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Abstract
We investigate the relation between pluri-Lagrangian hierarchies of 2-dimensional
partial differential equations and their variational symmetries. The aim is to general-
ize to the case of partial differential equations the recent findings in Petrera and Suris
(Nonlinear Math. Phys. 24(suppl. 1):121–145, 2017) for ordinary differential equa-
tions. We consider hierarchies of 2-dimensional Lagrangian PDEs (many of which
have a natural (1+ 1)-dimensional space-time interpretation) and show that if the
flow of each PDE is a variational symmetry of all others, then there exists a pluri-
Lagrangian 2-form for the hierarchy. The corresponding multi-time Euler–Lagrange
equations coincide with the original system supplied with commuting evolutionary
flows induced by the variational symmetries.
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1 Introduction

In the last decade a variational perspective on integrable systems has emerged under
the name of pluri-Lagrangian systems (or Lagrangian multiform systems). The the-

The authors are partly supported by the DFG (Deutsche Forschungsgemeinschaft) in the frame of
SFB/TRR 109 “Discretization in Geometry and Dynamics”.

B Mats Vermeeren
vermeeren@math.tu-berlin.de; m.vermeeren@leeds.ac.uk

Matteo Petrera
petrera@math.tu-berlin.de

1 Institut für Mathematik, MA 7-1, Technische Universität Berlin, Str. des 17. Juni 136, 10623
Berlin, Germany

2 Present Address: School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40879-020-00436-7&domain=pdf
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ory was initiated in [13] in the discrete setting, more specifically in the context of
multidimensionally consistent lattice equations on a quadrilateral stencil, called quad
equations. Multidimensional consistency means that the equation can be imposed
on all elementary squares in a higher-dimensional lattice without leading to contra-
dictions. Analogously to commutativity of differential equations, multidimensional
consistency is a key feature of integrability for difference equations.

In [13] it was shown that the property of multidimensional consistency can be
combined with a variational formulation for quad equations. Solutions of integrable
quad equations are critical points of an action functional obtained by integrating
a suitable discrete Lagrangian 2-form over an arbitrary 2-dimensional surface in a
higher-dimensional lattice. If the 2-dimensional surface is a plane, we recover a tradi-
tional variational principle for a 2-dimensional difference equation where the action
is the sum over a plane of evaluations of the Lagrange function. The pluri-Lagrangian
property requires the action to be critical also when this plane is replaced by any
other 2-dimensional discrete surface in a higher-dimensional lattice. This remarkable
property has been considered as a defining feature of integrability of 2-dimensional
discrete equations [2,4,6,9,13–15,32] as well as in the 1-dimensional [5,7,33] and
3-dimensional [8,16] cases.

The pluri-Lagrangian property can also be formulated in the continuous case, where
solutions of (hierarchies of) integrable 2-dimensional partial differential equations
(PDEs) are critical points of an action functional obtained by integrating a differential
2-form over an arbitrary 2-dimensional surface in a higher-dimensional space. This
variational principle has been proposed as a Lagrangian analogue of the existence of
Poisson-commuting Hamilton functions [13,27,28,32]. As in the discrete case, it is
not limited to Lagrangian 2-forms describing 2-dimensional PDEs. The corresponding
variational principle where a Lagrangian 1-form is integrated over curves applies to
integrable ordinary differential equations [22,26,33]. It is conjectured that also for
d > 2 integrable hierarchies of d-dimensional integrable PDEs can be described by
pluri-Lagrangian d-forms.

Thanks to these investigations a quite suggestive scenario has emerged: the pluri-
Lagrangian structure is closely related (or even equivalent) to the integrability of the
underlying system. This novel characterization of integrability applies to both ordinary
differential (or difference) equations and partial differential (or difference) equations.

In the recent paper [22] a connection between the notions of pluri-Lagrangian
structures and variational symmetrieswas proved in the context of classicalmechanics.
In particular, it was shown that the existence of commuting variational symmetries for a
systemof variational ordinary differential equations leads to a natural pluri-Lagrangian
1-form, whose multi-time Euler–Lagrange equations consist of the original system
and commuting flows corresponding to the variational symmetries. These findings
confirmed, in the framework of classical mechanics, that a pluri-Lagrangian structure
is hidden behind the existence of a sufficient number of variational symmetries (i.e.,
of integrals of motion thanks to Noether theorem).

In the present work we extend the above idea to the case of variational 2-dimen-
sional PDEs, thus generalizing the results of [22] to the context of Lagrangian field
theory with two independent variables. We consider hierarchies of variational PDEs
where the flow of each PDE is a variational symmetry of the Lagrange functions of
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all other members of the hierarchy. Under this assumption, we show that there exists
a pluri-Lagrangian 2-form for the hierarchy.

The paper is organized as follows. In Sect. 2 we give a short overview of Lagrangian
field theory, recalling some classical notions and definitions. In particular we will
provide a formulation of the celebratedNoether theorem,which establishes the relation
between conservation laws and variational symmetries. In Sect. 3 we review the notion
of continuous 2-dimensional pluri-Lagrangian systems. Section 4 is devoted to new
results. It will be proved that from a family of variational symmetries one can construct
a pluri-Lagrangian structure. The final Sect. 5 contains three examples which illustrate
the theoretical results obtained in Sect. 4.

2 A short review of Lagrangian field theory

An exhaustive reference on classical Lagrangian field theory is the book of Olver [20].
The scope of the present section is to recall the main definitions and concepts needed
for a self-contained presentation of our results in the next sections.

2.1 Euler–Lagrange equations

Since we will work in a multi-time setting we do not restrict our presentation here to
fields depending on only two independent variables. Therefore we start by considering
a smooth field u : RN → R depending on N real independent variables t1, . . . , tN .

We will use the multi-index notation for partial derivatives. For any multi-index
I = (i1, . . . , iN ) ∈ N

N we set

uI = ∂ |I |u
(∂t1)i1 . . . (∂tN )iN

,

where |I | = i1+· · ·+ iN and u = u(t1, . . . , tN ). The notations I tk and I tαk will repre-
sent themulti-indices (i1, . . . , ik+1, . . . , iN ) and (i1, . . . , ik+α, . . . , iN ) respectively.
We will write k /∈ I if ik = 0 and k ∈ I if ik �= 0.

We will denote by Di the total derivative with respect to the coordinate direction ti ,

Di =
∑

I∈NN

u I ti
∂

∂uI

and by DI = Di1
1 . . .DiN

N the corresponding higher order derivatives.
The field u can be considered as a section of the trivial bundle RN ×R. The partial

derivatives of u of any order span the infinite jet bundle associated with R
N ×R. We

will denote the fiber of the infinite jet bundle by J∞ and the fiber coordinates by

[u] = (u, uti , uti tj , . . .)i, j,...∈{1,...,N }.
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A variational problem for a smooth field u : RN → R is described by a Lagrangian
L : J∞ → R and consists in finding the critical points of the action functional

S =
∫

�

L[u] dt1∧ · · · ∧dtN ,

where � ⊂ R
N is some bounded region. In other words, we look for fields u such that

for all fields v such that v and its derivatives vanish at the boundary of �, there holds

d

dε

∣∣∣∣
ε=0

∫

�

L[u + εv] dt1∧ · · · ∧dtN = 0.

Concretely, we will be interested in variational problems for fields u : R2→ R. There-
fore, let us fix N = 2 and write explicitly the variational equations governing the
evolution of u. In this case the action functional over some bounded region � ⊂ R

2

is

S =
∫

�

L[u] dt1∧dt2. (1)

The field u is a solution to the variational problem, i.e., a critical point for the action
S, if and only if

δL

δu
=

∑

α,β � 0

(−1)α+β Dα
1 D

β
2

(
∂L

∂u
tα1 tβ2

)
= 0, (2)

where the left-hand side is called the variational derivative of L . Equation (2) gives
rise to a variational PDE, called Euler–Lagrange equation. Note that if the Lagrangian
depends on the n-th order jet, i.e., on derivatives of u up to order n, then the Euler–
Lagrange equation depends on the jet of order 2n. If a given 2-dimensional PDE can
be written as in equation (2) for some Lagrangian L , then we say that this PDE has a
variational (or Lagrangian) structure.

Of course, the Euler–Lagrange equation (2) admits a straightforward generalization
for the case of a field u : RN → R for N > 2.

Example 2.1 The Korteweg–de Vries (KdV) equation

w2 = w111 + 6ww1,

wherewi is shorthand notation for the derivativewti , can be put into a variational form
by introducing the potential u = w1. The corresponding equation is

u12 = u1111 + 6u1u11.

Its variational structure comes from the Lagrangian

L[u] = 1

2
u1u2 − u3

1 − 1

2
u1u111.
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Indeed, critical points of the action (1) are characterized by the Euler–Lagrange equa-
tion

0 = δL

δu
= − D1

∂L

∂u1
− D3

1
∂L

∂u111
− D2

∂L

∂u2

=
(

− 1

2
u12 + 6u1u11 + 1

2
u1111

)
+ 1

2
u1111 − 1

2
u12

= − u12 + u1111 + 6u1u11.

2.2 Variational symmetries and Noether’s theorem

Let N = 2. A vertical generalized vector field on R
2×R is a vector field of the

form Q∂u , where Q : J∞ → R. It is called vertical because it does not contain any
∂ti and generalized because Q depends on derivatives of u, not just on u itself. The
prolongation of Q∂u is a vector field on J∞ defined as

pr(Q∂u) =
∑

I∈N2

(DI Q)
∂

∂uI
.

A vector field Q∂u is called a variational symmetry of a Lagrangian L : J∞ → R if
its prolongation pr(Q∂u) satisfies

pr(Q∂u)L = D1F1 + D2F2 (3)

for some functions F1, F2 : J∞ → R. The pair (F1, F2) is called the flux of the
variational symmetry.

A conservation law for L is a triple of functions J1, J2, Q : J∞ → R that satisfy

D1 J1 + D2 J2 = − Q
δL

δu
. (4)

If equation (4) holds true, the pair J = (J1, J2) is called the conserved current and
Q the characteristic of the conservation law. On solutions of the Euler–Lagrange
equations (2) the conserved current J is divergence-free, hence its name.

The famous Noether’s theorem [18] establishes a one-to-one correspondence
between conservation laws and variational symmetries.

Theorem 2.2 Let Q∂u be a variational symmetry of L. Then

J1[u] =
∑

I ��t2

(
(DI Q)

δL

δuI t1

)
+ 1

2

∑

I

D2

(
(DI Q)

δL

δuI t1t2

)
− F1[u], (5)

J2[u] =
∑

I ��t1

(
(DI Q)

δL

δuI t2

)
+ 1

2

∑

I

D1

(
(DI Q)

δL

δuI t1t2

)
− F2[u], (6)

123
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define the components of the conserved current of a conservation law, where the pair
of functions (F1, F2) is the flux, as in equation (3).

Conversely, given a conserved current (J1, J2), equations (5) and (6) define the
flux (F1, F2) of a variational symmetry.

Note that equations (5) and (6) contain variational derivatives with respect to partial
derivatives of u:

δL

δuI
=

∑

α,β � 0

(−1)α+β Dα
1 D

β
2

∂L

∂u
I tα1 tβ2

.

We also observe that J1 and J2 can be alternatively written as

J1[u] =
∑

α � 0

(
(Dα

1 Q)
δL

δutα+1
1

)
+ 1

2

∑

α � 0

∑

β � 0

D2

(
(Dα

1D
β
2 Q)

δL

δu
tα+1
1 tβ+1

2

)
− F1[u],

J2[u] =
∑

β � 0

(
(Dβ

2 Q)
δL

δu
tβ+1
2

)
+ 1

2

∑

α � 0

∑

β � 0

D1

(
(Dα

1D
β
2 Q)

δL

δu
tα+1
1 tβ+1

2

)
− F2[u].

Proof of Theorem 2.2 The key point of the proof consists in the integration by parts of

pr(Q∂u)L =
∑

I

(DI Q)
∂L

∂uI
,

i.e., to write it in the form

pr(Q∂u)L = Q
δL

δu
+ D1(· · · ) + D2(· · · ).

To perform the full calculation, observe that

∂L

∂uI
= δL

δuI
+ D1

δL

δuI t1
+ D2

δL

δuI t2
+ D1D2

δL

δuI t1t2
,

hence

pr(Q∂u)L =
∑

I

(DI Q)

(
δL

δuI
+ D1

δL

δuI t1
+ D2

δL

δuI t2
+ D1D2

δL

δuI t1t2

)

=
∑

I

(
(DI t1t2 Q) + (DI t2 Q)D1 + (DI t1 Q)D2 + (DI Q)D1D2

) δL

δuI t1t2

+
∑

I ��t2

(
(DI t1 Q) + (DI Q)D1

) δL

δuI t1

+
∑

I ��t1

(
(DI t2 Q) + (DI Q)D2

) δL

δuI t2
+ Q

δL

δu
,
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where the last term would be a sum over all I �� t1, t2, but only the empty multi-index
I = (0, 0) satisfies this condition. The above equation can be simplified as

pr(Q∂u)L =
∑

I

D1D2

(
(DI Q)

δL

δuI t1t2

)

+
∑

I ��t2

D1

(
(DI Q)

δL

δuI t1

)
+

∑

I ��t1

D2

(
(DI Q)

δL

δuI t2

)
+ Q

δL

δu

= D1(J1 + F1) + D2(J2 + F2) + Q
δL

δu
.

It follows that equations (3) and (4) are equivalent. Hence if Q∂u is a variational
symmetry, then equations (5)–(6) define a conserved current. 	

Example 2.3 Consider again the KdV equation

u12 = u1111 + 6u1u11

and its Lagrangian

L[u] = 1

2
u1u2 − u3

1 − 1

2
u1u111.

As before, indices denote derivatives with respect to the corresponding time variables,
e.g. u12 = ut1t2 . We present two variational symmetries of this equation and their
associated conservation laws:

(a) The generalized vector field Q∂u with Q[u] = u1 corresponds to a translation in
the t1-direction. Indeed,

pr(Q∂u)L = u1
∂L

∂u
+ u11

∂L

∂u1
+ u111

∂L

∂u11
+ u1111

∂L

∂u111
+ u12

∂L

∂u2
= D1L,

hence Q∂u is a variational symmetry with flux

(F1[u], F2[u]) = (L[u], 0).

Corresponding to this variational symmetry we find the conservation law

− Q[u] δL

δu
= − u1( − u12 + 6u1u11 + u1111) = D1 J1 + D2 J2,

with

J1[u] = u1
δL

δu1
+ u11

δL

δu11
+ u111

δL

δu111
− F1[u] = − 2u3

1 − u1u111 + 1

2
u2
11,

J2[u] = u1
δL

δu2
− F2[u] = 1

2
u2
1.
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This in turn implies the conservation of momentum:

D2

∫
1

2
u2
1 dt1 = 0.

(b) The generalized vector field Q∂u with

Q[u] = 10u3
1 + 5u2

11 + 10u1u111 + u11111.

Indeed,

pr(Q∂u)L

= Q
∂L

∂u
+ (D1Q)

∂L

∂u1
+ (D2

1Q)
∂L

∂u11
+ (D3

1Q)
∂L

∂u111
+ (D2Q)

∂L

∂u2

= D1F1 + D2F2,

with

F1[u] = −18u5
1 − 15u2

1u2
11 − 45u3

1u111 + 5u3
1u2 + 4u2

11u111 − 18u1u2
111

− 4u1u11u1111 − 8u2
1u11111 − 10u1u11u12 + 5

2
u2
11u2 + 5u1u111u2

+ 1

2
u2
1111 − u111u11111 + 1

2
u11u111111 − 1

2
u1u1111111 + u111u112

− u1111u12 + 1

2
u11111u2,

F2[u] = 5

2
u4
1 + 15

2
u1u2

11 + 5u2
1u111 − 1

2
u2
111 + 1

2
u1u11111.

The corresponding conservation law is

−Q[u] δL

δu
= D1 J1 + D2 J2,

with

J1[u] = Q
δL

δu1
+ (D1Q)

δL

δu11
+ (D11Q)

δL

δu111
− F1

= − 12u5
1 − 15u2

1u2
11 − 10u3

1u111 + u2
11u111 − 2u1u2

111 − 6u1u11u1111

+ 10u1u11u12 − 1

2
u2
1111 − u111u112 + u1111u12

and

J2[u] = Q
δL

δu2
− F2[u] = 5

2
u4
1 − 5u1u2

11 + 1

2
u2
111.
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3 Pluri-Lagrangian field theory

In this section we briefly review the main concepts of pluri-Lagrangian field theory.
For further details see [26–28].

3.1 Integrable hierarchies of PDEs

One of the defining features of an integrable PDE is that it possesses an infinite amount
of symmetries and, correspondingly, an infinite amount of conservation laws. These
symmetries define a family of PDEs that commute with the original one.

Let us illustrate the concept of commutingPDEson the basis of our leading example.

Example 3.1 In Example 2.3 (b) we proved that the generalized vector field Q∂u , with

Q[u] = 10u3
1 + 5u2

11 + 10u1u111 + u11111,

is a variational symmetry of the KdV equation

u12 = u1111 + 6u1u11 = 0.

If we introduce a third independent variable t3, we can define the PDE

u3 = 10u3
1 + 5u2

11 + 10u1u111 + u11111,

which commutes with the KdV equation itself. This means that both ways of calcu-
lating the mixed derivative u123 agree on solutions:

D3u12 = D3(u1111 + 6u1u11)

= 540u2
1u2

11 + 180u3
1u111 + 480u2

11u111 + 300u1u2
111 + 480u1u11u1111

+ 90u2
1u11111 + 70u2

1111 + 110u111u11111 + 56u11u111111

+ 16u1u1111111 + u111111111

= D1D2
(
10u3

1 + 5u2
11 + 10u1u111 + u11111

)

= D1D2u3.

Since symmetries lead to commuting equations, a natural perspective on an integrable
PDE is to consider it as one equation belonging to an infinite integrable hierarchy, i.e.,
an infinite set of integrable PDEs such that any two systems in this set are compatible.
Such hierarchies are usually generated by recursion operators or master symmetries
[10,17,20].

3.2 Pluri-Lagrangian problems

Let us focus on (1+ 1)-dimensional PDEs. A finite number of equations from a hierar-
chy can be embedded in a higher-dimensional multi-time, where they share a common

123



750 M. Petrera, M. Vermeeren

space direction, say t1 = x , but each equation has its own time coordinate, t2, t3, . . .
Formally, we can embed the whole hierarchy into an infinite-dimensional space in the
same way.

In the classical variational description of (1+ 1)-dimensional PDEs, we integrate
a Lagrange function over (an open subset of) the 2-dimensional space-time. A vari-
ational structure of a hierarchy of such PDEs should include the classical variational
description of each individual equation, i.e., integration over a 2-dimensional sub-
space. Therefore, it is natural for the role of a Lagrange function to be played by a
differential 2-form.

Let L ∈ �2(RN ) be a 2-form depending on the infinite jet of a smooth field
u : RN → R, i.e.,

L[u] =
∑

i< j

Li j [u] dti ∧dtj , (7)

with Li j : J∞ → R. We say that u solves the pluri-Lagrangian problem for L if
for any 2-dimensional submanifold � ⊂ R

N and for any infinitesimal variation
v(t1, . . . , tN )∂u of u, where v : RN → R and all its derivatives vanish at the boundary
of �, we have

d

dε

∣∣∣∣
ε=0

∫

�

L[u + εv] = 0.

This can also be written as

∫

�

pr(v∂u)L[u] = 0,

where the vertical vector field pr(v∂u) = ∑
I vI

∂
∂uI

acts on the coefficients of L[u],
i.e.,

pr(v∂u)L[u] =
∑

i< j

∑

I

vI
∂Li j [u]

∂uI
dti ∧dtj .

The equations that characterize solutions to the pluri-Lagrangian problem are called
multi-time Euler–Lagrange equations. They were derived in [27] and state that, for all
i, j, k ∈ {1, . . . , N }, there holds:

for all I �� ti , tj : δi j Li j

δuI
= 0, (8)

for all I �� ti : δi j Li j

δuI tj

= δik Lik

δuI tk
, (9)

for all I : δi j Li j

δuI ti tj

+ δ jk L jk

δuI tj tk
+ δki Lki

δuI tk ti
= 0, (10)
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Variational symmetries and pluri-Lagrangian structures for… 751

where

δi j Li j

δuI
=

∑

α,β � 0

(−1)α+β Dα
i Dβ

j

(
∂Li j

∂uI iα jβ

)
(11)

is the variational derivative in the (ti , tj )-plane. Note that the multi-time Euler–
Lagrange equations contain the classical Euler–Lagrange equations in each (ti , tj )-
plane (8), where derivatives with respect to other times are considered as additional
components of the field, plus additional equations (9)–(10) coming from choices of �

that are not coordinate planes.
In the present work, we will use a different property to recognize solutions to

the pluri-Lagrangian problem. There is a remarkable relation between the pluri-
Lagrangian problem and the property that the 2-form L is closed on solutions u to the
hierarchy. In fact, this closedness property is often considered to be the fundamental
property of the Lagrangian theory of integrable hierarchies [2,13–16,32,33]. When
this point of view is taken, the term “Lagrangian multiform” is more commonly used
than “pluri-Lagrangian”.

Here, we show that a slightly weaker property of the 2-form is a sufficient condition
for a solution to the pluri-Lagrangian problem.

Theorem 3.2 Consider a 2-form L and a hierarchy of commuting PDEs

ui = Qi [u], i = 2, . . . , N , (12)

with Qi : J∞ → R. If the exterior derivative of L is constant up to a term that attains
a double zero on solutions of (12), i.e., if

dL = γ +
∑

I ,J

∑

i, j

ω
I ,J
i, j DI (ui − Qi )DJ (uj − Qj )

for some J∞-dependent 3-forms ω
I ,J
i, j and a 3-form γ that does not depend on u or

its derivatives, then all solutions u : RN → R to the hierarchy (12) also solve the
pluri-Lagrangian problem for L.

Strictly speaking, the assumption that the PDEs (12) commute can be dropped from
this theorem. If they do not commute then there will usually be no non-trivial solutions
u : RN → R to all PDEs simultaneously, so in this case the theorem would be of very
limited relevance.

Proof of Theorem 3.2 Let u be a solution to the hierarchy and� = ∂ B a surface defined
as the boundary of a 3-manifold B. It is sufficient to show that the pluri-Lagrangian
property holds on such surfaces. Indeed, without loss of generality we can require
variations to be supported on small open subsets and for any sufficiently small open
subset �′ of a given surface, one can find a 3-manifold such that �′ is contained in its
boundary.
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752 M. Petrera, M. Vermeeren

As a consequence of the assumption onL there holds for any variation v : RN → R

that

pr(v∂u) dL[u] = d

dε

∣∣∣∣
ε=0

dL[u + εv] = 0.

Therefore

d

dε

∣∣∣∣
ε=0

∫

�

L[u + εv] = d

dε

∣∣∣∣
ε=0

∫

B
dL[u + εv] = 0,

hence the action integral over any surface � is critical with respect to variations
of u. 	

There are strong indications that the existence of a pluri-Lagrangian structure is deeply
connected to integrability. One such indication comes from within the theory: the
multi-time Euler–Lagrange equations are highly overdetermined. Hence if nontrivial
solutions exist, then we are dealing with a system with remarkable properties. Other
indications are connections to different notions of integrability, including Hamiltonian
formulations [26,28] and Lax pairs [24], even though these connections have not yet
been studied in full detail.

Despite some recent discoveries, relatively few examples of pluri-Lagrangian hier-
archies of PDEs are known. To our knowledge, the list is limited to the potential
KdV equation [27] and several related hierarchies obtained as continuum limits from
lattice equations [29,30], as well as (a matrix-valued generalization of) the AKNS
system [24]. The goal of this paper is to establish a construction of a pluri-Lagrangian
2-form for a given hierarchy of (1+ 1)-dimensional PDEs, assuming we know clas-
sical Lagrange functions for the individual equations. Furthermore, we will assume
that the vector field associated to each of the PDEs is a variational symmetry for the
Lagrangians of the rest of the hierarchy. This assumption can be thought of as the
Lagrangian analogue to commuting Hamiltonian flows.

4 From variational symmetries to a pluri-Lagrangian 2-form

We will take t1 = x to be the space coordinate. Then we can take the coefficients
L1 j of the pluri-Lagrangian 2-form (7) to be classical Lagrangians for the individual
equations of the hierarchy. However, the coefficients Li j with i, j > 1 do not have
an interpretation in a classical variational principle. It is not obvious under which
conditions suitable Li j exist, such that the given hierarchy solves the pluri-Lagrangian
problem for the 2-form. Below we will give an answer to this question for a large class
of Lagrangians.

For a hierarchy of evolutionary equations,

ui = Qi (u1, u11, . . .), i = 2, . . . , N , (13)
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it is a reasonable assumption that the corresponding Lagrangians do not contain second
or higher derivatives with respect to the time variable. Similarly, we will assume that
the Lagrangian does not contain products of time-derivatives. Suppose we have a
family of Lagrangians L1i for i = 2, . . . , N satisfying these assumptions:

L1i [u] = p(u, u1, u11, . . .)ui − hi (u, u1, u11, . . .). (14)

Here p and h are two arbitrary functions of their arguments. In particular the term
p(u, u1, u11, . . .)ui plays the role of a kinetic energy. Note that we are not includ-
ing mixed derivatives, u1i , u11i , . . . This does not restrict generality, because if a
Lagrangian depends linearly on such derivatives, then we can integrate by parts to
get an equivalent Lagrangian of the form (14). Furthermore, note that the factor
p(u, u1, u11, . . .) in the kinetic term of L1i [u] is the same for all i . This is a direct
consequence of the multi-time Euler–Lagrange equations of type (9).

The Euler–Lagrange equations (2) of the Lagrangians (14) will not be evolutionary.
Instead we assume that the Euler–Lagrange equations are differential consequences
of the hierarchy (13), i.e., equations of the form

Ep(ui − Qi (u1, u11, . . .)) = 0,

where Ep is some differential operator, depending on the kinetic term of the
Lagrangians. In the case of the KdV hierarchy we have Ep = D1, see Example 2.1.

Assume that the prolonged vector fields Di = pr(Qi∂u), corresponding to the
equations of the hierarchy, commute pairwise and are variational symmetries of the
L1 j :

Di L1 j = D1Ai j + Dj Bi j (15)

for some functions Ai j , Bi j : J∞ → R. If we consider only those terms that contain a
tj -derivative, what remains of equation (15) is of the form

Di (puj ) = D1Ai j (u, u1, uj , . . .) + Dj Bi j (u, u1, u11, . . .)

for some function Ai j : J∞ → R. This is an algebraic identity (as opposed to an
equality on solutions), hencewe can replace tj -derivatives by newdependent variables,
e.g. uj by a field denoted by ut . We find

Di (put ) = D1Ai j (u, u1, ut , . . .) + Dk Bi j (u, u1, u11, . . .).

Since the left-hand side of this equation is independent of j , we can choose Ai j and
Bi j independent of j as well. In particular, we can write Bi j = Bi and get

Di L1 j = D1Ai j + Dj Bi .

Note that Ai j , Bi : J∞ → R are only defined up to a constant, hence we can choose
them to be zero on the zero field: Ai j [0] = Bi [0] = 0.
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Lemma 4.1 For Lagrangians of the form (14) with commuting variational symmetries
(15), there exist functions Fi j : J∞ → R : [u] �→ Fi j (u, u1, u11, . . .), that do not
depend on any time-derivatives, such that

D1Fi j = Di L1 j − Dj L1i

on solutions of the hierarchy (13).

Proof Since the variational symmetries Di = pr(Qi∂u) commute, we have for any
k �= i, j ,

0 = [Di ,Dj ] L1k

= D1(Di Ajk − Dj Aik) + Dk(Di Bj − Dj Bi ).

Now let u be an arbitrary compactly supported smooth field. Then

0 =
∫ ∞

−∞
D1(Di Ajk − Dj Aik) + Dk(Di Bj − Dj Bi ) dt1

=
∫ ∞

−∞
Dk(Di Bj − Dj Bi ) dt1

= Dk

∫ ∞

−∞
(Di Bj − Dj Bi ) dt1.

Since u and in particular its tk-derivatives are arbitrary, it follows thatDi Bj −Dj Bi is
a null Lagrangian. This implies (see e.g. [20, Theorem 4.7]) that there exists a function
Gi j : J∞ → R such that

Di Bj − Dj Bi = D1(Gi j ).

Hence with Fi j = Gi j + Ai j − Aji we find that, on solutions of the hierarchy (13),

Di L1 j − Dj L1i = D1Ai j + Dj Bi − D1Aji − Di Bj

= D1Ai j + Dj Bi − D1Aji − Di Bj

= D1Fi j .

Since we are working on solutions of the equations the hierarchy, we can use those
equations to eliminate time-derivatives from Fi j , hence we can assume it depends on
the jet as Fi j (u, u1, u11, . . .). 	


We now present our main result, which is the analogue in 2-dimensional field theory
of [22, Theorem 10].
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Theorem 4.2 Assume we have Lagrangians of the form (14) with commuting varia-
tional symmetries (15). Let

Li j [u] =
∑

α � 0

δ1 j L1 j

δutα+1
1

Dα
1 (ui − Qi ) −

∑

α � 0

δ1i L1i

δutα+1
1

Dα
1 (uj − Qj )

+ Fi j (u, u1, u11, . . .),

(16)

where Fi j : J∞ → R is as in Lemma 4.1 and the operator
δi j
δ

is the variational
derivative from equation (11). Then every solution of the hierarchy (13) is a critical
point of

L[u] =
∑

i< j

Li j [u] dti ∧dtj

in the pluri-Lagrangian sense.

Proof We show that L is almost-closed in the sense of Theorem 3.2. We start by
calculating D1Li j . We have

D1

( ∑

α � 0

δ1 j L1 j

δutα+1
1

Dα
1 (ui − Qi )

)

=
∑

α � 0

D1
δ1 j L1 j

δutα+1
1

Dα
1 (ui − Qi ) +

∑

α � 0

δ1 j L1 j

δutα+1
1

Dα+1
1 (ui − Qi )

=
∑

α � 0

(
D1

δ1 j L1 j

δutα+1
1

+ δ1 j L1 j

δutα1

)
Dα
1 (ui − Qi ) − δ1 j L1 j

δu
D1(ui − Qi )

=
∑

α � 0

(
∂L1 j

∂utα1

− Dj
δ1 j L1 j

δutα1 tj

− D1Dj
δ1 j L1 j

δutα+1
1 tj

)
Dα
1 (ui − Qi )

− δ1 j L1 j

δu
D1(ui − Qi ).

Since L1 j does not depend on any mixed derivatives utα+1
1 tj

, this simplifies to

D1

( ∑

α � 0

δ1 j L1 j

δutα+1
1

Dα
1 (ui − Qi )

)

=
∑

α � 0

∂L1 j

∂utα1

Dα
1 (ui − Qi ) − Dj

δ1 j L1 j

δutj

(ui − Qi ) − δ1 j L1 j

δu
D1(ui − Qi )

≡
∑

α � 0

∂L1 j

∂utα1

Dα
1 (ui − Qi ) − (Dj p)(ui − Qi ),
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where ≡ denotes equality modulo double zeros. Similarly, there holds

D1

( ∑

α � 0

δ1i L1i

δutα+1
1

Dα
1 (uj − Qj )

)
≡

∑

α � 0

∂L1i

∂utα1

Dα
1 (uj − Qj ) − (Di p)(uj − Qj ).

Hence

D1Li j ≡
∑

α � 0

∂L1 j

∂utα1

Dα
1 (ui − Qi ) −

∑

α � 0

∂L1i

∂utα1

Dα
1 (uj − Qj )

− (Dj p)(ui − Qi ) + (Di p)(uj − Qj ) + D1Fi j .

Using the assumption that the Lagrangians L1i and L1 j are of the form (14), we can
write

Di L1 j − Di L1 j = pDj (ui − Qi ) +
∑

α � 0

∂L1 j

∂utα1

Dα
1 (ui − Qi ),

Dj L1i − Dj L1i = pDi (uj − Qj ) +
∑

α � 0

∂L1i

∂utα1

Dα
1 (uj − Qj ),

where Di = pr(Qi∂u) and Dj = pr(Qj∂u). Hence

D1Li j − Di L1 j + Dj L1i ≡ − Di L1 j + Dj L1i − (Dj p)(ui − Qi )

− pDj (ui − Qi ) + (Di p)(uj − Qj )

+ pDi (uj − Qj ) + D1Fi j .

(17)

By definition of Fi j we have that D1Fi j − Di L1 j + Dj L1i = 0 on solutions of (13).
Furthermore, the only time derivatives in this expression come from the kinetic parts
pui and puj of the Lagrangians. Therefore,

D1Fi j − Di L1 j + Dj L1i

= − Di (puj − pQj ) + Dj (pui − pQi )

= − pDi (uj − Qj ) − (Di p)(uj − Qj )

+ pDj (ui − Qi ) + (Dj p)(ui − Qi )

≡ − pDi (uj − Qj ) − (Di p)(uj − Qj )

+ pDj (ui − Qi ) + (Dj p)(ui − Qi ).

(18)

Combining equations (17) and (18) gives

D1Li j − Di L1 j + Dj L1i ≡ 0. (19)
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Consider three copies of equation (19), each with an additional differentiation:

Dk(D1Li j − Di L1 j + Dj L1i ) ≡ 0,

Dj (D1Lik − Di L1k + Dk L1i ) ≡ 0,

Di (D1L jk − Dj L1k + Dk L1 j ) ≡ 0.

A linear combination of these three equations gives us

D1(Dk Li j − Dj Li j + Di L jk) ≡ 0.

Since all coefficients are autonomous, this implies that

Dk Li j − Dj Li j + Di L jk ≡ const. (20)

Equations (19) and (20) together imply that L fulfills the conditions of Theorem 3.2,
hence every solution of the hierarchy (13) is a critical point of the pluri-Lagrangian
problem for L. 	

Theorem 4.2 and its proof are formulated for scalar systems, but they can be extended
to the case of multi-component systems. If u = (u1, . . . , u�) satisfies the equations
uk

i = Qk
i , we construct the Lagrangian coefficients by

Li j [u] =
�∑

k=1

∑

α � 0

δ1 j L1 j

δuk
tα+1
1

Dα
1

(
uk

i − Qk
i

) −
�∑

k=1

∑

α � 0

δ1i L1i

δuk
tα+1
1

Dα
1

(
uk

j − Qk
j

)

+ Fi j (u, u1, u11, . . .).

5 Examples

In this last sectionwe discuss three examples. For the first one, the potential Korteweg–
de Vries hierarchy, a pluri-Lagrangian structure is known in the literature [28]. Our
discussion illustrates that this structure can be obtained using Theorem4.2. The second
example is the Nonlinear Schrödinger (NLS) hierarchy. Its pluri-Lagrangian structure
can be considered as a special case of the one for the AKNS hierarchy obtained in
[24]. The final example is the system consisting of the sine-Gordon and modified
KdV equations, which indicates that the construction of Theorem 4.2 can be adapted
to non-evolutionary equations.

The calculations in this section were performed in the SageMath software system
[23]. The code is available at [31].

5.1 Potential KdV hierarchy

We start with our running example of the Korteweg–de Vries equation. The potential
KdV hierarchy was the first complete hierarchy of PDEs for which a pluri-Lagrangian
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structure was found [27]. Here we show that this structure can also be derived using
Theorem 4.2. We present only a minimal example consisting of just the first two
equations in the hierarchy,

u2 = 3u2
1 + u111, (21)

u3 = 10u3
1 + 5u2

11 + 10u1u111 + u11111. (22)

The corresponding Lagrangians are

L12[u] = 1

2
u1u2 − u3

1 − 1

2
u1u111,

L13[u] = 1

2
u1u3 − 5

2
u4
1 + 5u1u2

11 − 1

2
u2
111,

and have as their Euler–Lagrange equations

D1(u2 − (3u2
1 + u111)) = 0, (23)

D1(u3 − (10u3
1 + 5u2

11 + 10u1u111 + u11111)) = 0. (24)

On solutions of the evolutionary equations, there holds

D2L13 − D3L12 = − 10u3
1u12 + 10u1u11u112 + 5u2

11u12 + 3u2
1u13 − uu111u1112

+ 1

2
u1u1113 + 1

2
u111u13 − 1

2
u13u2 + 1

2
u12u3

= 15u4
1u11 + 135u1u3

11 + 210u2
1u11u111 + 25u3

1u1111

− 18u11u2
111 + 15

2
u2
11u1111 + 34u1u111u1111

+ 33u1u11u11111 + 13

2
u2
1u111111 + 1

2
u1111u11111

− u111u111111 + 1

2
u1u11111111.

Integrating this gives us

F23(u, u1, u11, . . .) = 3u5
1 + 135

2
u2
1u2

11 + 25u3
1u111 − 25

2
u2
11u111 + 7u1u2

111

+ 20u1u11u1111 + 13

2
u2
1u11111 + 1

2
u2
1111 − 1

2
u111u11111

− 1

2
u11u111111 + 1

2
u1u1111111.
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Let Q2 and Q3 be the right-hand sides of equations (21) and (22) . Then the remaining
terms in equation (16) are

δ13L13

δu1
(u2 − Q2) =

(
1

2
u3 − 10u3

1 − 5u2
11 − 10u1u111 − u11111

)

· (u2 − 3u2
1 − u111),

δ13L13

δu11
D1(u2 − Q2) = (10u1u11 − u1111)(u12 − 6u1u11 − u1111),

δ13L13

δu111
D11(u2 − Q2) = u111(u112 − 6u1u111 − 6u2

11 − u11111),

and

− δ12L12

δu1
(u3 − Q3) = −

(
1

2
u2 − 3u2

1 − u111

)

· (
u3 − 10u3

1 − 5u2
11 − 10u1u111 − u11111

)
,

− δ12L12

δu11
D1(u3 − Q3) = − 1

2
u11

(
u13 − 30u2

1u11 − 20u11u111

− 10u1u1111 − u111111
)
,

− δ12L12

δu111
D11(u3 − Q3) = 1

2
u1

(
u113 − 60u1u2

11 − 30u2
1u111 − 20u2

111

− 30u11u1111 − 10u1u11111 − u1111111
)
.

Adding everything together, as in equation (16) of Theorem 4.2, we find

L23[u] = 3u5
1 − 15

2
u2
1u2

11 + 10u3
1u111 − 5u3

1u2 + 7

2
u2
11u111 + 3u1u2

111

− 6u1u11u1111 + 3

2
u2
1u11111 + 10u1u11u12 − 5

2
u2
11u2 − 5u1u111u2

+ 3

2
u2
1u3 − 1

2
u2
1111 + 1

2
u111u11111 − u111u112 + 1

2
u1u113

+ u1111u12 − 1

2
u11u13 − 1

2
u11111u2 + 1

2
u111u3.

Note that the classical Euler–Lagrange equations

δ12L12

δu
= 0 and

δ13L13

δu
= 0

yield equations (23)–(24), which are the t1-derivatives of the potential KdV equa-
tions (21)–(22). However, the multi-time Euler–Lagrange equations also contain the
potential KdV equations themselves:
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δ12L12

δu1
= − δ23L23

δu3
�⇒ 1

2
u2 − 3u2

1 − u111 = − 3

2
u2
1 − 1

2
u111,

δ13L13

δu1
= δ23L23

δu2
�⇒ 1

2
u3 − 10u3

1 − 5u2
11 − 10u1u111 − u11111

= − 5u3
1 − 5

2
u2
11 − 5u1u111 − 1

2
u11111.

5.2 Nonlinear Schrödinger hierarchy

The nonlinear Schrödinger equation is one of the most prominent integrable PDEs
[11,12]. The corresponding hierarchy is discussed for example in [1,21]. It is a special
case of the AKNS hierarchy, the pluri-Lagrangian structure of which is studied in
[24]. Here we construct a pluri-Lagrangian structure for the NLS hierarchy using
Theorem 4.2.

In this example we consider a complex field u : RN → C. The first two equations of
the hierarchy are the nonlinear Schrödinger equation itself and the complex modified
KdV equation,

u2 = iu11 − 2i |u|2u, (25)

u3 = u111 − 6|u|2u1. (26)

Fields u that solve both these equations and their complex conjugates are critical fields
for the Lagrangians (see e.g. [3])

L12[u] = i

2
(u2ū − uū2) − |u1|2 − |u|4,

L13[u] = i

2
(u3ū − uū3) + i

2
(u11ū1 − u1ū11) + 3i

2
|u|2(u1ū − uū1).

For these Lagrangians Lemma 4.1 gives us the function

F23(u, u1, u11, . . .) = 2|u|6 − 3

2
|u|2(u11ū − uū11) − 6|uu1|2

+ 1

2
(u111ū1 + u1ū111) + |u11|2

and Theorem 4.2 provides the coefficient

L23[u] = − 4|u|6 − u2
1ū2 − u2ū2

1 + 2|uu1|2 + 2|u|2(u11ū + uū11)

+ 3

2
i |u|2(u2ū − uū2) + i

2
(u12ū1 − u1ū12)

+ u3ū1 + u1ū3 − |u11|2 + i(u11ū2 − u2ū11)

of a pluri-Lagrangian 2-form

L[u] = L12[u] dt1∧dt2 + L13[u] dt1∧dt3 + L23[u] dt2∧dt3.
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Interestingly, in this example the classical Euler–Lagrange equations

δ12L12

δu
= 0 and

δ13L13

δu
= 0

already yield the evolutionary form of the NLS equations (25)–(26). All other multi-
time Euler–Lagrange equations, in particular those of the form

δ12L12

δu1
= − δ23L23

δu3
and

δ13L13

δu1
= δ23L23

δu2

are trivially satisfied.

5.3 Sine-Gordon equation andmodified KdV hierarchy

Consider the sine-Gordon equation

u12 = sin u

and the (potential) modified KdV hierarchy

u3 = u111 + 1

2
u3
1,

u4 = 3

8
u5
1 + 5

2
u1u2

11 + 5

2
u2
1u111 + u11111,

...

This hierarchy consists of symmetries of the sine-Gordon equation (see, e.g. [19] or
[17, Section 5k]). The corresponding Lagrangians are

L12[u] = 1

2
u1u2 − cos u,

L13[u] = 1

2
u1u3 − 1

8
u4
1 + 1

2
u2
11,

L14[u] = 1

2
u1u4 − 1

16
u6
1 − 5

12
u3
1u111 − 1

2
u2
111,

...

Since the sine-Gordon equation is not evolutionary, Theorem 4.2 does not apply to
this hierarchy. Surprisingly, a naive adaptation of the construction leads to a suitable
2-form, at least for the first few equations of the hierarchy.

We start the construction of a pluri-Lagrangian 2-form in three dimensions, con-
sidering only t1, t2 and t3. Let Q3 = u111 + 1

2u3
1. Then on solutions of the equations,

there holds
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D2L13 − D3L12 = 1

2
u12u3 − 1

2
u3
1u12 + u11u112 − 1

2
u13u2 − u3 sin u

= − 1

2
u12Q3 − 1

2
u2D1Q3 − 1

2
u3
1 sin u + u11u1 cos u

= D1F23

for

F23[u] = − 1

2
u2

(
u111 + 1

2
u3
1

)
+ 1

2
u2
1 cos u.

Since there is no evolutionary equation for u2, we tolerate the dependence of F23 on
this derivative. For the same reason, the term δ12L12

δu1α+1
Dα
1 (u2 − Q2) in equation (16)

only makes sense for α > 0. For α = 0 we just remove it. We are left with

L23[u] = δ13L13

δu11
(u12 − sin u) − δ12L12

δu1

(
u3 − u111 − 1

2
u3
1

)
+ F23[u]

= u11(u12 − sin u) − 1

2
u2

(
u3 − u111 − 1

2
u3
1

)

− 1

2
u2

(
u111 + 1

2
u3
1

)
+ 1

2
u2
1 cos u

= u11(u12 − sin u) − 1

2
u2u3 + 1

2
u2
1 cos u.

This pluri-Lagrangian structure in R
3 was first found in [27], but a pluri-Lagrangian

structure incorporating more equations of the hierarchy has not been given previously.
With the method presented here, such an extension is obtained by a straightforward
(but long) calculation. For example, we can calculate F24 and F34 analogously to F23
above. This in turn allow us to calculate the coefficients of the Lagrangian 2-form,

L24[u] = 3

8
u4
1 cos u − 5

12
u3
1u112 + 5

4
u2
1u11u12 − 3

2
u2
1u11 sin u − 1

2
u2
11 cos u

+ u1u111 cos u − u111u112 + u1111u12 − 1

2
u2u4 − u1111 sin u

and

L34[u] = 3

128
u8
1 − 5

16
u4
1u2

11 + 7

16
u5
1u111 − 3

16
u5
1u3 − 1

8
u4
11 + 7

4
u1u2

11u111

+ 3

4
u2
1u2

111 − 3

2
u2
1u11u1111 + 1

4
u3
1u11111 − 5

12
u3
1u113 + 5

4
u2
1u11u13

− 5

4
u1u2

11u3 − 5

4
u2
1u111u3 + 1

4
u3
1u4 − 1

2
u2
1111 + 1

2
u111u11111

− u111u113 + u1111u13 − u11u14 − 1

2
u11111u3 + 1

2
u111u4.
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The presented hierarchy can be extended to a doubly-infinite hierarchy, where the
sine-Gordon equation connects two copies of the modified KdV hierarchy, one as
stated above and one where t2 is used as space variable. The calculations presented
here can be easily extended to cover both sides of the hierarchy. A pluri-Lagrangian
structure of this double hierarchy was previously obtained using a carefully chosen
continuum limit [29].

In this example, a straightforward adaptation of equation (16) gives us suitable
coefficients Li j . However, there does not seem to be a simple generalization of the
proof we gave for Theorem 4.2 to cover this case. In this example we have verified by
direct calculation that the multi-time Euler–Lagrange equations consist of the Sine-
Gordon and modified KdV equations and differential consequences thereof. Showing
the validity of our construction in amore general setting, ideallywith amore conceptual
proof, is a goal for future research.

6 Conclusions

We have shown that a hierarchy of 2-dimensional variational PDEs, that are varia-
tional symmetries of each other, possesses a pluri-Lagrangian structure. This extends
the results of [22], where a similar result was obtained for variational ODEs. The
existence of a hierarchy of variational symmetries for a PDE is closely related to
its integrability. Hence our result contributes significantly to the evidence that pluri-
Lagrangian structures are a fundamental feature of integrability. Furthermore, our
construction can be used to obtain new examples of pluri-Lagrangian 2-forms, as we
illustrated in the context of the nonlinear Schrödinger hierarchy.

As illustrated by the example of the sine-Gordon and mKdV equations, our con-
struction applies more generally than the proof we provided. More research is needed
to determine the most general form of the ideas presented here. Relevant to this line of
investigation is the paper [25], which deals with the same topics as the present work
(and appeared on the arXiv one day after it).
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