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Abstract
There are studied algebraic properties of quadratic Poisson brackets on non-associative
non-commutative algebras, compatible with their multiplicative structure. Their rela-
tions both with derivations of symmetric tensor algebras and Yang–Baxter structures
on the adjacent Lie algebras are demonstrated. Special attention is paid to quadratic
Poisson brackets of Lie–Poisson type, examples of Balinsky–Novikov and Leibniz
algebras are discussed. The non-associative structures of commutative algebras related
with Balinsky–Novikov, Leibniz, Lie, and Zinbiel algebras are studied in detail.

Keywords Balinsky–Novikov algebra · Lie algebra · Leibniz algebra ·
Zinbiel algebra · Derivation · Pre-Poisson brackets · Lie–Poisson structure
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1 Introduction

Many integrableHamiltonian systems, discovered during the last decades, were under-
stood [15,16,24,38] owing to the Lie-algebraic properties of their internal hidden
symmetry structures. A modern Lie-algebraic approach to describing such systems
in many cases allows to represent them as some specially constructed orbits of some
hidden group actions on the Poisson manifolds, generated by a set of the suitably con-
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structed Casimir invariants on the adjoint space to the corresponding symmetry Lie
algebra. A first formal account of the related Hamiltonian operators and differential-
algebraic structures, lying in the background of such integrable systems, was given
by Gelfand and Dorfman [19,26] and later was extended by Dubrovin and Novikov
[20,21], and also by Balinsky and Novikov [10–13]. There were also devised some
new special differential-algebraic techniques [41] for studying the Lax type integra-
bility and the structure of related Hamiltonian operators for a wide class of Riemann
type hydrodynamic hierarchies. Just recently a lot of works appeared [7–9,40] being
devoted to the finite-dimensional representations of the Novikov algebra. Their impor-
tance for constructing integrable multi-component nonlinear Camassa–Holm type
dynamical systems on functional manifolds was demonstrated by Strachan and Szab-
likowski in [47], where there was suggested in part the Lie-algebraic imbedding of
the Novikov algebra into the general Lie–Poisson orbits scheme of classification Lax
type integrable Hamiltonian systems.

In the work we succeeded in formal differential-algebraic reformulating the clas-
sical Lie algebraic scheme and developed an effective approach to classification of
algebraic structures lying in the background of integrable multicomponent Hamilto-
nian systems.We have devised a simple Lie-algebraic algorithm, allowing to construct
new algebraic structureswithinwhich the corresponding linear and quadratic Hamilto-
nian operators, generated by the correspondingLie–Poisson structure on the co-adjoint
orbits, exist and describe the related integrable multicomponent dynamical systems.
In these cases an interesting problem of describing the Balinsky–Novikov and Leib-
niz type algebras, whose multiplicative structures satisfy some additional tensor
r -structure type relationships naturally arises. We studied also the non-associative
structures of commutative algebras related with Balinsky–Novikov, Leibniz, Lie and
Zinbiel algebras, having diverse important applications both in theory of integrable
dynamical systems and to modern problems of communication technology.

2 Quadratic Poisson brackets: compatibility and related algebraic
structures

Let (A,+, ◦) be a finite-dimensional non-associative and non-commutative algebra
of dimension N = dim A ∈ Z+ over an algebraically closed field K. To the algebra
A one can naturally relate the loop algebra ˜A of smooth mappings u : S

1 → A and
endow it with a suitably generalized natural convolution 〈 · , · 〉 on ˜A∗× ˜A → K, where
˜A∗ is the corresponding adjoint to the space ˜A.

First, we shall consider a general scheme of constructing non-trivial ultra-local and
local [24] quadratic Poisson structures [11,12,14,45] on the loop space ˜A, compatible
with the internal multiplication in the algebra A. Namely, let {es ∈ A : s = 1, N } be
a basis of the algebra A and its dual {us ∈ ˜A∗ : s = 1, N } with respect to 〈 · , · 〉 on
˜A∗× A, that is 〈u j, ei 〉 ..= δ

j
i for all i, j = 1, N , and such that for any

u(x) =
N

∑

s=1

us (x; u)es ∈ ˜A, x ∈ S
1,
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210 O. D. Artemovych et al.

the quantities us(x; u) ..= 〈us(x), u〉 ∈ K for all s = 1, N , x ∈ S
1. Denote by

˜A∗∧ ˜A∗ ..= Skew(˜A∗⊗ ˜A∗) and let ϑ∗ : ˜A∗∧ ˜A∗ → Symm(˜A∗⊗ ˜A∗) be a skew-
symmetric bilinearmapping. Then for linear on ˜A functions a(u) ..= 〈a, u〉 and b(u) ..=
〈b, u〉 for any a, b ∈ ˜A∗ the expression

{a(u), b(u)} ..= 〈ϑ∗(a∧b), u⊗u〉 (1)

defines an ultra-local quadratic skew-symmetric pre-Poisson bracket on ˜A∗. Since the
algebra ˜A possesses its internal multiplicative structure “◦ ′′, the important problem
[11,12] arises: Under what conditions is the pre-Poisson bracket (1) Poisson and
compatiblewith this internal structure on ˜A?Toproceedwith elucidating this question,
we define a co-multiplication � : ˜A∗ → ˜A∗⊗ ˜A∗ on an arbitrary element c ∈ ˜A∗ by
means of the relationship

〈�c, (w⊗v)〉 = 〈c, w◦v〉 (2)

for arbitrary w, v ∈ ˜A. Note that the co-multiplication � : ˜A∗ → ˜A∗⊗ ˜A∗, defined
this way, is a homomorphism of the tensor algebra T1(˜A∗) into T2(˜A∗) and the linear
pre-Poisson structure { · , · } on ˜A∗ [see (1)] is called compatiblewith themultiplication
“◦” on the algebra ˜A, if the following invariance condition:

�{a(u), b(u)} = {�a(u),�b(u)}

holds for all a, b ∈ ˜A∗ and arbitrary u ∈ ˜A. Now, taking into account that multi-
plication in the algebra A can be represented for any i, j = 1, N by means of the
relationship

ei ◦ej ..=
N

∑

s=1

σ s
i j es, (3)

where the quantities σ s
i j ∈ K for all i, j and k = 1, N are constants, the co-

multiplication � : A∗ → A∗⊗ A∗ acts on the basic functionals us ∈ ˜A∗, s = 1, N ,
as

�(us) =
N

∑

i, j=1

σ s
i j u

i ⊗u j. (4)

Additionally, if the mapping ϑ∗ : ˜A∗∧ ˜A∗ → Symm(˜A∗⊗ ˜A∗) is given, for instance,
in the simple linear form

ϑ∗ : (

ui ⊗u j − u j ⊗ui
) →

N
∑

s,k=1

(

ci jsk − c jiks
)

us⊗uk, (5)
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the quantities ci jsk ∈ K are constant for all i, j and s, k = 1, N and chosen to be sym-
metric in their lower indices, then for the adjoint to (5) mapping ϑ : Symm(˜A⊗ ˜A) →
˜A∧ ˜A one obtains the expression

ϑ : (es⊗ek + ek⊗es) →
N

∑

i, j=1

ci jsk ei ∧ej .

Recall that a linear mapping ϑ : A → B from an algebra A to the A-bimodule B is
called a derivation if for any λ,μ ∈ A there holds the Leibniz property

ϑ(λ ·μ) = ϑ(λ)μ + λϑ(μ). (6)

The following theorem [11] gives an effective compatibility criterion for the multipli-
cation in the algebra A.

Theorem 2.1 The pre-Poisson bracket (2) is compatible with the multiplication (3) if
and only if the mapping ϑ : Symm(˜A⊗ ˜A) → ˜A∧ ˜A is a derivation of the symmetric
algebra Symm(˜A⊗ ˜A).

Proof The idea of the proof consists in checking the relationships on the corresponding
coefficients following both from (2) and (6) for basis elements λ,μ ∈ Symm(˜A⊗ ˜A).

��
Observe now that the pre-Poisson bracket (1) can be equivalently rewritten as

〈a∧b, {u⊗, u}〉 = 〈a∧b, ϑ(u⊗u)〉,

giving rise, owing to the arbitrariness of elements a, b ∈ ˜A∗, to the following tensor
equality:

{u⊗, u} = ϑ(u⊗u) (7)

with the derivation ϑ . As was remarked in [11,12], the following natural commutator
expression:

ϑ(λ) ..= [r , λ]

for any λ ∈ Symm(˜A⊗ ˜A) and a fixed skew-symmetric constant tensor r ∈ ˜A⊗ ˜A is
an inner derivation of the algebra Symm(˜A⊗ ˜A). Thus, one can consider a class of
pre-Poisson brackets (7) in the following commutator tensor form:

{u⊗, u} = [r , u⊗u] (8)

and pose a problem of finding conditions on the tensor r ∈ ˜A⊗ ˜A under which the
pre-Poisson bracket (8) becomes a Poisson one.
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212 O. D. Artemovych et al.

If the algebra ˜A is non-commutative and associative, the adjacent Lie algebra
L Ã 
 ˜A makes it possible to construct the related formal Lie group GÃ

..= 1 + ˜A,
whose tangent space at the unity can be identified with the Lie algebra L Ã of the
right-invariant vector fields on GÃ. For a fixed element u ∈ GÃ one can denote by
ρu, ξu : L Ã→ Tu(GÃ) the differentials of the right and left shifts on GÃ, respectively.
Let ρ∗

u , ξ
∗
u : T ∗

u (GÃ) → L∗
Ã
be dual mappings, respectively. Then the following the-

orem, stated in [45], holds.

Theorem 2.2 The following bracket:

{a(u), b(u)} = 〈ρ∗
u (b),R(ρ∗

u (a))〉 − 〈ξ∗
u (b),R(ξ∗

u (a))〉 (9)

for any a, b ∈ T ∗
u (GÃ) is Poisson if the homomorphism R : ˜A → ˜A, naturally related

with the tensor r ∈ ˜A⊗ ˜A, is skew-symmetric and satisfies the modified Yang–Baxter
relationship

R([α,Rβ] + [Rα, β]) =[Rα,Rβ] + [α, β] (10)

for all α, β ∈ L Ã subject to the Lie commutator structure in L Ã.

If to take into account that in this case there hold the expressions

ρ∗
u (c) = �2c(u), ξ∗

u (c) = �1c(u)

for any c ∈ ˜A∗, where the mappings �1 and �2 stand for convolutions of the
co-multiplication� : ˜A → ˜A⊗ ˜Awith the first and second tensor components, respec-
tively, that is

〈�c, u⊗α〉 = 〈c, u ◦α〉 ..= 〈�1c(u), α〉,
〈�c, α⊗u〉 = 〈c, α ◦u〉 ..= 〈�2c(u), α〉

for any α ∈ ˜A, the bracket (9) will become

{a(u), b(u)} = 〈b,R(�2a(u))◦u〉 − 〈b, u ◦R(�2a(u))〉 (11)

for any a, b ∈ T ∗
u (GÃ), which can be easily enough computed, if to take into account

the relationship (4).
The following result [14,45] is a simple consequence of Theorem 2.2 in the case of

the associative matrix algebra ˜A and is almost classical.

Theorem 2.3 Let the algebra ˜A be matrix associative with respect to the standard
multiplication, and endowed both with the natural commutator Lie structure [ · , · ]
and with the trace-type symmetric scalar product 〈 · , · 〉 ..= Tr( · ·). Define also for the
tensor

r ..=
N

∑

i, j=1

r i j ei ⊗ej ∈ ˜A⊗ ˜A,
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the related R-homomorphism

Rα ..=
N

∑

i, j=1

r i j ei 〈ej , α〉 (12)

for any α ∈ ˜A. Then the pre-Poisson bracket (11) is Poisson if the R-homomorphism
(12) is skew-symmetric and satisfies themodifiedYang–Baxter relationship (10).More-
over, the Poisson bracket (11) can be equivalently rewritten in the following simplified
form:

{a(u), b(u)} = 〈ub,R(ua)〉 − 〈bu,R(au)〉

for any a, b ∈ ˜A∗.

Remark 2.4 The Yang–Baxter relationship (10) is basic for finding the correspond-
ing internal multiplication structure of the algebra ˜A, allowing the quadratic Poisson
bracket (11). If, for example, to assume that the adjacent loop Lie algebra L Ã allows
splitting into two subalgebras,L Ã = L+

Ã
⊕L−

Ã
, then the homomorphismR = P+−P−

solves the relationship (10), where, by definition, themappingsP± : L Ã → L±
Ã

⊂ L Ã
are the suitable projections. If to assume, that the adjacent loop Lie algebraL Ã is gen-
erated by the associative multiplication “∗” of the Balinsky–Novikov loop algebra ˜A,
then the related Lie structure is given by the commutator

[α, β] ..= α∗β − β ∗α (13)

for the derivation Dx = d/dx and any α, β ∈ ˜A, giving rise to the ultra-local quadratic
Poisson bracket (11). To our regret, we do not know whether the Lie structure

[α, β] ..= α ◦Dxβ − β ◦Dxα (14)

for anyα, β ∈ ˜A and all x ∈ S
1, suitably determining the adjacent loop Lie algebraL Ã,

can be generated by some associative multiplication on the loop Balinsky–Novikov
algebra, with respect to which the Lie structure (14) could entail the local quadratic
Poisson bracket (11).

Problem 2.5 Concerning the algebraic structures discussed above the interesting prob-
lem arises: Classify associative Balinsky–Novikov loop algebras ˜A, whose adjacent
Lie algebras L Ã allow splitting into two non-trivial subalgebras subject to the Lie
structure (13).

Remark 2.6 In the case of basic Leibniz loop algebra ˜A, it is well known that the usual
commutator structure (13) does not generate the adjacent loop Lie algebra L Ã, yet the
following inverse-derivative Lie structure:

[α, β] ..= α ◦D−1
x β − β ◦D−1

x α, (15)
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214 O. D. Artemovych et al.

suitably determined for any α, β ∈ ˜A and all x ∈ S
1, already does. Yet, we do not know

whether the Lie structure (15) can be generated by some associative multiplication
“∗” on the loop Leibniz algebra ˜A.

3 Quadratic Poisson structures: the Lie–Poisson type generalization

Assume as above that (A,+, ◦) is a finite-dimensional algebra of the dimension N =
dim A∈Z+ (in general non-associative and non-commutative) over an algebraically
closed field K. Based on the algebra A one can construct the related loop algebra ˜A
of smooth mappings u : S

1 → A and endow it with the suitably generalized natural
convolution 〈 · , · 〉 on ˜A∗× ˜A → K, where ˜A∗ is the corresponding adjoint space to ˜A.

First, we will consider a general scheme of constructing non-trivial ultra-local and
local Poisson structures on the adjoint space ˜A∗ [24] compatible with the internal
multiplication in the loop algebra ˜A. Consider a basis {es ∈ A : s = 1, N } of the
algebra A and its dual {es ∈ A∗ : s = 1, N } with respect to the natural convolution
〈 · , · 〉 on A∗× A, that is 〈e j, ei 〉 ..= δ

j
i , i, j = 1, N , and such that for any

u(x) =
N

∑

s=1

us(x)e
s ∈ ˜A∗, x ∈ S

1,

the quantities us(x) ..= 〈u(x), es〉 ∈ K for all s = 1, N , x ∈ S
1. Denote by ˜A∧ ˜A ..=

Skew(˜A⊗ ˜A) and letϑ∗ : ˜A∧ ˜A → Symm(˜A)be a skew-symmetric bilinearmapping.
Then the expression

{u(a), u(b)} ..= 〈u(x), ϑ∗(a∧b)〉 (16)

defines for any a, b ∈ ˜A an ultra-local linear skew-symmetric pre-Poisson bracket on
˜A∗. If the mapping ϑ∗ : ˜A∧ ˜A → Symm(˜A) is given, for instance, in the simple linear
form

ϑ∗ : (ei ⊗ej − ej ⊗ei ) →
N

∑

s=1

(

csi j − csji
)

es, (17)

where quantities csi j ∈ K are constant for all i, j and s = 1, N , then for the adjoint to

(17) mapping ϑ : ˜A∗ → ˜A∗∧ ˜A∗ one obtains the expression

ϑ : es →
N

∑

i, j=1

(

csi j − csji
)

ei ⊗e j. (18)

For the pre-Poisson bracket to be a Poisson bracket on ˜A∗, it should satisfy additionally
the Jacobi identity. To find the corresponding additional constraints on the internal
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multiplication “◦” on the algebra ˜A, define for any u(x) ∈ ˜A∗ the skew-symmetric
linear mapping

ϑ(u) : ˜A → ˜A∗, (19)

called by the Hamiltonian operator [26], via the identity

〈ϑ(u)a, b〉 ..= 〈ϑu(x), a∧b〉

for any a, b ∈ ˜A, where the mapping ϑ : ˜A∗ → ˜A∗∧ ˜A∗ is determined by the expres-
sion (18), being adjoint to it. Then it is well known [26] that the pre-Poisson bracket
(16) is a Poisson one if and only if theHamiltonian operator (19) satisfies the Schouten–
Nijenhuis condition

[[ϑ(u), ϑ(u)]] = 0 (20)

for any u(x) ∈ ˜A∗. Since

ϑ(u)ei =
N

∑

s,k=1

(

csik − cski
)

us(x)e
k (21)

holds for any basis element ei ∈ A, i = 1, N , the resulting pre-Poisson bracket (16)
is equal to

{u(a), u(b)} = 〈ϑ(u)a, b〉 =
N

∑

s=1

N
∑

i, j=1

(

csi j − csji
)

aib j us(x)

=
〈

u(x),
N

∑

i, j=1

(

csi j − csji
)

aib j es

〉

(22)

for any u(x) ∈ ˜A∗ and all a, b ∈ ˜A. If now to define on the algebra A the natural
adjacent Lie algebra structure to the algebra A

[ei , ej ] = ei ◦ej − ej ◦ei ..=
N

∑

s=1

(

csi j − csji
)

es (23)

for any basis elements ei , ej ∈ A, i, j = 1, N , the expression (22) yields for all
a, b ∈ ˜A the well-known [1,4] classical Lie–Poisson bracket

{u(a), u(b)} = 〈u, [a, b]〉. (24)
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216 O. D. Artemovych et al.

Concerning the adjacent Lie algebra structure condition (23), it can be easily rewritten
as the set of relationships

σ s
i j − σ s

ji = csi j − csji ,

whose obvious solution is

csi j = σ s
i j (25)

for any i, j, s = 1, N . As the bracket (24) is of the classical Lie–Poisson type, for
the Hamiltonian operator (21) to satisfy the Schouten–Nijenhuis condition (20) it is
enough to check only the weak Jacobi identity for the loop Lie algebraL Ã, adjacent to
the algebra ˜A via imposing the Lie structure (23), taking into account the relationships
(25). For instance, if the commutator of the adjacent loop Lie algebra L Ã is given by
the expression

[a, b] = a ◦Dxb − b◦Dxa, (26)

the corresponding algebra A coincides with the well-known Balinsky–Novikov alge-
bra, determined by means of the following relationships:

[La, Lb] = L [a,b], [Ra,Rb] = 0, (27)

where, by definition, Rab = b◦a = Lba for any a, b ∈ ˜A. If, for instance, the
commutator of the adjacent loop Lie algebra L Ã is given by the expression

[a, b] = a ◦D−1
x b − b◦D−1

x a (28)

for a suitably determined inverse-derivation mapping D−1
x : ˜A → ˜A, the correspond-

ing algebra A coincides with the well-known right Leibniz algebra, described by the
relationships

[Ra, Rb] = Ra◦b, [Ra,Rb] = 0 (29)

for any a, b ∈ ˜A. As a consequence of reasonings above one can formulate the
following general theorem.

Theorem 3.1 The linear pre-Poisson bracket (24) on ˜A∗ is Lie–Poisson on the adjoint
space L∗

Ã
if and only if the internal multiplicative structure of the algebra A is com-

patible with the weak Lie algebra structure on the adjacent loop Lie algebra L Ã.

Similarly, one can consider a simple ultra-local quadratic pre-Poisson bracket on ˜A∗
in the form

{u(a), u(b)} ..= 〈u(x)⊗u(x), ϑ∗(a∧b)〉 (30)
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Non-associative structures of commutative algebras… 217

for any a, b ∈ ˜A, where the skew-symmetric mapping ϑ∗ : ˜A∧ ˜A → Symm(˜A⊗ ˜A)

is given for any i, j = 1, N in the quadratic form

ϑ∗(ei ⊗ej − ej ⊗ei ) ..=
N

∑

k,s=1

(

cksi j − cksji
)

(ek⊗es + es⊗ek).

In particular, if to assume that the coefficients cksi j = σ k
i jα

s for some constant numbers

σ k
i j and αs ∈ K for all i, j and k, s = 1, N , where, by definition, the multiplications

ek ◦es ..=
N

∑

k=1

σ k
i j ek

coincides with that of the algebra A, then the pre-Poissson bracket (30) yields for any
a, b ∈ A a very compact form

{u(a), u(b)} ..= 〈u(x)⊗u(x), α⊗[a, b] + [a, b]⊗α〉, (31)

generalizing the classical Lie–Poisson expression (24) and parametrically depending
on the constant vector

α ..=
N

∑

s=1

αses ∈ A.

Thus, for the pre-Lie–Poisson bracket (31) one can formulate suitable constraints
on the algebraic structure of A. For instance, if the weak algebraic structure on the
adjacent Lie algebraL Ã is given, respectively, either by the Lie commutator (26) or by
(28), then the corresponding multiplicative structures of the algebra A are generated,
respectively, by the Balinsky–Novikov (27) and Leibniz (29) algebras relationships,
augmented with the following common tensor multiplicative constraint:

Ra ⊗Rα = 0 = Rα⊗Ra, (32)

which holds for any a ∈ A and arbitrary but fixed element α ∈ A. So, one can
formulate the following theorem.

Theorem 3.2 The quadratic pre-Lie–Poisson bracket (31) on ˜A∗ is Poisson if and only
if the internal multiplicative structure of the algebra A is compatible both with the
weak Lie algebra structure on the adjacent loop Lie algebra L Ã and with the tensor
multiplicative relationships (32).

In these cases there arises an interesting problem of describing the Balinsky–Novikov
and Leibniz algebras, whose multiplicative structures additionally satisfy tensor rela-
tionships (32). Such and related algebraic structure problems are planned to be studied
in detail elsewhere. In the next sectionwe proceed to study general algebraic structures
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218 O. D. Artemovych et al.

related both with generalized Balinsky–Novikov and Leibniz algebras, and so-called
Zinbiel algebras, having diverse important applications in communications technol-
ogy.

4 Algebraic structures preliminaries

Let A be an associative commutative algebra over a field K of any finite or infinite
dimension (with the addition “+” and multiplication “ ·”) not necessary with identity
and δ its derivation, i.e., δ : A → A is a K-linear map satisfying the Leibniz rule.
Then

Aδ,ξ = (A,+, ∗)

is a Balinsky–Novikov algebra (the so-called δ-adjancent or δ-associated Balinsky–
Novikov algebra of A ) with respect to “∗” defined by the rule

a ∗b = a ·δ(b) + ξ ·a ·b

(where ξ is a fixed element of A) and so

(a ∗b)∗c = (a ∗c)∗b

and

(a ∗b)∗c − a ∗(b∗c) = (b∗a)∗c − b∗ (a ∗c)

for all a, b, c ∈ A. In particular, Aδ,0 ..= Aδ,ξ with ξ = 0. Balinsky–Novikov algebras
were introduced in connection with the so-called Hamiltonian operators [26] and Pois-
son brackets of hydrodynamic type [13]. Note here, that the term “Novikov algebra”
was suggested by Osborn in [40]. Moreover,

Aδ,L = (A,+, [−,−])

is a Lie algebra (the so-called δ-adjancent or δ-associated Lie algebra of A) with
respect to the Lie bracket “[−,−]” defined by the rule

[a, b] = a ∗b − b∗a

for any a, b ∈ A, see [29,30,37], [42, p. 285] and [43, p. 245].
Let (D,+, �) be a (Lie, Balinsky–Novikov, Zinbiel or associative) algebra with

the derivation algebra Der D, ∅ �= � ⊆ Der D and θ ∈ Der D. Then annW ..= {a ∈
D : a�W = 0 = W �a} is the annihilator of W ⊆ D and Z(D) ..= {z ∈ D : z�a =
a� z for all a ∈ D} is the center of D. If I is an ideal of D and θ(I ) ⊆ I (respectively,
for any θ ∈ �), then we say that I is a θ -ideal (respectively, �-ideal) of D. Recall
that D is called:
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Non-associative structures of commutative algebras… 219

• �-simple if D�D �= 0 and any �-ideal I of D is 0 or D,
• �-prime if, for any �-ideals B,C of D, the condition B�C = 0 implies that

B = 0 or C = 0,
• �-semiprime if, for any �-ideal B of D, the condition B � B = 0 implies that

B = 0.

Every �-prime algebra is �-semiprime and every �-simple algebra is �-prime. If
� = {θ} and D is a �-simple (respectively, �-prime or �-semiprime), then we say
that D is θ -simple (respectively, θ -prime or θ -semiprime). Moreover, if� = {0}, then
a �-simple (respectively, �-prime or �-semiprime) algebra is simple (respectively,
prime or semiprime). Any unexplained terminology is standard as in [27,28,31,34].

The purpose of this paper is also to study relationships between associative commu-
tative algebras A, their δ-associated Balinsky–Novikov algebras Aδ,ξ and δ-associated
Lie algebras Aδ,L . Connections between properties of an associative commutative
algebra A and its δ-associated algebra Aδ,L have been investigated by Ribenboim [43],
Jordan, Jordan [29,30], and Nowicki [37]. Xu [49] found some classes of infinite-di-
mensional simple Balinsky–Novikov algebras of type Aδ,ξ . Bai and Meng [6] proved
that, if A is a finite-dimensional associative commutative algebra and 0 �= δ ∈ Der A,
then Aδ,0 is transitive (i.e., ra : A � x �→ x ∗a = x ·δ(a) ∈ A is a nilpotent right
transformation operator of Aδ,0 for any a ∈ A) and Aδ,L is a solvable Lie algebra
[32]. In [48, Proposition 2.8] it is proved that the Balinsky–Novikov algebra Aδ,ξ is
simple if and only if an associative commutative ring A is δ-simple. As noted in [5],
there is a conjecture: the Balinsky–Novikov algebras N can be realized as the algebras
Aδ,0, where A is a suitable associative commutative algebras, and their (compatible)
linear deformation. Recall that a binary operation G1 : N ×N → N of a Balinsky–
Novikov algebra (N ,+, ∗) is called its linear deformation if algebras (N ,+, gt ),
where gt (a, b) = a ∗b+ tG1(a, b), are Balinsky–Novikov algebras for every t . If G1
is commutative, then it is called compatible.

As noted in [5], a “good” structure theory for algebraic systems means an existence
of a well-defined radical and the quotient by the radical is semisimple. Our result in
this direction is the following.

Theorem 4.1 Let A be an associative commutative algebra with 1, charK �= 2, 0 �=
δ ∈ Der A and ξ ∈ A. Then the following conditions are equivalent:

(i) A is a δ-semiprime (respectively, δ-prime or δ-simple) algebra,
(ii) Aδ,ξ is a semiprime (respectively, prime or simple) Balinsky–Novikov algebra,
(iii) Aδ,L is a semiprime (respectively, prime or simple) Lie algebra.

A triple (Z ,+, ◦) is called a Zinbiel algebra (or a dual Leibniz algebra) if

• (Z ,+) is an abelian group,
• (x ◦ y)◦ z = x ◦(y ◦ z) + x ◦(z ◦ y),
• (x + y)◦ z = (x ◦ z) + (y ◦ z) and x ◦(y + z) = (x ◦ y) + (x ◦ z)

for all x, y, z ∈ Z . As a consequence, (x ◦ y)◦ z = (x ◦ z)◦ y. If x� y = x ◦ y + y ◦ x
for all x, y ∈ Z (see Lemma 5.1), then (Z ,+, �) is an associative commutative
algebra (the so-called adjacent or associated associative algebra Z A of a Zinbiel
algebra Z ). Zinbiel algebras were introduced by Loday in [33,34] and are very popular
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in the control theory (in context of “chronological” algebras, see e.g. [2,3,31,44]) and
in the theory of Leibniz cohomology [35]. Zinbiel rings can be defined by analogy.

Some interesting properties of Zinbiel algebras were obtained by Dzhumadil’daev,
Tulenbaev [22,23], and Omirov [39]. In particular, Dzhumadil’daev [22] proved that
any finite-dimensional Zinbiel algebra over the complex numbers field is nilpotent.
We prove the next result.

Proposition 4.2 Let Z be a Zinbiel algebra over a field K. If the characteristic
charK = p > 0 is prime, then the associated associative algebra Z A is nil of
bounded degree p.

5 An associative commutative structure of a Zinbiel algebra

Recall that a (Zinbiel or associative) algebra (A,+, �) is called reduced if the impli-
cation a�a = 0 ⇒ a = 0 is true for any a ∈ A.

Lemma 5.1 [18, Theorem 3.4] If (Z ,+, ◦) is a Zinbiel algebra, then (Z ,+, �) is an
associative commutative algebra, where “�” is defined by the rule a�b = a ◦b +
b◦a for any a, b ∈ Z.

An additive subgroup I of a Zinbiel ring (respectively, algebra) Z is said to be an
associative ideal of Z if I� Z ⊆ I . It is easy to see that I is an associative ideal of Z
if and only if it is an ideal of Z A. A Zinbiel ring Z is called 2-torsion-free if, for any
x ∈ Z , 2x = 0 implies that x = 0.

Lemma 5.2 Let Z be a Zinbiel ring (respectively, algebra over a field K), ∅ �= � ⊆
Der Z and a ∈ Z. Then the following properties hold:

(i) a ◦ Z ..= {a ◦ z : z ∈ Z } is a right ideal of Z,
(ii) if X is a non-empty subset of Z, then the right annihilator rann X ..= {t ∈ Z :

X ◦ t = 0} of X is an associative ideal of Z and rann X ⊆ rann(X ◦ Z),
(iii) if I is a right �-ideal of Z, then Z ◦ I and I + (Z ◦ I ) are �-ideals of Z,
(iv) if X is an associative �-ideal of Z, then the left annihilator lann X ..= {t ∈ Z :

t ◦ X = 0} is a right �-ideal of Z,
(v) if Z is 2-torsion-free (respectively, charK �= 2), then Z is reduced if and only

if Z A is reduced,
(vi) if Z is 2-torsion-free (respectively, charK �= 2) and I , J are commutating

ideals of Z (i.e., i ◦ j = j ◦ i for i ∈ I and j ∈ J ), then I ◦ J ⊆ rann Z,
(vii) if K is an additive�-closed subgroup of Z, then S(K ) ..= {a ∈ K : a ◦ Z ⊆ K }

is a right �-ideal of Z,
(viii) if I , J are �-ideals of Z, then I ◦ J is a right �-ideal of Z,
(ix) if K is an associative ideal of Z, then K ◦K ⊆ S(K ),
(x) if e = e2 ∈ Z A, then e = 0.

Proof Let z, t ∈ Z .

(i) Clearly a ◦ Z is a subgroup of the additive group (Z ,+) and (a ◦ z)◦ t = a ◦(z ◦ t)+
a ◦(t ◦ z) ∈ a ◦ Z . Hence a ◦ Z is a right ideal of Z .
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(ii) If x ∈ X , u ∈ rann X , then 0 = (x ◦u)◦ z = x ◦(u� z) and so u� z ∈ rann X .
Moreover, (x ◦ z)◦u = x ◦(z�u) ∈ X ◦ rann X = 0.

(iii) Assume that i, j ∈ I . Since (z ◦ t)◦ i, z ◦ (i ◦ t), t ◦((i ◦ z), (t ◦ z)◦ i ∈ Z ◦ I ,
(z ◦ i)◦ t = (z ◦ t)◦ i = z ◦(t ◦ i) + z ◦(i ◦ t) and (t ◦ z)◦ i = t ◦(z ◦ i) + t ◦(i ◦ z), we
deduce that z ◦(t ◦ i), t ◦(z ◦ i) ∈ Z ◦ I . We also see that

t ◦(i + z ◦ j) = t ◦ i + t ◦(z ◦ j) = t ◦ i + (t ◦ z)◦ j − t ◦( j ◦ z) ∈ (Z ◦ I ) + I

and

(i + z ◦ j)◦ t = i ◦ t + (z ◦ j)◦ t = i ◦ t + (z ◦ t)◦ j ∈ (Z ◦ I ) + I .

(iv) If a ∈ lann X , i ∈ X , then (a ◦ t)◦ i = a ◦(t� i) = 0.

(v) It follows from z ◦ z = 0 ⇔ z� z = 0.

(vi) Assume that i ∈ I and j ∈ J . Then

j ◦(i ◦ z) = (i ◦ z)◦ j = i ◦(z ◦ j) + i ◦( j ◦ z) = (z ◦ j)◦ i + ( j ◦ z)◦ i
= z ◦(i ◦ j) + z ◦(i ◦ j) + j ◦(z ◦ i) + j ◦(i ◦ z)

and from this

2(z ◦(i ◦ j)) = − ( j ◦(z ◦ i)). (33)

On the other hand,

j ◦(z ◦ i) = (z ◦ i)◦ j = z ◦(i ◦ j) + z ◦( j ◦ i) = 2(z ◦(i ◦ j)). (34)

Then (33) and (34) imply z ◦(i ◦ j) = 0.

(vii) If u ∈ S(K ), then

(u ◦ t)◦ z = u ◦(t ◦ z) + u ◦(z ◦ t) = u ◦(t� z) ∈ u ◦ Z ⊆ K .

(viii) Straightforward.

(ix) If a, b ∈ K , then (a ◦b)◦ z = a ◦(b� z) ∈ K ◦K ⊆ K and the assertion holds.

(x) Since e = e◦e = (e◦e)◦e = e◦(e◦e) + e◦(e◦e) = e◦e + e◦e = 2e, we
conclude that e = 0. ��
Lemma 5.3 If Z is a Zinbiel ring (respectively, algebra) and ∅ �= � ⊆ Der Z, then
the following properties hold:

(i) if K is an associative �-ideal of Z, then S0(K ) = S(K ) + (Z ◦ S(K )) is a
�-ideal of Z,

(ii) if I , J are associative ideals of Z such that I � J = 0, then S0(I )◦ S0(J ) = 0.
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Proof (i) By Lemma 5.2 (vii), (ix) and (iii), S0(K ) is a �-ideal of A.

(ii) Let a ∈ S(I ), b ∈ S(J ) and z, t ∈ Z . Then 0 = b�a = b◦a + a ◦b and we have
a ◦b = − b◦a. Since (z ◦b)◦a = z ◦(b�a) = 0,

a ◦(z ◦b) = (a ◦ z)◦b − a ◦(b◦ z)
= (a ◦ z)◦b + (b◦ z)◦a = (a ◦b)◦ z + (b◦a)◦ z = (a�b)◦ z = 0

and

(t ◦a)◦(z ◦b) = t ◦(a ◦(z ◦b)) + t ◦((z ◦b)◦a)

= t ◦(a ◦(z ◦b)) + t ◦(z ◦(b�a)) = t ◦(a ◦(z ◦b)) = 0,

we conclude that S0(I )◦ S0(J ) = 0. ��

Corollary 5.4 Let Z be a Zinbiel ring (respectively, algebra) and ∅ �= � ⊆ Der Z. If
Z A is �-simple (respectively, �-prime or �-semiprime), then Z is the same.

Proof If � ⊆ Der Z , then � ⊆ Der Z A.

Simplicity. Since every �-ideal of Z is a �-ideal of Z A, the simplicity of Z A implies
that Z is simple.

Primeness. Let Z A be a �-prime ring (respectively, algebra) and I , J be �-ideals of
Z such that I ◦ J = 0. Then I , J , and J ∩ I are �-ideals of Z A and

(J ∩ I )◦(J ∩ I ) ⊆ I ◦ J = 0.

Since (J ∩ I )�(J ∩ I ) = 0, we conclude that J ◦ I ⊆ J ∩ I = 0. But then I � J = 0
and consequently I = 0 or J = 0.

Semiprimeness. By analogy as in the prime case. ��

Proof of Proposition 4.2 Let a ∈ Z . By a�n we denote the n-th power of a in the
algebra Z A (n is a positive integer). We have

• a�2 = a�a = 2! (a ◦a),
• a�3 = (2! (a ◦a))�a = 3! (a ◦(a ◦a)).

Now assume that

a�(p−1) = (p − 1)! (a ◦ (a ◦ · · · ◦(a ◦a) · · · )
︸ ︷︷ ︸

p−1 times

)
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and compute

a�p = a�(p−1) �a = a ◦a�(p−1) + a�(p−1) ◦a
= (p − 1)! (a ◦(a ◦ · · · ◦(a ◦a) · · · )

︸ ︷︷ ︸

p times

) + (p − 1)! ((a ◦ (a ◦ · · · ◦(a ◦a) · · · )
︸ ︷︷ ︸

p−2 times

)◦a)

= (p − 1)! (a ◦(a ◦ · · · ◦(a ◦a) · · · )
︸ ︷︷ ︸

p times

) + (p − 1)! ((a ◦((a ◦ · · · ◦(a ◦a) · · · )
︸ ︷︷ ︸

p−2 times

◦a))

+ (a ◦((a ◦ · · · ◦(a ◦a) · · · )
︸ ︷︷ ︸

p−2times

◦a)))

= · · · = p!(a ◦(a ◦ · · · ◦(a ◦a) · · · )
︸ ︷︷ ︸

p times

) = 0. ��

6 Balinsky–Novikov properties

Lemma 6.1 ([25,26,43], [48, Lemma 2.3] and [50, Proposition 2.4]) If A is an asso-
ciative commutative algebra, δ ∈ Der A, and ξ ∈ A, then Aδ,ξ is a Balinsky–Novikov
algebra.

Lemma 6.2 Let A be an associative commutative algebra, δ ∈ Der A, and ξ ∈ A.
Then we have:

(i) d ∈ Der Aδ,ξ if and only if [d, δ](b) + d(ξ) ·b ∈ ann A for all b ∈ A,
(ii) if 1 ∈ A, then d ∈ Der Aδ,ξ if and only if [d, δ](b)+d(ξ) ·b = 0 for all b ∈ A,
(iii) d ∈ Der Aδ,0 if and only if A · [d, δ] = 0,
(iv) if 1 ∈ A, then d ∈ Der Aδ,0 if and only if [d, δ] = 0.

Proof (i) For any a, b ∈ A and d ∈ Der Aδ,ξ we have

d(a) ·δ(b) + a ·d(δ(b)) + d(ξ) ·a ·b + ξ ·d(a) ·b + ξ ·a ·d(b)

= d(a ·δ(b) + ξ ·a ·b) = d(a ∗b) = d(a)∗b + a ∗d(b)

= d(a) ·δ(b) + ξ ·d(a) ·b + a ·δ(d(b)) + ξ ·a ·d(b)

if and only if a · [d, δ](b) + d(ξ) ·a ·b = 0.

(ii)–(iv) The rest follows from part (i). ��
Lemma 6.3 Let δ be a surjective derivation of an associative commutative algebra A
with 1. If I is a right ideal of a Balinsky–Novikov algebra Aδ,ξ , then I is an ideal of A.

Proof Indeed, if i ∈ I and a ∈ A, then I � i ∗a = i ·δ(a) + ξ · i ·a and therefore
ξ · i = i ∗1 ∈ I . Since δ is surjective, we have i ·δ(a) = i ∗a − ξ · i ·a ∈ I and so
i · A ⊆ I . ��
It is easy to see that e∗e = 0 for any idempotent e2 = e ∈ A.

Lemma 6.4 Let A be an associative commutative algebra, δ ∈ Der A, and ξ ∈ A.
Then the following properties hold:
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(i) [37, Lemma 3.1] if charK �= 2 and U is an ideal of the Lie algebra Aδ,L , then
[U ,U ] = 0 or U contains a non-zero δ-ideal of A,

(ii) if I is a δ-ideal of A, then I is an ideal of the Balinsky–Novikov algebra Aδ,ξ ,
(iii) if K is an additive subgroup of a Balinsky–Novikov algebra Aδ,ξ and δ(K ) ⊆

K, then IA(K ) ..= {k ∈ A : k · A ⊆ K } is a δ-ideal of A,
(iv) if 1 ∈ A and B is an ideal of Aδ,ξ , then ξ · B, δ(B) ⊆ B,
(v) if C is a left ideal of Aδ,0, then δ(C) ⊆ IA(C),
(vi) if I is a δ-ideal of A, then I is an ideal of Aδ,L ,
(vii) if e is an idempotent of A, then e ∈ rann Aδ,0,
(viii) the kernel ker δ ..= {a ∈ Aδ,0 : δ(a) = 0} of δ is a left ideal of Aδ,0,
(ix) if δ(a) ∈ a · A, then a · A is an ideal of Aδ,L ,
(x) if B is an ideal of Aδ,ξ , then B is an ideal of the Lie algebra Aδ,L ,
(xi) if S is an ideal of Aδ,ξ , then TA(S) ..= {s ∈ S : s ∗ A ⊆ S} is an ideal of Aδ,L

and TA(S) ⊆ S,
(xii) if 1 ∈ A and I is an ideal Aδ,L , then δ(I ) ⊆ I and I · A is a δ-ideal of A,
(xiii) if W is an ideal of Aδ,ξ , then δ(w) − ξ ·w ∈ IA(W ) for any w ∈ W,
(xiv) if charK �= 2 and a ·a = 0, then a · A is a right ideal of Aδ,ξ such that

(a ·A) ∗ (a ·A) = 0.

Proof (i) For the proof see [37].

(ii) Indeed, i ∗a = i ·δ(a) + ξ · i ·a ∈ I and a ∗ i = a ·δ(i) + ξ · i ·a ∈ I for any i ∈ I
and a ∈ A.

(iii)Assume that k ∈ IA(K ) and x ∈ A. Then (x ·k) · A = k ·(x · A) ⊆ k · A ⊆ K , what
implies that IA(K ) is an ideal of A. Since δ(k) · A + k ·δ(A) = δ(k ·A) ⊆ δ(K ) ⊆ K
and k ·δ(A) ⊆ K , we conclude that δ(k) ·A ⊆ K . Hence δ(IA(K )) ⊆ IA(K ).

(iv) It is easy to see that B � b∗1 = b ·δ(1)+ξ ·b = ξ ·b and B � 1∗b = δ(b)+ξ ·b
for any b ∈ B. Consequently, δ(B), ξ · B ⊆ B.

(v) For any a ∈ A and c ∈ C we see that C � a ∗c = a ·δ(c), whence δ(C) ⊆ IA(C).

(vi) If i ∈ I and a ∈ A, then [i, a] = i ·δ(a) − a ·δ(i) ∈ I , the claim follows.

(vii) Since δ(e) = 0, we obtain A∗e = A ·δ(e) = 0.

(viii) If u ∈ ker δ and a ∈ A, then δ(a ∗u) = δ(a ·δ(u)) = 0. Hence a ∗u ∈ ker δ.

(ix) For any t, b ∈ A

[a · t, b] = (a · t)∗b − b∗(a · t) = a · t ·δ(b) − b ·δ(a) · t − b ·a ·δ(t)
= a · [t, b] − b ·δ(a) · t ∈ a · A.

(x) Since B ∗ A ⊆ B, A∗ B ⊆ B, we deduce that [B, A] ⊆ B.

(xi) Let a, x ∈ A and s ∈ TA(S). Then

(s ∗ x)∗a = s ∗(x ∗a) − x ∗(s ∗a) + (x ∗s)∗a

and therefore [s, x]∗a = s ∗(x ∗a) − x ∗(s ∗a) ∈ S.
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(xii) For any i ∈ I ,

I ⊇ [I , A] � [i, 1] = i ∗1 − 1∗ i = i ·δ(1) − 1 ·δ(i) = − δ(i).

(xiii) By (x), W is an ideal of the Lie algebra Aδ,L and so W � w∗a = w ·δ(a) +
ξ ·w ·a and W � [w, a] = w∗a − a ∗w = w ·δ(a) − a ·δ(w) for any w ∈ W and
a ∈ A. Then W � w∗a − [w, a] = (ξ ·w + δ(w)) ·a. Hence δ(w) + ξ ·w ∈ IA(W ).

(xiv) We compute that 0 = δ(a ·a) = 2a ·δ(a), a ∗a = a ·δ(a) + ξ ·a ·a = 0 and

(a · A)∗(a · A) � a ·b ·δ(a ·c) + ξ ·a ·b ·a ·c
= a ·b ·δ(a) ·c + a ·b ·a ·δ(c) = 0

for any b, c ∈ A. ��
If x ∈ A, then

lx : Aδ,ξ � a �→ x ∗a ∈ Aδ,ξ

is called a left transformation operator of the Balinsky–Novikov algebra Aδ,ξ .

Lemma 6.5 Let A be an associative commutative algebra, δ ∈ Der A, and x, ξ ∈ A.
Then the following properties hold:

(i) if δ ∈ Z(Der A) ..= {μ ∈ Der A : μθ = θμ for any θ ∈ Der A}, then
Der A ⊆ Der Aδ,0,

(ii) rx ∈ Der Aδ,0 if and only if A∗(A∗ x) = 0,
(iii) lx ∈ Der Aδ,0 if and only if (A∗ A)∗ x = 0,
(iv) [ra, rb] = 0 for any a, b ∈ Aδ,ξ ,
(v) [la, lb] = l[a,b] for any a, b ∈ Aδ,ξ ,
(vi) L(Aδ,ξ ) ..= {la : a ∈ A} is a Lie algebra.

Proof (i) If δ ∈ Der A, then

d(a ∗b) = d(a ·δ(b)) = d(a) ·δ(b) + a ·d(δ(b))

= d(a) ·δ(b) + a ·δ(d(b)) = d(a)∗b + a ∗d(b)

for any a, b ∈ Aδ,0. Therefore, d ∈ Der Aδ,0.

(ii) If rx ∈ Der Aδ,0, then

a ·δ(b) ·δ(x) = (a ∗b)∗ x = rx (a ∗b) = rx (a)∗b + a ∗rx (b)
= a ·δ(x) ·δ(b) + a ·δ(b) ·δ(x) + a ·b ·δ2(x)

and so a ·(δ(b) ·δ(x) + b ·δ2(x)) = 0 for any a, b ∈ Aδ,0. This is equivalent to
a ·δ(b ·δ(x)) = 0. Hence a ∗(b∗ x) = 0.

(iii) By the same argument as in (ii).

(iv)–(vi) Obvious. ��
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Zhelyabin and Tikhov [51] asked: Is true that an associative commutative algebra
(A,+, ·) with a derivation δ is δ-simple in the usual sense if and only if its corre-
sponding Balinsky–Novikov algebra (A,+, ∗) is simple?

Lemma 6.6 Let A be an associative commutative algebra, δ ∈ Der A, and ξ ∈ A.
Then A is a δ-simple algebra if and only if Aδ,ξ is a simple Balinsky–Novikov algebra.

Proof For the proof see [48, Proposition 2.8]. ��
Corollary 6.7 If A is a field, δ ∈ Der A, and ξ ∈ A, then Aδ,ξ is a simple Balinsky–
Novikov algebra.

Further we shall need the following result.

Lemma 6.8 Let A be an associative commutative δ-semiprime algebra with 1,
charK �= 2, and δ ∈ Der A. If I is a δ-ideal of A and δ2(I ) = 0, then δ(I ) = 0
and I ·δ(A) = 0.

Proof If i ∈ I , then

0 = δ2(i · i) = δ(2i ·δ(i)) = 2δ(i) ·δ(i) + 2i ·δ2(i) = 2δ(i) ·δ(i)

and therefore δ(i) ·δ(i) = 0. Then (δ(i) · A)2 = 0 and so δ(i) = 0. Moreover,

0 = δ(I ) = δ(I · A) = δ(I ) · A + I ·δ(A) = I ·δ(A). ��
Lemma 6.9 Let A be an associative commutative algebra with 1, 0 �= δ ∈ Der A, and
ξ ∈ A. Then A is a δ-prime algebra if and only if Aδ,ξ is a prime Balinsky–Novikov
algebra.

Proof (⇒) Let I and J be ideals of Aδ,ξ such that I ∗ J = 0. This means that i ·δ( j)+
ξ · i · j = 0 for all i ∈ I and j ∈ J . ByLemma6.4 (iv), ξ · I , δ(I ) ⊆ I and ξ · J , δ(J ) ⊆
J . Moreover, ann I and ann(ann I ) are δ-ideals of A, I ⊆ ann(ann I ) and

ξ · j + δ( j) ∈ ann I . (35)

Assume that I �= 0. Then ann I = 0 and so δ( j) = − ξ · j for any j ∈ J . Then

− ξ · j ·k = δ( j ·k) = δ( j) ·k + j ·δ(k) = − 2ξ · j ·k

for any k ∈ J and, as a consequence, ξ · J · J = 0. Since J · A is a δ-ideal of A, we
conclude that J · J �= 0. Then ξ = 0 and, in view of (35),

δ(J ) = 0. (36)

Since J ·δ(I ) ·δ(I ) ·δ(J ) + J · J ·δ(I ) ·δ2(I ) ⊆ (J ∗ I ) ∗ (J ∗ I ) ⊆ I ∗ J = 0, we
obtain that J · J ·δ(I ) ·δ2(I ) = 0 by (35) and (36).
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If ann(J · J ) �= 0, then J · J ⊆ ann(ann(J · J )) = 0, a contradiction. Hence
ann(J · J ) = 0. Then (δ(I ) · A) ·(δ2(I ) · A) = 0 and δ(I ) = 0 by Lemma 6.8. As
a consequence, I ·δ(A) = 0. This means that δ(A) ⊆ ann(I · A), what forces that
δ(A) = 0, a contradiction.

(⇐) Let Aδ,ξ be a δ-prime Balinsky–Novikov algebra. Assume that X and Y are δ-
ideals of A such that X ·Y = 0. By Lemma 6.4 (ii), X and Y are ideals of Aδ,ξ and
X ∗Y = 0. Thus X = 0 or Y = 0. ��
Lemma 6.10 Let A be an associative commutative algebra with 1, 0 �= δ ∈ Der A,
and ξ ∈ A. Then A is a δ-semiprime algebra if and only if Aδ,ξ is a semiprime
Balinsky–Novikov algebra.

Proof By the same argument as in the proof of Lemma 6.9. ��
Lemma 6.11 [17] Let (N ,+, ∗) be a Balinsky–Novikov algebra. Then Z(N ) and
[N , N ] are ideals of N and Z(N )∗[N , N ] = 0.

Lemma 6.12 Let A be an associative commutative algebra with 1, charK �= 2, 0 �=
δ ∈ Der A, and ξ ∈ A. If A is a δ-prime algebra, then Z(Aδ,ξ ) = 0.

Proof By Lemma 6.11, Z(Aδ,ξ )∗[Aδ,ξ, Aδ,ξ ] = 0 . If [Aδ,ξ, Aδ,ξ ] = 0, then a ·δ(b) =
b ·δ(a) for all a, b ∈ A. Therefore,

a ·δ(a) ·b + a ·a ·δ(b) = a ·δ(a ·b) = a ·b ·δ(a).

This gives that a ·a ·δ(b) = 0 and so a ·a ∈ ann(δ(A) · A). Since ann(δ(A) · A) is a
δ-ideal and δ(A) �= 0, we obtain that a ·a = 0. Then (a + b) ·(a + b) = 0 for any
a, b ∈ A and a ·b = −b ·a. This yields that A · A = 0, a contradiction. Consequently,
[Aδ,ξ, Aδ,ξ ] �= 0 and thus Z(Aδ,ξ ) = 0. ��

7 Lie properties

Lemma 7.1 Let A be an associative commutative algebra with 1, ξ ∈ A, and δ ∈
Der A. If δ(A) � P for any minimal δ-prime ideal P of A, then:

(i) every abelian ideal I of the Lie algebra Aδ,L is contained in the δ-prime radical
Pδ(A) ..= ⋂ {P : P is a δ-prime ideal of A},

(ii) the Lie algebra Aδ,L is not solvable.

Proof (i) Let I be a non-zero abelian ideal of the Lie algebra Aδ,L . If I � Pδ(A), then
there exists a minimal δ-prime ideal of P of A such that I � P . Obviously,

� : A/P � a + P �→ δ(a) + P ∈ A/P

is a non-zero derivation of the quotient algebra A/P . Since A/P is a�-prime algebra,
(A/P)�,η is a prime Lie algebra, where η = ξ + P . Hence (I + P)/P is zero, a
contradiction.

(ii) It follows from (i). ��

123



228 O. D. Artemovych et al.

Lemma 7.2 [37, Theorem 3.3] Let A be an associative commutative algebra with 1
and 0 �= δ ∈ Der A. Then A is a δ-simple algebra if and only if Aδ,L is a simple Lie
algebra.

Proof By the same argument as in the proof of Lemma 6.9. ��
Lemma 7.3 Let A be an associative commutative algebra with 1, charK �= 2, and
0 �= δ ∈ Der A. If I is an abelian Lie ideal of a semiprime Balinsky–Novikov algebra
Aδ,ξ , then δ(I ) = 0. If, moreover, Aδ,L is prime, then I = 0.

Proof (a) Let I be an ideal of Aδ,L such that [I , I ] = 0. Then 0 = [u, v] = u ·δ(v) −
v ·δ(u) for any u, v ∈ I . If x ∈ A , then

0 = [u, [v, x]] = u ·δ([v, x]) − [v, x] ·δ(u)

= u · [δ(v), x] + u · [v, δ(x)] − [v, x] ·δ(u)

= u ·(δ(v)∗ x − x ∗δ(v)) + u ·(v∗δ(x) − δ(x)∗v) − (v∗ x − x ∗v) ·δ(u)

= (u ·δ(v) − v ·δ(u)) ·δ(x) + x ·(δ(v) ·δ(u) − u ·δ2(v))

+ u ·(v ·δ2(x) − δ(x) ·δ(v))

= u · [v, δ(x)].

This means that

[I , δ(A)] ⊆ I ∩ ann I = 0 (37)

because ann I is a δ-ideal of A. If y ∈ A, then

0 = [u, δ(x · y)] = [u, δ(x) · y + x ·δ(y)]
= u ·δ2(x) · y + u ·δ(x) ·δ(y) + u ·δ(x) ·δ(y)

+ u · x ·δ2(y) − δ(x) · y ·δ(u) − x ·δ(y) ·δ(u)

= y · [u, δ(x)] + x · [u, δ(y)] + 2u ·δ(x) ·δ(y) = 2u ·δ(x) ·δ(y).

Hence δ(A) ·δ(A) ⊆ ann I . Then δ(I ) ·δ(I ) ⊆ (ann I ) ∩ I = 0. Since ann δ(I ) is a
δ-ideal of A and δ(I ) ⊆ ann δ(I ), we conclude that δ(I ) = 0.

(b) Now assume that Aδ,ξ is prime. In view of (37), 0 = [I , δ(A)] = I ·δ2(A). If
I �= 0, then δ2(A) = 0 and so δ = 0 by Lemma 6.8, a contradiction. ��
Lemma 7.4 Let A be an associative commutative algebra with 1, charK �= 2, 0 �=
δ ∈ Der A, and ξ ∈ A. Then A is a δ-prime algebra if and only if Aδ,L is a prime Lie
algebra.

Proof (⇐) Suppose that B and C are δ-ideals of A such that B ·C = 0. Then
(C · B)2 = 0 and therefore C · B = 0 by the δ-primeness of A. Since B and C are
ideals of Aδ,L by Lemma 6.4 (vi) and [B,C] = 0, we deduce that B = 0 or C = 0.

(⇒) By Lemma 6.9, Aδ,ξ is a prime Balinsky–Novikov algebra. Assume that I and
J are non-zero ideals of Aδ,L such that [I , J ] = 0. Then I (respectively, J ) is a Lie
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ideal of Aδ,ξ . If [I , I ] = 0 (respectively, [J , J ] = 0), then δ(I ) = 0 (respectively,
δ(J ) = 0) by Lemma 7.3 and so I ∗ J = 0 (respectively, J ∗ I = 0), what implies that
I = 0 or J = 0, a contradiction. Therefore, [I , I ] �= 0, [J , J ] �= 0 and therefore I
(respectively, J ) contains a non-zero δ-ideal I0 (respectively, J0) of A byLemma6.4 (i)
such that [I0, J0] = 0. Since [I0 ∩ J0, I0 ∩ J0] = 0 and I0 ∩ J0 is an ideal of Aδ,ξ by
Lemma6.4 (ii),weobtain that δ(I0∩J0) = 0byLemma7.3.Then (I0∩J0)∗(I0∩J0) =
0 and, consequently, I0 · J0 ⊆ I0 ∩ J0 = 0, which leads to a contradiction. ��
Lemma 7.5 Let A be an associative commutative algebra with 1, charK �= 2, 0 �= δ ∈
Der A, and ξ ∈ A. Then A is a δ-semiprime algebra if and only if Aδ,L is a semiprime
Lie algebra.

Proof By the same argument as in the proof of Lemma 7.4. ��
Proof of Theorem 4.1 It follows from Lemmas 6.6, 6.9, 7.2, 7.4 and 7.5. ��
We specified some of interesting properties of an associative commutative algebra
A and its δ-associated algebra Aδ,L , which earlier were investigated by Ribenboim
[43], C.R. Jordan, D.A. Jordan [29,30], and Nowicki [37]. Moreover, as follows from
the results stated above, there exist deep and very interesting relationships between
associative commutative algebras A, their δ-associated Balinsky–Novikov algebras
Aδ,ξ and δ-associated Lie algebras Aδ,L .
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