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Abstract We recall the classical construction and theory of invariants for the case
of binary quintics, describe the moduli space, and identify the curves in it defined
by quintics having symmetry. We describe the real case, and identify the number of
real roots depending on the point in moduli space. Our main interest is in five curves
of binary quintics defined as linear sections of plane curves with infinite symmetry
groups: these play a role in the canonical stratification of jet space, so we describe
their singularities and count their intersections. All this is done in the classical case.
Thereafter we analyse the changes to be made to the whole theory when we work in
characteristic 2.
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1 Invariant theory

We begin with classical invariant theory, for example as in [2], though we do not
follow that version. We take C as ground field for the first two sections. The ring
of (SL2-)invariants of binary quintics is generated by four invariants, which we call
I4, I8, I12 and I18, where Id has degree d (see [2, p. 131], but probably the first proof
was given by Hermite [3]).
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424 A. du Plessis, C.T.C. Wall

We normalise the invariants I4, I8, I12 using a normal form, due to Sylvester [4]
(see also [1], [2, p. 230]).

Lemma 1.1 A general binary quintic can be expressed uniquely as a sum of three fifth
powers of linear forms.

Proof We represent the quintic a = ∑5
r=0

(5
r

)
ar x5−r yr by the point A with coordi-

nates (ar ) in P5. Then a quintic that is a fifth power (t1x + t2y)5 corresponds to a point
T lying on the standard rational normal curve C .

If a is the sumof three fifth powers, A lies in the plane spanned by the corresponding
points on C . No point may lie on two such planes, for otherwise the planes would lie
in a hyperplane containing six points of C , whereas C has degree 5. But since there
are three degrees of freedom for the three points on C , and hence for the plane, and
two more for the point A on it, a generic point will lie on such a plane. ��
We may extract more from this argument. It follows by specialisation that any point
A in P

5 lies on a plane meeting C in three points, but the points need not be distinct.
If all three coincide, so that A lies on the osculating plane corresponding to a point T ,
then a is divisible by the cube of t1x + t2y. If just two coincide, corresponding say to
x5 (repeated) and y5, then we may write a = x4(px + qy) + r y5. A fuller account of
the exceptional cases is in [2, p. 231].

We may thus write a general binary quintic in the form al5 + bm5 + cn5 with
l + m + n = 0. Then the invariants are given in terms of the elementary symmetric
functions σ1, σ2 and σ3 of a, b and c by the formulae

I4 = 4σ1σ3 − σ 2
2 , I8 = σ2σ

2
3 , I12 = −3σ 4

3 .

For the above form, the discriminant vanishes if and only if, for some choice of the
radicals, we have

a−1/4 + b−1/4 + c−1/4 = 0.

Also we have, up to a constant factor,

I18 = a5b5c5(b − c)(c − a)(a − b).

We have just seen that a quintic which may not be written in the above form either has
a cubed factor or is equivalent to x4(px + qy) + r y5. For such a form, I12 = 0.

The invariants are subject to a unique syzygy (of degree 36)

I 218 = −144I 312 + (I 34 − 72I4 I8)I
2
12 + (24I 38 − 6I 24 I

2
8 )I12 + 9I4 I

4
8 . (1)

Taking (I4, I8, I12) as coordinates gives an isomorphism of the moduli spaceM onto
the weighted projective space P(1, 2, 3). For the values of these invariants determine
I18 up to sign, while in the weighted projective space P(4, 8, 12, 18), the coordinates
(I4, I8, I12, I18) and (t4 I4, t8 I8, t12 I12, t18 I18) both give the same point; taking t = i
now shows that changing the sign of I18 still gives the same point.
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The moduli space of binary quintics 425

The spaceM is smooth except at two points: (0, 1, 0), where there is a singularity of
type A1, and (0, 0, 1), where there is a singularity of type A2. It gives a moduli space
for all quintics with no factor of multiplicity 3 or more; all such are stable in the sense
of geometric invariant theory (for the action of SL2 on P

5). Quintics with a repeated
root yield a curve � ⊂ M: the discriminant curve. It has equation I 24 = 128I8.

2 Special quintics

For any set of five distinct points on P
1 admitting a nontrivial symmetry group, we

can choose coordinates so that the five points appear as (0,± α,± β) for some α, β;
moreover, we may take αβ = 1. The quintic is thus x(x4 − 2t x2y2 + y4) for t =
(α2 + β2)/2. For such quintics, I18 = 0. The other invariants are

I4 = 16t (3t2 + 5),

I8 = 2(t2 − 5)2(9t2 − 5),

I12 = 12t (t2 − 5)4.

(2)

This parametrises the curve �5 ⊂ M whose equation is given by the right hand side
of (1). This is not a good parametrisation since t and −t yield the same point of the
curve.

We have the following points of particular significance on the discriminant curve�:

• (harmonic tetrad with one point repeated) F0 = (48, 18, 12), represented by f0 =
x2y(x2 − y2),

• (equianharmonic tetrad with one point repeated) F1 = (0, 0, 1), represented by
f1 = x2(x3 − y3),

• (two repeated points, and another point) F2 = (16, 2, 6), represented by f2 =
x2y2(x − y).

The intersection of �5 with � consists of F0, and F2 counted twice.
The invariants of a pentad with distinct points, and with symmetry group of order

greater than 2, give one of the following points in M:

• F3 = (−3, 3, 3), represented by f3 = xy(x3 − y3),
• F4 = (0, 1, 0), represented by f4 = x(x4 − y4),
• F5 = (1, 0, 0), represented by f5 = x5 − y5,

with 3-, 4- and 5-fold symmetry respectively.
The singular points of M occur at F4 and F1, with types A1 and A2 respectively.

The curve �5 has singular points of type A2 at F3 and of type A5 at F4.

3 The real case

In this section we will writeM(R) for the set of real points of M.

Lemma 3.1 Each point of M(R) is represented by a quintic with real coefficients.
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426 A. du Plessis, C.T.C. Wall

Proof For one proof (which we believe is due to Hermite) we suppose that the point
does not lie on � (other cases may be treated directly). Invariant theory provides
linear covariants of a quintic, among which are α (of degree 5) and β (of degree 7)
in the notation of [2, p. 130]. If the quintic has no repeated root, these are linearly
independent and can be taken as coordinates. Then the coefficients of the quintic are
themselves invariants, hence are real.

An alternative argument may be given when I12 �= 0.Write the quintic in the above
normal form al5 + bm5 + cn5 with l + m + n = 0. Then the invariants are given
above; since σ3 �= 0, the same point onM is given by (4σ1 −σ 2

2 /σ3, σ2,−3σ3). Thus
adjusting a, b and c by a common scalar factor we may suppose that these, and hence
the σr are all real.

Now either a, b, c are all real and we may take l,m, n to be real linear forms or
one—say a—is real and the other two complex conjugate. We then take l real and
m, n complex conjugate (e.g. l = 2x , m = −x + iy, n = −x − iy) to obtain a real
quintic. ��

If we think of the quintic as determining five points on P
1, then a real form gives an

anti-holomorphic involution preserving the set of points. If there are two such, their
product gives a holomorphic automorphism, so the point inM must lie on �5.

We wish to determine, for each real point in M(R), the number of real roots of
the corresponding real quintic. The standard theory tells us that for one sign of the
discriminant there are three real roots; for the other, either one or five real roots. It
follows from the above that the number of real roots may only change as we cross �5
or �. We next investigate �5.

As before, for five distinct points onP1
R
admitting a nontrivial symmetry, we choose

coordinates so that the points are (0,±α,±β) for some α, β; this fixes x, y up to
scalars, and the quintic is then x multiplied by a quadratic in x2 and y2. We adjust
the scalars so that the coefficient of x5 is 1 and that of xy4 is ±1 (if the coeffi-
cient of xy4 vanishes, the quintic is unstable; if that of x5 vanishes, we have the
point F0). This fixes x , and y up to sign. However, changing the sign of the coef-
ficient of x3y2 gives the same point of M(R) (it corresponds to substituting iy for
y).

First consider x(x4 − 2t x2y2 + y4). From the invariants given above, we find
I 24 − 128I8 = 2853(t2 − 1)2 > 0 except when t = ±1 corresponding to F2, or, in the
limit, t = ∞ corresponding to F0. As t2 increases from 0 to∞ the point inM(R) runs
from F4 to F0, touching � at F2 when t2 = 1 and passing through F5 when t2 = 20.

The quadratic for (x/y)2 has no real roots for t2 < 1 and two real roots for t2 > 1,
which have the same sign as t . Thus the quintic has five real roots for t > 1 and only
one for t < 1.

For x(x4 − 2ux2y2 − y4), we have I 24 − 128I8 = −2853(u2 + 1)2 < 0. As u2

increases from 0 to ∞, the point in M(R) runs from F4 to F0, passing through F3
when u2 = 3. The quadratic for (x/y)2 has two real roots of opposite signs. Thus the
quintic has three real roots.

To interpret these facts it is convenient to consider the affine chart ofM(R) where
I4 = 1, so that we may take (I8, I12) as coordinates. Taking the weights into account,
we see that the compactification of this plane inM(R)may be topologically described

123



The moduli space of binary quintics 427

by regarding the plane as the interior of a disc, and identifying points on the boundary
via reflection in the horizontal axis. In addition, the two points at the ends of this axis
are identified inM(R) (the space has a topological singularity—a quadratic cone—at
F4), but it is convenient to describe the space where these are regarded as separate:
this is homeomorphic to a sphere.

In this plane picture, the curve � is represented by a vertical line. The curve �5
runs from the point F4 at infinity on the left to the corresponding point to the right,
touching � at F2, then crossing it at F0, then having a simple cusp at F5. It follows
that the region to the right of �, which corresponds to having three real roots, is not
separated by �5; while the region to the left is separated into two components. Both
sides of that part of �5 going off to the left (where t2 < 1) give quintics with one real
root, thus those with five real roots correspond to the small region bounded by �5 and
�, near the centre of the figure.

4 Exceptional curves

We are interested in the five curves in M arising in [5]: as explained in that paper,
this is part of the analysis of the partition of the N16 stratum induced by the canonical
stratification of jet space. These curves are constructed as follows (here we return to
working over C). We start with the quintic curves Hi (1 � i � 5) defined in P

2 by
the equations hi = 0, with hi given by the following table, which also gives the types
of singularities of the curves Hi at the points indicated:

Equation (0, 0, 1) (0, 1, 0) (1, 0, 0)

h1 = xz(y2z − x3) D8 D5

h2 = z(y3z − x4) E6 A7

h3 = y3z2 − x5 E8 A4

h4 = yz(y2z − x3) E7 A5 A1

h5 = xyz(yz − x2) D6 D6 A1

Each curve Hi admits a (semisimple) 1-parameter symmetry group Gi . Thus the lines
L in the planeP2 fall into a 1-parameter family of orbits underGi , so their intersections
with Hi give essentially a 1-parameter family of binary quintics, whose moduli trace
out a curve inM, whose closure we denote �i .

The other exceptional cases (2D6 and T2,3,10) in the main theorem of [5], like h5,
are represented by quintic curves C composed of two conics in a pencil containing a
repeated line, together with that line. The intersection of C with any line thus consists
of two pairs in the involution cut on the line by the pencil, together with one of its
fixed points; hence is a pentad possessing a symmetry. So these all yield the curve �5
inM; we need not consider them further.

If the line L is an edge of the triangle of reference, or even if it passes through
the point (0, 0, 1), the corresponding binary quintic is unstable, so does not determine
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428 A. du Plessis, C.T.C. Wall

a point of M. For lines through (1, 0, 0) or (0, 1, 0) respectively, the corresponding
point inM is given by the following table:

Line H1 H2 H3 H4 H5

y = z F3 F4 F5 F1 F0
x = z (F2) F1 F1 F0 (F2)

Here the symbol (F2) means that although the intersection gives an unstable binary
quintic, the completed curve �i inM passes through F2 at the corresponding limiting
point.

We will see later that Fi ∈ �j only as indicated in this table, except that (as we
already know), F3, F4 and F5 belong to �5.

To obtain a parametrisation of �i we substitute (x, 1, z+u) for (x, y, z) in hi , and
calculate the invariants {I4, I8, I12} of the resulting polynomial in x . This yields

I (h1) = {−8(−2 + 10u2 + 9u4), 2(1 − 10u2 + 16u4 − 80u6 + 864u8),

6(1 − 40u2 + 624u4 − 4640u6 + 16192u8 − 21760u10 + 6912u12)
}
,

I (h2) = {−48u (8 + 67u3), 32u2(36 + 603u3 + 2736u6 + 2000u9),

−6(−675 − 15688u3 − 109536u6 − 171264u9 + 377088u12 + 768000u15)
}
,

I (h3) = {−80u (6 + 125u3), 600u2(3 + 80u3), 300(27 + 1760u3 + 28800u6)
}
,

I (h4) = {−48(−2 + 12u2 + u4), 8(9 − 108u2 + 315u4 − 71u6 + 846u8),

12(8 + 531u2 − 11748u4 + 78616u6

− 199026u8 + 161064u10 + 2924u12 + 675u14)
}
,

I (h5) = {
8(1 + 2u)(2 + 8u + 3u2), 2(−1 − 4u + u2)2 (1 + 4u + 9u2),

6(1 + 2u)(−1 − 4u + u2)4
}
.

These do not give good parametrisations of the curves in P(1, 2, 3): to obtain these,
we need to substitute u2 = T for �1 and �4 and u3 = T for �2 and �3. For �5 it is
better to let t2 = T in (2).

We determine equations for these curves by eliminating the parameter u. If Ri = 0
is the equation of �i , we have deg� = 2 and

i 1 2 3 4 5

deg �i 12 11 8 14 9

In the following equations, x, y, z stand for I4, I8 and I12 respectively.
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The moduli space of binary quintics 429

R1 = +257460937500z4 + (−849570312500xy + 5283203125x3)z3

+ (−3920231212500y3 + 638876915625x2y2

− 15092175000x4y + 83418750x6)z2

+ (6869004789375xy4 − 293089815000x3y3

+ 4993132500x5y2 − 33322500x7y + 67500x9)z

+ (14838034276107y6 − 3318382102464x2y5

+ 182225527470x4y4 − 3154670820x6y3

+ 23909580x8y2 − 82944x10y + 108x12);
R2 = (−1043568939604377600000y + 8152882340659200000x2)z3

+ (−3061977358592424960000xy2

+ 51184790018542440000x3y − 212992905504211875x5)z2

+ (−992379068070210017644428y4

+ 29683683214082475400404x2y3 − 327745815296433611202x4y2

+ 1575492903769317156x6y − 2760926734011888x8)z

+ (44434883644934776909452xy5 − 1596859992578905245387x3y4

+ 22126314998528665236x5y3 − 146702369241038988x7y2

+ 461918940996344x9y − 551433967396x11);
R3 = (3556224y − 27783x2)z2 + (3951234xy2 − 71640x3y + 288x5)z

+ (85470025y4 − 1919000x2y3 + 10800x4y2);
R4 = (+876977530773606236160000000000y

− 2576121496647468318720000000000x2)z4

+ (−2241161829517312917504000000000xy2

+ 5048380953660066103296000000000x3y

− 35017212985004261376000000000x5)z3

+ (−1345689133882266793401542246400000y4

+ 3984077097551882484664447795200000x2y3

− 88678603566351816985254297600000x4y2

+ 673429354733578011593932800000x6y

− 1744611164407104661094400000x8)z2

+ (−727542875476948805138597806080000xy5

+ 4539316713218273244167641497600000x3y4

− 137123596035574793306741145600000x5y3

+ 1510284183673736743590297600000x7y2

− 7173930892257690439680000000x9y

+ 12362556735676003167360000x11)z

+ (+240997492810845047331283179405312y7

− 154334790552800926632069172297728x2y6

+ 1175288933743424804473444371529728x4y5
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430 A. du Plessis, C.T.C. Wall

− 60335030669807815740063964200960x6y4

+ 1196342711687175840536772280320x8y3

− 11476338070034133461188952064x10y2

+ 53502446012645548042080896x12y

− 97393677359695041798001x14);
R5 = −144z3 + (−72xy + x3)z2 + (24y3 − 6x2y2)z + 9xy4.

5 Intersections and singularities

In general in M ∼= P(1, 2, 3) curves of degrees d1 and d2 will have d1d2 points of
intersection. At smooth points, intersection multiplicities are as usual. At a singular
point we lift the curve-germs to the appropriate branched cover, determine the inter-
section number there, and divide by 2 (at the singular point of type A1) or 3 (for that
of type A2).

First we check intersections with �. We find

�1 ∩ � = 3F2 + G1,

�2 ∩ � = 8

3
F1 + G2,

�3 ∩ � = 5

3
F1 + G3,

�4 ∩ � = 2

3
F1 + 3F0 + G4,

�5 ∩ � = F0 + 2F2,

where the points Gi are distinct from each other and from the Fi . In particular, the
only points �i ∩ �j ∩ � occur among F0, F1, F2.

The mutual intersections of the �i can be found by substituting a parametrisation
of �i in the equation Rj and factorising. A first result is that (except at F0, F4), all
intersection numbers with �5 are even, so for this purpose, �5 does behave as though
its degree were 41

2 . The factors are as in the following table, where αi is of degree 1,
and corresponds to Fi ; φ j is irreducible of degree j over Q (and not necessarily the
same on different occasions).

�1 ∩ �2 = φ4φ6φ12,

�1 ∩ �3 = φ16,

�1 ∩ �4 = φ1φ1φ2φ2φ4φ4φ6φ8,

�1 ∩ �5 = α2α3φ1φ2φ4,

�2 ∩ �3 = α
5/3
1 φ13,

�2 ∩ �4 = α
2/3
1 φ2φ3φ4φ16,

�2 ∩ �5 = α
1/4
4 φ2φ6,

�3 ∩ �4 = α
2/3
1 φ18,
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The moduli space of binary quintics 431

�3 ∩ �5 = α2
5φ4,

�4 ∩ �5 = α
1/2
0 φ1φ2φ3φ4.

Apart from the αj , different φ j all represent points distinct from the Fj and from each
other. Collectively, the φ’s respresent 151 points, at each of which just two of the �i

meet transversely (save when one curve is �5, when we have simple contact.
We now consider singularities of the curves �j . In general, a smooth curve of

degree d in weighted projective space P(a0, a1, a2) has genus g equal to the number
of monomials of degree d − ∑2

0 ai . This is to be decreased by terms corresponding
to any singularities (the usual rule μ + r − 1 will apply at points smooth onM). Now
our curves �1, . . . , �5 have degrees 12, 11, 8, 14, 9; decreasing by 6 gives 6, 5, 2,
8, 3 and the corresponding numbers of monomials are 7, 5, 2, 10, 3: e.g. in the first
case, we have x7, x5y, x3y2, xy3, x3z, xyz, xz2. Since our curves are parametrised,
they are rational, so these numbers must be accounted for by singularities.

Computationally, we seek repeated factors of the discriminant of Ri with respect
to z = I12. These are, with notation as above and where δ denotes I 24 − 128I8,

Curve Discriminant Singularities

�1 δ2φ2
1φ

2
2φ

2
4 φ1φ2φ4

�2 φ2
5 φ5

�3 φ2
2 φ2

�4 δ2φ2
1φ

2
3φ

2
6 φ1φ3φ6

�5 j52φ3
1 j2β3

The factors δ for �1, �4 do not yield singular points: �1 touches � at F2 and �4
touches it at F0 (otherwise we would have transverse intersections at smooth points).
For �1, . . . , �4 the remaining factors yield (distinct) singular points of type A1.

For �5 the factor j2 vanishes at F5; β3 vanishes at F3. Calculating in local coordi-
nates shows that F5 is a singular point of �5 of type A4, and that F3 is one of type A2:
together, these lower the genus by 3, confirming our calculations.

The φ’s corresponding to singular points represent a further 24 points of M. For
our stratification, in the C case we need

151(φ’s before) + 24(these φ’s) + 3(F3, F4, F5) = 178

special points (as well as the seven points Fi (i = 0, 1, 2), Gi (i = 1, 2, 3, 4) on �).

6 Characteristic 2

6.1 Introduction

Over a field K of characteristic 2 (which, when convenient, we assume algebraically
closed) there are several differences to the above theory.We nowwrite a general quintic
in the form
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432 A. du Plessis, C.T.C. Wall

a =
5∑

r=0

ar x
5−r yr , (3)

omitting the binomial coefficients. We compute the above invariants for a where, for
the moment, we still work in characteristic zero. We find that the expressions for I4,
25 I8 and 210 I12 have no denominators in their expansions; reducing them modulo 2
we obtain i4, i8 and i26 , where the invariants i4, i6 and i8 are given by the following
expressions. First set

A1
..= a0a3 + a1a2, A2

..= a0a5 + a1a4, A3
..= a2a3, A4

..= a2a5 + a3a4,

B1
..= a1a

2
2a5 + a0a

2
3a4, B2

..= a1a
3
3 + a32a4, C ..= a0a

5
3 + a52a5.

Then we have

i4 = A2A3 + A2
2 + B1,

i6 = a42 A4 + a43 A1,

i8 = A2C + B2
2 + B2A2A3 + B1A

2
3 + A3

3A2 + A4
3.

We can verify directly that i4, i6 and i8 are indeed invariants of a under the action of
SL2(K ). Using the same technique of clearing denominators and reducing modulo 2,
we find that the invariant I18 yields i36 , and the discriminant gives i24 , so we obtain
no further basic invariants. We will see in Theorem 6.2 that the ring of polynomial
invariants is the polynomial ring K [i4, i6, i8]. Themoduli spaceM2 is thus isomorphic
to the weighted projective space P(2, 3, 4)K . Its singular points are of type A2 at
(0, 1, 0) and of type A1 at (0, 0, 1).

6.2 Binary quartics in characteristic 2

We begin by revising this rather simpler case. For quartics f (x, y) ..= ax4 + bx3y +
cx2y2 + dxy3 + ey4, the ring of invariants is polynomial, generated by i2 ..= bd + c2

and i3 ..= ad2 + bcd + eb2. The vanishing of i3 characterises the case of repeated
roots.

The automorphism group of P1
K is SL2(K ) ∼= PGL2(K ). Each involution (element

of order 2) is conjugate to the map given affinely as t → t + 1, which has the
unique fixed point (pole) ∞. Given four distinct points in P

1
K , we can arrange them

in three ways into two pairs. For each such arrangement, there is a unique involution
interchanging the two elements of each pair. The poles of all three involutions coincide,
and the involutions commute, forming a copy of the four group.

The derivatives ∂ f/∂x = bx2y + dy3, ∂ f/∂y = bx3 + dxy2 depend only on the
class of f modulo the ideal I1 = 〈x2, y2〉�K [x, y] generated by perfect squares, and
(provided f /∈ I1) vanish together only at the point where bx2 + dy2 = 0. This point
is the pole of the involutions permuting the roots of f : we can call it the pole of f . If,
however, f ∈ I1, so that b = d = 0, f itself is a perfect square, so can be reduced
under SL2(K ) to cx2y2 (with c �= 0) or x4.
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The moduli space of binary quintics 433

For f not a square, we take the pole of f as (1, 0), so that b = 0, d �= 0, the
involutions take the form t (=x/y) → t + α, t → t + β, so

f = a(x + γ y)(x + (γ + α)y)(x + (γ + β)y)(x + (γ + α + β)y); (4)

here we can also reduce γ to 0, so f = ax4+cx2y2 +dxy3, and the invariants reduce
to i2 = c2, i3 = ad2. Under SL2(K ) we can further reduce d to 1, so f has the unique
normal form i3x4 + √

i2x2y2 + xy3. If there is a further symmetry of the roots, we
can take it to fix 0, and it must cyclically permute the others. In this case, i2 = 0 and
the set of four points is equivalent (under PGL2(K )) to the affine line over F4.

6.3 Quintics with symmetry and special quintics

A set of five points admitting an involution must consist of a set of four points together
with its pole, and hence we can take the equation as y f with f as in (4), with invariants
((αβ(α+β))2, 0, (α2+αβ+β2)6). In particular, the condition for a quintic to possess
such a symmetry is i6 = 0.

For a symmetry of order 3 or 5, as in the characteristic zero case, we may suppose
the group a diagonal subgroup of SL2, and obtain the above forms f3 and f5. Over K ,
these are equivalent to each other, and to f4, which is the equation for the set of five
points forming the projective line P1

F4
over the Galois field F4. This admits the group

SL2(F4) of automorphisms, which has order 60 and acts as the alternating group. The
corresponding invariants are (1, 0, 0).

As in characteristic zero, we also have cases with repeated roots: f1 = x2(x3 − y3)
(equianharmonic tetrad with one point repeated), with invariants (0, 1, 0), and f2 =
x2y2(x − y) (two repeated points, and another point), with invariants (0, 0, 1) (over
K , f0 is equivalent to this).

6.4 Normal forms

For a fifth power of a linear form we have a2 = a3 = 0; thus a general quintic is no
longer a linear combination of fifth powers: indeed, a quintic is so if and only if it
belongs to the ideal I2�K [x, y] generated by 4th powers of linear forms: equivalently,
if a2 = a3 = 0. Noting that ∂ f/∂x = a0x4 + a2x2y2 + a4y4, we see that, if a2 and a3
do not both vanish, there is a unique differential operator D = α∂/∂x + β∂/∂y such
that Df has zero coefficient of x2y2 and hence is a fourth power.

Theorem 6.1 A binary quintic f can be reduced under SL2(K ) to a unique normal
form as follows:

(a) if i4 �= 0, i6 �= 0, a0x5 + x3y2 + a4xy4 + a5y5 with a0 �= 0, a5 �= 0, with
invariants (a20a

2
5, a5, a0a

2
5 + a24);

(b) if i4 �= 0, i6 = 0, a1x4y + a3x2y3 + a4xy4 with a1 �= 0, a4 �= 0; with invariants
(a21a

2
4, 0, a

2
1a

6
3), and either a3 = 1 or a3 = 0, a1 = 1;

(c) if i4 = 0, (i6, i8) �= (0, 0), x3y2 + a4xy4 + a5y5 with (a4, a5) �= (0, 0), with
invariants (0, a5, a24);
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(d) if i4 = i6 = i8 = 0, one of ax3y(x + y) with a �= 0, x3y2, x4y or x5.

Proof (a) Since i6 �= 0, we cannot have a2 = a3 = 0, so have a derivation D as above.
We change coordinates to take Df as (a non-zero multiple of) y4. Then A1 = 0 and
A4 �= 0, so i6 = a42 A4 �= 0. We can thus also take a2x + a3y as a non-zero multiple
of x , or equivalently D as ∂/∂y. Then the coordinates x and y are both fixed up to
scalar multiples; and a1 = a3 = 0, a5 �= 0. Now i4 = a20a

2
5 is non-zero, so a0 �= 0.

Replacing x by a−1
2 x and y by a2y, we reduce a2 to 1.

(b) If a2 and a3 do not both vanish, we proceed as before up to the point where A1 = 0
and A4 �= 0, but now since i6 = 0, we deduce a2 = 0, so D = ∂/∂x . We now have
a0 = a2 = 0, a4 �= 0, which we recognise as the same form as for quintics with
symmetry. As in the preceding paragraph, we can choose x as one of the factors of f ,
thus reducing a5 to 0, and can reduce a3 to 1.

In the case a2 = a3 = 0, the invariants are ((a1a4 + a0a5)2, 0, 0). As i4 �= 0, there
are at least two distinct linear factors. Choosing x and y to be two of them we have
a0 = a5 = 0, hence a1 �= 0, a4 �= 0. The quintic is equivalent to P

1
F4

(in particular,
f is indeed a sum of two fifth powers), and this case is subsumed as a3 = 0 in the
preceding normal form.

(c) If i4 = 0, the quintic has a repeated factor, andwe can take the factor as y2, and thus
suppose a0 = a1 = 0. The invariants then reduce to (0, a42(a2a5+a3a4), a62a

2
4+a42a

4
3).

If a2 = 0, all invariants vanish; otherwise we normalise coordinates first so that a2 = 1
and then so that a3 = 0. The invariants now reduce to (0, a5, a24), so our hypothesis
gives (a4, a5) �= (0, 0).

(d) We saw in the preceding paragraph that if all invariants vanish, we may reduce till
either a0 = a1 = a2 = 0 or a3 = a4 = a5 = 0: in either case, there is a linear factor
of multiplicity at least 3. Thus there are at most three distinct roots, so by inspection
the quintic can be reduced to ax3y(x + y) (with a �= 0), x3y2, x4y or x5. ��
Weobserve that the results of Geometric Invariant Theory apply to this case, and imply
that all invariants vanish if and only if there is a 3-fold factor; and in all other cases the
quintic is stable, and is determined up to SL2(K ) by its invariants, as we see directly.

Theorem 6.2 The SL2(K )-invariants in K [a0, . . . , a5] form the polynomial ring
K [i4, i6, i8].
Proof Any invariant is determined by its value on a generic quintic, which we can
take in the normal form (a). As we have just seen, the invariants (i4, i6, i8) here take
the values (a20a

2
5, a5, a0a

2
5 + a24). We can thus write a5 = i6, a0 = i−1

6
√

(i4) and
a4 = √

(i8 + i6
√

(i4)). The field of invariants is thus contained in K (i6, i
−1
6

√
(i4),√

(i8+ i6
√

(i4)), which has degree 4 over K (i4, i6, i8). We see by inspection that each
strictly intermediate field contains

√
(i4). However, for a generic quintic (3), i4 is not

a perfect square. Thus the field of invariants coincides with K (i4, i6, i8).
It remains to show that an element of this field which restricts to a polynomial in

a0, . . . , a5 is a polynomial in i4, i6 and i8. We see from the preceding paragraph that
we have a polynomial in i6, i

−1
6

√
(i4) and

√
(i8 + i6

√
(i4)), so the only denominator

that may occur is a power of i6. If such a case occurs, there must be an example
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with denominator i6, and we may suppose without loss of generality that the numer-
ator depends on i4 and i8 only. But for the normal form for case (b), i4 and i8 are
independent, while i6 = 0. Hence no such example exists. ��

6.5 Exceptional curves

As before, given a plane quintic curve Hi with 1-parameter symmetry group Gi , the
lines L in the plane P2

K fall into a 1-parameter family of orbits under Gi , so we expect
their intersections with Hi to give a family of binary quintics whose moduli trace out
a curve �i inM2.

If we take the above calculations, remove the appropriate power of 2, and reduce
mod 2, R1 reduces to i86 , R2 to i26 i

4
8 , R3 to (i4i26 + i28 )

2 and R5 to i66 , but R4 remains
irreducible. However, it is easy to calculate directly.

For each of h1, . . . , h5 in turn,wefirst substitute z = x+uy, then list the coefficients
of x5−r yr for r = 0, 1, 2, 3, 4, 5. We then calculate in turn A1, A2, A3, A4, B1, B2,C
and finally the invariants (i4, i6, i8). The results are as follows (recall that we are
calculating mod 2):

For h1, the quintic x4(x + uy) + xy2(x + uy)2 has coefficients [1, u, 1, 0, u2, 0].
We obtain A1 = u, A2 = u3, A3 = 0, A4 = 0, B1 = 0, B2 = u6, C = 0, and
(i4, i6, i8) = (u6, 0, u12).

For h2 we find in turn: x4(x + uy) + y3(x + uy)2, coefficients [1, u, 0, 1, 0, u2]
A1 = 1, A2 = u2, A3 = 0, A4 = 0, B1 = 0, B2 = u, C = 1 and (i4, i6, i8) =
(u4, 1, 0).

Next, h3 gives x5 + y3(x + uy)2, with coefficients [1, 0, 0, 1, 0, u2], so A1 = 1,
A2 = u2, A3 = 0, A4 = 0, B1 = 0, B2 = 0, C = 1, and (i4, i6, i8) = (u4, 1, u2).

Next, h4 yields the quintic x3y(x+uy)+y3(x+uy)2, coefficients [0, 1, u, 1, 0, u2],
giving A1 = u, A2 = 0, A3 = u, A4 = u3, B1 = u4, B2 = 1, C = u7, and
(i4, i6, i8) = (u4, u + u5, 1 + u4 + u6).

Finally, h5 gives xy3(x + uy) + x2y(x + uy)2, [0, 1, 0, 1 + u2, u, 0], A1 = 0,
A2 = u, A3 = 0, A4 = u + u3, B1 = 0, B2 = 1 + u2 + u4 + u6, C = 0, and
[i4, i6, i8] = [u2, 0, 1 + u4 + u8 + u12].

Thus the loci inM2 are indeed defined by i6 = 0, i8 = 0, i4i26 = i28 , a complicated
expression, and i6 = 0.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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