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Abstract
The homotopy types of gauge groups of principal SO(4)-bundles over S4 are classified
p-locally for every prime p, and partial results are obtained integrally. The method
generalizes to deal with any quotient of the form (S3)n/Z where Z is a subgroup
generated by (−1, . . . ,−1).
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1 Introduction

Let G be a topological group and P be a principal G-bundle over a base space X . The
gauge group of P is the topological group ofG-equivariant automorphisms of P which
cover the identity map on X . If X is a finite CW-complex, Crabb and Sutherland [2]
showed that, despite there possibly being infinitely many inequivalent principal G-
bundles over X , there are only finitely many homotopy types for the corresponding
gauge groups. There has been an intensive effort recently to classify the homotopy
types of gauge groups, particularly in cases of interest to physics and geometry.
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1246 D. Kishimoto et al.

In this paper, we consider the homotopy types of gauge groups of principal SO(4)-
bundles over S4. Our results are stated in more generality. Let Z be a subgroup of
(S3)n generated by an element (−1, . . . ,−1). Define

Kn = (S3)n/Z .

Then, in particular, K1 = SO(3) and K2 = SO(4). Let εi be the composite of
the i-th inclusion S3 → (S3)n and the projection (S3)n → Kn for 1 � i � n. Then
π3(Kn) ∼= Z

n is generated by ε1, . . . , εn . LetGk1,...,kn be the gauge group of a principal
Kn-bundle over S4 corresponding to k1ε1 + · · · + knεn ∈ π3(Kn). The aim of this
paper is to classify the homotopy types of gauge groups Gk1,...,kn as k1, . . . , kn range
over all integers.

Let {{a1, . . . , an}} denote a multiset consisting of elements a1, . . . , an . For integers
a and b, let (a, b) be their greatest common divisor.

Theorem 1.1 The following hold:

(a) if {{(k1, 12), . . . , (kn, 12)}} = {{(l1, 12), . . . , (ln, 12)}} then there is a homotopy
equivalence Gk1,...,kn � Gl1,...,ln ;

(b) if there is a homotopy equivalenceGk1,...,kn � Gl1,...,ln then {{(k1, 4), . . . , (kn, 4)}} =
{{(l1, 4), . . . , (ln, 4)}} and {{(k1, 3), . . . , (kn, 3)}} = {{(l1, 3), . . . , (ln, 3)}}.

The weaker statement in Theorem 1.1(b) stems from the fact that the homotopy equiv-
alence induces an isomorphism of homotopy groups, but as we will see in Lemma
2.7, the isomorphism of second homotopy groups may take the form Z/12⊕Z/1 ∼=
Z/3⊕Z/4 when n = 2 (where Z/1 is the trivial group), which does not imply an
equality between {{(1, 12), (12, 12)}} and {{(4, 12), (3, 12)}}.

If one is willing to localize then a classification holds. For a nilpotent space X and
a prime p, let X(p) be the localization of X at p. For an integer m, let νp(m) be the
p-component of m.

Theorem 1.2 Let p be a prime. There is a p-local homotopy equivalence

(Gk1,...,kn )(p) � (Gl1,...,ln )(p)

if and only if {{νp((k1, 12)), . . . , νp((kn, 12))}} = {{νp((l1, 12)), . . . , νp((ln, 12))}}.
The K1 = SO(3) case in Theorem 1.1 is already known [7]. In this case, as there is
only one index involved, Theorem 1.1 implies the stronger statement that Gk � Gl if
and only if (k, 12) = (l, 12). The key new case is for K2 = SO(4).

The SO(4) and Spin(4) cases are the last to consider among the principalG-bundles
over S4 when G is a connected, compact Lie group of type 2. A classification in the
SU(3) case was completed in [6] and the PU(3) case in [5], a classification of the
p-local homotopy types in the Sp(2) case was completed in [10] and PSp(2) in [5],
the U (2)-case was classified in [3], and the p-local homotopy types in the G2 case
were classified up to one factor of 2 in [8].

The overall strategy used to prove Theorem 1.1 is similar to that in the other type 2
cases, but distinctive features arise. The principal SO(4)-bundles over S4 are in one-
to-one correspondence with [S4, BSO(4)] ∼= Z⊕Z and so require a multi-index, as
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opposed to the earlier cases which only required a single index. This leads to the use
of multisets and the possibility that a homotopy equivalence Gk1,k2 � Gl1,l2 may arise
via a permutation of indices. It also leads to the issue mentioned above of a group
decomposition preventing an identification of multisets.

2 Proof of Theorem 1.1

Recall from [4] (cf. [1]) that there is a homotopy equivalence

BGk1,...,kn � map(S4, BKn; k1ε1 + · · · + knεn),

where the right-hand side is the path-connected component of the space of maps from
S4 to BKn containing k1ε1 + · · · + knεn . Consider the homotopy fiber sequence

Kn
∂k1,...,kn−−−−→ �3

0Kn → map(S4, BKn; k1ε1 + · · · + knεn) → BKn,

where the last map is the evaluation at the basepoint. Then Gk1,...,kn is homotopy
equivalent to the homotopy fiber of ∂k1,...,kn . Let π : Kn → Kn

1 be the canonical
projection. Since �3π : �3

0Kn → (�3
0K1)

n is a homotopy equivalence, one obtains
the following.

Lemma 2.1 The gauge group Gk1,...,kn is homotopy equivalent to the homotopy fiber
of �3π ◦∂k1,...,kn .

We need to identify the map �3π ◦∂k1,...,kn . Whitehead [11] showed that the adjoint
S4∧Kn → BKn of ∂k1,...,kn is theWhitehead product of the adjoint of k1ε1+· · ·+knεn
and the canonical inclusion �Kn → BKn . Thus by the adjointness of Whitehead
products and Samelson products, we obtain the following.

Lemma 2.2 The adjoint S3∧Kn → Kn of the map ∂k1,...,kn is the Samelson product
〈k1ε1 + · · · + knεn, 1Kn 〉.
Now we calculate π ◦〈k1ε1 + · · · + knεn, 1Kn 〉. For 1 � i � n, let pi : Kn

1 → K1 be
the projection onto the i th-factor. Define πi by the composite

πi : Kn
π−→ Kn

1
pi−−→ K1.

Define εi and λi by the composites

εi : S3 εi−−→ Kn
πi−−→ K1, λi : S3∧Kn

〈εi ,πi 〉−−−−→ K1.

Observe that πi ◦(k1ε1 + · · · + knεn) � kiεi . Therefore, as πi is a homomorphism,

πi ◦〈k1ε1 + · · · + knεn, 1Kn 〉 � 〈πi ◦(k1ε1 + · · · + knεn), πi 〉 � ki 〈εi , πi 〉 = kiλi .
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Thus π ◦〈k1ε1 + · · · + knεn, 1Kn 〉 � (k1λ1, . . . , knλn). Let k : K1 → K1 be the
kth-power map. Then (k1λ1, . . . , knλn) � (k1× · · · ×kn)◦(λ1, . . . , λn). Hence the
composite π ◦〈k1ε1 + · · · + knεn, 1Kn 〉 has the following linearity property.

Proposition 2.3 There is a homotopy

π ◦〈k1ε1 + · · · + knεn, 1Kn 〉 � (k1× · · · ×kn)◦(λ1, . . . , λn).

Next, we determine the order of λi .

Proposition 2.4 The order of λi = 〈εi , πi 〉 is 12 for each 1 � i � n.

Proof The diagonal map S3 → (S3)n induces an inclusion j : K1 → Kn which is a
section of πi for each 1 � i � n. On the one hand, since πi ◦ j is the identity map on
K1, the composite

S3∧K1
1S3 ∧ j−−−−→ S3∧Kn

〈εi ,πi 〉−−−−→ K1

is 〈εi , 1K1〉. By [7] the order of 〈εi , 1K1〉 is 12. Thus the order of 〈εi , πi 〉 is at least
12. On the other hand, observe that 〈εi , πi 〉 factors as the composite

S3∧Kn
1S3 ∧πi−−−−−→ S3∧K1

〈εi ,1K1 〉−−−−−→ K1.

Thus the order of 〈εi , πi 〉 is at most 12. Hence the order of 〈εi , πi 〉 is precisely 12. ��
Lemma 2.5 Let αi : X → Yi be a map of order pmi into a p-local H-space Yi for
1 � i � n. If (ki , pmi ) = (li , pmi ) for all i , then there is a self-homotopy equivalence
h p of Y1× · · · ×Yn such that

h p ◦(k1× · · · ×kn)◦(α1, . . . , αn) � (l1× · · · ×ln)◦(α1, . . . , αn).

Proof If (ki , pmi ) = (li , pmi ) = pmi then the composites ki ◦αi and li ◦αi are both
null homotopic since αi has order pmi. In that case let h p,i be the identity map on
Yi . If (ki , pmi ) = (li , pmi ) < pmi, let ai = ki

(ki ,pmi )
and bi = li

(li ,pmi )
. Then ai and

bi are units in Z(p), and in particular, the power maps ai , bi : Yi → Yi are homotopy
equivalences. As (ki , pmi ) = (li , pmi ) we obtain bi

ai
ki = li . Therefore if h p,i =

bi ◦a−1
i then h p,i ◦ki � li as self-maps of Yi . Thus h p = h p,1× · · · ×h p,n is the

desired self-homotopy equivalence. ��
Proposition 2.6 If {{(k1, 12), . . . , (kn, 12)}} = {{(l1, 12), . . . , (ln, 12)}}, then Gk1,...,kn
and Gl1,...,ln are homotopy equivalent.

Proof Byassumption, there is a permutationσ such that ((kσ(1), 12), . . . , (kσ(n), 12)) =
((l1, 12), . . . , (ln, 12)). We denote the permutation of (S3)n induced from σ by the
same symbol. This automorphism induces an automorphism of Kn which we denote
by σ . The automorphism σ induces a homotopy commutative diagram of Samelson
products
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S3∧Kn
〈k1ε1+···+knεn ,1Kn 〉

1∧σ

Kn

σ

S3∧Kn
〈kσ(1)εσ(1)+···+kσ(n)εσ(n),1Kn 〉

Kn .

Taking adjoints, by Lemma 2.2 we obtain �3σ ◦∂k1,...,kn � ∂kσ(1),...,kσ(n)
◦σ . Compos-

ing with the map �3K
�3π−−→ �3Kn

1 and using the fact that �3
0K

n
1 � (�3

0S
3)n , we

obtain a homotopy commutative diagram

Kn
�3π◦∂k1,...,kn

σ

(�3
0S

3)n

�3σ

Kn

�3π◦∂kσ(1),...,kσ(n)
(�3

0S
3)n .

By Lemma 2.1, the homotopy fibre of �3π ◦∂k1,...,kn is Gk1,...,kn . So as σ and σ are
homotopy equivalences, this diagram induces a homotopy equivalence Gk1,...,kn �
Gkσ(1),...,kσ(n)

. Thus, for ease of notation in what follows, we may assume without loss
of generality that the permutation σ is the identity.

By Proposition 2.3, π ◦〈k1ε1 + · · · + knεn, 1Kn 〉 � (k1× · · · ×kn)◦(λ1, . . . , λn).
Since πi (�

3
0S

3) is finite for each i , there is a homotopy equivalence

�3
0S

3 �
∏

p∈P

�3
0S

3
(p)

where P is the set of all primes and S3(p) is the localization of S
3 at p. Let λ̂i : Kn →

�3
0S

3 be the adjoint of λi and let

(
λ̂1, . . . , λ̂n

)
p : Kn → (

�3
0S

3
(p)

)n

be the composite of (̂λ1, . . . , λ̂n) and the map localizing (�3
0S

3)n to (�3
0S

3
(p))

n . For

convenience, the mth-power map on �3
0S

3 will also be denoted by m. By Lemma 2.5,
for each prime p there is a self-homotopy equivalence h p of (�3

0S
3
p)

n satisfying a
homotopy commutative diagram

Kn
(̂λ1,...,̂λn)p (

�3
0S

3
(p)

)n k1×···×kn (
�3

0S
3
(p)

)n

h p

Kn
(̂λ1,...,̂λn)p (

�3
0S

3
(p)

)n l1×···×ln (
�3

0S
3
(p)

)n
.

(2.1)
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Note that since each ki ◦ λ̂i is a divisor of 12, the map h p is a homotopy equivalence
if p � 5. Let h be the composite

h : (�3
0S

3)n
�−−→

∏

p∈P

(
�3

0S
3
(p)

)n
∏

p∈P h p−−−−−−→
∏

p∈P

(
�3

0S
3
(p)

)n �−−→ (�3
0S

3)n .

Since each h p is a homotopy equivalence, so is h. From diagram (2.1) at each p we
obtain a homotopy commutative diagram

Kn
(̂λ1,...,̂λn)

(�3
0S

3)n
k1×···×kn

(�3
0S

3)n

h

Kn
(̂λ1,...,̂λn)

(�3
0S

3)n
l1×···×ln

(�3
0S

3)n .

(2.2)

On the one hand, by definition, λ̂i is the adjoint of λi , so the adjoint of
(k1× · · · ×kn)◦ (̂λ1, . . . , λ̂n) is (k1× · · · ×kn)◦(λ1, . . . , λn),whichbyProposition2.3
is homotopic to π ◦〈k1ε1 + · · · + knεn, 1Kn 〉. On the other hand, by Lemma 2.2,
π ◦∂k1,...,kn is also the adjoint of π ◦〈k1ε1 + · · · + knεn, 1Kn 〉. This implies that
(k1× · · · ×kn)◦ (̂λ1, . . . , λ̂n) � π ◦∂k1,...,kn . Hence (2.2) may be rewritten as a homo-
topy commutative diagram

Kn
�3π◦∂k1,...,kn

(�3
0S

3)n

h

Kn
�3π◦∂l1,...,ln

(�3
0S

3)n .

(2.3)

By Lemma 2.1, the homotopy fibres of �3π ◦∂k1,...,kn and �3π ◦∂k1,...,kn respectively
are Gk1,...,kn and Gl1,...,ln . From (2.3) there is an induced map of homotopy fibres
Gk1,...,kn → Gl1,...,ln . As h is a homotopy equivalence, this induced map of homotopy
fibres is also a homotopy equivalence, completing the proof. ��

Let ε̃i : S3 → (S3)n be the i-th inclusion for 1 � i � n. Let G̃k1,...,kn be the gauge
group of a principal (S3)n-bundle over S4 corresponding to k1ε̃1 + · · · + kn ε̃n . Then
there is an isomorphism

G̃k1,...,kn
∼= G̃k1× · · · ×G̃kn ,

where each G̃ki is the gauge group of the principal S3 bundle over S4 classified by
ki ∈ Z ∼= π4(BS3).
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The homotopy types of SO(4)-gauge groups 1251

On the other hand, there is a two-sheeted covering G̃k1,...,kn → Gk1,...,kn . Therefore
for all m � 2 there is an isomorphism

πm(Gk1,...,kn )
∼=

n⊕

i=1

πm (̃Gki ). (2.4)

In particular, by [9], π2(̃Gk) ∼= Z/ 12
(k,12) , so we obtain the following.

Lemma 2.7 π2(Gk1,...,kn )
∼= Z/ 12

(k1,12)
⊕ · · · ⊕Z/ 12

(kn ,12)
.

Observe that the isomorphism in Lemma 2.7 does not imply that there is an equality of
multisets {{(k1, 12), . . . , (kn, 12)}} = {{(l1, 12), . . . , (ln, 12)}}. For example, if n = 2
thenZ/12⊕Z/1 ∼= Z/3⊕Z/4 but {{(1, 12), (12, 12)}} = {{(4, 12), (3, 12)}}. However,
if we work one prime at a time we do get an equality of multisets.

Proposition 2.8 If Gk1,...,kn � Gl1,...,ln then we obtain {{(k1, 4), . . . , (kn, 4)}} =
{{(l1, 4), . . . , (ln, 4)}} and {{(k1, 3), . . . , (kn, 3)}} = {{(l1, 3), . . . , (ln, 3)}}.

Proof By Lemma 2.7, the homotopy equivalence Gk1,...,kn � Gl1,...,ln implies that there
is an isomorphism of groups

Z
/ 12

(k1, 12)
⊕ · · · ⊕Z

/ 12

(kn, 12)
∼= Z

/ 12

(l1, 12)
⊕ · · · ⊕Z

/ 12

(ln, 12)
. (2.5)

For a prime p, let Z(p) be the integers localized at p. Tensoring the isomorphism (2.5)
with Z(2) gives a group isomorphism

Z
/ 4

(k1, 4)
⊕ · · · ⊕Z

/ 4

(kn, 4)
∼= Z

/ 4

(l1, 4)
⊕ · · · ⊕Z

/ 4

(ln, 4)
.

The groups Z/1, Z/2 and Z/4 appearing on either side of this isomorphism are inde-
composable, so each side must have the same number of generators of each order.
Hence {{(k1, 4), . . . , (kn, 4)}} = {{(l1, 4), . . . , (ln, 4)}}. The same argument applies
if (2.5) is tensored with Z(3). ��

Finally, we prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1 Combine Propositions 2.6 and 2.8. ��

Proof of Theorem 1.2 Suppose there is a p-local homotopyequivalence (Gk1,...,kn )(p) �
(Gl1,...,ln )(p). Notice that ν2((ki , 12)) = (ki , 4) and ν3((ki , 12)) = (ki , 3), so Propo-
sition 2.8 proves the p = 2 and p = 3 cases. If p � 5 then νp((ki , 12)) = 1 and
νp((li , 12)) = 1 for all 1 � i � n, so the asserted equality of multisets holds. The
converse is proved using the same argument as for Proposition 2.6; in fact, it is easier
since we need only consider the factor �3

0S
3
(p) of �3

0S
3 = ∏

p∈P �3
0S

3
(p). ��
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Remark 2.9 Some generalization is possible. Let G be a simply-connected, simple
compact Lie group with centre Z(G). Let Ln = Gn/Z where Z is the subgroup
generated by the image of the diagonal map Z(G) → Z(G)n. Replacing Kn with
Ln , the material in Sect. 2 through to Proposition 2.4 generalizes, where the order of
λi = 〈εi , πi 〉 may no longer be 12 but it is a fixed number M for all 1 � k � n.
The proof of Proposition 2.6 leading to (2.1) holds, giving the statement that if
{{(k1, M), . . . , (kn, M)}} = {{(l1, M), . . . , (ln, M)}} then Gk1,...,kn and Gl1,...,ln are p-
locally homotopy equivalent for each prime p. However, as �3

0G may not only have
torsion homotopy groups, the argument for (2.2) leading to an integral homotopy
equivalence of gauge groups will not hold. Further, the converse statement in Propo-
sition 2.8 requires the homotopy type of G̃k to be determined by a homotopy set that
depends on (k, M), which is not known to hold in general.
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