European Journal of Mathematics (2019) 5:168-173
https://doi.org/10.1007/s40879-018-0267-4

RESEARCH ARTICLE .
@CrossMark

On series of functions with the Baire property

Wiadystaw Wilczyniski’

Received: 22 January 2018 / Accepted: 16 June 2018 / Published online: 25 July 2018
© The Author(s) 2018

Abstract

Hugo Steinhaus in 1928 proved three theorems concerning convergence almost every-
where and divergence of series of measurable functions. We investigate similarities
and differences in the behaviour of sequences of functions with the Baire property for
convergence everywhere except a set of the first category.
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Recall three classical theorems concerning series of real numbers.

Theorem 1 (Abel and Dini, [2, Chapter IX, Section 39, (173)]) If Y ;o ax = +00,
ar = 0 for k € N, then there exists a sequence {A;}ren of positive numbers such that
limg_ 00 Ak = 0 and thi] Ay = +00.

Theorem 2 (Dini, [2, Chapter IX, Section 39, (175), 4 and Section 41, (178), A]) If
Z,fil ar < 0o, ax = 0 for k € N, then there exists a sequence {A\}ren of positive
numbers such that limy_, 5o A\ = 400 and Z,fil Akaip < 0.

Theorem 3 (Stieltjes, [2, Chapter IX, Section 41, (178), I]) For each sequence {8y }xeN
of positive numbers such that limy_, oo 8 = 0 there exists a series Z,fil ag, ar > 0
fork € N, such that y_72 ax = +00 and ;2 axdy < oo.

These theorems show that there does not exist neither a series which converges slower
than any other series nor a series which diverges slower than any other series. This
implies among others that no comparison test can be effective with all series.
Theorem 1 remains true also for a sequence {S;};cn of divergent series Z,fil aik
of positive numbers. Namely, there exists a sequence {Ag}ren independent from i
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such that all series Z,fil Maix, 1 € N, are divergent. It was proved in [4,5] with
the use of the Banach—Steinhaus theorem. In the same paper Hugo Steinhaus dealt
with the following question of Stanistaw Ruziewicz: Suppose that a series of positive
functions Y 7o | ax (1), ax: [0, 1] = R* for k € N, is divergent for each 7 € [0, 1]. Is
it possible to find a sequence {Ag}ren of positive numbers such that limg_, oo Ay = 0
and )2 | Arak(t) = +oo for each 1? The answer is negative, there exists a sequence
{ar(t)}ren of measurable functions such that for each sequence {Ar}reny = A there
exists a point x(A) € [0, 1] such that "7 Agak(x(A)) < +o0.

Let A be the set of all positive sequences convergent to 0 (card A = €). Take a set
E C [0,1], m(E) = 0, card E = € (here m(-) stands for the Lebesgue measure).

There exists a function : A i E (denotations of Steinhaus [4,5]). For each A =
{At}ken thereexists {a }keN suchthat Y2 | af* = 400,af* > 0,and Y 72| Meaf <
oo (again Stieltjes). Put ax(t) = a,ﬁ‘ fort =t(A)and ar(t) = 1/kfort ¢ E, k € N.
All functions ay are measurable (= 1/k a.e.) and

o0
Zak(t) = 400 foreach t € [0, 1],
k=1

o0
D Ma(t) <oo  for t =1t(A), A= {Men.
k=1

If one requires only divergence or convergence almost everywhere, the corresponding
versions of Theorems 1, 2, 3 remain true. Three theorems below are also due to
Steinhaus [4,5].

Theorem 4 If {ay (1) }ken is a sequence of measurable functions, ay: [0,1] — RT
for k € N and Z,fil ar(t) = +oo almost everywhere on [0, 1], then there exists a
sequence { A }reN of positive numbers such thatlimy_, 5o Ay, = 0 and Z,?il Avap(t) =
~+o00 for almost every t € [0, 1].

Theorem 5 If {a;(t)}ien is a sequence of measurable functions, ay : [0, 1] — R for
k € Nandy 72 ak(t) < +ooforalmosteveryt € [0, 1], then there exists a sequence
{Ak}ken of positive numbers such that limy_, oo Ay = 400 and Z,fil Aag(t) < 400
for almost every t € [0, 1].

Theorem 6 If {Ai(1)}keN is a sequence of measurable functions, Ay : [0, 1] — R for
k € Nandlimg_, oo A(t) = 0 almost everywhere on [0, 1], then there exists a sequence
of positive numbers {ay}ren such that Yo, ax = +00 and Y po.; ax|A(1)] < 400
almost everywhere.

Below we shall prove that Theorem 4 has a satisfactory analogue for the Baire property
while Theorems 5 and 6 do not.

Theorem7 If {ax(t)}ken is a sequence of functions with the Baire property,
ai: [0,1] — RY fork € Nand Y 72, ai(t) = 400 everywhere except a set of
the first category on [0, 1], then there exists a sequence {A}ren of positive numbers
such that limy_, oo Ax = 0 and Z,fil Acax(t) = 400 everywhere except a set of the
first category.
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Proof We shall need a simple lemma:

Lemma If {f,}.en is an increasing sequence of functions with the Baire property,
f2:10,1] = RT forn € N and lim,_, « f,(t) = +00 everywhere except a set of
the first category, then for each p > 0 and for each interval [a, b] C [0, 1] there
exists no € N such that E, = {t € [a,b] : f,(t) = p}forn > ng is of the second
category (so E, is residual in some subinterval [c,d] C [a, b] as a set having the
Baire property).

ProofofLemma Let E, = {t € [a,b] : f,(t) > p}forn € N. Since Joo| Ey
is residual in [a, b], there exists ng € N such that E,, is of the second category,
each E, for n > ny is also of the second category because the sequence {E, },cn 1s
ascending. O

Now, the existence of an increasing sequence of natural numbers {n;};cn Will follow
from the lemma. Let n; be a natural number for which the set A| = {t e [0,1] :

nl Lar(t) = 1} is of the second category. Let np > n; be a natural number for
Whlch both sets A) = {r € [0,1/2] : Y12, ax(1) =2}, A3 = {r € [1/2,1] :
2 ke, +1 Gk (1) = } are of the second category. Suppose that we have chosen n| <
ny < --- < nj. Letn;y1 > n; be a natural number for which all sets

. . ni+1
j J—1 ] . . ;
A{H:{ze[ > ,5}: Zak(z)>z+1}, jef{1,2,...,2',

k=n;+1

are of the second category.
Now put (similarly as in [4,5]): Ay = 1 for 1 < k < nyand Ay = 1/(k+1)
for nj + 1 < k < njy1. We obviously have limy_, oo Ay = 0. At the same time

ZZ’:;}_H Max(t) > 1fort e U?l:l Al.j+1. Hence Y ;2 Acag(r) = +oo fort €

lim sup; _, o, (U?l | Al +1) = A. From the construction it follows that A is residual in
(0, 1]. m

To show that analogues of Theorems 5 and 6 do not hold for the Baire property we shall
construct a sequence { f;,},en of functions with the Baire property which converges
pointwise to zero and does not converge uniformly on any set of the second category
with the Baire property. One can find an example of such sequence of functions in [3,
Chapter 8], consisting of continuous functions, but in our construction the sequence
is non-increasing, which enables us to build a series of functions with non-negative
terms.

Let Il.” =@ —-1/2"i/2") forn e Nandi € {1,2,...,2"}, A, = Ul 1 121 1

B, = Uiz:lllﬁ’i for n € N. Put

1 forx e Ay,
1

filx) = 3 for x € By, (1)
0 for the remaining x € [0, 1].
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If f1, f2, ..., fa—1 are already defined, put

Su—1(x) forx € Ay,

1
fn(x) = m fOr)C S an (2)

0 for the remaining x € [0, 1].

Obviously f,+1(x) < fu(x) for each n € N and x € [0, 1]. We shall show that
lim,— oo fn(x) = 0 for each x € [0, 1]. Clearly, if the binary expansion of x contains
a finite number of 1’s (or equivalently, a finite number of 0’s), then f,,(x) = 0 for
sufficiently big n € N. Suppose now that the binary expansion of x contains infinitely
many 0’s as well as infinitely many 1’s. If x = (0,ay,a2,...,ak,...)2 and g = 1,
then from the definition of fj it follows that fi(x) = 1/(k 4+ 1); if ar = 0, then
fi(x) =1/(j+ 1), where j =max{i :a; =1and i < k}and j — oo ask — oo.
Hence lim,,_, », f,(x) = 0 for all x € [0, 1].

Suppose now that E C [0, 1] is a set of the second category with the Baire property.
Then there exists an interval (a, b) C [0, 1] and a set P of the first category such that
(a,b)\ P C E.We shall show that { f;, },en is not uniformly convergent on (a, b) \ P.
Indeed, there exists ng € N such that at least one component of By, is includedin [a, b],
so there exists a point x,, € By, N ((a, b)\ P)) and fy,(x,,) = 1/(ng + 1). From the
construction of { f, },en it follows that for each n > nq at least one component of A,
isincluded in (a, b), so for eachn > ng there exists a point x,, € A, N ((a, b) \ P) such
that f,,(x,) = 1/(no + 1). Hence { f, },en is not uniformly convergent on (a, b) \ P
and obviously on E.

Theorem 8 There exists a sequence {ay(t)}ren of functions with the Baire property,
ag: [0,1] — RY fork € N and Z,fil ar(t) < oo for eacht € [0, 1], such that for
every sequence { A\ }xeN of positive numbers tending to infinity the series Z,fil Avay (1)
is divergent to infinity on a set residual in [0, 1].

Proof Puta (1) =1 — fi(¢) and ax(t) = fr—1(t) — frx(¢) for k > 2, where { f;; }en
is the sequences (1)—(2). Then Zle ai(t) =1— fi(1) fork € N,so > 22, ap(r) =1
everywhere except a denumerable set. Observe that ax () > 1/k — 1/(k+1) =
1/(k(k + 1)) for t € By, since fr_1(¢t) > 1/k and fi(t) = 1/(k + 1) on Bj. From
the construction of { fy,},en it follows immediately that ajy,(t) > 1/(k(k + 1)) on
AjypN By for each p € N.

Let { pi}ren be an increasing sequence of natural numbers with Agqp, > k(k+1)
for each k € N. Then we have Ayip, - aiyp (1) > 1 fort € Agqp, N Bi. Hence
Yore i Meaic (1) = D02 Mg py Gy p (1) = 400 for ¢ € limsupy_, o Ag4p, N By and
the last set is residual in [0, 1]. O

Theorem 9 There exists a sequence { fi.(t)}ken of functions with the Baire property,
fi: 10,11 = RY fork € N and limy_ o fi(t) = 0 fort € [0, 1], such that for each
sequence {ay }xeN of positive numbers with Z,fil ay = +00 the series 21?0:1 ay fi(t)
is divergent to infinity on a set residual in [0, 1].

Proof Let { fx(t)}ren be the sequence of functions (1)—(2). Suppose that Z,fi] ar =
+00. Thereexistsn; € Nsuchthatzzl=1 ar > 1.0bservethat f1(t) = fo(t) =--- =
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Sn, (1) = Lfort € (0, 1/2"1),s0 ZZ':I ai fr > 1 onthisinterval. There exists ny > ny
such that ZZZZ,”H ax > 2. Again observe that f,,, +1(2), fu,42(), ..., fu, (1) = 1/2
fort € (0, 1/2"2)U(1/2, 1/241/2"2) (actually the value of all functions above is equal
to 1 in the first interval and to 1/2 in the second one), so Zzzzn] 41 Gk fr(¢) > 1 onthis
set. Suppose that we have found n; < ny < --- < n;. Let n; 4| be a number such that
Yl yak > i+ 1. Similarly, we observe that f, +1(1), fa,+2(0), .., foi (£) =
1/(i + 1) on an open set E; such that the intersection of E; with each component of
A; 41 is nonempty (namely it is equal to the interval (2(j — 1)/2/T1, 2 — 1/21*1)n
Q> — 1)/2+ 2(j — 1)/21+1 4 1/2"+1)). Hence ZZ’QLH a fx(t) > L fort € E;.
Finally > 72, ax fi (1) = +oo for t € limsup;_, ., E; and the last set is residual in
[0, 1]. O

We show another similarity and difference between measure and category. Bartle in
[1] proved the following theorem:

Theorem 10 Ifasequence { f,,}nen of measurable functions on [0, 1] converges almost
uniformly to f, then it satisfies the vanishing restriction with respect to f. If { fu}nen
converges in measure to f and { f,}nen satisfies the vanishing restriction with respect
to f, then { f}nen converges almost uniformly to f.

Here the convergence almost uniformly means that there exists a sequence {B;};eN
of measurable sets such that m({Jj2; B;) = 1 ([0, 1]\ U7, B; is a nullset) and
Jfuig; = fip; foreachi € Nasn — oo (cf. Egorov’s theorem).

The sequence { f;},en of measurable functions satisfies the vanishing restriction
with respect to f if for all « > 0 we have

nlingom(EJ'(a)) =0, where Ej (o) = J{x €[0.1]:[f;(x) = f@)| > ).
j=n

Since the sequence { E ,{ (o0) } neN 1s descending, the last condition means ﬂf;o: 1 E,{ ()
is a nullset.

We shall say that a sequence { f}, },,en of functions with the Baire property converges
to f B-almost uniformly if there exists a sequence {B;};cn of sets with the Baire
property such that [0, 1]\ U2, B; is of the first category and f5, = fip, for each
i € Nasn — o0o. We can (and shall) suppose that the sequence { B, };c is ascending.

We shall say that a sequence {f;},en satisfies the B-vanishing restriction with

respect to f if for all & > O the set ﬂff:l E,{'(oc) is of the first category.

Theorem 11 If a sequence {f,;}neN of functions with the Baire property on [0, 1]
converges B-almost uniformly to f, then it satisfies the B-vanishing condition with
respect to f. There exists a sequence { f,}neN Of functions with the Baire property on
[0, 1] which converges everywhere to f = 0 and satisfies the B-vanishing restriction
with respect to f but which does not converge B-almost uniformly to f.

Proof Suppose that { B;};cn is an increasing sequence of sets with the Baire property
such that [0, 1]\ |72, B; is of the first category and f,, 5, =t fip, for eachi € N as
n— oo.
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Fix o« > 0. For each i € N there exists ny ; € N such that for each x € B; and
n > ng i wehave | f,(x) — f(x)] < . So E,,(00) C [0, 1]\ B;j and (2 En(x) C
72,10, 11\ B;) = [0, 11\ U72, B which completes the proof of the first part of the
theorem.

To prove the second part it is sufficient to observe that the sequence {f;},en of
functions (1)—(2) satisfies the B-vanishing restriction. If this sequence were convergent
uniformly to the zero-function on a set £ C [0, 1] with the Baire property, then E
would be of the first category. Hence it is clear that { f;, },,ey does not converge B-almost
uniformly to the zero-function. O
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