
European Journal of Mathematics (2018) 4:1278–1292
https://doi.org/10.1007/s40879-018-0272-7

RESEARCH ART ICLE

Equivariant birational geometry of quintic del Pezzo surface

Jonas Wolter1

Received: 4 April 2018 / Revised: 1 June 2018 / Accepted: 30 July 2018 / Published online: 13 August 2018
© The Author(s) 2018

Abstract
We prove that there are exactly two G-minimal surfaces which are G-birational to
the quintic del Pezzo surface, where G ∼= C5�C4. These surfaces are the quintic del
Pezzo surface itself and the surface P

1×P
1.
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1 Introduction

The study of finite subgroups of the Cremona group is classical, but the first serious
treatment has been done by Igor V. Dolgachev and Vasily A. Iskovskikh at the begin-
ning of this century, starting with Iskovskikh’s paper [11]. In their seminal work [7]
all finite subgroups of the Cremona group Cr2(C) are classified up to isomorphism. In
the section “What is left” in [7] it is stated that not all conjugacy classes of Cr2(C) are
known and that a finer description of the the conjugacy classes would be desirable.

Let us recall from [11] that two subgroups of the Cremona group given by the
biregular actions of a finite group G on two rational surfaces are conjugate if there
exists a G-birational map S1 ��� S2. By general theory such a map can be factorised
into elementary links [9]. In this paper we will contribute to the open questions from
[7] by proving:

Theorem 1.1 Let S5 be the smooth delPezzo surface of degree5, and let G20 ∼= C5�C4
be a subgroup of order 20 in Aut(S5). Then PicG20(S5) = Z and

1. S5 is not G20-birational to any conic bundle,
2. there exists a unique G-minimal del Pezzo surface which is G20-birational to S5,

that is P
1×P

1,
3. the group of G20-birational automorphisms is given by BirG20(S5) = C2×G20.

B Jonas Wolter
s1508663@sms.ed.ac.uk

1 School of Mathematics, The University of Edinburgh, Edinburgh EH9 3FD, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40879-018-0272-7&domain=pdf


Equivariant birational geometry of quintic del Pezzo surface 1279

Here Cn is a cyclic group of order n. It should be noticed that there are no G-conic
fibrations birational to S5.

In the notation of [1] we can say that S5 is G20-solid.

Remark 1.2 In the proof of Theorem 1.1 we will also see that the only smooth del
Pezzo surfaces G-birational to S5 are P

1×P
1 and the Clebsch cubic surface. But the

latter is not G20-minimal, i.e., PicG20(˜S) �= Z. Indeed we will show in Remark 5.2,
that its G20-invariant Picard group is Z

2.

Throughout this paper we assume all varieties to be complex and projective. For all
notation in birational geometry, such as G-biregular, we use the conventions intro-
duced in [7].

2 G-Sarkisov links

We will dedicate this section to the introduction of the notion of G-Sarkisov links
where G is a finite group. For simplicity we will only consider the dimension 2 here.
For a more detailed study see [5]. This language will allow us to state Theorem 1.1 in
a more precise and technical way. We will firstly define a G-Mori fibre space.

Definition 2.1 A 2-dimensional G-Mori fibre space is

DP: a smooth G-minimal del Pezzo surface S, i.e., PicG(S) = Z;
CB: a G-conic bundle, i.e., a G-equivariant morphism π : S → P

1, where S is a
smooth surface and the general fibre of π is P

1 such that PicG(S) = Z
2.

The main result about 2-dimensional G-Sarkisov link is the following:

Theorem 2.2 ([5])Let S, S′ be 2-dimensional G-Mori fibre spaces and letχ : S ��� S′
be a non-biregular G-birational map. Then χ is a composition of elementary links
known as G-Sarkisov links.

There are five different G-Sarkisov links of dimension 2 which are described below.
The first type is given by

̂S

α β

S S′
(I)

where S and S′ areG-minimal del Pezzo surfaces andα andβ are blow-ups ofG-orbits
in S and S′ respectively. The second type is given by

̂S

α β

S P
1

(II)
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1280 J. Wolter

where S is a G-minimal del Pezzo surface, α is a blow-up of a G-orbit and β is a
G-conic bundle. The third type is given by

̂S

α β

P
1 S′

(III)

where S′ is a G-minimal del Pezzo surface, β is a blow-up of a G-orbit and α is a
G-conic bundle. We shall notice that this is the inverse link of type (II). The fourth
type is given by

̂S

α β

P
1

P
1

(IV)

where α and β are G-conic bundles. Finally, the fifth type is given by

̂S
α β

S

π

S′

π ′

P
1

P
1

(V)

where S and S′ are not G-minimal del Pezzo surfaces and α and β are blow-ups of
G-orbits in S and S′ respectively. Additionally, π and π ′ are G-conic bundles and we
call the whole link an elementary transformation of G-conic bundles (see [9]). This
diagram commutes.

The notion of G-Sarkisov links is a good way to replace the technical result of the
Noether–Fano inequality (see [6,10]).

Remark 2.3 It follows from the definition of G-links that ̂S is a del Pezzo surface if S
is a del Pezzo surface. Thus in the links of type (I), (II), (III) and (IV), the surface ̂S
is a del Pezzo surface.

Using the notion of G-Sarkisov links we are able to restate Theorem 1.1.

Theorem 2.4 Let S5 be the smooth del Pezzo surface of degree 5, and let G20 ∼=
C5�C4 be a subgroup of order 20 inAut(S5). Then PicG20(S5) = Z and the following
assertions hold:
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Equivariant birational geometry of quintic del Pezzo surface 1281

1. There exists a unique G20-Sarkisov link that starts at S5. It is given by

˜S
π σ

S5 P
1×P

1

(1)

where π is the blow-up of the unique G20-orbit of length 2 in S5, σ is a blow-up
of one of two G20 orbits of length 5 and ˜S is the Clebsch cubic surface.

2. Let P
1×P

1 be equipped with the G20-action coming from (1). Then the only G20-
Sarkisov links starting from P

1×P
1 are the inverse of (1) and

˜S
γ δ

P
1×P

1 S5

(2)

where γ is the blow-up of another G20-orbit of length 5, ˜S is the Clebsch cubic
surface and δ = π is the blow-up of the unique G20-orbit of length 2 in S5.

Combining (1) and (2) yields a non-biregular G20-birational map S5 ��� S5.

These links were constructed and described numerically by Dolgachev and Iskovskikh
in [7, Proposition 7.13] but for our purposes we reconstruct them here and will fill in
the details for these links.

3 Motivation

In this section, we want to motivate Theorem 1.1. There are various different starting
points to investigate conjugacy in the Cremona group.We decided to start our research
on del Pezzo surfaces. Those surfaces have been introduced by Pasquale del Pezzo
in the late 18th century and since then various ways of studying them have been
encountered.

For our purposes we will understand a del Pezzo surface of degree d, denoted by
Sd , as the blow-up of P

2 in 9− d points in general position. To start our investigation
of conjugacy classes of the Cremona group we need to introduce the notion of G-
birational (super-) rigidity.

Definition 3.1 Let S be a smooth del Pezzo surface and G ⊂ Aut(S) be a finite group
such that PicG(S) = Z. We say S is G-birationally rigid whenever

(a) if S is G-birational to any G-minimal del Pezzo surface S′, then S′ is G-biregular
to S, and

(b) S is not G-birational to any G-conic bundle.
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1282 J. Wolter

Condition (a) is equivalent to saying that for any birational G-map χ : S ��� S′,
where S′ is a G-minimal del Pezzo surface, there exists a G-birational automorphism
θ : S ��� S such that χ ◦θ is a G-isomorphism.

Definition 3.1 means, that the only G-Sarkisov links starting in S are of the form

̂S
α β

S
φ

S

(�)

where α and β are blow-ups of G-orbits.

Definition 3.2 Let S be a smooth del Pezzo surface and G ⊂ Aut(S) be a finite
group such that PicG(S) = Z. The surface S is G-birationally superrigid if it is
G-birationally rigid and BirG(S) = AutG(S).

Definition 3.2 means that there are no G-Sarkisov links starting at S. With these
definitions in hand we are able to state.

Theorem 3.3 ([7]) Let S be a smooth del Pezzo surface of degree d, that is K 2
S = d,

and let G ⊆ Aut(S) be such that PicG(S) = Z. Then the following assertions hold:

(a) If S does not contain a G-orbit of length less then d, then S is G-birationally
superrigid.

(b) If S does not contain a G-orbit of length less then d − 2, then S is G-birationally
rigid.

Sketched Proof Assume ̂S is a smooth del Pezzo surface. Then by Remark 2.3,
α : S → ̂S is a blow-up of a G-orbit of length less then d, because K

̂S > 0. This
proves (a).

If there is a G-orbit of length d − 1, the blow-up of this orbit is ̂S = S1, the
del Pezzo surface of degree 1, so we can use the Bertini involution there. Simi-
larly, if there exists a G-orbit of length d − 2, the del Pezzo surface of degree 2,
we can blow up this orbit to obtain ̂S = S2, and we can use the Geiser involution.
This proves (b). 	

From Theorem 3.3 we can immediately deduce the following corollary.

Corollary 3.4 ([7]) Let S be a smooth del Pezzo surface of degree d < 3, and let
G ⊆ Aut(S) be a finite group such that PicG(S) = Z. If S is of degree 1, then S is
G-birationally superrigid. If S is of degree 2 or 3, then S is G-birationally rigid.

This result is known for quite some time and was implicitly proven by Segre in 1943
and Manin in 1962. For proofs of Theorem 3.3 and Corollary 3.4 see [7, Section 7.1].
The proof of Theorem 3.3 easily implies

Theorem 3.5 ([7])Let S be a smooth del Pezzo surface of degree 4, and let G ⊂ Aut(S)

be a finite group such that PicG(S) = Z. Then
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Equivariant birational geometry of quintic del Pezzo surface 1283

1. if there are no G-fixed points, then S is G-birational rigid,
2. if there exists a G-fixed point, then there exists a G-Sarkisov link

˜S

α β

S4 P
1

where α is the blow-up of a G-orbit, ˜S is a smooth cubic surface and β is a conic
bundle.

In this paper, we are mostly interested inG-birational rigid del Pezzo surfaces or those
which are close to them. By close we mean that these are del Pezzo surfaces which
are not G-birational to any conic bundle (in the language of [1] these are G-solid del
Pezzo surfaces).

Following Corollary 3.4 and Theorem 3.5 we will investigate links starting from
the smooth del Pezzo surface of degree 5, which we will call S5, in this paper. It is
well known that

Aut(S5) ∼= S5,

the symmetric group of five elements. A proof is provided in [4] . If we want S5 to be
a G-minimal surface (i.e., PicG(S5) = Z), we require G to be one of the following
(see [7, Theorem 6.4]):

• the symmetric group S5 of five elements of order 120;
• the alternating group A5 of five elements of order 60;
• the semidirect product G20 ∼= C5�C4 of order 20;
• the dihedral group D10 of order 10;
• the cyclic group C5 of order 5.

For S5 and A5 the quintic del Pezzo surface is G-birationally superrigid (see [2]).
For C5 there exists a G-birational map from S5 to P

2 (see [3]) such that C5 has a
fixed point there (see Lemma 4.1). The construction of this map can be generalised
for D10 which is done in Corollary 4.2. Hence these groups are better addressed when
studying the G-equivariant birational geometry of P

2. This has been done in [12]. We
shall also notice that S5 is not G-solid in this case.

In this paper we will therefore focus on the group G20 ∼= C5�C4 as a subgroup of
Aut(S5) ∼= S5, which is also known as the general affine group of degree 1 over the
field with five elements, denoted by GA(1, 5).

4 The quintic del Pezzo surface

In the proof of Theorem 2.4 we will investigate the existence of G20-equivariant
birational maps between quintic del Pezzo surface, denoted by S5, and the surface
P
1×P

1. First we need to understand the action of G20 on S5. To do this we use the
following result from [3].
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1284 J. Wolter

Lemma 4.1 ([3]) There is a C5-birational map φ (i.e., a C5-Sarkisov link) between S5
and P

2 given by the C5-commutative diagram

S4
α β

S5
φ

P
2.

(�)

Here α is the blow-up of a C5-fixed point in S5, and β is the blow-up of five points in
P
2 which form a C5-orbit. S4 is a quartic del Pezzo surface.

Proof For the proof we will start with P
2 and invert the link (�). Consider C5 as a

subgroup of Aut(P1) ∼= PGL2(C). There exists aC5-equivariant Veronese embedding
P
1 ↪→ P

2 which defines a faithful action of C5 on P
2 such that there exists a C5-

invariant conic K ⊆ P
2 (that is the image of P

1). Thus we can blow up the C5-orbit
of length 5 on this conic to obtain the quartic del Pezzo surface, denoted by S4.

If we contract the the proper transform of K there we get the unique quintic del
Pezzo surface. Since C5 ⊆ S ∼= Aut(S5) is unique up to conjugation the composition
of the two described maps yields the desired link φ.

Inmore elementary terms,wemay say that fivepoints P1, . . . , P5 in general position
in P

2 always lie on a unique conic K . Then the group C5 fixes two points A1, A2 on a
conic [4] (i.e., the line through these two points is C5-invariant). Additionally, it fixes
a point B ∈ P

2 which does not lie on the conic. The blow-up α of P1, . . . , P5 does
not affect B, neither does the contraction β. Thus there is a point

Q2 = φ−1(B) ∈ S5,

which is fixed by C5. We know that α−1(K ) is a β-exceptional curve in S4. After the
contraction β, we have

φ−1(A1) = φ−1(A2) = Q1,

which is another fixed point of C5 in S5. Thus we know that for C5 ⊆ Aut(S5) there
exist two C5-fixed points Q1 and Q2. We shall mention that all other orbits are of
length 5. 	

From the proof of Lemma 4.1 we can easily deduce.

Corollary 4.2 There is a D10-birational map φ (i.e., a D10-Sarkisov link) between S5
and P

2 corresponding to the D10-commutative diagram (�).

Proof In the same way as in the proof of Lemma 4.1 we can construct the inverse link
of (�). Furthermore the action of D10 ⊆ Aut(P1) lifts to an action on P

2. Then we
can use the same argument as before.

In the notation of the proof of Lemma 4.1 we may say that the action of D10 on P
2

interchanges the points A1 and A2 but fixes the point B. Thus we can use the same
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Equivariant birational geometry of quintic del Pezzo surface 1285

link φ as in Lemma 4.1 and by the same argument as above D10 fixes points Q1 and
Q2 in S5. 	

We are now in the position to investigate orbits of small length r < 5 of theG20-action
on S5.

We want to proceed in a similar way as in [11] which means that we need to classify
all G-orbits of length r < deg(S5) = K2

S5
= 5. Then we will concentrate on those

orbits of which the points are in general position, because this is a necessary condition
for the existence of links starting from the surface S5.

Remark 4.3 We say that points of an orbit are in general position if the blow-up of S5
in this orbit is a del Pezzo surface again.

Lemma 4.4 There is a unique G20-orbit of length r < 5 on S5. It is the orbit of length
r = 2 consisting of the points Q1 and Q2.

Proof Let us consider all possible lengths for orbits.

r = 1: Such an orbit does not exist. Assume it does. By Lemma 4.1 and Corollary 4.2,
this point can only be Q1, because if all of G20 fixes it, the normal subgroups C5 and
D10 fix it in particular. Hence the link (�) yields G20-equivariant link from S5 to P

2.
This means that G20 acts on P

2 and preserves the conic K . This implies that G20 acts
faithfully on K ∼= P

1, but this is clearly a contradiction. Hence no orbit of length r = 1
exists.

r = 2: {Q1, Q2} is such an orbit. We know that G20 has D10 as a normal subgroup.
If we consider the action of D10 on S5, then Corollary 4.2 tells us that there is indeed
a unique orbit of length 2 which is the orbit {Q1, Q2}.
r = 3: Such an orbit does not exist because 3 � 20 = |G20|, which is required by the
orbit-stabilizer theorem.

r = 4: Such an orbit does not exist. If there were such an orbit the stabilizer would
satisfy StabG = C5 but we know that C5 actually fixes the same points as D10 by
Theorem 4.2 and hence the stabilizer would actually be D10 which cannot give an
orbit of length 4. 	

Lemma 4.4 implies that the only possible G20-Sarkisov link starting from S5 consists
of a blow-up of the described orbit of length r = 2.

Lemma 4.5 The blow-up of Q1 and Q2 in S5 yields a smooth del Pezzo surface ˜S.

Proof We need to prove that −K
˜S is ample. This is equivalent to saying that Q1 and

Q2 neither lie on the (−1)-curves nor in an exceptional conic in S5. We prove this by
contradiction. For this we will consider different cases.

• We first prove that there are no (−1)-curves containing Q1 or Q2. Assume Q1 lies
on one of the 10 exceptional curves in S5. Clearly Q2 needs to lie on such a curve
as well. If they lie on two different exceptional curves these two are interchanged
by the group action of G20. This contradicts the fact that PicG20(S5) = Z.
Similarly,wemayassume thatQ1 lies ononeof the intersections of twoexceptional
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1286 J. Wolter

curves. Again this contradicts PicG20(S5) = Z. So indeed Q1 and Q2 do not lie
on the (−1)-curves in S5 which proves that the blow-up of these two points yields
another del Pezzo surface.

• It remains to show that Q1 and Q2 are not contained in an exceptional conic S5.
There are five classes of conic in S5 and each of them has self-intersectionC2 = 0.
Going through all these cases in detail one can show that Q1 and Q2 either lie on
one line which we ruled out previously or they cannot lie on one conic. Due to
heavy computational work we omit the different cases at this point. 	


The resulting surface of this blow-up will have degree 5 − 2 = 3, so it is a cubic
surface. The only smooth cubic surface with a G20-action is theClebsch cubic surface
(this was proved in [8]) which we will investigate in the next section.

5 The Clebsch cubic surface

Theorem 2.4 states that the only G-Sarkisov links starting from the quintic del Pezzo
surface S5 are of the form

˜S

π σ

S5
ψ

P
1×P

1.

(�)

From Lemma 4.4 we know that π is the blow-up of the unique G20-orbit {Q1, Q2} of
length 2. Hence ˜S is the Clebsch cubic surface, which is defined as follows:

Definition 5.1 The Clebsch cubic surface, denoted by ˜S, is a cubic given by two
defining equations in P

4:

{

x0 + x1 + x2 + x3 + x4 = 0;
x30 + x31 + x32 + x33 + x34 = 0.

Remark 5.2 In [7] it is shown that PicG20(˜S) �= Z. The link (�) proves that in fact,
PicG20(˜S) = Z

2.

Now it is well known that the automorphism group of the Clebsch cubic surface is
S5. Thus the action of G20 can be described very explicitly by understanding G20 as
a subgroup of S5 acting by permutation on the coordinates of this surface.

We know that all representations of G20 are conjugate to each other and thus we
will use a generation by σ(12345) and σ(2354), where we use the notation introduced in
[4]. Considering orbits of length 4 on ˜S we obtain

Lemma 5.3 There is a unique orbit of length 4 of the G20-action on the Clebsch cubic
surface given by the points
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O = {

(1:ζ :ζ 2 :ζ 3 :ζ 4), (1:ζ 2 :ζ 4 :ζ :ζ 3), (1:ζ 3 :ζ :ζ 4 :ζ 2), (1:ζ 4 :ζ 3 :ζ 2 :ζ )
}

,

with ζ being a primitive fifth root of unity.

Proof An orbit of length 4 has the stabilizer StabG = K ∼= C5 which is isomorphic
to the group generated by σ(12345), which is the unique subgroup of G20 isomorphic
to C5. It has exactly the fixed points as stated in Lemma 5.3, which are obtained by
straightforward calculations. It is easy to verify that these four points lie indeed on ˜S
and form an orbit of length 4. 	

The orbits of length 5 are a bit more sophisticated.

Lemma 5.4 There are three orbits of length 5 of the G20-action on the Clebsch cubic
surface given by:

O1 = {

V1 = (0:−1:1:1:−1), V2 = (−1:0:−1:1:1), V3 = (1:−1:0:−1:1),
V4 = (1:1:−1:0:−1), V5 = (−1:1:1:−1:0)},

O2 = {

U1 = (0:− i :−1:1: i),U2 = (i :0:− i :−1:1),U3 = (1: i :0:− i :−1),

U4 = (−1:1: i :0:− i),U5 = (− i :−1:1: i :0)},
O3 = {

W1 = (0: i :−1:1:− i),W2 = (− i :0: i :−1:1),W3 = (1:− i :0: i :−1),

W4 = (−1:1:− i :0: i),W5 = (i :−1:1:− i :0)}.

Proof An orbit of length 5 has the stabilizer StabG = H ∼= C4 in G20. There are five
subgroups ofG20 which are isomorphic toC4. Let H ∼= C4 be the subgroup generated
by σ(2354). Then H fixes four points in P

4 with
∑5

i=1 xi = 0 which are

R1 = (0 :−1:1:1:−1), R2 = (0 :− i :−1:1: i),
R3 = (0 : i :−1:1:− i), R4 = (−4:1:1:1:1),

whereas the R4 does not lie on ˜S because the cubes of the coordinates do not sum to
zero. Again it is easy to verify that the points (R1, . . . , R4) are indeed fixed points.
Acting by an element of order 5, we obtain fixed points corresponding to the action of
σ(12345) on the coordinates of Ri . Thus we deduce, that there are three orbits of length
5 on ˜S as stated in Lemma 5.4. 	

We shall notice that R2 and R3 lie on the line x1 + x4 = x2 + x3 = 0. Generalising
this we make the following important observation.

Corollary 5.5 The points Ui ∈ O2 and Wi ∈ O3 respectively lie on one of the 27 real
lines on the Clebsch cubic surfaces. These five resulting lines in the link are:

(i) L1 : x1 + x4 = x2 + x3 = 0 through U1 and W1.
(ii) L2 : x0 + x2 = x3 + x4 = 0 through U2 and W2.
(iii) L3 : x0 + x4 = x1 + x3 = 0 through U3 and W3.
(iv) L4 : x0 + x1 = x2 + x4 = 0 through U4 and W4.
(v) L5 : x0 + x3 = x1 + x2 = 0 through U5 and W5.
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1288 J. Wolter

It is easy to see that these five lines are disjoint.

Proof This is an easy exercise of calculating the lines through each pair of points and
comparing it with the lines on the Clebsch cubic, which are well known. 	

Lemmas 5.3 and 5.4 allow us to state the main result for this section.

Proposition 5.6 Let ˜S be the Clebsch cubic surface. Then the G20-orbits of length
r < 8 on ˜S are:

(a) The unique orbit O described in Lemma 5.3 of length 4.
(b) The three orbits O1,O2 and O3 described in Lemma 5.4 of length 5.

Proof The orbit-stabilizer theorem tells us immediately that orbits of length r = 6 or
r = 7 cannot exist. It remains to show that there are no orbits of length 1 or 2 on ˜S.
This follows directly from our description of the orbits but we include computational
explanation, too. An orbit of length 1 would have the whole groupG20 as its stabilizer.
We see immediately that this is not possible because the subgroups K and H generated
by σ(12345) and σ(2354) have completely different fixed points.

By a similar argument, there cannot be any orbits of length 2. These would have
the subgroup F ∼= D10 generated by σ(12345) and σ(25)(34) as its stabilizer. Again it
is easy to verify that F has K ∼= C5 as a subgroup. On the other hand F has the
group generated isomorphic to C2 generated by σ(25)(34) which is a subgroup of H as
a subgroup.

But we have seen that H and K do not have any common fixed points. Hence F
cannot have fixed points which means that there does not exist an orbit of length 2. 	

Remark 5.7 Proposition 5.6 supports the statement of Lemma 4.4. For the unique orbit
O of length 4 each pair of points lies on one of 27 real lines on the Clebsch cubic.
Hence after contracting two of them to obtain S5, we are left with an orbit of length 2.

An orbit of length 4 in S5 would lift to a different orbit of length 4 in ˜S, but for the
given reason this cannot be O, which means that there do not exist orbits of length 4
in the quintic del Pezzo surface.

Given Corollary 5.5, we may consider the contraction of these five lines.

Proposition 5.8 The contraction of the five lines L1, . . . , L5 described inCorollary 5.5
yields the surface P

1×P
1 and this is the only other contraction that can be conducted

apart from the inverse of the blow-up from S5.

Proof We know that ˜S is a del Pezzo surface, so −K
˜S is ample. Remark 2.3 tells us

that the resulting surface of the described contraction will be a del Pezzo surface of
degree 3 + 5 = 8, so it can only be P

1×P
1 or F1, but PicG20(F1) �= Z, which we

require.
In Remark 5.2 we have seen that PicG20(˜S) = Z

2. From this we conclude that there
are two external rays in the Mori cone. We have shown that one consists of two lines
and the other one of five. These are the only possible contraction of ˜S. 	

Proposition 5.8 allows us to state the following lemma about the link (�) which we
introduced at the beginning of this section.
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Lemma 5.9 Considering the desired link (�) from S5 to P
1×P

1, we know

1. π is the contraction of two disjoint lines E1, E2 in the Clebsch cubic surface
(respectively the blow-up of Q1 and Q2 in S5).

2. σ is the contraction of five disjoint lines F1, . . . , F5 in the Clebsch cubic surface
(respectively the blow-up of five points in P

1×P
1).

3. The following equations hold for the exceptional divisors:

σ ∗(H) = 2π∗(−KS5) − 3(E1 + E2),

5
∑

i=1

Fi = 3π∗(−KS5) − 5(E1 + E2),

where −KS5 is the anticanonical divisor of S5, E1 + E2 are the two (−1)-curves
of the blow-up of Q1 and Q2, H is a divisor of bidegree (1, 1) on P

1×P
1 and

∑5
i=1 Fi are the (−1)-curves of the blow-up of five points in P

1×P
1.

Lemma 5.9 implies that π(Fi ) is a smooth twisted cubic curve in S5 and E1 and E2
are smooth twisted cubics of bidegree (2, 1) and (1, 2) respectively.

6 The surface P
1×P

1

The G20-action on P
1×P

1 cannot be understood in a way which is as simple as in
Sect. 4 or Sect. 5. For that reason, we will use our previous observations to analyse
the G20-orbits on P

1×P
1.

Lemma 6.1 There is a unique G20-orbitK of length 4 in P
1×P

1. The four points are
given by the intersections F11 ∩ F21, F11 ∩ F22, F12 ∩ F21 and F12 ∩ F22 of the four
rulings F11, F12, F21 and F22.

Proof The orbit of length 4 described in Lemma 5.3 lies away from the lines of
contraction, thus it has an embedding in P

1×P
1.

Generally, four points need eight different lines to describe them. A G20-orbit of
length 4 has the stabilizer C5. But we know that D10 ⊂ G20 acts on the rulings of
P
1×P

1 which are copies of P
1. Hence the C5-action cannot split over each of the four

points (i.e., interchanging the two lines) but fixes the rulings.
For this reason, the four points on the G20-orbit need to lie on the four intersections

of four copies of P
1 (i.e., the rulings of P

1×P
1), because otherwise it would not be

an orbit of length 4. Hence all four points in this orbit lie on two rulings in P
1×P

1. 	

Remark 6.2 We could prove Lemma 6.1 in a different way by considering the orbit of
length 4 in the Clebsch cubic surface and considering their configuration there. We
can show merely computationally that there exist four conics each passing through
exactly one of the four points and not intersecting the (−1)-curves. Considering the
blow-up σ we obtain Lemma 6.1 for the four points on P

1×P
1.

As in Sect. 5 the orbits of length 5 are a bit more difficult.
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Lemma 6.3 There are exactly two G20-orbits K1 and K2 of length 5 in P
1×P

1.

Proof We will now identify P
1×P

1 as a quadric Q in P
3. We know that P

1×P
1 has a

natural embedding (Segre) into P
3. Similar to the Clebsch cubic we can understand P

3

as a hyperplane in P
4 with

∑4
i=0 xi = 0. Now let Q ∼= P

1×P
1 ⊂ P

3 be the quadric
given by

Q :
4

∑

i=0

xi =
4

∑

i=0

x2i = 0.

G20 acts on Q by permutations of coordinates in a similar way as described in the
previous section for the Clebsch cubic.

We found the orbits of length 5 explicitly on ˜S. Observe that the orbits O2 and O3
lie in Q, whereas O1 does not. Hence we may assume K1 = O2 and K2 = O3.

Additionally, we can check computationally that the points of each of the orbits lie
in general position (i.e., no two on a line in Q and no four on a plane). Hence we can
indeed consider the blow-up of each of these orbits which will yield the Clebsch cubic
surface and together with Lemma 5.9 shows that this blow-up is indeed the inverse
link of the described contraction.

Furthermore, we see that the orbits O2 and O3 are essentially the same orbits, only
permuted by complex conjugation. In fact these two orbits are interchanged by an
automorphism of a quadric which is proven in Theorem 7.3. 	

Now we can finally state the last proposition we need for the proof of Theorem 1.1.

Proposition 6.4 The only G20-orbits of length r < 8 on P
1×P

1 are:

(a) The unique orbit K described in Lemma 6.1 of length 4.
(b) The two orbitsK1 andK2 described in Lemma 6.3 of length 5where the five points

lie in general position.

Proof It remains to show that there are no other orbits than the ones described in
Lemmas 6.1 and 6.3.

Orbits of length 6, 7 or 8 cannot exist by the orbit-stabilizer theorem as 6, 7, 8 �

20 = |G20|. Assume there is an orbit of length less than 4. Then an orbit of this length
would also exist in the Clebsch cubic surface but Proposition 5.6 tells us, that they do
not exist there. 	


7 Proof of Theorem 2.4

The link (1) in Theorem 2.4 is the only G-Sarkisov link starting from the quintic del
Pezzo surface S5. From Lemma 4.4 we know that π is the blow-up of the unique
G20-orbit {Q1, Q2} of length 2.

Now Corollary 5.5 tells us that there are five disjoint lines on the Clebsch cubic
which we can contract to obtain P

1×P
1 and Proposition 6.4 says that we need to

consider two different cases for birational maps starting from P
1×P

1.
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Lemma 7.1 (orbit of length 4) Let τ : ˜S → P
1×P

1 be the blow-up of the four points
P1, . . . , P4 in the orbitK and let E1, . . . , E4 be the corresponding exceptional curves.
Then the proper transforms of the described rulings are (−2)-curves. This means that
the resulting surface ̂S is not a del Pezzo surface.

Proof This follows immediately from Lemma 6.1. 	

Lemma 7.1 tells us that we cannot continue from P

1×P
1 to obtain a G-Sarkisov link

by blowing up the orbit K of length 4.

Lemma 7.2 Let τ : ˜S → P
1×P

1 be a blow-up of the five points P1, . . . , P5 in the
orbits K1 or K2 respectively. Then one of the following holds for τ :

(a) τ is the same as the blow-up σ described in (�), so that π ◦τ ∗ = ψ−1.
(b) τ is the same as the blow-up γ described in diagram (2) of Theorem 2.4, so that

(ψ ◦τ ∗◦π) = ψ ◦φ = χ is a G20-birational map S5 ��� S5.

Proof It is clear that we can obtain case (a) if we blow up the five points inK1 orK2,
i.e., τ = σ in the link (�). We get back exactly the model of the Clebsch cubic we had
before because the elements inK1 orK2 are the points we obtained by the contraction
described in Lemma 5.9. For symmetric reasons, we may assume that these are the
points in K1. Therefore π ◦τ ∗ = (σ ◦π∗)−1 = ψ−1 as described in (�).

Proposition 6.4 tells us that the two orbits K1 and K2 are interchanged by an
automorphism. Let us now consider the blow-up τ : P

1×P
1 → ˜S of the orbit K2,

which is not the same blow-up as σ . Then we may contract the two (−1)-curves, E1
and E2, on the Clebsch cubic.

This gives us back S5 because the smooth quintic del Pezzo surface is unique.
This means that φ◦τ ∗◦π is a birational map S5 ��� S5. We obtain that ψ ◦τ ∗◦π =
ψ ◦φ = χ : S5 ��� S5 as shown in (♣). This is a birational map S5 ��� S5 which is
not biregular. 	


˜S
π σ

˜S
τ π

S5
ψ

P
1×P

1
φ

S5.

(♣)

Lemmas 7.1 and 7.2 tell us that there is no G20-equivariant link starting from P
1×P

1,
that leads to a different minimal surface than the quintic del Pezzo surface or P

1×P
1

itself. This together with Remark 5.2 finalises the proof of Theorem 2.4 and implies
the first two parts of Theorem 1.1.

In Theorem 2.4 we additionally stated that BirG20(S5) is of order 40. In fact one
can show that

Theorem 7.3 Let S5 be the smooth delPezzo surface of degree5, and let G20 ∼= C5�C4
be a subgroup of order 20 in Aut(S5). Then
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BirG20(S5) = G40,

where G40 ∼= C2×G20.

Proof We need to find the normalizer G40 = NormAut(P1×P1)(G20). Obviously, it is
enough to find G40 ∩ H , where H is the subgroup of Aut(P1×P

1) which preserves
rulings. Certainly,G40∩H lies inside the group NormH (D10). The normalizer of D10
in Aut(P1) is equal to D20 and generated by D10 and the involution [x : y] �→ [−x : y].
Thus G40 ∩ H lies inside the group 〈D10, a, b〉, with

a : ([x1 : y1], [x2 : y2]) �→ ([−x1 : y1], [x2 : y2]),
b : ([x1 : y1], [x2 : y2]) �→ ([x1 : y1], [−x2 : y2]).

One can easily check that only ab normalizes the group G20 and G40 ∼= C2×G20. 	

This proof was communicated to me by Artem Avilov and I thank him for thus com-
pleting the proof of Theorem 1.1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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source, provide a link to the Creative Commons license, and indicate if changes were made.
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