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Abstract
Hugo Steinhaus in 1928 proved three theorems concerning convergence almost every-
where and divergence of series of measurable functions. We investigate similarities
and differences in the behaviour of sequences of functions with the Baire property for
convergence everywhere except a set of the first category.
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Recall three classical theorems concerning series of real numbers.

Theorem 1 (Abel and Dini, [2, Chapter IX, Section 39, (173)]) If
∑∞

k=1 ak = +∞,
ak � 0 for k ∈ N, then there exists a sequence {λk}k∈N of positive numbers such that
limk→∞ λk = 0 and

∑∞
k=1 λkak = +∞.

Theorem 2 (Dini, [2, Chapter IX, Section 39, (175), 4 and Section 41, (178), A]) If∑∞
k=1 ak < ∞, ak � 0 for k ∈ N, then there exists a sequence {λk}k∈N of positive

numbers such that limk→∞ λk = +∞ and
∑∞

k=1 λkak < ∞.

Theorem 3 (Stieltjes, [2, Chapter IX, Section 41, (178), I])For each sequence {δk}k∈N
of positive numbers such that limk→∞ δk = 0 there exists a series

∑∞
k=1 ak, ak > 0

for k ∈ N, such that
∑∞

k=1 ak = +∞ and
∑∞

k=1 akδk < ∞.

These theorems show that there does not exist neither a series which converges slower
than any other series nor a series which diverges slower than any other series. This
implies among others that no comparison test can be effective with all series.

Theorem 1 remains true also for a sequence {Si }i∈N of divergent series
∑∞

k=1 aik
of positive numbers. Namely, there exists a sequence {λk}k∈N independent from i
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such that all series
∑∞

k=1 λkaik , i ∈ N, are divergent. It was proved in [4,5] with
the use of the Banach–Steinhaus theorem. In the same paper Hugo Steinhaus dealt
with the following question of Stanisław Ruziewicz: Suppose that a series of positive
functions

∑∞
k=1 ak(t), ak : [0, 1] → R

+ for k ∈ N, is divergent for each t ∈ [0, 1]. Is
it possible to find a sequence {λk}k∈N of positive numbers such that limk→∞ λk = 0
and

∑∞
k=1 λkak(t) = +∞ for each t? The answer is negative, there exists a sequence

{ak(t)}k∈N of measurable functions such that for each sequence {λk}k∈N = � there
exists a point x(�) ∈ [0, 1] such that

∑∞
k=1 λkak(x(�)) < +∞.

Let � be the set of all positive sequences convergent to 0 (card� = C). Take a set
E ⊂ [0, 1], m(E) = 0, card E = C (here m( ·) stands for the Lebesgue measure).

There exists a function t : �
1−1−−→ E (denotations of Steinhaus [4,5]). For each � =

{λk}k∈N there exists
{
a�
k

}
k∈N such that

∑∞
k=1 a

�
k = +∞, a�

k > 0, and
∑∞

k=1 λka�
k <

∞ (again Stieltjes). Put ak(t) = a�
k for t = t(�) and ak(t) = 1/k for t /∈ E , k ∈ N.

All functions ak are measurable (= 1/k a.e.) and

∞∑

k=1

ak(t) = +∞ for each t ∈ [0, 1],
∞∑

k=1

λkak(t) < ∞ for t = t(�), � = {λk}k∈N.

If one requires only divergence or convergence almost everywhere, the corresponding
versions of Theorems 1, 2, 3 remain true. Three theorems below are also due to
Steinhaus [4,5].

Theorem 4 If {ak(t)}k∈N is a sequence of measurable functions, ak : [0, 1] → R
+

for k ∈ N and
∑∞

k=1 ak(t) = +∞ almost everywhere on [0, 1], then there exists a
sequence {λk}k∈N of positive numbers such that limk→∞ λk = 0 and

∑∞
k=1 λkak(t) =

+∞ for almost every t ∈ [0, 1].
Theorem 5 If {ak(t)}k∈N is a sequence of measurable functions, ak : [0, 1] → R

+ for
k ∈ N and

∑∞
k=1 ak(t) < +∞ for almost every t ∈ [0, 1], then there exists a sequence

{λk}k∈N of positive numbers such that limk→∞ λk = +∞ and
∑∞

k=1 λkak(t) < +∞
for almost every t ∈ [0, 1].
Theorem 6 If {λk(t)}k∈N is a sequence of measurable functions, λk : [0, 1] → R for
k ∈ N and limk→∞ λ(t) = 0 almost everywhere on [0, 1], then there exists a sequence
of positive numbers {ak}k∈N such that

∑∞
k=1 ak = +∞ and

∑∞
k=1 ak |λk(t)| < +∞

almost everywhere.

Belowwe shall prove that Theorem 4 has a satisfactory analogue for the Baire property
while Theorems 5 and 6 do not.

Theorem 7 If {ak(t)}k∈N is a sequence of functions with the Baire property,
ak : [0, 1] → R

+ for k ∈ N and
∑∞

k=1 ak(t) = +∞ everywhere except a set of
the first category on [0, 1], then there exists a sequence {λk}k∈N of positive numbers
such that limk→∞ λk = 0 and

∑∞
k=1 λkak(t) = +∞ everywhere except a set of the

first category.

123



170 W. Wilczyński

Proof We shall need a simple lemma:

Lemma If { fn}n∈N is an increasing sequence of functions with the Baire property,
fn : [0, 1] → R

+ for n ∈ N and limn→∞ fn(t) = +∞ everywhere except a set of
the first category, then for each p > 0 and for each interval [a, b] ⊂ [0, 1] there
exists n0 ∈ N such that En = {t ∈ [a, b] : fn(t) � p} for n � n0 is of the second
category (so En is residual in some subinterval [c, d] ⊂ [a, b] as a set having the
Baire property).

Proof of Lemma Let En = {t ∈ [a, b] : fn(t) � p} for n ∈ N. Since
⋃∞

n=1 En

is residual in [a, b], there exists n0 ∈ N such that En0 is of the second category,
each En for n � n0 is also of the second category because the sequence {En}n∈N is
ascending. ��
Now, the existence of an increasing sequence of natural numbers {ni }i∈N will follow
from the lemma. Let n1 be a natural number for which the set A1 = {

t ∈ [0, 1] :∑n1
k=1 ak(t) � 1

}
is of the second category. Let n2 > n1 be a natural number for

which both sets A1
2 = {

t ∈ [0, 1/2] : ∑n2
k=n1+1 ak(t) � 2

}
, A2

2 = {
t ∈ [1/2, 1] :

∑n2
k=n1+1 ak(t) � 2

}
are of the second category. Suppose that we have chosen n1 <

n2 < · · · < ni . Let ni+1 > ni be a natural number for which all sets

A j
i+1 =

{

t ∈
[
j − 1

2i
,
j

2i

]

:
ni+1∑

k=ni+1

ak(t) � i + 1

}

, j ∈ {1, 2, . . . , 2i },

are of the second category.
Now put (similarly as in [4,5]): λk = 1 for 1 � k � n1 and λk = 1/(k + 1)

for ni + 1 � k � ni+1. We obviously have limk→∞ λk = 0. At the same time
∑ni+1

k=ni+1 λkak(t) � 1 for t ∈ ⋃2i
j=1 A

j
i+1. Hence

∑∞
k=1 λkak(t) = +∞ for t ∈

lim supi→∞
(⋃2i

j=1 A
j
i+1

) = A. From the construction it follows that A is residual in
[0, 1]. ��

To show that analogues of Theorems 5 and 6 do not hold for the Baire property we shall
construct a sequence { fn}n∈N of functions with the Baire property which converges
pointwise to zero and does not converge uniformly on any set of the second category
with the Baire property. One can find an example of such sequence of functions in [3,
Chapter 8], consisting of continuous functions, but in our construction the sequence
is non-increasing, which enables us to build a series of functions with non-negative
terms.

Let I ni = ((i − 1)/2n, i/2n) for n ∈ N and i ∈ {1, 2, . . . , 2n}, An = ⋃2n−1

i=1 I n2i−1,

Bn = ⋃2n−1

i=1 I n2i for n ∈ N. Put

f1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for x ∈ A1,
1

2
for x ∈ B1,

0 for the remaining x ∈ [0, 1].
(1)
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If f1, f2, . . . , fn−1 are already defined, put

fn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

fn−1(x) for x ∈ An,
1

n + 1
for x ∈ Bn,

0 for the remaining x ∈ [0, 1].
(2)

Obviously fn+1(x) � fn(x) for each n ∈ N and x ∈ [0, 1]. We shall show that
limn→∞ fn(x) = 0 for each x ∈ [0, 1]. Clearly, if the binary expansion of x contains
a finite number of 1’s (or equivalently, a finite number of 0’s), then fn(x) = 0 for
sufficiently big n ∈ N. Suppose now that the binary expansion of x contains infinitely
many 0’s as well as infinitely many 1’s. If x = (0, a1, a2, . . . , ak, . . . )2 and ak = 1,
then from the definition of fk it follows that fk(x) = 1/(k + 1); if ak = 0, then
fk(x) = 1/( j + 1), where j = max{i : ai = 1 and i < k} and j → ∞ as k → ∞.
Hence limn→∞ fn(x) = 0 for all x ∈ [0, 1].

Suppose now that E ⊂ [0, 1] is a set of the second category with the Baire property.
Then there exists an interval (a, b) ⊂ [0, 1] and a set P of the first category such that
(a, b)\P ⊂ E . We shall show that { fn}n∈N is not uniformly convergent on (a, b)\P .
Indeed, there exists n0 ∈ N such that at least one component of Bn0 is included in [a, b],
so there exists a point xn0 ∈ Bn0 ∩ ((a, b)\P)) and fn0(xn0) = 1/(n0 + 1). From the
construction of { fn}n∈N it follows that for each n > n0 at least one component of An

is included in (a, b), so for each n > n0 there exists a point xn ∈ An∩ ((a, b)\P) such
that fn(xn) = 1/(n0 + 1). Hence { fn}n∈N is not uniformly convergent on (a, b)\P
and obviously on E .

Theorem 8 There exists a sequence {ak(t)}k∈N of functions with the Baire property,
ak : [0, 1] → R

+ for k ∈ N and
∑∞

k=1 ak(t) < ∞ for each t ∈ [0, 1], such that for
every sequence {λk}k∈N of positive numbers tending to infinity the series

∑∞
k=1 λkak(t)

is divergent to infinity on a set residual in [0, 1].
Proof Put a1(t) = 1 − f1(t) and ak(t) = fk−1(t) − fk(t) for k � 2, where { fn}n∈N
is the sequences (1)–(2). Then

∑k
i=1 ai (t) = 1− fk(t) for k ∈ N, so

∑∞
k=1 ak(t) = 1

everywhere except a denumerable set. Observe that ak(t) � 1/k − 1/(k + 1) =
1/(k(k + 1)) for t ∈ Bk , since fk−1(t) � 1/k and fk(t) = 1/(k + 1) on Bk . From
the construction of { fn}n∈N it follows immediately that ak+p(t) � 1/(k(k + 1)) on
Ak+p∩ Bk for each p ∈ N.

Let {pk}k∈N be an increasing sequence of natural numbers with λk+pk > k(k+1)
for each k ∈ N. Then we have λk+pk ·ak+pk (t) > 1 for t ∈ Ak+pk ∩ Bk . Hence∑∞

k=1 λkak(t) �
∑∞

k=1 λk+pk ak+pk (t) = +∞ for t ∈ lim supk→∞ Ak+pk ∩ Bk and
the last set is residual in [0, 1]. ��
Theorem 9 There exists a sequence { fk(t)}k∈N of functions with the Baire property,
fk : [0, 1] → R

+ for k ∈ N and limk→∞ fk(t) = 0 for t ∈ [0, 1], such that for each
sequence {ak}k∈N of positive numbers with

∑∞
k=1 ak = +∞ the series

∑∞
k=1 ak fk(t)

is divergent to infinity on a set residual in [0, 1].
Proof Let { fk(t)}k∈N be the sequence of functions (1)–(2). Suppose that

∑∞
k=1 ak =

+∞. There exists n1 ∈ N such that
∑n1

k=1 ak > 1.Observe that f1(t) = f2(t) = · · · =
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fn1(t) = 1 for t ∈ (0, 1/2n1), so
∑n1

k=1 ak fk > 1 on this interval. There exists n2 > n1
such that

∑n2
k=n1+1 ak > 2. Again observe that fn1+1(t), fn1+2(t), . . . , fn2(t) � 1/2

for t ∈ (0, 1/2n2)∪(1/2, 1/2+1/2n2) (actually the value of all functions above is equal
to 1 in the first interval and to 1/2 in the second one), so

∑n2
k=n1+1 ak fk(t) > 1 on this

set. Suppose that we have found n1 < n2 < · · · < ni . Let ni+1 be a number such that∑ni+1
k=ni+1 ak > i + 1. Similarly, we observe that fni+1(t), fni+2(t), . . . , fni+1(t) �

1/(i + 1) on an open set Ei such that the intersection of Ei with each component of
Ai+1 is nonempty (namely it is equal to the interval (2( j − 1)/2i+1, 2 j − 1/2i+1) ∩
(2( j − 1)/2i+1, 2( j − 1)/2i+1 + 1/2ni+1)). Hence

∑ni+1
k=ni+1 ak fk(t) > 1 for t ∈ Ei .

Finally
∑∞

k=1 ak fk(t) = +∞ for t ∈ lim supi→∞ Ei and the last set is residual in
[0, 1]. ��
We show another similarity and difference between measure and category. Bartle in
[1] proved the following theorem:

Theorem 10 If a sequence { fn}n∈N ofmeasurable functions on [0, 1] converges almost
uniformly to f , then it satisfies the vanishing restriction with respect to f . If { fn}n∈N
converges in measure to f and { fn}n∈N satisfies the vanishing restriction with respect
to f , then { fn}n∈N converges almost uniformly to f .

Here the convergence almost uniformly means that there exists a sequence {Bi }i∈N
of measurable sets such that m

(⋃∞
i=1 Bi

) = 1 ([0, 1] \ ⋃∞
i=1 Bi is a nullset) and

fn|Bi ⇒ f|Bi for each i ∈ N as n → ∞ (cf. Egorov’s theorem).
The sequence { fn}n∈N of measurable functions satisfies the vanishing restriction

with respect to f if for all α > 0 we have

lim
n→∞m

(
E f
n (α)

) = 0, where E f
n (α) =

∞⋃

j=n

{x ∈ [0, 1] : | f j (x) − f (x)| > α}.

Since the sequence
{
E f
n (α)

}
n∈N is descending, the last condition means

⋂∞
n=1 E

f
n (α)

is a nullset.
We shall say that a sequence { fn}n∈N of functions with the Baire property converges

to f B-almost uniformly if there exists a sequence {Bi }i∈N of sets with the Baire
property such that [0, 1] \ ⋃∞

i=1 Bi is of the first category and fn|Bi ⇒ f|Bi for each
i ∈ N as n → ∞. We can (and shall) suppose that the sequence {Bi }i∈N is ascending.

We shall say that a sequence { fn}n∈N satisfies the B-vanishing restriction with
respect to f if for all α > 0 the set

⋂∞
n=1 E

f
n (α) is of the first category.

Theorem 11 If a sequence { fn}n∈N of functions with the Baire property on [0, 1]
converges B-almost uniformly to f , then it satisfies the B-vanishing condition with
respect to f . There exists a sequence { fn}n∈N of functions with the Baire property on
[0, 1] which converges everywhere to f ≡ 0 and satisfies the B-vanishing restriction
with respect to f but which does not converge B-almost uniformly to f .

Proof Suppose that {Bi }i∈N is an increasing sequence of sets with the Baire property
such that [0, 1] \ ⋃∞

i=1 Bi is of the first category and fn|Bi ⇒ f|Bi for each i ∈ N as
n → ∞.
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Fix α > 0. For each i ∈ N there exists nα,i ∈ N such that for each x ∈ Bi and
n � nα,i we have | fn(x)− f (x)| � α. So Enα,i (α) ⊂ [0, 1]\Bi and ⋂∞

n=1 En(α) ⊂⋂∞
i=1([0, 1]\Bi ) = [0, 1] \ ⋃∞

i=1 Bi which completes the proof of the first part of the
theorem.

To prove the second part it is sufficient to observe that the sequence { fn}n∈N of
functions (1)–(2) satisfies the B-vanishing restriction. If this sequencewere convergent
uniformly to the zero-function on a set E ⊂ [0, 1] with the Baire property, then E
would be of the first category.Hence it is clear that { fn}n∈N does not converge B-almost
uniformly to the zero-function. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bartle, R.G.: An extension of Egorov’s theorem. Amer. Math. Mon. 87(8), 628–633 (1980)
2. Knopp, K.: Theory and Application of Infinite Series. Blackie and Son, London (1951)
3. Oxtoby, J.C.: Measure and Category, 2nd edn. Graduate Texts in Mathematics, vol. 2. Springer, New

York (1980)
4. Steinhaus, H.: Sur une question concernant la convergence de séries des fonctions. Fund. Math. 11,

186–192 (1928)
5. Steinhaus, H.: Selected Papers, pp. 373–379. PWN, Warsaw (1985)

123

http://creativecommons.org/licenses/by/4.0/

	On series of functions with the Baire property
	Abstract
	References




