
European Journal of Mathematics (2021) 7:793–806
https://doi.org/10.1007/s40879-020-00415-y

RESEARCH ART ICLE

Recurrence equation and integral representation of Apéry
sums

Michael Uhl1

Received: 9 October 2019 / Revised: 6 April 2020 / Accepted: 27 May 2020 / Published online: 30 June 2020
© The Author(s) 2020

Abstract
Various methods are used to investigate sums involving a reciprocal central binomial
coefficient and a power term. In the first part, new functions are introduced for calcula-
tion of sums with a negative exponent in the power term. A recurrence equation for the
functions provides an integral representation of the sums using polylogarithm func-
tions. Thus polylogarithms and, in particular, zeta values can be expressed via these
functions, too. In the second part, a straightforward recurrence formula is derived for
sums having a positive exponent in the power term. Finally, two interesting cases of
double sums are presented.
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1 Introduction andmain results

The subject of this article are infinite sums, A+
m and A−

m , involving a reciprocal central
binomial coefficient 1/

(2k
k

)
and a power term k−m :

A+
m =

∞∑

k=1

1

km
(2k
k

) , A−
m =

∞∑

k=1

(−1)k−1

km
(2k
k

) . (1)

In the context of these sums—which we also call the Apéry sums—Roger Apéry
proved the irrationality of π2 and ζ(3) [1,9,13]. Furthermore, the tight relationship
between these sums and values of the zeta function are the topic of many publications
[2,6–8,10–14].
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794 M. Uhl

Whereas there exist closed-form expressions for A+
1 , A+

2 , A−
1 , A−

2 , and as well A
+
4 ,

see for instance [10–13], the sums A+
m and A−

m for m > 4 can only be expressed by
means of polylogarithmic ladders or multiple Clausen values [2,7]. In particular,

A+
1 =

√
3π

9
, A+

2 = π2

18
= ζ(2)

3
, A+

4 = 17π4

3240
= 17ζ(4)

36
,

A−
1 = 2 ln φ√

5
, A−

2 = 2 ln2φ, A−
3 = 2ζ(3)

5
,

(2)

where φ = (
√
5 + 1)/2, see e.g. [2,11–13].

In this work two approaches are presented to calculate the sums with a negative
exponent in the power term, A+

m and A−
m form > 0. First, using a reformulation of the

reciprocal central binomial coefficient we define the functions A+
m(x) and A−

m(x):

A±
m(x) =

∞∑

j=1

(−x) j

j
a±
mj , a±

mj =
j−1∑

k=1

(
k − 1

j − k − 1

)
(∓1)k−1

km−1 . (3)

These functions A+
m(x) and A−

m(x) together with their derivatives A′+
m (x) and A′−

m (x)
relate the Apéry sums A+

m and A−
m with the polylogarithm functions Li n(x), defined

as

Li n(x) =
∞∑

k=1

xk

kn
, Li′n(x) = 1

x
Li n−1(x). (4)

Theorem 1.1 A+
m = A+

m(1), A−
m = A−

m(1).

Theorem 1.2

A′+
m (x) = Lim−1(x − x2)

1 − x
, A′−

m (x) = Lim−1(x2 − x)

x − 1
. (5)

For the proofs of Theorems 1.1 and 1.2 see (11) and Lemma 2.1 in Sect. 2.
Thus, integrating (5) the Apéry sums for m > 0 can be calculated as

A+
m =

∫ 1

0

Lim−1(x − x2)

1 − x
dx, A−

m =
∫ 1

0

Lim−1(x2 − x)

x − 1
dx . (6)

Furthermore, as shown in Sect. 2, the polylogarithm Lim(z), and in particular its value
Lim(1) = ζ(m), can be expressed vice versa in terms of Am(x).

In Sect. 3 we derive an integral representation of the reciprocal central binomial
coefficient, which gives us a direct integral formula of the sums, see (6). In Sect. 4 we
calculate the integrals for m = 1, 2, 3.

Due to the exponential convergence of the reciprocal binomial coefficients even the
sums with a positive exponent in the power term, A+−m and A−−m form � 0, converge.
These sums up to m = 3 are studied in various articles [11,12,15]. In this work a
straightforward recurrence formula is presented to calculate them.
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Recurrence equation and integral representation of Apéry… 795

Theorem 1.3

3A+−m = 1 + 2A1−m +
m−1∑

j=0

(
m

j

)
A− j ,

5A−−m = 1 + 2A1−m −
m−1∑

j=0

(
m

j

)
A− j .

(7)

For the proof see (26) in Sect. 5. By reiterative application of (7), the sums A+−m and
A−−m are calculated as linear combinations of 1 and A+

1 , respectively 1 and A−
1 , where

A+
1 = √

3π/9 and A−
1 = 2 ln φ/

√
5, see (2).

Theorem 1.4 The numbers 3m A+−m and 5m A−−m are sums of an integer and odd—and
therefore non-vanishing—multiple of 2A+

1 , respectively 2A
−
1 .

For the proof see Lemma 5.1 in Sect. 5. Since π and (due to the Gelfond–Schneider
theorem [3–5]) ln φ are transcendental, A+

1 and A−
1 are transcendental, too. Then,

due to Theorem 1.4, A+−m and A−−m for all m � 0 are transcendental numbers. For
instance, this is different from A−

3 which is proven only to be irrational [1].
Although there is up to now—with the exception of A+

4 —noclosed-formexpression
for A+

m and A−
m for allm � 3, the sums of A+

m−1/2 and A−
m−1/2 overm are calculated

as follows.

Theorem 1.5

S+ =
∞∑

m=1

(
A+
m − 1

2

)
= 1 − A+

1

2
, S− =

∞∑

m=1

(
A−
m − 1

2

)
= 1 − 3A−

1

2
. (8)

For the proof see (30) in Sect. 6. Finally, in Sect. 6 the identities, 0 = 6A+
0 A+

2 −
4A+

1 A+
2 −3A+

1 A+
1 and 0 = 10A−

0 A−
2 −4A−

1 A−
2 −5A−

1 A−
1 , are presented as vanishing

double sums over the products 1/
[(2k

k

)(2 j
j

)]
.

2 Recurrence equation

We show below that non-alternating sums A+
m and alternating sums A−

m subordinate,
in general, to the same equations, except for a sign. First, we simplify the notation:
Am

..= A±
m , am

..= a±
m , and Am(x) ..= A±

m(x). Reiterative application of the recurrence
formula for reciprocal binomial coefficients,

(
n

m

)−1

= m

m − 1

[(
n − 1

m − 1

)−1

−
(
n − 1

m

)−1
]

,
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796 M. Uhl

to the reciprocal central binomial coefficient 1/
(2k
k

)
gives

(
2k

k

)−1

= k
k−1∑

j=0

(
k − 1

j

)
(−1) j

k + j + 1
= k

2k∑

j=k+1

(
k − 1

j − k − 1

)
(−1) j−k−1

j
.

Thus the sums Am , (1), for m � 1, can be reformulated via coefficients αmjk as

Am =
∞∑

k=1

(±1)k−1

km
(2k
k

) =
∞∑

k=1

2k∑

j=k+1

(−1) j

j
αmjk,

αmjk =
(

k − 1

j − k − 1

)
(∓1)k−1

km−1 .

(9)

Now, for a more detailed investigation of the sums Am the functions Am(x) are intro-
duced, see (3):

Am(x) =
∞∑

j=1

j−1∑

k=1

(−x) j

j
αmjk =

∞∑

j=1

(−x) j

j
amj ,

amj =
j−1∑

k=1

αmjk =
j−1∑

k=1

(
k − 1

j − k − 1

)
(∓1)k−1

km−1 .

(10)

In the end of this section the coefficients a+
1 j and a−

1 j are calculated. Convergence of
the sums A+

m(x) and A−
m(x) is guaranteed for |x | < 1, respectively |x | < 1/φ, only.

However, by the process of analytic continuation the order of summation in (10) can
be switched and a comparison with (9) shows

Am(x) =
∞∑

j=1

j−1∑

k=1

(−x) j

j
αmjk =

∞∑

k=1

2k∑

j=k+1

(−x) j

j
αmjk, Am(1) = Am . (11)

The derivatives A′
m(x) and A′′

m(x) are given by

A′
m(x) = −

∞∑

j=1

(−x) j−1amj , A′′
m(x) =

∞∑

j=1

( j − 1)(−x) j−2amj . (12)
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Recurrence equation and integral representation of Apéry… 797

For m = 1 the derivative A′
1(x)—as the analytic continuation of (12)—is calculated

as

A′
1(x) = −

∞∑

j=1

(−x) j−1
j−1∑

k=1

(∓1)k−1
(

k − 1

j − k − 1

)

= −
∞∑

k=1

k∑

j=1

(∓1)k−1(−x)k+ j−1
(
k − 1

j − 1

)

= x
∞∑

k=1

(±x)k−1(1 − x)k−1 = x

1 ± (x2 − x)
.

(13)

In fact, the coefficients amj from (10) satisfy the identity

( j − 1)amj − am−1, j + ( j − 1)am, j−1 − 2am−1, j−1

=
j−1∑

k=1

(∓1)k−1

km−1

(
( j − 1 − k)

(
k − 1

j − k − 1

)
+ ( j − 1 − 2k)

(
k − 1

j − k − 2

))
= 0.

Thus, for the functions Am(x) from (10) the following differential equation is obtained:

(x2 − x)A′′
m(x) + x A′

m(x) − (2x − 1)A′
m−1(x)

=
∞∑

j=1

( j − 1)amj (x
2 − x)(−x) j−2 −

∞∑

j=1

[
amj x − am−1, j (2x − 1)

]
(−x) j−1

=
∞∑

j=1

[
( j − 1)amj − am−1, j

]
(−x) j−1 +

∞∑

j=1

[
jamj − 2am−1, j

]
(−x) j

=
∞∑

j=1

[
( j − 1)amj − am−1, j + ( j − 1)am, j−1 − 2am−1, j−1

]
(−x) j−1 = 0.

Therefore, the derivatives A′
m(x) can be calculated recurrently:

2x − 1

x
A′
m−1(x) = (x − 1)A′′

m(x) + A′
m(x) = [

(x − 1)A′
m(x)

]′
. (14)

Since A′
m−1(0) = am1 = 0, by integration A′

m(x) can be written as

A′
m(x) = 1

x − 1

∫ x

0

2t − 1

t
A′
m−1(t) dt .
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798 M. Uhl

Lemma 2.1 The function (x − 1)A′
m(x) and the polylogarithm ∓Lim−1(∓(x2 − x))

are identical:

(x − 1)A′
m(x) = ∓Lim−1(∓(x2 − x)). (15)

Proof (i) For m = 1 both sides are identical and (ii) for m > 1 they are described by
the same recurrence equation.

(i) In the case m = 1, it follows from (13) and the definition Li0(z) = z/(1 − z):

(x − 1)A′
1(x) = ∓Li0(∓(x2 − x)) = x2 − x

1 ± (x2 − x)
.

(ii) Applying (15) to the recurrence equation of polylogarithm, Li′m−1(z) =
Lim−2(z)/z with z = ∓(x2 − x), results in (14), again:

[∓Lim−1(∓(x2 − x))
]′ = ∓(2x − 1)

Lim−2(∓(x2 − x))

x2 − x

= [
(x − 1)A′

m(x)
]′ = 2x − 1

x
A′
m−1(x).

(16)

��
Due to the symmetry of (15),

x A′
m(1 − x) = (1 − x)A′

m(x), (17)

and the transformation, x �→ 1
2 − x , the Apéry sums Am = Am(1) are calculated as

Am =
∫ 1

0
A′
m(x) dx =

∫ 1

0

Lim−1(∓(x2 − x))

∓(x − 1)
dx =

∫ 1
2

0

Lim−1
(±( 1

4 − x2
))

±( 1
4 − x2

) dx .

(18)

Integrating (16), the polylogarithm∓Lim(∓(x−x2)) can be described by the function
Am(x):

∓Lim(∓(x2 − x)) =
∫ x

0

2t − 1

t
A′
m(t) dt

=
∫ x

0

(
A′
m(t) − A′

m(1 − t)
)
dt = Am(x) + Am(1 − x) − Am(1),

in which Lim(0) = Am(0) = 0 and the symmetry of (17) are used.
The values of the zeta function are given by ζ(m) = Lim(1). Using the definition

of the coefficients a+
mj from (9), and writing ϕ = exp(iπ/3) with ϕ − ϕ2 = 1 and

1 − ϕ = ϕ−1, one obtains
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Recurrence equation and integral representation of Apéry… 799

ζ(m) = Lim(1) = Lim(ϕ − ϕ2) = A+
m(1) − A+

m(ϕ) − A+
m(ϕ−1)

=
∞∑

j=1

(−1) j

j
a+
mj (1 − ϕ j − ϕ− j ) =

∞∑

j=1

(−1) j

j
a+
mj

(
1 − 2 cos

jπ

3

)
.

Thus, the functions A+
m(x), or respectively the coefficients a+

mj , enable a formulation
for both the sums A+

m and the values ζ(m).
Next, we want to focus on the coefficients amj from (9) in the case m = 1. Here,

the coefficients a+
1 j of the non-alternating sum A+

1 (x) fulfil the equation

a+
1 j =

j−1∑

k=1

(−1)k−1
(

k − 1

j−k−1

)
= − a+

1, j−1 − a+
1, j−2.

With a+
11 = 0 and a+

12 = 1 one gets recurrently,

a+
1,3 j+1 = 0, a+

1,3 j+2 = 1, a+
1,3 j+3 = −1, j � 0.

Hence, comparing the sum A+
1 = A+

1 (1) from (10) with (2) gives

A+
1 =

∞∑

j=1

(−1) j a+
1 j

j
=

∞∑

j=0

(−1) j (6 j + 5)

(3 j + 2)(3 j + 3)
= π

√
3

9
.

The coefficients a−
1 j of the alternating sum A−

1 (x) can be written as

a−
1 j =

j−1∑

k=1

(
k − 1

j − k − 1

)
= a−

1, j−1 + a−
1, j−2.

With a−
11 = 0 and a−

12 = 1 the coefficients a−
1, j+1 are given by the Fibonacci numbers

Fj :

a−
1, j+1 = Fj = φ j − (1 − φ) j√

5
, j � 0, φ =

√
5 + 1

2
. (19)

Since Fibonacci numbers grow exponentially with lim j→∞ Fj/Fj−1 = φ, at x = 1
the sum A−

1 (1) = ∑∞
j=1(−1) j a−

1 j/ j does not converge.

Having |a+
1 j | � 1 for all j , the convergence radius of A+

1 (x), (10), is R+
1 = 1.

The convergence radius of A−
1 (x) is given by R−

1 = lim j→∞ |a−
1, j−1/a

−
1 j | = 1/φ.

Furthermore, with |a+
mj | � |a+

m−1, j | and |a−
mj | � |a−

m−1, j | it follows R+
m � 1 and

R−
m � 1/φ.
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800 M. Uhl

3 Integral representation

The integrals Am can be obtained directly by the integral representation of the recip-
rocal central binomial coefficients 1/

(2k
k

)
, see e.g. [15]. Looking at the integrals

∫ 1/2
0

( 1
4 − x2

)
k−1dx , partial integration results in

∫ 1
2

0

(
1

4
− x2

)k−1

dx = 4k + 2

k

∫ 1
2

0

(
1

4
− x2

)k

dx .

Thus, starting with
∫ 1/2
0

( 1
4 − x2

)0dx = 1
2 , we arrive to the integral by induction:

∫ 1
2

0

(
1

4
− x2

)k

dx = k! (k + 1)!
(2k + 2)! .

So, the reciprocal central binomial coefficients 1/
(2k
k

)
are

(
2k

k

)−1

= k!2
(2k)! = k

∫ 1
2

0

(
1

4
− x2

)k−1

dx . (20)

With (8) and the definition of the polylogarithm function, Lim(z) = ∑∞
k=1 k

−mzk, the
sums Am can be calculated as

Am =
∞∑

k=1

(±1)k−1

km
(2k
k

) =
∫ 1

2

0

∞∑

k=1

(±( 1
4 − x2

))
k−1

km−1 dx =
∫ 1

2

0

Lim−1
(±( 1

4 − x2
))

±( 1
4 − x2

) dx,

in agreement with (18). A similar result was derived by Taylor [15].

Furthermore, calculating the integral formula for the coefficients 1/
(2k
k

)
in (20) one

obtains the identity

(
2k

k

)−1

= k
k−1∑

h=0

(
k − 1

h

)∫ 1
2

0

(−x2)h

4k−1−h
dx = 2k

4k

k−1∑

h=0

(
k − 1

h

)
(−1)h

2h + 1
.

4 Integrals for A1, A2, and A3

The calculation of the sums Am for m > 0, and in particular A1 and A2, see (2), has
been considered in many publications, see e.g. [11–13]. In this section we employ the
integrals from (18) to calculate A1 and A2 and to give an integral formula of A3. For
m = 1 the integral A1 from (18) is given by Li0(z) = z/(1 − z):

A1 =
∫ 1

2

0

Li0
(±( 1

4 − x2
))

±( 1
4 − x2

) dx =
∫ 1

2

0

dx

1 ± (
x2 − 1

4

) .
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Recurrence equation and integral representation of Apéry… 801

In particular, A+
1 and A−

1 are calculated as

A+
1 =

∫ 1
2

0

dx
3
4 + x2

=
[

2√
3
arctan

2x√
3

] 1
2

0
= 2√

3

π

6
= π

√
3

9
, (21)

A−
1 =

∫ 1
2

0

dx
5
4 − x2

=
[

1√
5
ln

√
5 + 2x√
5 − 2x

] 1
2

0
= 2√

5
ln

√
5 + 1

2
. (22)

For m = 2 the integral A2 from (18) can be calculated via Li1(z) = − ln(1 − z):

A2 = ±
∫ 1

0

Li1(∓(x2 − x))

x
dx = ∓

∫ 1

0

ln(1 ± (x2 − x))

x
dx .

Having the factorizations,

1 − x + x2 = (ϕ − x)(ϕ−1 − x), ϕ = eiπ/3, ϕ−1 = e−iπ/3, ϕ + ϕ−1 = 1,

1 + x − x2 = (φ − x)(φ−1+x), φ =
√
5 + 1

2
, φ−1 =

√
5 − 1

2
, φ − φ−1 = 1,

the integral
∫
ln(a ± x)/x dx = ln x ln a − Li2(∓x/a), the dilogarithm Li2(0) = 0,

and the Landen identities,

Li2(ϕ
−1) + Li2(ϕ) = Li2(1 − ϕ) + Li2(1 − ϕ−1) = − ln2ϕ

2
= π2

18
,

Li2(φ
−1) + Li2(−φ) = Li2(1 − φ−2) + Li2(1 − φ2) = − ln2φ2

2
= − 2 ln2φ,

A+
2 and A−

2 are obtained as

A+
2 = −

∫ 1

0

ln(1 − x + x2)

x
dx =

[
Li2

x

ϕ
+ Li2

x

ϕ−1

]1

0
= π2

18
, (23)

A−
2 =

∫ 1

0

ln(1 + x − x2)

x
dx =

[
−Li2

x

φ
− Li2

−x

φ−1

]1

0
= 2 ln2φ. (24)

The integral A3 from (18) is calculated by integration of the dilogarithm Li2. Integrat-
ing by parts one finds

A3 =
∫ 1

2

0

Li2
(±( 1

4 − x2
))

±( 1
4 − x2

) dx =
∫ 1

2

0

±2x ln
(
1 ± (

x2 − 1
4

))

x2 − 1
4

ln
1 + 2x

1 − 2x
dx .
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802 M. Uhl

Thus the sums A+
3 and A−

3 = 2
5ζ(3), see (2), are given by the following integrals:

A+
3 =

∫ 1
2

0

Li2
( 1
4 − x2

)

1
4 − x2

dx =
∫ 1

2

0

2x ln
( 3
4 + x2

)

x2 − 1
4

ln
1 + 2x

1 − 2x
dx,

A−
3 =

∫ 1
2

0

Li2
(
x2 − 1

4

)

x2 − 1
4

dx =
∫ 1

2

0

2x ln
( 5
4 − x2

)

1
4 − x2

ln
1 + 2x

1 − 2x
dx = 2ζ(3)

5
,

leading to another integral form for ζ(3).

5 Apéry sums for positive powers

The sums for positive powers, A−m for m � 0, have also been studied in [11,12,15].
Calculation of A0, A−1, A−2, and A−3 was done by Lehmer [12]. In this section,
a general recurrence formula for A−m is derived. The sums A−m converge, since
1/

(2k
k

)
< k

4k
and

|A−m | =
∣∣∣
∣

∞∑

k=1

(±1)kkm
(2k
k

)

∣∣∣
∣ <

∞∑

k=1

km+1

4k
= Li−(m+1)

(
1

4

)
.

With (1) the expression 4Am − 2Am+1 can be calculated by

4Am − 2Am+1 =
∞∑

k=1

(4k − 2)(±1)k−1

km+1
(2k
k

)

=
∞∑

k=1

(±1)k−1

km
(2k−2
k−1

) = 1 ±
∞∑

k=1

(±1)k−1

(k + 1)m
(2k
k

) .

(25)

Thus, we obtain in the case of positive powers, with m � 0, that

4A−m − 2A1−m = 1 ±
∞∑

k=1

(k + 1)m
(±1)k−1

(2k
k

) = 1 ±
m∑

j=0

(
m

j

)
A− j .

This directly leads to the recurrence equation for the sums A−m :

A0 = 1 + 2A1

4∓1
, A−m = 1

4∓1

(
1 + 2A1−m ±

m−1∑

j=0

(
m

j

)
A− j

)
. (26)
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Here, the sums A−m can be calculated recurrently starting with A1. For 0 � m � 4
the sums A+−m and A−−m are given by:

A+
1 = π

√
3

9
,

A+
0 = 1 + 2A+

1

3
= 1

3
+ 2A+

1

3
,

A+
−1 = 1 + 3A+

0

3
= 2

3
+ 2A+

1

3
,

A+
−2 = 1 + 4A+

−1 + 1A+
0

3
= 4

3
+ 10A+

1

9
,

A+
−3 = 1 + 5A+

−2 + 3A+
−1 + 1A+

0

3
= 10

3
+ 74A+

1

27
,

A+
−4 = 1 + 6A+

−3 + 6A+
−2 + 4A+

−1 + 1A+
0

3
= 32

3
+ 238A+

1

27
,

(27)

A−
1 = 2 ln φ√

5
,

A−
0 = 1 + 2A−

1

5
= 1

5
+ 2A−

1

5
,

A−
−1 = 1 + 1A−

0

5
= 6

25
+ 2A−

1

25
,

A−
−2 = 1 + 0A−

−1 − 1A−
0

5
= 4

25
− 2A−

1

25
,

A−
−3 = 1 − 1A−

−2 − 3A−
−1 − 1A−

0

5
= − 2

125
− 14A−

1

125
,

A−
−4 = 1 − 2A−

−3 − 6A−
−2 − 4A−

−1 − 1A−
0

5
= −136

625
− 2A−

1

625
.

(28)

Using the substitution Ã−m = (4∓1)m+1A−m , (26) gives

Ã0 = 1 + 2A1, Ã−m = (4∓1)m +
m−1∑

j=0

wmj Ã− j ,

wmj = 2δm−1, j ±
(
m

j

)
(4∓1)m−1− j .

Here, wmj are the weights of Ã− j contributing to Ã−m .

Lemma 5.1 The numbers Ã−m are sums of an integer and an odd multiple of 2A1.
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Proof First we prove Ã0 is a sum of an integer and an oddmultiple of 2A1. All weights
wmj are integer numbers and the sum of weights,

m−1∑

j=0

wmj = 2 ±
m−1∑

j=0

(4∓1)m−1− j
(
m

j

)
= 2 ± (5∓1)m − 1

4∓1
,

is an odd number. Then, by induction, each number Ã−m is a sum of an integer and
an odd multiple of 2A1. ��

6 Further relations on Apéry sums

In the same way as the zeta function ζ(m) = ∑∞
k=1 k

−m and eta function η(m) =∑∞
k=1(−1)k−1k−m converge to 1 for m → ∞, the sums Am = ∑∞

k=1(±1)k−1k−m/(2k
k

)
converge to 1

2 , since all terms for k � 2 vanish when m → ∞, and the term for
k = 1 establishes the limit. The sum of Apéry sums, S = ∑∞

m=1

(
Am − 1

2

)
, can be

written as

S =
∞∑

m=1

(
Am − 1

2

)
=

∞∑

m=1

∞∑

k=2

(±1)k−1

km
(2k
k

) =
∞∑

k=2

(±1)k−1

(k − 1)
(2k
k

) .

To calculate S, first we construct the sum of 4Am − 2Am+1 − 1, (25), over m:

∞∑

m=1

(4Am − 2Am+1 − 1) = ±
∞∑

m=1

∞∑

k=1

(±1)k−1

(k + 1)m
(2k
k

)

= ±
∞∑

k=1

(±1)k−1

k
(2k
k

) = ±A1.

(29)

Regrouping (29) leads to

∞∑

m=1

(4Am − 2Am+1 − 1) = 4
∞∑

m=1

(
Am − 1

2

)
− 2

∞∑

m=2

(
Am − 1

2

)
= 2S + 2A1 − 1.

Comparing one gets

2S + (2∓1)A1 − 1 = 0. (30)
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Thus, the sum S+ of the non-alternating sums A+
m and the sum S− of the alternating

sums A−
m are given by

S+ =
∞∑

m=1

(
A+
m − 1

2

)
=

∞∑

k=2

1

(k − 1)
(2k
k

) = 1

2
− 1

2
A+
1 = 1

2
− π

√
3

18
,

S− =
∞∑

m=1

(
A−
m − 1

2

)
=

∞∑

k=2

(−1)k−1

(k − 1)(2kk )
= 1

2
− 3

2
A−
1 = 1

2
− 3√

5
ln φ.

Again, these equations resemble similar equations for the zeta and eta functions,
namely

∑∞
m=2(ζ(m) − 1) = 1 and

∑∞
m=2(η(m) − 1) = 1 − 2η(1) = 1 − 2 ln 2.

Finally, the sums A+
1 and A+

2 from (21) and (23), and also A−
1 and A−

2 of (22) and
(24), are related by

2A+
2 = 3(A+

1 )2 = π2

9
, 2A−

2 = 5(A−
1 )2 = 4 ln2φ. (31)

In addition, the relations between A+
0 and A+

1 , and also between A−
0 and A−

1 , are given
by (27) and (28):

3A+
0 − 2A+

1 = 1, 5A−
0 − 2A−

1 = 1. (32)

Thus, combining (31) and (32), the following double sums are shown to be 0:

0 = 6A+
0 A+

2 − 4A+
1 A+

2 − 3A+
1 A+

1 =
∞∑

k=1

∞∑

j=1

6k2 − 4k − 3k j

k2 j2
(2k
k

)(2 j
j

) ,

0 = 10A−
0 A−

2 − 4A−
1 A−

2 − 5A−
1 A−

1 =
∞∑

k=1

∞∑

j=1

(−1)k+ j 10k
2 − 4k − 5k j

k2 j2
(2k
k

)(2 j
j

) .

Here, the question remains open whether these equations could be proved in rational
terms, i.e., without an explicit calculation of the irrational sums A1 and A2.
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