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Abstract Given a closed subvariety X in a projective space, the rank with respect to
X of a point p in this projective space is the least integer r such that p lies in the linear
span of some r points of X . Let Wk be the closure of the set of points of rank with
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respect to X equal to k. For small values of k such loci are called secant varieties. This
article studies the loci Wk for values of k larger than the generic rank. We show they
are nested, we bound their dimensions, and we estimate the maximal possible rank
with respect to X in special cases, including when X is a homogeneous space or a
curve. The theory is illustrated by numerous examples, including Veronese varieties,
the Segre product of dimensions (1, 3, 3), and curves. An intermediate result provides
a lower bound on the dimension of any GLn orbit of a homogeneous form.

Keywords Secant variety · Rank locus · Tensor rank · Symmetric tensor rank

Mathematics Subject Classification 14N15 · 15A72

1 Introduction

A generalm×n matrix has rank min{m, n}, and this is the greatest possible rank. The
locus of matrices of rank at most r , for r � min{m, n}, is well studied: its defining
equations are well known, along with its codimension, singularities, and so on.

Also well studied are the loci of tensors of a fixed format and of rank at most r .
These, up to closure, are secant varieties of Segre varieties. Despite intense study,
defining equations and dimensions of such secant varieties are known only in limited
cases, to say nothing of their singularities. For introductory overviews of this, see for
example [13,22]. In contrast to the matrix case, however, special tensors may have
ranks strictly greater than the rank of a general tensor. The locus of tensors with ranks
greater than the generic rank is quite mysterious. In general it is not known what is
the dimension of this locus, what are its equations, whether it is irreducible—or even
whether it is nonempty.

Similarly, the closure of the locus of symmetric tensors of rank at most r is a secant
variety of a Veronese variety. In this case, the dimensions of all such secant varieties
are known, although the equations are not known. The same sources [13,22] give
introductions to this case as well. But once again, special symmetric tensors may have
ranks strictly greater than the rank of a general symmetric tensor. And once again, the
locus of such symmetric tensors is almost completely unknown.

Here we study high rank loci for tensors and symmetric tensors, and for more
general notions of rank. We consider rank with respect to a nondegenerate, irreducible
projective variety X ⊆ P

N over an algebraically closed field k of characteristic zero.
Let rank = rankX denote rank with respect to X , the function that assigns to each
point p ∈ P

N the least number r such that p lies in the linear span of some r points
of X . See Sect. 2 for more details. For k � 1 let

Wk = rank−1(k) = {p ∈ PN : rank(p) = k}.

Let g be the generic rank with respect to X . Note that Wk = σk(X) is the kth secant
variety for 1 � k � g, in particular W1 = X and Wg = P

N. We seek to understand
the high rank loci, namely, Wk for k > g.
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On the locus of points of high rank 115

We give dimension bounds for the Wk and we find containments and non-
containments between the high rank loci and secant varieties. Using these, we can
improve previously known upper bounds for rank in the cases where X is a curve (The-
orem 3.7) or a projective homogeneous variety (Theorem 3.9). This includes Segre
and Veronese varieties, corresponding to tensor rank and symmetric tensor rank. The
key result is a nesting statement, that each high rank locusWk for k > g is contained in
the next highest oneWk−1, and in fact more strongly the join ofWk and X is contained
in Wk−1, see Theorem 3.1.

We give a lower bound for the dimension of the locus of symmetric tensors of
maximal rank, showing that, even though the maximal value of rank is unknown (!),
there is a relatively large supply of symmetric tensors with maximal rank, see Theo-
rem 4.1. Possibly of independent interest, we give a lower bound for the dimension of
the GL(V ) orbit of a homogeneous form F ∈ Sd(V ), assuming only that F is con-
cise, i.e., cannot be written using fewer variables; other well-known results assume F
defines a smooth hypersurface, but we give a bound even if the hypersurface defined
by F is singular, reducible, or non-reduced, see Proposition 4.7.

We find the dimension of the locus of 2×2n×2n tensors of maximal rank, see
Proposition 5.4, and we characterize all 2×4×4 tensors with greater than generic
rank, see Proposition 5.8.

Finally, in Sect. 6 we let X be a curve contained in a smooth quadric in P
3. Then the

generic rank is g = 2 and the maximal rank is m = 2 or 3. When X is a general curve
of bidegree (2, 2) we show that W3 is a curve of degree 8, disjoint from X , with four
points of rank 2 and all the rest of rank 3. Piene has shown that if X is a general curve
of bidegree (3, 3), then W3 is empty, i.e., m = 2. We extend this to general curves of
bidegree (a, b) with a � 4 and b � 1.

2 Background

We work over a closed field k of characteristic zero. For a finite dimensional vector
space V , let PV be the projective space of lines through the origin in V , and for
q ∈ V , q �= 0, let [q] be the corresponding point in PV . A variety X ⊆ PV is a
reduced closed subscheme. We deal only with varieties in PV defined over k. Recall
that a variety X ⊆ PV is nondegenerate if X is not contained in any proper linear
subspace, equivalently if X linearly spans PV .

2.1 Ranks and secant varieties

Let X ⊆ PV be a nondegenerate variety. For q ∈ V , q �= 0, the rank with respect
to X of q, denoted rankX (q) or more simply rank(q), is the least integer r such that
q = x1+· · ·+ xr for some xi ∈ V with [xi ] ∈ X for 1 � i � r . Equivalently, rank(q)

is the least integer r such that [q] lies in the span of some r distinct, reduced points in
X . We extend rank to PV by rank([q]) = rank(q).

For example, tensor rank is rankwith respect to a Segre variety,Waring rank is rank
with respect to a Veronese variety, and alternating tensor rank is rank with respect to
a Grassmannian in its Plücker embedding.
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The rank function is subadditive and invariant under multiplication by scalars. In
particular,

rank(p) − rank(q) � rank(p+q) � rank(p) + rank(q).

The r th secant variety of X , denoted σr (X), is the closure of the union of the planes
spanned by r distinct, reduced points in X . Equivalently, σr (X) is the closure of the
set of points of rank at most r .

There is a unique value g, called the generic rank, such that there is a Zariski open,
dense subset of P

N of points with rank g. The generic rank is the least value r such
that σr (X) = P

N. (The situation is more complicated over non-closed fields. See for
example [6] for the real case.)

2.2 Upper bounds for rank

As long as X is nondegenerate, we may choose a basis for V consisting of points xi
with [xi ] ∈ X , and then every point in PV can be written as a linear combination of
those basis elements. This shows that every point in PV has rank at most dim V . In
particular the values of rank are finite and bounded.

Let m be the maximal rank with respect to an irreducible, nondegenerate variety
X . Recall the following well-known upper bounds.

Theorem 2.1 ([23]) m � codim X + 1.

Proof For any q /∈ X , a general plane through q of dimension codim X is spanned
by its intersection with X (see argument in [23], or [20, Proposition 18.10]), which is
reduced by Bertini’s theorem. This plane intersects X in deg X many points; choosing
a spanning subset shows rank(q) � codim X + 1. ��
This was also observed by Geramita when X is a Veronese variety, corresponding to
the case ofWaring rank [19, p. 60]. It is false in the positive characteristic case, see [4],
and it is false over the real numbers, see [3,6]. (In the positive characteristic case and
over the real numbers the bound is codim X + 2.)

Theorem 2.2 ([7]) m � 2g. If σg−1(X) is a hypersurface, then m � 2g − 1.

Proof A general line through q ∈ P
N is spanned by two points x, y in the dense open

set of points of rank g. Soq is a linear combination of x and y, and rank(q) � rank(x)+
rank(y) = 2g. If σg−1(X) is a hypersurface, a general line through q contains a point
x of rank g − 1 and a point y of rank g. Again rank(q) � rank(x) + rank(y) =
2g − 1. ��
This bound holds over the real numbers and over closed fields in arbitrary characteris-
tic, see [7]. Over the real numbers this bound is sharp, see [6, Theorem 2.10]. We show
that, over a closed field k of characteristic zero, it can be improved to m � 2g − 1
in some cases, such as when X is a curve or a homogeneous variety. It is an open
question whether m � 2g − 1 for every variety X over a closed field.
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On the locus of points of high rank 117

2.3 Joins and vertices

We recall some basic notions of joins and vertices of varieties in P
N. See [17, Sec-

tion 4.6] for more details.

Definition 2.3 The join of two varieties V1, V2 ⊆ P
N, denoted J (V1, V2), is the

closure of the union of all lines spanned by points p, q with p ∈ V1, q ∈ V2, and
p �= q.We also use additive notation: V1+V2 = J (V1, V2) and kV = V +(k−1)V =
V + · · · + V , k times. In particular the secant variety σk(X) is equal to kX .

Note that if X,Y are irreducible then so is X + Y .

Definition 2.4 LetW ⊂ P
N be a closed subscheme. A point p ∈ P

N is called a vertex
ofW if p+W = W set-theoretically. The set of vertices ofW is denoted Vertex(W ).

It is well known that Vertex(W ) ⊆ W and Vertex(W ) is a linear space.

Proposition 2.5 ([1, Proposition 1.3]) Let X,Y be irreducible varieties in P
N. Then

• X + Y = Y if and only if X ⊆ Vertex(Y ),
• dim(X +Y ) = dim Y + 1 implies X ⊆ Vertex(X +Y ).

Corollary 2.6 Let W, X ⊆ P
N be irreducible varieties with X nondegenerate. For

every k � 0, either dim(W +kX) � dimW + 2k or W + kX = P
N.

3 General results

Theorem 3.1 Let X ⊆ P
N be an irreducible, nondegenerate variety. Let g be the

generic rank and m the maximal rank with respect to X. Then for each k, g + 1 �
k � m, Wk + X ⊆ Wk−1. In particular Wm ⊂ Wm−1 ⊂ · · · ⊂ Wg+1 ⊂ Wg = P

N.

Proof LetW be an irreducible component ofWm . A general point ofW+X has rankm
orm−1. If the general point has rankm thenW+X ⊆ Wm . SinceW+X is irreducible,
it is contained in one of the irreducible components of Wm ; since W ⊆ W + X , it
must be W + X = W . But then X ⊆ Vertex(W ), contradicting the nondegeneracy of
X . So W + X ⊆ Wm−1, which shows Wm + X ⊆ Wm−1.

Suppose inductively Wh+1 + X ⊆ Wh , where m > h � g + 1. Let W be an
irreducible component ofWh . A general point ofW + X has rank h+1, h, or h−1. It
cannot be h, or else once againW ⊆ W+X ⊆ Wh ,W = W+X , and X ⊂ Vertex(W ).
And it cannot be h+1, or elseW +X ⊆ Wh+1, which meansW +2X ⊆ Wh+1+X ⊆
Wh by induction. But then W + 2X is contained in an irreducible component of Wh ,
which must be W since W ⊆ W + 2X . So then W = W + 2X and X ⊆ 2X ⊆
Vertex(W ). Hence W + X ⊆ Wh−1, which shows Wh + X ⊆ Wh−1. ��
Remark 3.2 In Sects. 4.4 and 5.5 we will give examples where Wk + X = Wk−1 for
g + 1 � k � m. It is an interesting problem to find an example where the inclusion
Wk + X ⊆ Wk−1 is strict.

Corollary 3.3 For 1 � k � m − g, σk(X) = kX ⊂ Wm−k .
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Corollary 3.4 For 1 � k � g − 1, σk(X) �⊂ W2g−k+1. In particular if m = 2g, then
for 1 � k � g − 1, σk(X) �⊂ Wm−k+1.

Proof If σk(X) ⊆ W2g−k+1, then

P
N = gX = kX + (g − k)X ⊆ W2g−k+1 + (g − k)X ⊆ Wg+1 � P

N,

a contradiction. ��
Remark 3.5 Containments in the other direction need not hold. For an example where
Wm �⊂ σg−1(X), see Remark 5.3.

We give a sharp bound on the dimension of the high rank loci.

Theorem 3.6 Let X be an irreducible variety in P
N and let g be the generic rank with

respect to X. For every k � 1, codimWg+k � 2k − 1.

Proof We have Wg+k + (k − 1)X ⊆ Wg+1 �= P
N by Theorem 3.1. Then N >

dim(Wg+k + (k − 1)X) � dimWg+k + 2(k − 1) by Corollary 2.6. ��
See Sect. 4.4 for an example where codimWg+k = 2k − 1 holds.

We can give improved upper bounds for ranks in two cases. First, if X is a curve,
we can improve by 1 the conclusions of Theorem 2.2.

Theorem 3.7 Let X be an irreducible nondegenerate curve inP
N. Let g be the generic

rank and m the maximal rank with respect to X. Then m � 2g − 1. Moreover, if in
addition the last nontrivial secant variety σg−1(X) is a hypersurface, thenm � 2g−2.

Proof First recall that X is nondefective, meaning that for k � 1, dim kX =
min{N , 2k − 1}, see e.g. [1, Introduction, Remark 1.6]. Then N > dim(g − 1)X =
2g − 3, and N = dim gX � 2g − 1. Hence N ∈ {2g − 1, 2g − 2}.

If N is odd, N = 2g − 1, then codim X = N − 1 = 2g − 2. By Theorem 2.1,
m � codim X + 1 = 2g − 1.

If N is even, N = 2g − 2, then dim σg−1(X) = 2g − 3 = N − 1. This is the case
in which σg−1(X) is a hypersurface. By Theorem 2.1 again, m � codim X + 1 =
2g − 2. ��
Remark 3.8 The above result fails over the reals, see [6, Theorem 2.10].

Second, if X is a projective homogeneous variety in a homogeneous embedding then
we can obtain the same improvement.

Theorem 3.9 Let G be a connected algebraic group, V an irreducible representation
of G, and X = G/P ⊂ PV a projective homogeneous variety. Let g be the generic
rank and m the maximal rank with respect to X. Then m � 2g − 1. Moreover, if in
addition the last nontrivial secant variety σg−1(X) is a hypersurface, thenm � 2g−2.

Proof X is the unique closed orbit of G on PV , see for example [18, Claim 23.52].
Since X isG-invariant, so is each rank locusWk . EveryG-invariant closed set contains
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On the locus of points of high rank 119

X , in particular X ⊂ Wm . The asssertion m = 2g contradicts Corollary 3.4, thus
m � 2g − 1.

If in addition σg−1(X) is a hypersurface, and m = 2g − 1, then

σg−1(X) = (g − 1)X ⊆ Wm + (g − 2)X,

since X ⊂ Wm . Then

σg−1(X) ⊆ W2g−1 + (g − 2)X ⊆ Wg+1 � PV .

ThereforeWg+1 contains an irreducible component equal to σg−1(X). This contradicts
the definition of the rank locus Wg+1: general points in σg−1(X) have rank g − 1, but
general points in each component of Wg+1 have rank g + 1. It follows that whenever
σg−1(X) is a hypersurface, we must have m � 2g − 2. ��
The bounds in both Theorems 3.7 and 3.9 are attained when X is a rational normal
curve, see Sect. 4.4.

Example 3.10 The maximal rank is strictly less than twice the generic rank in the
following cases.

• Waring rank, when X is a Veronese variety.
• Tensor rank, when X is a Segre variety.
• Alternating tensor rank, when X is a Grassmannian in its Plücker embedding.
• Multihomogeneous rank, also called partially symmetric tensor rank, when X is a
Segre–Veronese variety.

4 Veronese varieties

When X = νd(P
n−1) ⊂ P

N is a Veronese variety, then P
N is the projective space

of degree d homogeneous forms in n variables and X corresponds to the dth powers.
Rank with respect to X is called Waring rank. The Waring rank of a homogeneous
form of degree d is the least r such that the form can be written as a sum of r dth
powers of linear forms. For example, xy = (x+ y)2/4−(x− y)2/4, so rank(xy) � 2;
since xy �= �2, rank(xy) = 2.

The main result in this section is a lower bound for the dimension of the maximal
rank locus Wm with respect to any Veronese variety.

Theorem 4.1 Suppose X = νd(PV ) ⊂ P(SdV ) is the Veronese variety and that
dim V = n � 3. Then every irreducible component of the rank locus Wm has dimen-
sion at least

(n+1
2

) − 1. Moreover, if W is an irreducible component of Wm with

dimW = (n+1
2

)−1, then d is even and W is the set of all (d/2)th powers of quadrics.

This will be proved in Sect. 4.8. The proof uses a lower bound for the dimension of
the orbit of a homogeneous form under linear substitutions of variables, which may be
of independent interest, see Sect. 4.6. First, we review some background information
on apolarity, conciseness, and generic and maximal Waring rank. We also give a full
description of the rank loci with respect to a rational normal curve, that is, a Veronese
embedding of P

1, corresponding to Waring rank of binary forms.
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4.1 Apolarity

Let S = k[x1, . . . , xn] and let T = k[α1, . . . , αn], called the dual ring of S. We let
T act on S by differentiation, with αi acting as partial differentiation by xi . This is
called the apolarity action and denoted by the symbol , so that

(
α
a1
1 · · · αan

n

) (
xd11 · · · xdnn

) =
n∏

i=1

di !
(di − ai )! x

di−ai
i

if each di � ai , or 0 otherwise.
For F ∈ S, F⊥ ⊆ T is the ideal of � ∈ T such that � F = 0. For example,(

xd11 · · · xdnn
)⊥ = (

α
d1+1
1 , . . . , α

dn+1
n

)
. If F is homogeneous then F⊥ is a homogeneous

ideal. For more details see for example [21, Section 1.1].

4.2 Concise forms

In the terminology of [11], a form F ∈ SdV ∼= k[x1, . . . , xn]d is called concise with
respect to V (or with respect to x1, . . . , xn) if F cannot be written as a homogeneous
form in fewer variables, even after a linear change of coordinates; that is, F is concise
if V ′ ⊆ V and F ∈ SdV ′ implies V ′ = V . The following are equivalent: F is concise;
the projective hypersurface V (F) is not a cone (i.e., has empty vertex); the ideal F⊥
has no linear elements; the (d−1)-th derivatives of F span the linear forms. Note that
the last two conditions can be checked directly by computation.

Write 〈F〉 for the span of the (d−1)-th (degree 1) derivatives of F . We have
〈F〉 = ((F⊥)1)

⊥, that is, 〈F〉 is perpendicular to the space of linear forms in the ideal
F⊥. Nonzero elements of 〈F〉 (or, elements of a basis of 〈F〉) are called essential
variables of F . We have F ∈ Sd〈F〉, see [11, Proposition 1].

4.3 Generic and maximal Waring rank

The rank of a quadratic form is equal to its number of essential variables, by diagonal-
ization. Thus, if d = 2, then g = m = n. If n = 2, then g = 
(d + 2)/2� and m = d
by work of Sylvester and others in the 19th century, see for example [21, Section 1.3]
and references therein. We will review the n = 2 case in the next section.

For n, d � 3 the generic rank is known by the famous Alexander–Hirschowitz
Theorem:

Theorem 4.2 ([2]) Suppose n, d � 3. The generic rank g = gn,d with respect to the
Veronese variety νd(P

n−1) is as follows.

• If n = 3 and d = 4, then g3,4 = 6,
• if n = 4 and d = 4, then g4,4 = 10,
• if n = 5 and d = 3, then g5,3 = 8,
• if n = 5 and d = 4, then g5,3 = 15,
• and otherwise, if (n, d) /∈ {(3, 4), (4, 4), (5, 3), (5, 4)}, then
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On the locus of points of high rank 121

gn,d =
⌈
1

n

(
d + n − 1

d

)⌉
=

⌈
(d + n − 1)!

d! ·n!
⌉
.

Moreover, the last proper secant varietyσg−1(νd(P
n−1)) is a hypersurface if andonly if(d+n−1

d

) ≡ 1 (mod n)or it is an exceptional case, (n, d)∈{(3, 4), (4, 4), (5, 3), (5, 4)}.
On the other hand, the maximal rank m = mn,d is only known in a few initial cases:
m3,3 = 5, m3,4 = 7, m3,5 = 10, m4,3 = 7. See [10] for details and references.

We havemn,d > gn,d when n = 2, when n = 3, and when n = 4 and d is odd [10].
In all other cases, it is an open question whether mn,d > gn,d .

4.4 Binary forms

Suppose X = νd(P
1) ⊂ P

d is the rational normal curve of degree d. We identify P
d

as the space of forms of degree d in two variables. Here X is the set of dth powers [�d ].
In this case the apolarity method provides a full description of the lociWk , as follows.
Let τ(X) be the tangential variety of X . Some parts of the following statement are
well known, see for example [21, Section 1.3], and much (perhaps all) of it is known
to experts, but we include the statement here for lack of a clear reference.

Proposition 4.3 Let X = νd(P
1) ⊂ P

d be the rational normal curve of degree d.
The generic rank is g = 
(d + 2)/2� and the maximal rank is m = d. We have
Wm = Wd = τ(X). For g < k < m we have Wk = τ(X)+(d−k)X. In particular, we
have the following nested inclusions of irreducible varieties (each one of codimension
1 in the next):

X ⊂ τ(X) ⊂ 2X ⊂ τ(X) + X ⊂ 3X ⊂ τ(X) + 2X ⊂ · · · ,

equivalently,

σ1(X) ⊂ Wd ⊂ σ2(X) ⊂ Wd−1 ⊂ σ3(X) ⊂ Wd−2 ⊂ · · ·

If d = 2g − 2 is even, then the sequence of inclusions ends with

· · · ⊂ σg−2(X) ⊂ Wg+1 ⊂ σg−1(X) ⊂ σg(X) = P
d.

Or, if d = 2g − 1 is odd, then it ends with

· · · ⊂ σg−1(X) ⊂ Wg+1 ⊂ σg(X) = P
d.

Proof Fix S = k[x, y] and V = S1, the space of linear forms in S. We identify Sd
with SdV and the dual ring T = k[α, β] with the symmetric algebra on V ∗.

For a homogeneous polynomial F ∈ SdV let F⊥ be the apolar ideal of F . Then
F⊥ = (�,	) is a homogeneous complete intersection with deg� = r � deg	 =
d+2−r , see for example [21, Theorem1.44].Note that both� and	 are homogeneous
polynomials in two variables, hence they are products of linear factors. Then (see for
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example [21, Section 1.3], [15]) F ∈ σr (X)\σr−1(X); if � has all distinct roots, then
rank(F) = r ; and if � has at least one repeated root, then rank(F) = d + 2 − r .

Note further, that if r < d + 2 − r , the polynomial � is unique up to rescaling. In
particular, whether it has distinct roots or not does not depend on any choices, so the
conditions for rank(F) = r or d + 2− r are well defined. (If r = d + 2− r , then the
conclusions are the same in both cases.) Still assuming r < d + 2− r , the uniqueness
of � determines a well-defined map:

πr : σr (X)\σr−1(X) → P(SrV ∗),
F �→ [�].

The map is surjective and every fiber π−1
r [�] is a Zariski open subset of a linear

subspace P
r−1 ⊂ P(SdV ), where P

r−1 is the linear span of νd(V (�)). The locus
of � with a double root is an irreducible divisor in P(SrV ∗) and (the closure of) its
preimage Wd+2−r is also irreducible of codimension 1 in σr (X).

From this we see that dim σr (X) = 2r −1, so the generic rank g = �(d + 1)/2� =

(d + 2)/2�. Furthermore, the maximal rank is m = d, and it appears whenever r is
2 and � has a double root, so that F is in the span of a double point, i.e., F is in the
tangential variety τ(X) = Wm = Wd .

In between, for g < k < m we have τ(X) + (d − k)X = Wm + (m − k)X ⊆ Wk .
Both τ(X) + (d − k)X and Wk are irreducible. We have dim τ(X) + (d − k)X �
2(d − k + 1) = dim σd−k+2(X) − 1 = dimWk by Corollary 2.6 and the dimension
computations above. Hence Wk = τ(X) + (d − k)X .

Since X ⊂ τ(X) ⊂ 2X we have l X ⊂ τ(X)+ (l−1)X ⊂ (l+1)X for 1 � l < g,
where the inclusions are of irreducible varieties, each of codimension 1 in the next.
This proves the inclusions displayed in the statement. ��

4.5 Powers of quadratic forms

Fix n, let Qn = x21 + · · · + x2n , and consider Qk
n , a form of degree d = 2k. Reznick

showed every form of degree k in n variables is a derivative of Qk
n , see [28, Theorem

3.10]. This can be used to show that rank(Qk
n) �

(n−1+k
n−1

)
, see for example [21,

Theorem 5.3C,D]. (See [27, Theorem 8.15 (ii)] for the real case.) Sometimes equality
holds, see [27, Chapters 8, 9]. For example, Reznick uses the Leech lattice in R

24 to
show that

rank
(
(x21 + · · · + x224)

5) = 98 280 =
(
28

5

)
.

Note that g24,10 = 3 856 710.
Reznick gives an expression [27, (10.35)]:

(x21 + · · · + x2n )
2 = 1

6

∑

i< j

(xi ± xj )
4 + 4 − n

3

n∑

i=1

x4i ,
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thus rank(Q2
n) � n2, so for sufficiently large n, gn,4 = O(n3) � rank(Q2

n). For small
n, Reznick shows that gn,4 � rank(Q2

n) � gn,4 + 1 for n = 3, 4, 5, 6.
There is a similar identity:

60(x21 + · · · + x2n )
3 =

∑

i< j<k

(xi ± xj ± xk)
6 + 2(5 − n)

∑

i< j

(xi ± xj )
6

+ 2(n2 − 9n + 38)
∑

x6i ,

so rank(Q3
n) � 4

(n
3

) + 2
(n
2

) + n. Hence gn,6 = O(n5) � rank(Q3
n) for sufficiently

large n.
It would be interesting to determine rank(Qk

n), in particular to determine whether
the rank is greater than the generic rank, and whether it is strictly less than themaximal
rank.

4.6 Orbits of homogeneous forms

When F defines a smooth hypersurface in PV of degree deg F � 3, the stabilizer
of F in SL(V ) is finite, see for example [24, (2.1)]. In particular the projective orbit
GL(V ) · [F] ⊂ P(SdV ) has dimension n2 − 1 where n = dim V . In this section we
establish a lower bound for the dimension of GL(V ) · [F], assuming only that F is
concise.

Lemma 4.4 Assume Y ⊂ P
N is a reduced subscheme such that every irreducible

component of Y has dimension at least 1. Suppose a general hyperplane section
Y ∩ P

N−1 is a cone. Then Y is a cone with dimVertex(Y ) � 1.

Proof If Y = P
N, then there is nothing to prove, so assume dim Y < N . First let Y

be irreducible. Replacing P
N with a subspace if necessary, we may assume that Y is

nondegenerate. Consider the vertex-incidence subvariety Z ⊂ Y×(PN )∗, defined by

Z = {(y, H) ∈ Y ×(PN )∗ : y ∈ Vertex(Y ∩ H)}

with its natural projections pr1 : Z → Y and pr2 : Z → (PN )∗. By our assumptions
pr2 is dominant, so dim Z � N > dim Y . Let W be the image of pr1. In particular,
by dimension count, for a general point w ∈ W , there is a positive dimensional fiber
pr−1

1 (w) ⊂ Z . Let Zw = pr2(pr
−1
1 (w)), so that Zw is a positive dimensional family

of hyperplanes H such that w is a vertex of the cone Y ∩ H .
Since Y is irreducible and nondegenerate, a general point y in Y is contained in

some Y ∩ H with H ∈ Zw. Then the line through y and w is contained in Y ∩ H .
Hence w + Y = Y , so w ∈ Vertex(Y ). Therefore Y is a cone, W ⊂ Vertex(Y ), and
dimVertex(Y ) � dimW . But dimW > 0, because every general hyperplane contains
a point of W .

Now if Y is reducible then by the above, each irreducible component is a cone. A
vertex w of a general hyperplane section Y ∩ H is a vertex of each component and the
result follows. ��
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Lemma 4.5 Assume V is a vector space and n = dim V � 3, d � 2. Suppose
Hd ⊂ PV ∗ � P

n−1 is a (not necessarily reduced) hypersurface of degree d, which is
not a cone. Then a general hyperplane section Hd ∩ P

n−2 is not a cone.
Equivalently, suppose F ∈ P(SdV ) is a concise polynomial (in n variables

x1, . . . , xn, of degree d � 2). Pick a general linear substitution of variables, say
xn = a1x1 + · · · + an−1xn−1. Let F ′(x1, . . . , xn−1) = F(x1, . . . , xn−1, a1x1 + · · · +
an−1xn−1). Then F ′ essentially depends on n − 1 variables and no fewer.

Proof This follows from Lemma 4.4, since a hypersurface is a cone if and only if its
reduced subscheme is a cone. ��
Now we turn our attention to GL(V )-orbits.

Lemma 4.6 Let F ∈ P(SdV ) be a polynomial in n = dim V variables, which essen-
tially depends on k variables with 0 < k < n (i.e., F is non-trivial and non-concise).
Then F determines uniquely the linear subspace V ′ ⊂ V of dimension k such that
F ∈ P(SdV ′) ⊂ P(SdV ). In particular,

dim GL(V ) ·[F] = dim GL(V ′) ·[F] + dimGr(k, V ).

Proof We have V ′ = 〈F〉 = ((F⊥)1)
⊥ or Sd−1V ∗ F , as in Sect. 4.2. The fibration

GL(V ) · [F] → Gr(k, V )

[F ′] = [g ·F] �→ 〈F ′〉 = g ·〈F〉

is onto, and each fiber is isomorphic to GL(V ′) · [F], proving the dimension
claim. ��
Proposition 4.7 Suppose F ∈ P(SdV ) is a concise polynomial in n = dim V � 3
variables. Let Z = GL(V ) ·[F] ⊂ P(SdV ). Then either dim Z �

(n+1
2

)
, or dim Z =

(n+1
2

) − 1, d = 2k is even, and F = Qk for a concise quadratic polynomial Q.

Proof Let Fn = F , Vn = V , and define inductively Fi to be a polynomial in i
variables (a basis of Vi ) obtained from Fi+1 by a general substitution of one variable,
as in Lemma 4.5. Thus Fi is a polynomial essentially dependent on i variables.

The closure of the orbit GL(Vn) · [Fn] contains End(Vn) · [Fn]. In particular, the
closure contains a general substitution of variables, i.e. it contains [Fi ] for all i � n.
But GL(Vn) · [Fn] does not contain [Fi ] for i < n. Thus

dim GL(Vn) · [Fn] � dim GL(Vn) · [Fn−1] + 1

= dim GL(Vn−1) · [Fn−1] + (n − 1) + 1

by Lemma 4.6. Inductively,

dim GL(Vn) · [Fn] � n + (n − 1) + · · · + 5 + 4 + dim GL(V3) · [F3]
=

(
n + 1

2

)
− 6 + dim GL(V3) · [F3].
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Note that if F3 = Qk
3 for some quadric in three variables Q3, then by the generality of

our choices of linear substitutions (or equivalently, of hyperplane sections of the loci
(Fi = 0)), we also must have F = Fn = Qk. Thus it only remains to show the claim
of the proposition for n = 3.

Denote by (F3)red ∈ P(SrV3) the homogeneous equation of the reduced algebraic
set (F3 = 0) ⊂ P(V ∗

3 ) � P
2. Observe that (F3)red essentially depends on three

variables, just as F3 does. In particular, r = deg (F3)red � 2, and if r = 2, then
(F3)red is a nondegenerate (irreducible) quadric Q3, and hence F = Qk and the claim
of the proposition is proved. From now on, we assume r � 3.

Consider the general line section of the plane curve (F3 = 0). The degree r =
deg (F3)red is the number of distinct points of support of this line section.ByLemma4.6
again

dim GL(V3) · [F3] � dim GL(V3) · [F2] + 1 = dim GL(V2) · [F2] + 3

and also dim(GL(V2) · [F2]) = 3 since F2 has r (at least three) distinct roots. Therefore
dim GL(V3) · [F3] � 6 and dim GL(Vn) · [Fn] �

(n+1
2

)
as claimed. ��

4.7 Conciseness of forms of high rank

We will use the following lemma in the next section.

Lemma 4.8 Suppose F ∈ P(SdV ) is a form of maximal rank and d � 2. Then F is
concise. In particular, a general point in each component of Wm is a concise form.

Proof Suppose on the contrary, that there exists a choice of variables x1, . . . , xn in
V (where dim V = n), such that F = F(x1, . . . , xn−1) and rank(F) = m = mn,d .
Then by [12, Proposition 3.1] rank(F + xdn ) = rank(F) + 1 > m, a contradiction. ��
We can generalize the above lemma to show that all forms of greater than generic
rank are necessarily concise under certain conditions. For this we use the following
simplified bound for the maximal rank.

Lemma 4.9 mn,d �
⌈
2(d + n − 1)!

n! ·d!
⌉
.

Proof In the exceptional cases (n, d) ∈ {(3, 4), (4, 4), (5, 3), (5, 4)}, use the hyper-
surface version of Theorem 3.9 and check that 2gn,d − 2 is less than or equal to the
right-hand side. In the nonexceptional cases, use the general version of Theorem 3.9
and check that 2gn,d − 1 is less than or equal to the right-hand side. ��
Proposition 4.10 Let n = dim V � 2. Suppose that d satisfies the following: if n = 2
or n = 3, then d � 2; otherwise, d � n+1. Let F be a form of degree d in n variables
with greater than generic rank. Then F is concise.

Proof If n = 2 and F is not concise then rank(F) = 1. If d = 2 then there are no forms
with greater than the generic rank, so there is nothing to prove. When n = d = 3 the
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unique (up to coordinate change) form of greater than generic rank is F = x2y+ y2z,
which is concise (see for example [23, Section 8]).

Now assume d � n + 1. Since 2 � (d + n − 1)/n we have

2(d + n − 2)!
(n − 1)!d! � (d + n − 1)!

n!d! ,

hence mn−1,d � gn,d . It follows that if F is not concise, then rank(F) � mn−1,d �
gn,d . ��

4.8 Dimensions of maximal rank loci for Veronese varieties

We can now prove Theorem 4.1.

Proof of Theorem 4.1 Pick an irreducible component W ⊆ Wm and let F ∈ W be
a general form from that component. Then F is concise by Lemma 4.8. The closure
GL(V ) ·F of the orbit of F is contained in W . In particular, by Proposition 4.7,

dimW � dim GL(V ) ·F �
(
n + 1

2

)
− 1,

and if dimW = (n+1
2

) − 1, then W = GL(V ) ·Qk . ��
Example 4.11 For n = d = 3 we have g = 4 and m = 5. The rank locus W5 is the
closure of the orbit of the form x2y + y2z, the equation of a smooth plane conic plus
a tangent line. This orbit has dimension 6, so dimWm = 6 = (n+1

2

)
.

5 Tensors of format 2×4×4

When X = Seg(Pn1−1× · · · ×P
nk−1) ⊂ P

N is a Segre variety, N = n1 · · · nk − 1,
then P

N is the projective space of tensors of format n1× · · · ×nk and X corresponds
to the simple tensors. Rank with respect to X is the usual tensor rank.

Tensors of format 2×b×c may be regarded as pencils of matrices, which admit
a normal form due to Kronecker. Using this normal form we characterize the loci of
2×4×4 tensors of higher than generic rank. Tensors of format 2×4×4 have generic
rank 4 and maximal rank 6; we show that W6 + X = W5 and W5 + X = W4, where
W4 = P

31 is the space of all 2×4×4 tensors.

5.1 Concise tensors

A tensor T ∈ V1⊗ · · · ⊗Vk is concise if T ∈ V ′
1⊗ · · · ⊗V ′

k with V ′
i ⊆ Vi for each i

implies V ′
i = Vi for each i .

Fix T ∈ V1⊗ · · · ⊗Vk and for each i let V ′
i ⊆ Vi be the image of the

induced map V ∗
1 ⊗ · · · ⊗ V̂ ∗

i ⊗ · · · ⊗V ∗
k → Vi . It is easy to see that rank(T ) �

dim V ′
i for each i , and also that T ∈ V ′

1⊗ · · · ⊗V ′
k . In particular, if rank(T ) <

max{dim V1, . . . , dim Vk}, then T is not concise.
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Non-conciseness is a closed condition (because it is defined by vanishing
of minors of certain matrices; see for example [22, Section 3.4.1]). Hence the
locus of non-concise tensors contains the secant variety σr (X) for each r <

max{dim V1, . . . , dim Vk}, where X is the Segre variety.

Remark 5.1 Observe that non-square matrices are always non-concise, and more gen-
erally if ni >

∏
j �=i n j for some i , then every tensor of format n1× · · · ×nk is

non-concise.

5.2 Normal form

Let {s, t} be a basis for k
2 and let T ∈ k

2⊗k
b⊗k

c be a tensor. Identifying k
b⊗k

c

with the space of b×c matrices, we can write T = s⊗M1 + t⊗M2 for some b×c
matrices M1, M2. The tensor T corresponds to the pencil spanned by M1 and M2 in
P(kb⊗k

c); changes of basis in the pencil correspond to changes of basis in k
2. It is

convenient to write T as the b×c matrix sM1 + tM2 whose entries are homogeneous
linear forms in s and t .

There is a normal formdue toKronecker for tensorsT ∈ k
2⊗k

b⊗k
c, i.e. a represen-

tative of the GL(k2)×GL(kb)×GL(kc)-orbit of T , or in other words, a convenient
choice of basis that makes T particularly “simple”. Further, the results of Grigoriev,
Ja’Ja’ and Teichert calculate the rank of each tensor in normal form, see [9, Section 5].
For simplicity of some calculations, we restrict our considerations to the case of even
square matrices. Later we restrict further to the case of 4×4 matrices.

Kronecker’s normal form is as follows. Suppose Vn = k
2⊗k

2n⊗k
2n and X =

Seg(P1×P
2n−1×P

2n−1) ⊂ PVn is a Segre variety. We encode the tensors in Vn as
2n×2n matrices with entries linear forms in two variables s and t . For a positive
integer ε let Lε denote the ε×(ε + 1) matrix

Lε =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

s t 0 · · · 0 0
0 s t · · · 0 0
0 0 s · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · t 0
0 0 0 · · · s t

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Let F be an f × f matrix with coefficients in k in Jordan normal form. For λ ∈ k,
denote by dλ(F) the number of Jordan blocks of size at least 2 with the eigenvalue λ,
and by m(F) the maximum among dλ(F).

Given a sequence of matrices M1, . . . , Mk depending on variables s and t , denote
by M1⊕ · · · ⊕Mk the block matrix

M1⊕ · · · ⊕Mk =

⎛

⎜
⎜⎜
⎝

M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...

0 0 · · · Mk

⎞

⎟
⎟⎟
⎠

.
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In the above notation we allow Mi to be a zero matrix Z p×q of size p×q, where
p, q � 0 are nonnegative integers. Thus, for example, if M2 is a 0×5 matrix, then
M1⊕M2 is the matrix M1 with five columns of zeroes added.

Theorem 5.2 ([9, Proposition 5.1 and Theorem 5.3]) For any tensor T ∈ Vn =
k
2⊗k

2n⊗k
2n there exists a choice of basis ofk2, k

2n, andk
2n such that T is represented

by a matrix

T = Lε1⊕Lε2⊕ · · · ⊕Lεk ⊕L�
η1

⊕L�
η2

⊕ · · · ⊕L�
ηl

⊕(s Id f +tF)⊕Z p×q ,

where k, l, f, p, and q are nonnegative integers (possibly zero); each εi and η j is a
positive integer; Id f is the f × f identity matrix over k; F is an f × f matrix in its
Jordan normal form; and Z p×q is the p×q zero matrix.

Moreover, the rank of T is equal to the sum of the ranks of the blocks in this normal
form, where rank(Lεi ) = εi +1, rank(L�

η j
) = η j +1, rank(s Id f +tF) = f +m(F),

and rank(Z p×q) = 0. That is,

rank(T ) =
∑

i

εi +
∑

j

η j + k + l + f + m(F).

See also references discussed in [9, Remark 5.4].
It is straightforward to see that one can always further change the coordinates so

that one of the eigenvalues of F is 0.
We stress that if T = M1⊕M2, then the rank of T is not necessarily equal to

rank(M1) + rank(M2). For example, let M1 = (
s t
0 s

)
and M2 = ( s+t t

0 s+t

)
. Then, by

Theorem 5.2 the rank of T = M1⊕M2 is 5, while rank(M1) = rank(M2) = 3.

5.3 Generic and maximal rank

For tensors in Vn = k
2⊗k

2n⊗k
2n, the generic rank is g = 2n, and general tensors have

the normal form (s Id2n +tF), where F is a diagonal matrix with distinct (generic)
eigenvalues. This is because a general pencil contains an invertible matrix, and the
blocks Lεi or L

�
η j

have no invertible matrices.
Furthermore, the maximal rank is m = 3n, and any tensor T of maximal rank is

of the form (s Id2n +tF), where F has a unique eigenvalue (which we can assume to
be 0) and n Jordan blocks of size 2×2. That is, after reordering of rows and columns,

we can write T as
(
s Idn t Idn
0 s Idn

)
.

ThusWm = W3n = G · [T ], whereG = GL(k2)×GL(k2n)×GL(k2n) is the auto-

morphism group of X ⊂ PVn , and T =
(
s Idn t Idn
0 s Idn

)
. In particular, Wm is irreducible.

Remark 5.3 Note that T =
(
s Idn t Idn
0 s Idn

)
is concise, so

T /∈ σ2n−1(X) = σg−1(X).

Hence Wm �⊂ σg−1(X).
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We compute the dimension ofWm = W3n . Themain technique is to reduce to a system
of linear equations via the Lie algebra stabilizer.We illustrate this in some detail in this
case, as wewill use the samemethod (with fewer details given) to compute dimensions
of other orbits of 2×4×4 tensors in the next section.

Proposition 5.4 For X = P
1×P

2n−1×P
2n−1 ⊂ P

8n2−1 the dimension of Wm = W3n
is 6n2.

Proof Let ρ denote the action ofG on Vn = k
2⊗k

2n⊗k
2n. The dimension of the orbit

G ·T is equal to the codimension in G of the stabilizer subgroup of T [26, Section
3.7]. We compute the dimension of the stabilizer subgroup by finding the dimension
of its tangent space at the identity e ∈ G. Recall that in the representation dρ of the Lie
algebra Te(G) ∼= End(k2)×End(k2n)×End(k2n) on Vn , a tangent vector (g1, g2, g3)
acts on (sM1 + tM2) ∈ V2 by

dρ(g1, g2, g3).(sM1+ tM2) = ((as+ct)M1 + (bs+dt)M2)

+ (s(g2M1) + t (g2M2)) − (s(M1g3) + t (M2g3)),

where g1 = (
a b
c d

)
[26, (6.1.1)]. Recall also that a tangent vector (g1, g2, g3) ∈ Te(G)

lies in the tangent space to the stabilizer of T at e if and only if the derivative
dρ(g1, g2, g3) annihilates T [26, Section 3.5, Theorem 2].

Write in block form T =
(
s In t In
0 s In

)
, so M1 = I2n and M2 = ( 0 In

0 0

)
. Write g2 =

(
A11 A12
A21 A22

)
, g3 =

(
B11 B12
B21 B22

)
, where the Ai j and Bi j aren×nmatrices. Then (g1, g2, g3)

is in the tangent space to the stabilizer of T if and only if

((as+ct)M1 + (bs+dt)M2) + (s(g2M1) + t (g2M2))

− (s(M1g3) + t (M2g3)) = 0.

The left-hand side is
(
aIn + A11 − B11 bIn + A12 − B12

A21 − B21 aIn + A22 − B22

)
s +

(
cIn − B21 d In + A11 − B22

0 cIn + A21

)
t.

This must vanish identically, which yields the equations

B11 = aIn + A11, A21 = 0,

B12 = bIn + A12, B21 = 0,

B22 = d In + A11, c = 0,

A22 = (d − a)In + A11.

Note that A11, A12, a, b, d are free, so the stabilizer has dimension 2n2 + 3. Since
dimG = 8n2 + 4, the affine orbit G ·T ⊂ Vn has dimension 6n2 + 1. The projective
orbit G · [T ] ⊂ PVn has dimension one less, since G contains subgroups isomor-
phic to Gm = k

∗ that act on Vn as rescaling. So dimWm = dimG · [T ] = 6n2,
as claimed. ��
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Remark 5.5 This shows that for X as above, some of the intermediate joinsW3n +kX
for k ∈ {1, . . . , n − 1} must be highly defective. Indeed, the expected dimension of
W3n + �n/2�X is already the dimension of the ambient P

8n2−1, while we know that
even W3n + (n − 1)X does not fill P

8n2−1.

5.4 Orbits of 2×4×4 tensors

We now specialise to the case n = 2, i.e., tensors in V2 = k
2⊗k

4⊗k
4. Let G =

GL2×GL4×GL4 and consider the natural action of G on P(V2). Note that dimG =
36 and dim P(V2) = 31.

Lemma 5.6 The orbit structure of the action of G on P(V2) is as follows.

• There is no open orbit.
• The only orbits of codimension 1 are the orbits of (classes of) tensors (in their
Kronecker normal forms):

T4(λ1, λ2, λ3, λ4) =

⎛

⎜
⎜
⎝

s + λ1t 0 0 0
0 s + λ2t 0 0
0 0 s + λ3t 0
0 0 0 s + λ4t

⎞

⎟
⎟
⎠, or

T5(λ1, λ2, λ3) =

⎛

⎜⎜
⎝

s + λ1t t 0 0
0 s + λ1t 0 0
0 0 s + λ2t 0
0 0 0 s + λ3t

⎞

⎟⎟
⎠

for pairwise distinct eigenvalues λi . Two tensors of the form T4(λ1, λ2, λ3, λ4) are
in the same orbit if and only if the cross-ratios of their eigenvalues λ1−λ2

λ1−λ3
· λ4−λ3
λ4−λ2

are equal (after possibly permuting the order of λi ). Any two tensors of the form
T5(λ1, λ2, λ3) are in the same orbit.

• There are finitely many orbits of codimension at least 2.

Proof The set of projective classes of nonconcise tensors (i.e. those contained in some
P(k1⊗k

4⊗k
4) or P(k2⊗k

3⊗k
4) or P(k2⊗k

4⊗k
3)) is G-invariant, of dimension

27 (hence codimension 4), and has only finitely many orbits [9, Section 6]. Thus it is
enough to prove the lemma for concise tensors.

To see when tensors of the form T4 = T4(λ1, λ2, λ3, λ4) are in the same orbit, note
det T4 = (s+λ1t) · · · (s+λ4t) determines four points [−λi , 1] onP

1 parametrised by
s, t . In particular, tensors with different cross-ratios of eigenvalues (up to permutation)
cannot be in the same orbit. On the other hand, if there are two sets of eigenvalues
with the same cross-ratio, then we can change the coordinates (s, t) on k

2, and then
also rescale columns to get from one tensor to the other. Let G0[T4] ⊂ G be the identity

component of the stabilizer of [T4] ∈ P(V2). Suppose (g1, g2, g3) ∈ G0[T4], where
g1 ∈ GL2, g2 ∈ GL4 and g3 ∈ GL4. The action of g1 on P

1 must preserve the
four points (zeroes of determinant). Thus g1 = μ1Id2 is a rescaling of the identity.
Restricting to the s coordinate, we see that the product g2g3 = μ2Id4 is also a rescaling
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of the identity, that is g3 = μ2g
−1
2 . Hence restricting to the t coordinate, g2 commutes

with a diagonal matrix with pairwise distinct entries. Then it is straightforward to see
that g2 is an invertible diagonal matrix, and any invertible diagonal matrix can occur
as g2. Thus dimG0[T4] = 6 and the dimension of the orbit of [T4] is 30 = 36 − 6, as
claimed.

In particular, since a general tensor is of the form T4, it lies in an orbit of codimension
1. So there is no open orbit.

To see that T5(λ1, λ2, λ3) is always in the same orbit, we use a linear transforma-
tion φ : P

1 → P
1, which takes the triple of points ([−λ1, 1], [−λ2, 1], [−λ3, 1]) to

([0, 1], [−1, 1], [1, 1]). Let [1, ν1] be the image of [1, 0]. Lifting φ to φ̂ : k
2 → k

2

we obtain that

φ̂(T5) =

⎛

⎜⎜
⎝

ν2s ν3(−ν1s + t) 0 0
0 ν2s 0 0
0 0 ν4(s + t) 0
0 0 0 ν5(s − t)

⎞

⎟⎟
⎠

for some nonzero constants ν2, . . . , ν5. Then using column and row rescalings we can
modify the matrix to

⎛

⎜⎜
⎝

s −ν1s + t 0 0
0 s 0 0
0 0 s + t 0
0 0 0 s − t

⎞

⎟⎟
⎠.

Finally, we add a multiple of the first column to the second column to obtain

⎛

⎜⎜
⎝

s t 0 0
0 s 0 0
0 0 s + t 0
0 0 0 s − t

⎞

⎟⎟
⎠.

Thus any T5(λ1, λ2, λ3) is in the same G-orbit as T5(0, 1,−1). As in the proof of
Proposition 5.4, we can check that the dimension of the Lie algebra stabilizer of
[T5(0, 1,−1)] ∈ P(V2) is 6, hence its orbit is of codimension 1.

It remains to check that there are finitely many other concise orbits and that all
these other orbits have codimension at least 2, i.e. dimension at most 29.

For the first part we use the normal form described in Theorem 5.2 and rescaling
to fix the eigenvalues. It is straightforward to see that there are 14 concise orbits other
than the T4 and T5 cases. The second part is an explicit computer calculation of the
dimension of the Lie algebra stabilizer for each of the cases above, as in the proof of
Proposition 5.4. Representatives for the 14 orbits are listed, along with the dimensions
of the orbits and their ranks, in Table 1. ��

Consider the determinant of sM1 + tM2 as a homogeneous polynomial of degree
4 in the variables s, t , whose coefficients are degree 4 homogeneous polynomials ai
in 32 variables, the coordinates of V2:
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Table 1 Representatives for the concise orbits inP(k2⊗k
4⊗k

4) of codimension at least 2, the dimensions
(denoted dim) of their orbits, and their ranks

orbit dim rank orbit dim rank

(
s t 0 0
0 s 0 0
0 0 s t
0 0 0 s

)

24 6

(
s t 0 0
0 s t 0
0 0 0 s
0 0 0 t

)

26 5

(
s t 0 0
0 s t 0
0 0 s 0
0 0 0 s+t

)

29 5

(
s t 0 0
0 0 s 0
0 0 t s
0 0 0 t

)

26 5

(
s t 0 0
0 s 0 0
0 0 s+t t
0 0 0 s+t

)

29 5

(
s t 0 0
0 0 s 0
0 0 t 0
0 0 0 s

)

25 5

(
s t 0 0
0 s t 0
0 0 s t
0 0 0 s

)

28 5

(
s t 0 0
0 s 0 0
0 0 s 0
0 0 0 s

)

22 5

(
s t 0 0
0 s 0 0
0 0 s+t 0
0 0 0 s+t

)

27 5

(
s 0 0 0
0 s 0 0
0 0 s+t 0
0 0 0 s−t

)

28 4

(
s t 0 0
0 s 0 0
0 0 s 0
0 0 0 s+t

)

27 5

(
s 0 0 0
0 s 0 0
0 0 s+t 0
0 0 0 s+t

)

25 4

(
s t 0 0
0 s t 0
0 0 s 0
0 0 0 s

)

26 5

(
s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 s+t

)

23 4

det(sM1+ tM2) = a0s
4 + a1s

3t + a2s
2t2 + a3st

3 + a4t
4

(so that in particular, a0 = det M1, a4 = det M2). Consider the discriminant of this
polynomial,

Discr = 256a30a
3
4 − 192a20a1a3a

2
4 − 128a20a

2
2a

2
4 + 144a20a2a

2
3a4 − 27a20a

4
3

+ 144a0a
2
1a2a

2
4 − 6a0a

2
1a

2
3a4 − 80a0a1a

2
2a3a4 + 18a0a1a2a

3
3

+ 16a0a
4
2a4 − 4a0a

3
2a

2
3 − 27a41a

2
4 + 18a31a2a3a4 − 4a31a

3
3

− 4a21a
3
2a4 + a21a

2
2a

2
3,

which is a degree 24 polynomial in 32 variables.

Corollary 5.7 A class of a tensor T = sM1 + tM2 is in the support of the effective
divisor (Discr) if and only if det(sM1+ tM2) has a root of multiplicity at least two
or is identically zero. (Discr) in P

31 = P(V2) is G-invariant. Set theoretically, the
support of (Discr) is equal to the closure of the orbit

G ·[T5] = G ·

⎛

⎜⎜
⎝

s t 0 0
0 s 0 0
0 0 s + t 0
0 0 0 s − t

⎞

⎟⎟
⎠.

Every class of a non-concise tensor lies in the support of (Discr), as does every class
of a tensor of rank 5 or 6.
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Proof Thefirst characterization of the divisor is clear from the definition andproperties
of the discriminant, while the G-invariance follows from this first characterization.
Similarly, T5 is in the support of (Discr), and so is the closure of its orbit. ByLemma5.6
the orbit of T5 is the only orbit of codimension 1 which is contained in the support.
Since there are only finitely many orbits of codimension at least 2, the only irreducible
G-invariant divisors are the closures of 30-dimensional orbits. Hence the support of
(Discr) is irreducible and equal to G · [T5].

If T = sM1 + tM2 is non-concise, then either the normal form for T involves a
block of zeros, so det(sM1+ tM2) = 0, or else the matrices M1 and M2 are linearly
dependent, so the determinant has a single root of multiplicity 4. Hence all classes of
non-concise tensors lie in the support of (Discr). Table 1 lists the tensors of rank 5
or 6 other than T5. The determinant of each tensor listed in the table is zero, or has a
multiple root. So the classes of these tensors also lie in (Discr). ��

5.5 High rank loci of 2×4×4 tensors

In this case the generic rank is g = 4 and the maximal rank is m = 6.

Proposition 5.8 Let V2 = k
2⊗k

4⊗k
4 and X = Seg(P1×P

3×P
3) ⊂ PV2. Then

W5 = W6 + X and W5 + X = PV2 � P
31.

Moreover, W5 is an irreducible divisor consisisting of those sM1 + tM2 for which
det(sM1+ tM2) (considered as a homogeneous polynomial in two variables s and t)
is either identically 0 or has a root of multiplicity at least 2.

Proof Let T5 = T5(0, 1,−1). By Corollary 5.7, G · [T5] = (Discr) and every tensor
of rank 5 lies in the support of the divisor (Discr), so W5 ⊆ G · [T5]. Conversely, the
orbit G · [T5] ⊆ W5. Therefore, W5 = G · [T5] = (Discr) is an irreducible divisor.
Hence the equality W5 + X = W4 = PV2 follows from Corollary 2.6.

Let T6 be the (unique up to a choice of coordinates) tensor of rank 6, and let T1
be a general tensor of rank 1. Then T6 + T1 has rank 5 by Theorem 3.1. A computer
calculation shows that determinant of T6 + T1 is divisible by s2 and has two other
distinct roots not equal to s. Thus T6 + T1 must be of the form T5. That is, a general
element of the (irreducible) joinW6+X (where X = P

1×P
3×P

3) is a general element
of the irreducible variety W5, thus W6 + X = W5 as claimed. ��
Remark 5.9 The proofs above show that for X = P

1×P
3×P

3 ⊂ P
31 (so that dim X =

7) we have dimW6 = 24 and dimW5 = dim(W6+ X) = 30. That is, the joinW6 + X
is defective (it is expected to fill the ambient space excessively, but it does not).

6 Curves in quadric surfaces

We study rank with respect to a curve C contained in a smooth quadric surface Q ∼=
P
1×P

1 in P
3. By nondefectivity, the generic rank with respect to C is 2, and by

Theorem 2.1 or Theorem 3.7 the maximal rank is at most 3.
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If C has bidegree (2, 2) then C is an elliptic normal quartic curve. Bernardi,
Gimigliano, and Idà gave a description of W3 in this case, and more generally studied
elliptic normal curves of degree d + 1 in P

d, d � 3 [5, Theorem 28]. We refine their
result in the d = 3 case and show that the maximal rank locusW3 is a curve of degree
8 disjoint from C .

Piene has shown that ifC is a general curve of bidegree (3, 3) thenW3 is empty (the
maximal rank is 2), see [25, Theorem 2]. We extend this to general curves of bidegree
(a, b), where a � 4 and b � 1.

6.1 Elliptic quartic curve

Let us study the locus W3 with respect to an elliptic normal curve of degree 4 in P
3.

Proposition 6.1 Let C = Q1 ∩ Q2 be a smooth complete intersection of two smooth
quadrics in P

3. The generic rank with respect to C is 2 and the maximal rank is 3. W3
is a curve of degree 8, disjoint from C and containing the vertices of the four singular
quadrics that contain C. Every point of W3 has rank 3, except those four points, which
have rank 2.

Proof Note that C has no trisecant, bitangent, or flex lines, since any such line would
have to be contained in every quadric surface that containsC . The quadrics containing
C form a pencil with four singular members, which are distinct and irreducible. Let
the vertices of those cones be V = {x1, . . . , x4}. Each vertex xi lies off of C , and each
xi has rank 2.

Let x ∈ P
3\(C ∪ V ) and let π : P

3 ��� P
2 be the projection from x . Then π(C) is

an elliptic quartic curve, hence has two singularities, counting with multiplicity. This
shows that through each point of P

3\(C ∪ V ) there are two secant or tangent lines to
C . A priori this is counting with multiplicity, but since C has no trisecant or bitangent
lines, the two secant or tangent lines are distinct. The point x has rank 3 if and only if
no proper secant to C passes through x . Thus the points of rank 3 are exactly those in
the intersection of two tangent lines to C , other than the points in V (this is one of the
results in [5, Theorem 28]).

Let W ◦
3 denote the set of points of rank 3. Every point in W3 = W ◦

3 lies on at least
two tangent lines of C , by semicontinuity of the degree of the projection map from
the abstract tangent variety {(x, �) : x ∈ �, � tangent to C }. But no point of C lies on
more than one tangent line. This shows that W3 is disjoint from C .

Let Q be a smooth quadric containing C and let pri : Q → P
1, i = 1, 2, be the two

natural projections. Then pri |C : C → P
1 is a 2:1 morphism with four ramification

points. This shows that there are four tangent lines toC in each ruling. The tangent lines
to C in the rulings of Q intersect in 16 points which do not lie on C , as each tangent
line intersects C only at its point of tangency. Therefore the 16 points of intersection
are in W ◦

3 ∩ Q. On the other hand, if w ∈ W ◦
3 ∩ Q then the tangent lines passing

through w are contained in Q. Hence any such quadric intersects W ◦
3 in exactly 16

points. This shows that the closure W ◦
3 is a curve of degree 8.

Finally, let Q be a singular quadric containing C . Then it is immediate to realize
that the vertex of Q is the only point of Q that lies on more than one tangent line of
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C . So W3 contains each vertex x1, . . . , x4 of a singular quadric through C . These are
the only points of rank 2 in W3. ��

Remark 6.2 The above proof also recovers the (previously known) fact that general
points in P

3, namely those outside of the tangential variety of C , admit precisely two
decompositions as linear combinations of two points in C . This holds more generally
for elliptic normal curves of even degree, see [14, Proposition 5.2].

Remark 6.3 The example of the elliptic quartic curve shows that Wm can be disjoint
from the base variety. Thus the situation as in the proof of Theorem3.9,whenWm ⊃ X ,
is rather special to the homogeneous spaces.

6.2 General curves in a quadric surface

Proposition 6.4 Let a � b � 1 and let C ⊂ Q be a general curve of type (a, b) in
the smooth quadric surface Q. If a � 4 then W3 is empty, that is, the maximal rank m
is equal to 2.

Proof First let x ∈ Q, x /∈ C . Let l be the line in Q through x such that l ·C = a. By
generality l ∩C has points of multiplicity at most 2, so a � 3 is enough to imply that
l ·C is supported in at least two distinct points. Hence rank(x) = 2.

Next let x /∈ Q, and suppose rank(x) = 3. Let π : P
3 ��� P

2 be the projection
from x . Since x lies on no secant line to C , and not every tangent line to C passes
through x , π has degree 1 onC . Then π(C) is a plane curve of degree a+b, and every
point of π(C) has multiplicity at most 2, since each line through x intersects Q with
multiplicity 2. The projection π(C) has no nodes, only cuspidal singularities. Let Hx

be the polar hyperplane of Q in x , so y ∈ Hx ∩ Q if and only if the tangent plane to
Q at y contains x , see for example [20, p. 238], [16, Section 1.1.2]. Let Zx = Hx ∩C .
Then Zx has degree a + b and the cuspidal points of π(C) are contained in π(Zx ).
Therefore the curve π(C) has at most a + b cusps. By adjunction in Q, C has genus
1 + a (b − 2)/2 + b(a − 2)/2 = (a − 1)(b − 1). The projection π(C) has degree
a + b, geometric genus (a − 1)(b − 1), and only ordinary cusps, hence the number
of cusps is (a + b − 1)(a + b − 2)/2 − (a − 1)(b − 1) = (a

2

) + (b
2

)
. This is strictly

greater than a + b as soon as a � 4 and b � 1. Thus once again rank(x) = 2. ��
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