u=deg Mé’"/\u + -+ deg MdL’"/\;H- deg (1x\ z(dd log [n2)? A p). (4.9)

If m < d, then the last term in (4.9) vanishes since (dd° log |77|% )™ = 0 outside Z.

For future reference we also point out the following invariance result. Assume that
i: PM — P s alinear embedding of PY in PM' Let p: PM' -—» PM be a projective
(generically defined) projection, i.e., induced by an affine projection C¥ "+, cMHL
so that poi is the identity on PM. Then p*n; are well-defined linear forms on PM
Let i’ be some additional linear forms on PM " that vanish on i (PM),

Proposition 4.5 If i € SZ(PM), then
MEPTIN G = i (META ).
Proof Since n’ = 0 on the Zariski support of i, u,
ME@) NG — PO Gy

Now the proposition follows from (2.1) and Proposition 4.3, or (4.5), since n =
i*p*n. O

5 B-Intersection products on manifolds

Assume that pq, ..., u, are cycles on a complex manifold ¥ of dimension # as in the
introduction. It is well-known that if they intersect properly, then, see, e.g., [9, Chap-
ter 12], one can define the wedge product [it1] A - - - A[,] by means of appropriate
regularizations, see, e.g., [ 10, Chapter I11.3], and this current coincides with (the Lelong
current of) the proper intersection cycle wi-y - - - -y ir, see, e.2., [9, p. 212]. It is easy
to see that the cycle u = 1 x --- x u, and the diagonal A in Y" = ¥ x --- xY
intersect properly, and one can prove that if we identify A and Y, then the proper
intersection A -yr u coincides with pu1-y - - - -y u,. If the 1t do not intersect properly
the basic idea is to consider the intersection of A and | X --- x u,, cf. Sect. 3. The
advantage then is that one of the factors is a regular embedding.

We now recall the classical nonproper intersection product. If 1 Zg — Y is a
regular embedding of codimension x and u € Ay (Y), then we have, cf. (2.16), the
product

Zgoypu = i
see, e.g., [12, Chapter 6.1] for background and motivation. Let

iY==Y, x— (x,...,%), 5.1
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be the diagonal A; notice that this is a regular embedding. Given arbitrary cycles
Ui, ..., iUy, we define the intersection product

1y =y M ;:i!(/“x X//Lr),

see, e.g., [12, Chapter 8.1]. After identification of ¥ and A we have -y -+ -y u =
Aoyr(p1 X --- x ur). Incase u; = Zg is aregular embedding and ., is an arbitrary
cycle, then -y wo = 1oy ua, see [12, Corollary 8.1.1].

We will define analogues for B(Y), cf. Definition 2.4, Lemma 2.1, and (2.11).

Definition 5.1 Assume that ¢: Z5; — Y is a regular embedding. For 4 € B(Y) we
define, cf. (2.17), the product

Zgonyy i =1

Notice that if Zj has codimension « and u € By (Y), then Zgopyyu € Bi—(2);
recall that Z is the zero set of J. Moreover, the Zariski support of Zg o5 y) i is con-
tained in Z N|u| and so we can identify Z5 op(y) u with an elementin By_, (Z N |u|).

Remark 5.2 1f J is the radical ideal of a submanifold or a reduced locally complete
intersection i: Z < Y of codimension k and w is a k-cycle in Y intersecting Z
properly, then i,.(Z ogy)u) is the proper intersection [Z]A . In fact, in view of
Definition 2.4 and Proposition 2.10,

S@. ) = ixSG*3. ) = i (s(Nixg ) A Zi=g])
=s(NgY)ANiu[Zixg] = s(NgY)A[Z]A .

Thus, by (2.17),

i(Zomyyw) = ixi'pt = (c(NgY)AS@. ), _,
= (c(NgY)AS(NgY)) AZIAp = [Z] A pa.

Definition 5.3 If w1, ..., u, are elements in B(Y), we define

.
KL= B(y) - By) Hr =1 (1 X - X ).

As above, notice that after identification of ¥ and A we have (1 g(y) -+ ~By) Ur =
ASB(yry 1 X =+ X [y

Remark 5.4 Let p: Y” — Y be the projection on one of the factors. Then poi = id,
hence p,i, =id and thus w1- gy -+ - By) Ur = Px(AOByry 01 X -+ X [Uy).

Assume that p; is a regular embedding. Contrary to the classical intersection product
case it is not true in general that (1 ¢35 (y) 2 and 11 - B(y) 2 coincide. Example 8.14
below shows that the B-self-intersection of the cusp u = {xf — xox§ =0} cP?is
different from p o5 yy pt. This example also shows that the B-analogue of the classical
self-intersection formula does not hold in general. However, it is true for smooth cycles.
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Proposition 5.5 (Self-intersection formula) Let V < Y be a smooth subvariety of Y
of codimension m. Then

VgV =cn(NyY)A[V]. 5.2)
Proof Notice that the diagonal Ay is smooth in ¥ x Y and that Na, (Y xY) = T Ay.
If j: VxV — Y xY is the product embedding, then j*Ja, = Ja,. Therefore

ix(V-sy)V) = Ay ogyxy)V x V is the component of dimension n — 2m of

C(Nay (Y X ) AS(*Tny, VX V) = «(TAY) AS@ay, VX V)
— C(TAY)/\S(TAV)/\[AV]»

where the last equality follows from Proposition 2.10 and, since V is smooth, that

Na,(V xV) = TAy. Via the natural isomorphisms ¥ >~ Ay and V =~ Ay thus
V- 3(y) V is the component of dimension n — 2m of

(T |y As(TVIAIV] = o(TY)|y A

cawn '

=c(TY/TV)lyA[V]=c(NyY)A[V],

cf. (2.4). Thus we get (5.2). O

Example 5.6 Let E be the exceptional divisor of the blow-up ¥ = Bl,P?> — P2 at a
pointa € P2 Let Lg — Y be the line bundle with a section that defines E. It follows
from (5.2) that E - g(yy E = c1(Lg)A[E]. Since —c1(Lg) is positive E -g(y) E is
negative, which is expected in view of the classical self-intersection of E.

We have always coincidence of the various intersection products on cohomology level;
recall the mappings (2.19) and (2.20).

Proposition 5.7 Assume that i1, ..., iy arecyclesinY andlet V = || N-- -0 |y ].
Then

Ay(icy ~-- vy i) = By (Ui-By) =+ *B) r) (5.3)
in ﬁ(V). Moreover, if r = 2 and 1 is a regular embedding, then
By (1 0B(vy m2) = By (i1 - B(y) H2). (5.4)

Proof The equality (5.3) follows directly from the definitions and Proposition 2.16.
Since the two possible definitions of 41 -y ©> coincide when w1 is aregular embedding,

(5.4) follows by another application of Proposition 2.16. O
Proposition5.8 (i) If i1, ..., i, are cycles in Y that intersect properly, then
KL1-B(y) =~ BY) Mhr = K1Y *** Y Mr (5.5)
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(i) If h is a holomorphic section of L — Y such that div h intersects u € B(Y)
properly, then

divhopyyw =divh-pu =divh- gy u. (5.6)

Proof Assume that the u; have dimensions d;, respectively. The assumption about
proper intersection means that the set-theoretic intersection V.= || N - N |y
has the expected dimension k := dy 4+ --- +d, — (r — 1)n and that wy-y -+ -y ur
and p1- B(yy - - - - B(y) Ur are elements in A (V) and By (V), respectively. Now (5.5)
follows from (5.3) and Example 2.15.

Let us now consider part (ii). We may assume that 4 = t,o, where t: W — Y
is proper holomorphic and « is a product of components of Chern or Segre forms,
cf. (2.6). The assumption of proper intersection implies that % is not identically zero
on |u| = (W) so that Mé’/\,u = 1p—ou = 1 l+p—oa = 0. Let ¢ be the regular
embedding given by the ideal sheaf J;, generated by 4. We have Ng,Y = L|,—o, cf.
Sect. 2.7. Thus

divhopyyu=1'n = ((L)YAS@n ))dimp—1 = ((LYAM"A 1) gim i1
= co(L)/\Mlh/\u = M{’A,u =divh-u;

for the last equality, cf. [4, Equation (8.4)].
We now consider the last equality in (5.6). Consider the commutative diagram

Y x W5y xy
”l l p 5.7
W—"—7,
where p is the projection on the first factor. By definition, cf. Remark 5.4, div & - 5(y)
is py of

Ao yxy) (divhxp) = (c(Na(Y x Y)AS@a. divhx ) g,

- . (5.8)
=D -t (Na(Y X V) ASe(@a. divi x ).

=0

Recall that S¢(Ja,divh x u) = M7 A(divh x u) if o is a section that defines A C
Y xY.Nowdivh x u = (id x t),(divh x @) soif g = (id x 7)*o we have, cf. (2.14)
and (2.13),

M7 Adivh x p) = (id xr)*Mf/\(divh X )
= (id x 1)« ((1 x ) A M§ A(divh x 1))
= (id x )« ((1 x ) AMEA[div(R @ 1)]).
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Notice that g defines the graph G of T in Y x W. Since div / and p intersect properly,
7*h is generically nonvanishing on W and so 2 ® 1 is generically nonvanishing on G.
Thus, G and div (h ® 1) intersect properly. The Zariski support of M, f Aldiv(h®1)]is
G N{h®1 = 0}, which thus has dimension dim W — 1. Since Mf/\[div(h@ D]
has dimension dim W + n — £ — 1 it follows from the dimension principle that
Mf/\[diV(h@ 1)] = 0 for £ < n. Thus, S¢(Ja,divh x u) = 0 for £ < n and from
(5.8) we get

Aopyxy) (divh x ) = 5,(da, divh x p)

= (id x D)« ((1 x@) A MEA[div(R D 1)]). ©9

To compute M A [div(h® 1)], notice that g defines a regular embedding in ¥ x W
of codimension n and that, since dim(G N{h® 1 = 0}) = dim W — 1, the restriction
of g to div(h ® 1) defines a regular embedding in div (2 ® 1) of codimension n. Thus,
by [4, Corollary 7.5],

M Aldiv(h@ D] = (MEALiIV(RQ D) 4wy
= (8. Y x W)AIGIA[div(R®1)])
= S0(g. Y x W)AIGIA[div(h®1)]
= [G]A[div(h®1)],

dim W—1 (510)

where J, is the ideal sheaf generated by g. Since (5.7) is commutative, (5.9) and (5.10)
give

p*(A<>3(Y><Y) (divh x M)) = T*ﬂ*((l xa)A[div(h® 1)]/\[G])

5.11
= ddt,m. (1 x @) A (log |h]2 @ D ALG]), ©11)

cf. (2.18). Since m,((1 x @) A(log |h]2 @ ) A[G]) = log |t*h|?a, by (5.11) we get,
cf. (2.1) and (2.18),

ps(Aomyxy) (divh x ) = dd°z,(log [t*h|2 ) = dd* (log |h|* ) = divh-p,

which finishes the proof. O

6 The e-product on P"

In this section we define the product (1.4) of generalized cycles on P" and prove
Theorem 1.1. The first step is to define the join of two generalized cycles. For simplicity
we first assume that » = 2. The mapping

P2 D Pr P [yl (2 [y ©.1)
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is well-defined outside the union of the two disjoint n-dimensional planes x = 0 and
y = 0, and it has surjective differential. If 1, uo € GZ(P"), therefore p* (11 X o) is
a well-defined current outside the indeterminacy set of p. We will see that p* (141 X )
extends in a natural way to a generalized cycle ©1 X j up on P)%’j;rl.

Let 7 : BIP2" ! — P2 +! be the blow-up of P2"! along {x = 0} and {y = 0}.

Then we have

BIP2"H! (6.2)

T[J \
2n+1 n n
P2 — — S PEx Py,

where p = pom: Bl]P?Cf‘yJr I P x Py has surjective differential and hence is
smooth, i.e., maps smooth forms onto smooth forms.

Lemma6.1 (i) If u € GZ(P" x P"), then p*u € GZ(Y).

(ii) 7y p*u is in SZ(P¥HYY and coincides with p* . where it is defined.
(iii) If u = 0 in B(P" x P"), then m,p*n = 0 in B(P>+1).

Proof Note that (ii) is a direct consequence of (i).

Let X = P"xP" and X' = BlPﬁf’;‘l. We may assume that @ = t.«, where
7: W — X is proper and « is a product of components of Chern forms. Consider the
fibre square

w L x

ﬁl lp (6.3)

w—1 X.

Since p is smooth it follows that the fibre product W/ = W x x Y is smooth, cf. (6.5)
below. The pullback 7*« is a product of Chern forms on W’ and thus p,7*« is a
generalized cycle on X'. We claim that

psTTy = prTey (6.4)

for any smooth form y. Taking (6.4) for granted we conclude that p*u = p*t. is a
generalized cycle, which proves (i). It is enough to prove (6.4) for all smooth forms
y with small support. Notice that locally in X, say in a small open set U, X'|y( is
biholomorphic to U x P!, Let us assume that 7, has support in an open set U C X,
where X' = U x IP’}. Letting W =t"1W), by the definition of fiber product,

qu(UXIP’[l) ={(w,x,1); T(w) =px,t) =x}

~ ~ 6.5
={(w,t(w),1); we W}~ W xP! ©:5)

and p(w, t) = (t(w), t). Now (6.4) is obvious.

@ Springer



Nonproper intersection products and generalized cycles 1361

To see (iii), note that if © = 7.(8 A ), where B is a component of a B-form, then
it follows from (6.4) that 77, p*u = 1, p5 (F*BAT*a) and hence 0 in B(P>"*1) since
7*B is a component of a B-form. O

If wy, no € GZ(P"), then g x up € GZ(P"* xP") by Lemma 2.1, and by virtue of
Lemma 6.1 we can make the following definition.

Definition 6.2 For 1, uy € GZ(P") we define the join product 1 x y o by

W1 X g o = T P (1 X [12).

It follows from the same lemmas that i xj;uy € GZ(P") and, moreover, that
w1 X g o is 0in B(P 1Y if 4y or po is 0 in B(P™). Hence, 11 X 7 j12 is well-defined
for uj € B(P").

Example 6.3 (Relation to the classical join) Assume that X, X, C P”" are
(1rredu01ble) analytic sets. Let p: C'F1\ {0} xC"t! \{0}) — P"xP" and
7. C*2\ {0} — P2+l be the natural maps. Notice that X = p (X1 x X») is
homogeneous in C2+2 and JT(X ) is the classical join of X and X;. We claim that

X1 %7 X = 7(X). (6.6)

Since po7 = p on the common set of definition it follows that (6.6) holds outside the
union V C P?"*! of planes where p is not defined. To prove (6.6) it is thus enough
to show that 1y, p* (X x X3) vanishes. In view of (2.2), lym,p*(X1x X3) = 0
if 1,1, p*(X1x X2) = 0, which may be checked locally in BIP?**! We may
therefore consider a subset UXP} of BIP?"tL where U C P"xP" is open,
cf. the proof of Lemma 6.1. Note that, in UX]P’}, 771V is of the form H =
U x {to} and that p*(X|x X2) = X| X X3 X ]P’,l. Thus, by the dimension principle,
11y p* (X1 x X2) =15 (X1 x Xo x Pl = 0.

Example6.4 Let pi, 12 € B(P") and assume that A: P" — P" is a linear
embedding, i.e., A is induced by an injective linear map A: C't! - "+ Then
A x A is an injective linear map C2+2 — C2'+2 and we get a linear embedding
A: Pt P2'HL et 1/ and p’ be defined in the same way as 7 and p in
(6.2) with n replaced by n’. Similarly to the proof of Lemma 6.1 one shows that
Ay p* = 7l (p))* (A x A), as operations on currents in P” x P™. It follows that

As(ur X g ) = Ay X g Acpin.

In a similar way as above we have the mapping

Prot=t B pr P, [ ] e (L)) 67)

xb o xr X X

Let now 7: Bl]P’r("'H) LN ]P’r("ﬂ) ! be the blow- -up of IP’("H) ! along the

..... xr xl.x Loxr
codimension n- planes {x!' = 0},...,{x" = 0} and set p == poxw. We get a dia-
gram analogous to (6.2). As above, given ui,...,u, in GZ(P") or in B(P"),
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we define g xy--- x g, in GZP D=1y or in BPTHD=1) | respectively, as
TP (g X -0 X ).

Proposition 6.5 If i1, ..., ur € GZ(P"), then

deg(uixy -+ xXyjuyr) =deguy...degu,.

Proof We may assume that the u1; have pure dimension. There are currents g; in P"
such that dda; = p; — (deg /Lj)akj if dim p1; = n — kj, where @ is the Fubini-Study
form on PP". It follows that there is a current A on IP’):‘1 x -+ x P such that

~ky
s

dd°A = pyx -+ Xy — (deg py -+ -deg ) D' X - X B

cf. Lemma 2.1. Applying 7, p*, it is enough to show that deg(@*' x ; - - - x ;&) = 1;
but this is obvious if we just notice that 77, p* of ahyperplanein P, x - - - x IP{; induced

by a hyperplane in one of the factors ]P’;j is a hyperplane in IF’;](”JFZ_I and replace

,,,,,

each @% by the intersection of k;j generic hyperplanes. O

For the last argument one can also observe that log((|x!|? 4 - -- + |x"|?)/|x/]?) is a

well-defined locally integrable function on ]P’;,(""Li),_l and that

.....

Let
ji Pt s PrOFD=l ) s [k, L x], (6.8)

be the parametrization of the join diagonal A ; in P""*D=landlet J ; be the associated
sheaf. Notice that J; is generated by the (r — 1)(n + 1) linear forms, i.e., sections of
L =0(),

n=(x§ —x0xg = X3, .. xf — x0T Xk —xx) —xZ L xh —xi Y. (6.9)
codmA;=rn+1)—1—n=F—-1Dn+1),

we see that  is a minimal generating set.

Definition 6.6 Given g, ..., i, € B(P"), 1 e--- e, is the unique class in B(P")
such that

Js(pro - o) =V(Jy, L1 Xy -+ Xg ). (6.10)
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Since (2.11) is injective, pje - - - o 1, is well-defined. It is clear that 11 e - - - e, is
commutative, multilinear, and that its Zariski support is contained in || N -« - N |y ].

If wi,..., ur € GZ(P™) denote representatives of the corresponding classes in
B(P"), then the right-hand side of (6.10) is represented by

MEIA (X g - X ) (6.11)

for any choice of 1 generating J,. If the 11; have pure dimensions, then

,
d::dim(,ulxjn-xJ;L,)=Zdim,uj+r—1, (6.12)
1

and thus j,(uie --- e, ), is represented by Mjﬂ AL X o X T r).
The e-product is invariant in the following sense.

Proposition 6.7 Assume that ij € B(P") and let A: P" — P" be a linear embed-
ding. Then A (L1e --- o) = Aypi10 - - @ Ay iy

In particular, if T is a linear automorphism of P”, then

Ti(pro--- o) =Tepuro--- 0Ty, (6.13)

Proof Asin Example 6.4, A induces a linear embedding A : P7"+D=1 prov+h-1
and Ao j = joA,where j denotes the join diagonal in both P7 D=1 gpd pr'+ D=1,
Therefore, since j, is injective, to show the proposition it is enough to check that
Asjs(prro - op,) = ju(Agpiro - @ Aypi), ie., that

Ac(V@y, Lo xy - xgmp)) =V(Ts, L Ay X -+ X7 Aspiy). (6.14)

In the special case that A is a linear automorphism of P”, (6.14) follows by
noticing that A* in this case maps sections of L to sections of L, preserves Jy,
and, in view of a simple extension of Example 6.4, that Ay Xy -+ X7 Agpty =

A(ixy - Xy ). ,
For the general case we may now assume that A : P! — IF’;‘, y isthemap [x]+— [x : 0].

Then A[x!: ... :x"]=[x!:0: cx” :0]. Let 77 be as in (6.9) and let n’ be the tuple
of (r — 1)(n’ — n) linear forms (y,i“—y,f),j =1,...,r—1,k=1,...,n —n.Then
nand (1, ) define J; in P"@+D=1 and Pr®+D=1 respectively. By Proposition 4.5
we get

MEDDAN (X - X g i) = AaMETAR X -+ X g 1),

which implies (6.14) in view of Example 6.4. O
Proposition 6.8 If i1, ..., u, € B(P") have pure dimensions, then
r
deg(pie---ouy) = ]_[deguj— / (ddlog |2 AGuyx g%y 1), (6.15)
| ]P:r(n+1)—l\AJ

@ Springer



1364 M. Andersson et al.

where d is given by (6.12).

Proof Firstnotice that j*@pru+1-1 = @pr, Where j is defined in (6.8) and @pn denote
the Fubini—Study form on P™. Therefore, for i € G2 (P"),

. ~k . ~k
deg jup = / Dprt1)—1 N\ Jxlb = / wpn A = deg j1.
]pr(n-%—])—] Pn

In particular, deg (u1 e - - - o) = deg (ME"A (g x g -+ x g ). Now, by Propo-
sition 4.4,

deg (o - - ou;)
=deg(p1 %7 -+ xj i) — deg(Lprasn-1\ 5, (dd€ log 2N (1 x g - X 1)),

and thus (6.15) follows in view of Proposition 6.5. O

The Bézout formula (1.7) holds if and only if the last term in (6.15) vanishes. This
happens if (r + 1)(n — 1) < d which is the same as (1.6), cf. the remark after Propo-
sition 4.4, (6.9), and (6.12).

However, as mentioned in the introduction, the condition (1.6) is not necessary
for (1.7) to hold. For instance, by Proposition 6.7, the e-product is not affected if
we perform the multiplication in a larger P". Thus, as mentioned already in the
introduction, the self-intersection of a k-plane is the k-plane itself, in particular, the
self-intersection of a point is the point itself. On the other hand, clearly the product of
two distinct points vanishes. In this case the last term in (6.15) carries the “missing
mass” in the Bézout formula.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1 The first statements, about multlilinearity, commutativity and the
support, are already discussed after Definition 6.6.

Since local intersections numbers (multiplicities) are locally defined we can work in
an affinization and use the results from [6, Sections 9 and 10] to prove (1.5). However,
we omit the details since it is also a direct consequence of the global Proposition 7.1
below, cf. (3.2) and (7.1).

In the discussion after the proof of Proposition 6.8 is noticed that (1.7) holds if
(1.6) is fulfilled. If u; are effective, then so is 1 xy -+ Xy u,, and it follows that
(6.11), and hence pi1e --- o u,, are effective, cf. (4.5). Moreover deg u; are positive
and the last term in (6.15) is nonpositive so we get (1.8).

If 1, ..., u, are cycles that intersect properly, by the dimension principle only
the component of stje --- e, of dimension p is nonzero, where p is as in (1.6),
and this is a cycle. In this case the local intersections numbers €p (i1, ..., Uy, X)
coincide with the multiplicites of the proper intersection cycle py-pn -+ - pn W, cf.
[6, Example 10.2], and thus (1.9) follows. O
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We will now look at more explicit representations of the e-product. Recall that we
have a natural Hermitian metric on O(1), cf. Sect. 4, and thus, cf. (6.9),

r—1 n

2 1 i 2
=" by xR

i=1 k=0

From (4.6) we see that if u; have pure dimension, then j,(uje - - - ® ;)¢ is given by
the value at A = 0 of

LA
M A (X e X g )

anl?
2mi|n|?

=0n** A A(ddTog In2) T Ay x g - x g ),

where k =d — ¢ =dim(uy xy --- X u,) — £. Notice that
k> dim(uyxy - xgp) = (dimpg +---+dimp,) =r—121

so that term corresponding to k = 0 in (4.6) is irrelevant here; indeed
dim(puie---epu,) < Y dimpu; andso £< ) dim p;.

In an affinization we can also obtain the e-product, cf. (4.5), as a limit of smooth
forms times 1 Xy - -+ X i, by the formula

e(dd’|n|%)k

L.y
M, A X+ X A X . X .
i AN rxy JMr) = 0(e D& (1 Xy - Xy )

....When computing MkL’" A(py Xy -+ X W) itcan be convenient to compute the SV-
cycle v¥ A (g xy - -+ xy u,) for generichyperplanesag-n, ar-n, ..., a,-na; € P",
and then form the mean value, cf. Sect. 4. See Sect. 8 for examples.

Remark 6.9 Assume that r = 2. Given the standard coordinates on C"*! there is
a canonical choice of 7 defining Ay, namely n; = y; —x;, j = 0,...,n, cf.
(6.9). Thus, given representatives of j;, there are canonical representatives (6.11)
of V(Jy, L, 1 X j12), and since (2.8) is injective we can define the e-product on the
level of generalized cycles. Indeed, given w1, uo € GZ(P"), we define 1 e uy as the
unique current in §Z(P") such that

Je(iopn) = META (uy x g p2).

Let 7 be a linear automorphism of P induced by a unitary mapping T on C"+1,
let T = T x T, and let T be the induced linear automorphism of P>"*1; cf. Exam-
ple 6.4 and the proof of Proposition 6.7. Then, considering 7 as a tuple of linear forms
on C>+2, ﬁ*n%hﬁ = |17|é2,,+2. Moreover, dd€ log |17|é2,,+2 = dd°log|n|?, where
we on the right-hand side consider 7 as a tuple of sections of L — P2"*! Hence,
dd°log |T*n|§ = dd°log |n|§, and so

METIA (g x g o) = META (g x g 102).
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It follows that Ty pt1e Ty po = Ty (11 @ £2) as generalized cycles.

Remark 6.10 Consider (6.7) and the corresponding diagram (6.2). By abuse of nota-
tion, let A; denote the preimage under 7w of the join diagonal, let J; denote the
sheaf in BIP"*+D~1 corresponding to A, and let j denote the embedding of P” in
BIP"("+D=1 a5 A ; induced by (6.8). Since (6.11) has support on A ; and BIP"*+D~1
and P""+D=1 ¢coincide in a neighborhood of A ; we can alternatively think of (6.11)
as a generalized cycle on Y.

Remark 6.11 (Green currents and the *-product) Recall thata (p — 1, p — 1)-current g
is a Green current of a closed subvariety Z of codimension p of a complex manifold Y
ifdd°g+[Z] = w, where w is a smooth form. If g is locally integrable and smooth out-
side Z it is called a Green form. The calculus of Green forms, based on the *-product,
is an important tool in the study of height in arithmetic intersection theory, see, e.g.,
[8,15]. In the case p = 1, if s is a section of a Hermitian line bundle that defines Z,
then g = —log|s|? is a Green form in virtue of the Poincaré-Lelong formula, cf.,
e.g., Proposition 2.12. The existence of Green forms of so-called logarithmic type for
p > 1is a more delicate matter, see [8]. If g and g’ are Green forms of logarithmic
type of Z and Z’, respectively, then one can form the product

gxg =gA[Z1+wng.
If Z and Z' intersect properly, then g * g’ is a Green current for the proper intersection
Z -y Z'.In general, g * g’ is the Green current of a kind of product u of Z and Z’. How-

ever (. it is not comparable to our product Z e Z (assuming ¥ = IP") since for degree
reasons, u has pure dimension dim Z + dim Z’ — n. Also compare [4, Remark 5.10].

7 Relation to the - pn) product
In this section we prove Theorem 1.2. For simplicity let us restrict from now on to the

case r = 2; the general case is handled in a similar way.
Consider the mapping

i B(P"xP") — B(P"), isi'u=c(Ng,(P"xP")WAS@a, 1),
where i is given by (5.1). Notice that (1 -g@pr) 2 = i'(y % o) is the component of
dimension p of i" (1 x j12), where p is given by (1.6), i.e., p = dim 1 +dim p» —n.
Next, consider the mapping

J7t BE®"XP") > BP"),  juj’ i =c(Ng,P""YAS@ s, wap™n),

where we are using the notation from Sect. 6 and where j is given by (6.8).

Proposition 7.1 The mappings i* and j° coincide.
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Let n be the section (6.9) of L = O(1) equipped with the Fubini—Study metric, and
let @ be the first Chern form. Then ¢(Ng,P?"*!) = (1 + @)"*! and thus, by (4.8), j”
is represented by

A+ )" AM" A7 piu = Z 1+ Zz)\)"H*jAMjL’”/\n*p*M.

j20

Now assume that 4 = | x up and let d = dim 7wy p*u = dim | 4+ dim o + 1, cf.
(6.12). Note that p = d — (n + 1). It follows that

(Z 1+ a)"+1_-//\M].L’n/\n*p*u> = <
P

Z 1+ a)f_p/\Mj;ne /\JT*[)*/,L>
iz0

£>0 L
~— L,
=Y B TPAM ATt
=0

By Definition 6.6, j, (w1 e w12), is represented by M;’J’( AT, p*u and therefore

(c(Ng, PP YAS@s, mp')) , = Ji D @ P A(uiepa)e (7.1)
=0

and thus Theorem 1.2 follows from Proposition 7.1.

Remark 7.2 There are classical mappings A(P" x P") — A(P") analogous to i' and
jb. If 1 and po are cycles and u = w1 x ua, then, see [12, Example 8.4.5], the
analogue of Proposition 7.1 holds for the component of dimension p, which is the
component of main interest also for us. However, the argument given in [12] cannot
be transferred to the B-setting.

Proof of Proposition 7.1 Let BIP?",! be as in Sect. 6. Since BIPY! coincides with

P21 in a neighborhood of A, the restrictions of ¢(Ny, Bl P)%f’;rl)—and c(Ng, P2ty
to Ay coincide, and moreover, 7, p*u and p*u coincide on Ay, cf. Remark 6.10.
Therefore j” coincides with the mapping

BP" xP") — BP"), pr> c(Ng,BIPYSTHAS@,. pi). (7.2)

where we are identifying A; C Bl ]P’%”;r ! with P". Hence it suffices to prove that i'
coincides with (7.2).

Let M = P" sothat A = i(M) and A; = j(M) and let X = P"xP”" and
Y = BIPY" ! Then
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commutes. Note that j(M) is a divisor in p~li(M). Let E — Y and F — X be
Hermitian vector bundles with holomorphic sections ¢ and o that define J ;) and
di(m), respectively. Fix Hermitian metrics on N ()Y and Njp) X and let ¢(Njp)Y)
and ¢(Nj(a) X ) be the associated Chern forms. Moreover, let u € GZ(P" x P") denote
also a fixed representative of u € B(P" x P"). O

Lemma7.3 Let L — p_li(M) be the line bundle associated with the divisor j(M) C
p_li(M). Then

Nj(M)Y = p*N,‘(M)X@L on j(M), (7.3)
and for any Hermitian metric on L,
MOA W~ pu@LYAMOA p* 1) in GZ(X). (7.4)

Taking this lemma for granted we can conclude the proof of Proposition 7.1. We have
to prove that if 1 and w are the unique elements in GZ (M) such that

isp1 = C(Nippy X\)AM A
and
Jeta = SN Y)AMO A pu,

then w; ~ o in GZ(M).
In view of (7.3) and (2.10) we have

?(Nj(M)Y)AM¢Ap*M ~7c(p* ,-(M)X)/\'c\(L)/\M'Z’/\ P
in GZ(Y). Therefore, cf. (2.5),
P+(€NjnyY)A MO A p*) ~ ENiany X) A p«@LYAMP A p'p). (1.5)
From (7.4) and (7.5) we get
Dx (3(Nj<M)Y)AM¢A p) ~ C(Nigny X)AM A,

which means that py j.puo ~ ixu1 on X. Since p, j,. = iy and (2.11) is injective, we
conclude that ;11 ~ wp on M. Thus Proposition 7.1 is proved. O

Proof of Lemma 7.3 Let us use the notation N, X for N;X etc. We first consider
(7.3). Notice that, with the notation from [4, Section 7], for any columns of minimal
sets of generators s, s’ of J i(M) = do atpointsoniM C X there is an invertible matrix
g such that 5" = gs. A section & of the normal bundle N, X can be defined as a set of
holomorphic tuples £ (s) such that g&(s) = £(gs) ini (M), i.e, therestrictionto i (M) of
such matrices are transition matrices for N, X. Let t and ¢’ be holomorphic functions in
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aneighborhood of a point on p~!i (M) such that both 7| p—tieuy and 2] 15y generate
the sheaf associated with the divisor j (M) in p~'i(M). Then ' = ht for a holomorphic
function 4, which is nonvanishing on p~!i (M), and h| p—li(uy 18 a transition function
for L. Moreover, (p*s, t) and (p*s’, t') are minimal sets of generators for J j(sr) = J¢.
It follows that for given such minimal sets of generators at a point on j(M) we have

R A

Thus the restriction to j(M) of the matrices
_|pg O
o= 3]

are transition matrices for N Y; it is then clear that (7.3) holds. For future use let
n be the section of L — p~'i(M) that defines j(M).

To prove (7.4) we must return to the definition of p*, so let us assume that u = 7,0
and recall the fiber square (6.3). We may also assume that W is chosen so that t*o
is principal and hence p*¢ is a regular embedding of codimension 2 in W’. We claim
that

NpysgW' = T*Npsg W@ p*L on {p*¢ = 0}. (7.6)

In fact, notice that 7*7*o combined with the section p*1n generate the same sheaf as
p*¢. Arguing precisely as above for (7.3) we then get (7.6).
We now claim that

[Zrso] = TulZ 9], (7.7)

where Z;+, is the fundamental cycle of the ideal sheaf generated by 7*o etc. Since
it is an equality of currents it is a local statement. By the dimension principle it
is then enough to check it in an open set U C W where Z;», is smooth and
771U >~ U x P! in suitable coordinates (x, f) so that 7 is (x, ) + x, cf. the proof
of Lemma 6.1. Thus, we may assume that the ideal generated by t*o is generated
by xf in U. Then p*¢ is generated by (xf, t) and (7.7) is reduced to the equality
L[x1 = 0] = T (L[x; = 0] x [t = 0]).
Next we claim that

M~ F (S(p*L)AMP?) (1.8)
on W. In fact, from [4, Proposition 1.5] we have
MP"® =5(Nye g WA LZ o).
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1370 M. Andersson et al.

By (7.6), noting that (2.10) holds for Segre forms as well in view of (2.4), we have
that

TP LYAMP™® ~C(0*LYATFE* Nosg WYAT(0* LYA[Zprg]
= ’S\(J’?*NT*J WA [Zp*¢].

By (2.1) and (2.5) for Segre forms, thus
F(CO* LYAMP ) ~ T (Npso WY AT Z ).

In view of (7.7) and [4, Proposition 1.5], now (7.8) follows.
We can now conclude (7.4). Since « is smooth, from (7.8) we have, cf. (2.1), that

M7 na ~ 7 (G0 L)AMP O AT ),
and hence, by (2.14) and the commutivity of (6.3),

MoAp = 1,(M" % Aat)
~ t*ﬁ*(?(p*L)AMp*‘z’/\ﬁ*a) = p*p*(?(p*L)AMp*¢Aﬁ*a).

Now, by (2.5) and (2.14),

P (GO LYAMP P AFF ) = CL)AMP A p, T e,

SO
MOA @~ py (?(L) AM®A p*ﬁ*a),

and since p,T*a = p*u, cf. (6.4), therefore (7.4) follows. O

8 Examples

We shall now present some further results on our products and various examples. We
first consider an embeddingi : PY — PM+! asalinear hyperplane defined by the linear
form . Let a € PM*! be a point outside this hyperplane and let p: PM+1 ——5 PM be
the induced projection. If Y is the blow-up of PM+! at ¢ we have the diagram

Y

nlx
PM+L _ _ M

p

As in Sect. 6 we see that given i € GZ(PM), the current p*u has a well-defined
extension to an element 77, p*u in GZ(PM+1 ¢f Lemma 6.1.
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Proposition 8.1 Let 1 be a tuple of linear forms on PM. With the notation above we
have

i (META ) = MEP A (8.1)
and

i (M A ) = MEPE A p (8.2)
Proof Since the support of i/ is contained in the hyperplane i (PM) and ¥ and P¥+!
coincide in a neighborhood of i (PM), the right-hand side of (8.1) is well-defined. Now

(8.1) follows from (2.14) and (4.3) since poi = id so that i*p*n = n.
For the second equality first notice that both sides of (8.2) have support on i (PM)
and that ¥ and P¥*! coincide in a neighborhood of i (P™). For the rest of this proof

let i denote also the inclusion of PM in Y. Since 7 defines a regular embedding, it
follows from [4, Example 7.8] that

i (MTA ) = T LYAMP T A p¥y
if w is a smooth form; here we use the standard metric on L. It follows in general, by

assuming that u = 7y, 7: W — PM, and pulling back to W and W’ according to the
fibre square

w—" Ly

pi JP
w—5 P¥
cf. the proofs of Lemmas 6.1 and 7.3 above. Since ¢(7*L) = 1 + 7*® we get
(M Ap) = MU A p i+ BAME TN p,

Thus, in view of (4.7),

1 J
B (META ) = Z (m) /\i*(M;?/\,u)

jz0
=1 -7*0)A Z (1—7‘[*8) anns/\p*,u
jz1
Fran X (o) g
j20
= M7 LT A ey
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where we for the last equality have used that Mé’ RESIN p*u = 0 so that we may

let the sum start from j = 0; indeed, Mé’ REAIN p* = 0 since & is generically

nonvanishing on the Zariski support of p*u. Thus, (8.2) follows by applying 7,. 0O

We will now deduce a formula for A e © when A is a linear subspace.

Proposition 8.2 Assume that A is a linear subspace of P" of dimension m, defined by
n — m linear forms oy, ..., 0p—m. If @ € GZy(P™), then

(Aepw)a—k = M{"Ap (8.3)
in B(P").
Proof Let us use the notation from Sect. 6. By (6.13) the e-product is not affected by

a linear change of coordinates on (Cﬁ+l and therefore we can assume that x = (x/, x”)
and o = x”. Then we need to prove that

pelx"=0]=M-An
in B(P"). Recall that n = x — y. By definition we have, cf. (2.14) and (4.3),

Je(uolx"=01) = MM A, p* (u x [y" = 0])

oy (8.4)
= MECT DA p* (e x [y = 0]).

Recall the diagram (6.2) associated with the mapping (6.1) and, as in the proof of
Proposition 7.1, let Y = Bl]P’%f’yH. Consider the mapping p’: ]P’)’:Jyrf"H - PY P,

[x,y] = (x],[Y']), and let 7": Y' — P;’";W“ be the blow-up of P}’C’;W“ along

{x = 0} and {y’= 0}. Similarly to (6.2) we then have

Y/

I

R S
’ b

Let(: Prmtles P20+l [x y/] > [x, ¥, 0]. Then ¢ extends to a mapping7: Y’ — Y.
Also, let /: P"xP" — P"xP" ([x],[y']) = ([x],[y,0]). Consider the fibre
square

P"xPm L P xP"
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cf. (6.3). Notice that  x [y” = 0] = ¢, (u x 1). By the same arguments as in the proof
of Lemma 6.1, we get

Prux[y'=0D)=p l(ux1) =T(p) (ux1), (8.5)

cf. (6.4). It is straightforward to check that w o7 = tox’ and so, by applying 7, to
(8.5), we get

e p* (e x [y" = 0]) = mT(p) " (e x 1) =ty (p)* (e x 1). (8.6)

Let p”: P" xP™ — P" be projection on the first factor and set p”’ := p”o p’. Then
pwx1=(p")*wand (p))*(ux1) = (p")*n. Thus, by (8.6),

i

T p (ux [y"= 0] =, (p") 1. (8.7

By (8.4), (8.7), and repeated use of (8.1) we get

je(pe[x"=0]) = ML=y )/\L*T[)L(pm)*y,

L,(x'—y',x") 1IN (8.8)
= (MO (),

Let j': P" — P+l [x] > [x,x'], and let q: P+ s P [x,y'] > [x].
Then we have the commutative diagram

Y/
p///
n+m-+1 n
Pyy 77 Py

By repeated use of (8.2), with §; = xjf — yj’., j=0,...,m, we get
ML,()C/fy/,)C”)/\n;(p///)*u — j;(ML’x”/\ /1/)
and so, by (8.8),
Je(uelx"=0]) = 1 jL (M Ap).

Since j, is injective, to finish the proof it suffices to check that we may replace ¢, j;, by
J« in the right-hand side. Notice that v := M LA isa generalized cycle with support
{x"” = 0} so that v = i,V’ for some v/ € GZ({x"" = 0}), where i: {x”" = 0} — P"is
the inclusion. Since to j'oi = joi we obtain

L faV = L juisV) = juixV' = jyv. O
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Proposition 8.3 Assume that u € B(P"). Then
Iprep = . (8.9)
If a is a point, then
ae = mult,u-[al. (8.10)
Proof From Proposition 8.2 we have that 1prep = MEOA L = p and so (8.9)
follows. To see (8.10) let & be linear forms that define a. By (8.3) and (4.4) we have
aep = MYEA L =mult,u-[al. o

Let n be a fixed choice of a tuple of linear forms defining the join diagonal A
in Pr®+D=1 Then, using the notation of Sect. 6, we can define a e-product of

Wi, ..., 4y € GZ(P") by
Je(pre - o) = METAT P (g X - -+ X 1), (8.11)

cf. Definition 6.6. With this definition, for u € GZ(P"), (8.9) and (8.10) hold in
SZ(PM).

Proposition 8.4 Let 1 be a fixed choice as above. Assume that no, (L1, ..., Ly €
GZ(P") and that vy = y Ay in an open set U C P", and y is a smooth and closed
form. Then

Ho® 2@ - @y =Y A(UL]® - ®LL) (8.12)
in U.
Combined with (8.9) we see that
Yo =yAU (8.13)

inUWif y € GZ(P") is a smooth form there.

Proof In view of (2.14) and (4.3) we have
Je(oopoe - o) = M MET AT (o X pax o X pp). (8.14)
Now
HOX P2 X+ Xy = (¥ X T oo X DA (1 X -+ X fdy)

in UxP"x --- xP" Since y x1x -+ x11is a smooth and closed form, it follows
from (2.13) that the right-hand side of (8.14) equals

me(p*(y x1x - XD AMET A p* (g x - X ) (8.15)
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inT(p~'UxP"x -+ xP")).In aneighborhood of A; = {n = 0}, p is defined and
o)

Py x1Ix - x1)=a"p*(y x1x --- x1)
in a neighborhood of {7*n = 0} in p (U P"x .- xP™). Thus, (8.15) equals
p*(y xIx - x DAME AT p (1% -+ X 1) (8.16)
on j(U). Since j*p*(y x1x --- x1) = y in U, by (8.11) we see that (8.16) equals

Jx(Y Apre o)
on j(U). Using that j, is injective on currents we get (8.12). O

Example 8.5 Let @ be the Fubini-Study metric form on P”. Then @ is a generalized
cycle of degree 1 and with multiplicity O at each point. Given any choice of n as above,

it follows from Proposition 8.4 that @ e @ = @A ® and, more generally, We - - - e =:
~ke _ =~k
@ = o

Example 8.6 Let a = [1,0,...,0] € P" and let & = ddlog(|x1|> + --- + |xu|%)
Chapté'r"’III]. It is an irreducible generalized cycle of dimension n — k and degree 1,
with mult,0% = 1 and mult,6% = 0 for x # a; for k < n, 6 has Zariski-support
equal to P" whereas 6" = [a], see [4, Example 6.3] and cf. Example 2.9. One can
think of 6% as an (n — k)-plane through a moving around a. We claim that

Oo--- 00 =0k =0k k<n. (8.17)

In fact, notice that both sides coincide outside a in virtue of Proposition 8.4. Thus
they can only differ on a generalized cycle with Zariski support at a, that is, m[a] for
some integer m. Since the degree of € is 1, also the degree of 6¥® must be 1 by the
Bézout formula (1.7); indeed note that p in (1.6) in this case equals n — k > 0. Since
the degree of the right-hand side is 1 it follows that m = 0 and hence (8.17) holds.

Example 8.7 Let n = 2, let a and 6 be as in the previous example, and let £ be a line
through a. Then

Oe[l] =[al. (8.18)

In fact, in view of (8.13), outside a, 0 e [£] = 6 A [£], which vanishes since the pullback
of 6 to £ vanishes. By the same argument as in Example 8.6, using Bézout’s formula
(1.7), we get (8.18).

Example 8.8 Let iy, ..., iy, r > 2, be different lines through a € P". We claim that
uie --- e, = [al. In fact, since the set-theoretic intersection is a, the product must
be m[a] for some integer m. Since the u; are effective it follows from (1.8) thatm is 1 or
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0. By (1.5) it is enough to determine the local intersection number €g(it1, - . ., iy, ),
and thus we can assume that the 1 are lines through @ = 0 in C". In view of (3.1) and

(4.3) this equals the multiplicity of MrL A (1 X -+ X 1), where 1 is a tuple of linear
forms defining the diagonal in (C")" = C" x --- x C". This, in turn, can be computed
by intersecting @ X - -+ X U, by r generic hyperplanes div(« - 1), see Sect. 4. Doing
this, we get [0] with multiplicity 1, which proves the claim.

Example 8.9 Let G be the graph in (Cg,v = (C?C1 xa,x3,y1,y2,y3 ©f the function

3 3 2
Cy = Cj, (x1,x2, x3) > (x1x3, X2X3, X3),

and let Z be the closure in IP’EO,X, y- Clearly Z is irreducible of dimension 3. We want
to compute Ae Z, where A = {y = 0}. By (8.3),

(AeZ)34 = MV ALZ].

In view of Sect. 4 we can compute the right-hand side by successively intersecting
[Z] by hyperplanes div &, where hy = «-y, ho = B-y, and h3 = y -y for generic
a, B,y € P and then taking averages.

The map P3 --» PS, [19, 1, 12, 13] + (13, tot1, tota, totz, 1311, t3t, £3], lifts to an
injective holomorphic map from the blow-up ¥ = B1,0:,3:QIF’3 to P® with image Z.
Then Z can be parametrized by two copies of P2 x C,

P>xC 3 ([s, t1, 2], 0) > [s5, 11, 12, 50,011, 01, 0°s) € Z,

P2xC 3 ([u, t1, 12], v) > [uv? vey, via, uv, 11, 12, u) € Z,
identified by s = uv, so = u.Let Z| and Z; be the image of the first and second map,
respectively. Since Z, N A = &, the SV-cycle we are to compute is contained in Z;.

Expressed in the ([s, t1, t2], 0)-coordinates, A = {ot] = ot) = ols = 0} ={o =
0} and so, clearly, vg A[Z] =0, cf. (4.1). Moreover, div /1 is given by

o(ait; + azty + azso) = 0.
Hence div /1 has two irreducible components; the component o = 0 is contained in
A and thus contributes to v{’ A[Z] whereas the component a1 #] + a2ty +azso = 01is
not contained in A. Intersecting the latter component by div /> gives
ait) + asxty + azso = o (Bit) + Ptz + B3so) = 0.

Again we get two irreducible components. The component {o = «t] + aztp = 0} is
contained in A and contributes to vé’ A[Z] while the component {1 1] +a2tr + 350 =
Bit1 + Batr + Bzso = 0} is not contained in A. Intersecting the latter one by div /3
gives

art] + oty + azso = Bit; + Bata + PBaso = o (Y1t + otz + y3s0) = 0.
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The case o # 0 forces t; = t, = s = 0, which is impossible. The other case gives 2
times the point {o = #; = f, = 0} as contribution to vg‘ AlZ].
We thus get the SV-cycle

VIA[Z]= P + Ly + 2a, (8.19)

where P = {x3 = y = 0}, Ly = {x3 = y = a1x;1 + apxp = 0}, and a =
[1,0,0,0,0,0, 0] expressed in the original xg, x, y-coordinates. Taking the average
of (8.19) over (a, B, ¥) € (P?)3 we get

AeZ =MIYAN[Z)= P + pu+2[al,

where p is the generalized cycle [x3 = y = 0]AddC log(|x1|* + |x2|%) obtained as
the average of L.

Note that the degree of AeZ is 4 since each term has degree 1 except for the
double point 2[a]. Thus, in view of (1.7),deg Z = 4; indeed p in (1.6) is O in this case.
Moreover, by (1.5), the local intersection numbers ata are €g(A, Z, a) = mult,2[a] =
2,€1(A, Z,a) = mult,u = 1, and €2(A, Z,a) = mult, P = 1. Here we have used
that p has multiplicity 1 at a since it is a mean value of lines through a in the 4-plane
{x3 = y = 0}, cf. Example 8.6.

We now give an example that shows that the e-product is not associative.
Example 8.10 Consider the hypersurface Z = {x>x{" — x32x6" - 0} in P3, let H, =
{x2 = 0} and H3 = {x3 = 0}. Since H» and Z intersect properly,

HyeZ =Hy p3Z =2{x2 =x3 =0} + (m — 1){xg = x2 = 0}

cf. (1.9). Let A = {x» = x3 = 0}. It follows from Proposition 6.7 and (8.9) that
{x3 = 0}e A = Aj; this can also be verified by a symmetry argument and the Bézout
formula (1.7). Moreover, {x3 = 0} and {xo = xp = 0} intersect properly and the
intersection is b = [0, 1, 0, 0]. Thus

Hzo(HyoZ) =2A + (m — 1)[b]. (8.20)
Nextnote that H; @ Hy = A.Itis showedin [6, Example 11.5] that the local intersection
number for A and Z in dimension 0 is m at a = [1, 0,0, 0], and 1 in dimension 1
at all points x € A. It follows that A and m[a] are components of A e Z. Moreover,
since A and Z are effective, by Theorem 1.1, A e Z is effective and of degree at most
deg A-deg Z = m + 1. Hence

(Hy;oHy))eZ = AeZ = A+ mlal. (8.21)

It follows that neither -5 pw) is associative in B(P"). In fact, it follows from (8.20),
(8.21), and Theorem 1.2, that

H; “B(Pn) (HZ'B(IP”’) Z)=2wAA+ (m —1)[b],
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whereas
(H3-g@ny H2) ey Z = oANA+mla]

and these right-hand sides are not equal in B(PP").

Example 8.11 Let y be a smooth curve in P2 of degree d. It is well-known, see, e.g.,
[6], that local intersection numbers are biholomorphic invariants. Therefore, since the
e-self-intersection of a line is the line itself, cf. the discussion after Proposition 6.8,
it follows from (1.5) that at each x € y, mult,(y ey); = 1 and mult,(y ey)g = 0.
Thus, since |y ey | C y, in view of the dimension principle, y ey = y + u where
1 has dimension 0 and Zariski support equal to y. By the Bézout formula (1.7) the
degree of 1 must be d> — d. We can think of y as d> — d points moving around on y .

Example 8.12 We want to compute the e-self-intersection of a curve Z in P2 Assume
that Z = {F = 0} where F is a section of O(d) with differential generically nonvan-
ishingon Z. Letn; = y; —x;, j =0,1,2,0n IP’)SC’y = IP’)% XJ]P%. Then 7 defines the
join diagonal A ;. Following Sect. 4 we can compute ML A (Z x ; Z) by successively
intersecting Z x j Z by hyperplanes div i, where h; = n -/ for generic a/ € P?,
and then averaging over o = (o), @2 a?) € (P?)3. Note that we can write

F(y) — F(x) =noAo + mAi + mA
for suitable homogeneous forms A;, and thus
ZxyZ={F(x)=0,F(y) =0} ={F(x) =0, noAo +ni1A1 + mA; =0},
cf. Example 6.3. It turns out that

[divhr JA[divhIA(Z x5 Z)
= {F(x) =0, m(BoAo + B1A1 + f2A2) =0, 11 = yin2. o = yom}

forsome B, y € P2 The second equation gives rise to two components. The component
corresponding to 17 = 0 is contained in A; and equals

(FX)=0,n=0}={F=0{NA; =i A(Zx;2Z) = jiZ,

where j is the parametrization (6.8) of A;. Next, since A; = F; == dF/dx; on A,
we get that

NINVASYA

2
= [div h3] A {F(x) =0. Y BiA; =0, m =yin, no= Vonz}
) (8.22)

2
= {F(x) =0, Y BiF; =0, n:o}.

Jj=0
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The curve defined by o Fo + B1 F1 + B2 F> is a so-called polar curve to Z; it is clear
that it passes through all singular points a; . . ., a, of Z, since the gradient must vanish
there. More precisely, in view of the Bézout formula (1.7), for generic 8,

VIAZ x1Z) =mila] + -+ mela ]+ rg,

where m; are the multiplicities of a; and rg are d*—d — (my +---+m,) points on Z
depending on g, cf. Example 8.11. Thus, taking averages over a € (P?)3, we get that

ZeZ =Z7Z+mila1]+---mrla] + u, (8.23)

where j,u is the average of the rg. In particular,  has dimension 0, Zariski-support
equal to Z, and degree d?—d— (my1+---+m,). Moreover, in view of Example 8.11,
w has multiplicity O at each point.

Let us now consider a simple cusp.

Example 8.13 Let us consider the situation of the previous example and let F =

xf - xox% so that Z C P? is a cusp with a singularity only at the point @ = [1, 0, 0].

Now
vé’ NZx;27Z)= {x? — xox% =0, ﬁox% + ﬂlx% 4+ Baxoxy =0, n = O}

for some B € P2 see (8.22). For generic choices of @ € (P?)3, 2 # 0 and we can
identify this with the set of points

08 = {xf — xox% =0, ,BOxg + ﬁ1x12 + xpx2 = O} c P2

To compute the order of the zero at a, we can use affine coordinates and thus let xo = 1.

Then og = {x} —x3 = 0, Box3 + B1x7 + x2 = 0}. If we choose new coordinates

721 = X1,22 = X+ ,B()x% + ,31x%, thenxp = 20 + O(zz), and thus g is defined by the
equations

73— (2 +0E*))?=0, z22=0.

Hence the zero at a = (0, 0) has order 3. In fact, for a complete intersection, as here,
the order of the zero coincides with the degree of the associated mapping. From (8.23)
we conclude that

ZeZ=7+3[al+p, (8.24)

where p has dimension 0, Zariski-support equal to Z, multiplicity O at each point, and
degree 3.

Example 8.14 Let Z C P? be the cusp as in the previous example. In view of Theo-
rem 1.2 and (8.24) we get
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Since Z is a regular embedding in P> we can also form the product Z opp2) Z. Let

J — P? be the sheaf defining Z. If i: Z — P2 then i*J, = 0 so that SUz,2Z2) =
S(0, Z) = [Z], cf. Sect. 2.5. Moreover, NzP? = O(3)|z, so that ¢; (NzP?) = 3w.
Thus

Zogpy Z = (c(NZPP)ASWIz, Z))o = 3wAlZ], (8.26)

cf. Definition 5.1. Notice that (8.25) and (8.26) do not coincide in B(IP?). For instance,
the first one has multiplicity 3 at a, whereas the second one has multiplicity O at a.

However, in view of Proposition 5.7 their images in H 2.2(Z) coincide. Clearly the
image of Z o p2 Z is represented by the restriction to Z of the form 3w. It is easy to
see that 3a is cohomologous with w on Z as

3[a]l — wA[Z] = mult, Z -[a] — oA[Z] = dd°(log(|z11*/1z|DZ]).

It is somewhat less obvious that u is cohomologous with w on Z.

Example 8.14 also shows that the self-intersection formula, Proposition 5.5, does not
generalize to nonsmooth Z.
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