
European Journal of Mathematics (2016) 2:1013–1022
DOI 10.1007/s40879-016-0119-z

RESEARCH ARTICLE

A uniform estimate for rate functions in large deviations

Luchezar Stoyanov1

Received: 24 July 2016 / Revised: 26 September 2016 / Accepted: 10 October 2016 /
Published online: 24 October 2016
© Springer International Publishing AG 2016

Abstract Given Hölder continuous functions f andψ on a subshift of finite type�+
A

such that ψ is not cohomologous to a constant, the classical large deviation principle
holds with a rate function Iψ � 0 such that Iψ(p) = 0 iff p = ∫

ψdμ, where μ = μ f

is the equilibrium state of f . In this paper we derive a uniform estimate from below
for Iψ for p outside an interval containing ψ̃ = ∫

ψdμ, which depends only on the
subshift�+

A , the function f , the norm |ψ |∞, the Hölder constant ofψ and the integral
ψ̃ . Similar results can be derived in the same way, e.g. for Axiom A diffeomorphisms
on basic sets.

Keywords Large deviations · Rate function · Subshift of finite type ·
Equilibrium state

Mathematics Subject Classification 37A05 · 37B10 · 37D20

1 Introduction

Let T : X → X be a transformation preserving an ergodic probability measure μ on
a set X . Given an observable ψ : X → R, Birkhoff’s ergodic theorem implies that

ψn(x)

n
= ψ(x) + ψ(T (x)) + · · · + ψ(T n−1(x))

n
→

∫

X
ψdμ
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1014 L. Stoyanov

forμ-almost all x ∈ X . It follows fromgeneral large deviation principles (see [3,6,12])
that if X is a mixing basic set for an Axiom A diffeomorphism T , and f and ψ

are Hölder continuous functions on X with equilibrium states μ = μ f and μψ ,
respectively, and ψ is not cohomologous to a constant (see the definition below),
then there exists a real-analytic rate function I = Iψ : Int(Iψ) → [0,∞), where
Iψ = {∫

ψdm : m ∈ MT
}
, such that

lim
δ→0

lim
n→∞

1

n
log μ

({

x ∈ X : ψn(x)

n
∈ (p − δ, p + δ)

})

= −Iψ(p) (1)

for all p ∈ Int(Iψ). HereMT is the set of all T -invariant Borel probability measures
on X . Moreover, I (p) = 0 if and only if p = ∫

ψdμ, and the (closed) interval Iψ is
non-trivial, since ψ is not cohomologous to a constant.

Similar large deviation principles apply for any subshift of finite typeσ : �+
A → �+

A
on a one-sided shift space

�+
A = {

ξ = (ξ0, ξ1, . . . , ξm, . . .) : 1 � ξi � s0, A(ξi , ξi+1) = 1 for all i � 0
}
.

Here A is an s0×s0-matrix of 0’s and 1’s (s0 � 2). We assume that A is aperiodic,
i.e. there exists an integer M > 0 such that AM(i, j) > 0 for all i, j (see, e.g. [7,
Chapter 1]). The shift map σ is defined by σ(ξ) = ξ ′, where ξ ′

i = ξi+1 for all i � 0.
We consider�+

A with ametric dθ defined for some constant θ ∈ (0, 1) by dθ (ξ, η) = 0
if ξ = η and dθ (ξ, η) = θk if ξ �= η and k � 0 is the maximal integer with ξi = ηi
for 0 � i � k.

For any function g : �+
A → R set

varkg = sup
{|g(ξ) − g(η)| : ξi = ηi , 0 � i � k

}
, |g|θ = sup

{
varkg

θk
: k � 0

}

,

|g|∞ = sup
{|g(ξ)| : ξ ∈ �+

A

}
, ‖g‖θ = |g|θ + |g|∞.

Denote by Fθ (�
+
A ) the space of all functions g on �+

A with ‖g‖θ < ∞.
Two functions f, g onFθ (�

+
A ) are called cohomologous if there exists a continuous

function h on �+
A such that f = g + h◦σ − h.

The Ruelle transfer operator L f : C(�+
A ) → C(�+

A ) is defined by

L f g(x) =
∑

σ(y)=x

e f (y)g(y).

Here C(�+
A ) denotes the space of all continuous functions g : �+

A → R with respect
to the metric dθ . Denote by Pr(ψ) the topological pressure

Pr(ψ) = sup
m∈Mσ

(

hσ (m) +
∫

ψdm

)

123



A uniform estimate for rate functions in large deviations 1015

of ψ with respect to the map σ , where Mσ is the set of all σ -invariant probability
measures on �+

A and hσ (m) is the measure theoretic entropy of m with respect to σ

(see [7] or [10]). Given ψ ∈ Fθ (�
+
A ), there exists a unique σ -invariant probability

measure μψ on �+
A such that

Pr(ψ) = hσ (μψ) +
∫

ψdμψ

(see, e.g. [7, Theorem 3.5]). The measure μψ is called the equilibrium state of ψ .
For brevity throughout we write

∫
hdm for

∫
�+

A
hdm. In what follows we assume

that θ ∈ (0, 1) is a fixed constant, f : �+
A → R is a fixed function in Fθ (�

+
A ) and

μ = μ f .
As wementioned earlier, it follows from the LargeDeviation Theorem [3,6,12] that

if ψ is not cohomologous to a constant, then there exists a real analytic rate function
I = Iψ : Int(Iψ) → [0,∞) with I (p) = 0 iff p = ∫

ψdμ for which (1) holds. More
precisely, we have

− I (p) = inf
{
Pr( f +qψ) − Pr( f ) − qp : q ∈ R

}
. (2)

It is also known that

[
d

dq
Pr( f +qψ)

]

q=η

=
∫

ψdμ f +ηψ, (3)

and Pr( f +qψ) is a strictly convex function of q (see [7,10] or [4]).
In his paper we derive an estimate from below for Iψ(p) for p outside an interval

containing

ψ̃ =
∫

ψdμ.

The estimate depends only on |ψ |∞, ψ̃, |ψ |θ and some constants determined by the
given function f . In what follows we use the notation minψ = minx∈�+

A
ψ(x),

b = bψ = max{1, |ψ |θ }, Bψ = ψ̃ − min{0,minψ}.

Since ψ̃ > minψ (ψ is not cohomologous to a constant), we have ψ̃ − minψ > 0,
so Bψ > 0 always.

Theorem 1.1 Let f, ψ ∈ Fθ (�
+
A ) be real-valued functions. Assume that ψ is not

cohomologous to a constant, and let 0 < δ0 < Bψ . Then for all p /∈ [ψ̃ −δ0, ψ̃ +δ0]
we have

Iψ(p) � δ0q0
2

,
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1016 L. Stoyanov

where q0 = min{C, 1/b} for some constant C > 0 depending only on | f −Pr( f )|∞,
| f |θ , |ψ |∞, ψ̃ and δ0.

The motivation to try to obtain estimates of the kind presented in Theorem 1.1 comes
from attempts to get some kind of an ‘approximate large deviation principle’ for
characteristic functions χK of arbitrary compact sets K of positive measure. In the
special case when the boundary ∂K of K is ‘relatively regular’ (e.g. μ(∂K ) = 0)
large deviation results were established by Leplaideur and Saussol in [5], and also by
Kachurovskii and Podvigin [2]. The next example presents a first step in the case of
an arbitrary compact set K of positive measure.

Example 1.2 Let K be a compact subset of �+
A with 0 < μ(K ) < 1, let 0 < δ0 �

μ(K ), and let ψ be a Hölder continuous function that approximates χK from above,
i.e. 0 � ψ � 1, ψ = 1 on K and ψ = 0 outside a small neighbourhood V of K . Then
b = |ψ |θ 	 1 if V is sufficiently small, so q0 in Theorem 1.1 has the form q0 = 1/b.
It then follows from Theorem 1.1 (in fact, from Lemma 2.3) that Iψ(p) � δ0/(2|ψ |θ )
for p /∈ [ψ̃ −δ0, ψ̃ +δ0].
A result similar to Theorem 1.1 can be stated, e.g. for Axiom A diffeomorphisms
on basic sets. Recall that if F : M → M is a C1 Axiom A diffeomorphism on a
Riemannian manifold M , a non-empty subset � of M is called a basic set for F if �

is a locally maximal compact F-invariant subset of M which is not a single orbit, F
is hyperbolic and transitive on �, and the periodic points of F in � are dense in �

(see, e.g. [1] or [7, Appendix III]). It follows from the existence of Markov partitions
that there exists a two-sided subshift of finite type σ : �A → �A and a continuous
surjective map π : �A → � such that: (i) F ◦π = π ◦σ , and (ii) for every Hölder
continuous function g on �, f = g◦π ∈ Fθ for some θ ∈ (0, 1) and π is one-
to-one almost everywhere with respect to the equilibrium state of f . Given a Hölder
continuous function g on�, the rate function Ig is naturally related to the rate function
I f of f = g◦π . On the other hand, f is cohomologous to a function f ′ ∈ F√

θ (�A)

which depends on forward coordinates only, so f ′ ∈ F√
θ (�

+
A ). Applying Theorem 1.1

to f ′ provides a similar result for f and therefore for g.
For some hyperbolic systems, large deviation principles similar to (1), however

with shrinking intervals, have been established recently in [8,9].

2 Proof of Theorem 1.1

2.1 The Ruelle–Perron–Frobenius Theorem

For convenience of the reader we state here a part of the estimates in [11] that will be
used in this section.

Theorem 2.1 (Ruelle–Perron–Frobenius) Let the s0×s0-matrix A and M > 0 be as
in Sect. 1, let f ∈ Fθ (�

+
A ) be real-valued, and let b f = max{1, | f |θ }. Then:

(i) There exist a unique λ = λ f > 0, a probability measure ν = ν f on �+
A and a

positive function h = h f ∈ Fθ (�
+
A ) such that L f h = λh and

∫
hdν = 1. The
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A uniform estimate for rate functions in large deviations 1017

spectral radius of L f as an operator on Fθ (�
+
A ) is λ, and its essential spectral

radius is θλ. The eigenfunction h satisfies

‖h‖θ � 6sM0 bf
θ2(1 − θ)

e4bf /(1−θ)e2M| f |∞, min h � 1

e2bf /(1−θ)sM0 e2M| f |∞ .

Moreover,

min h

|h|∞ λn � Ln
f 1 � |h|∞

min h
λn,

for any integer n � 0.
(ii) The probability measure ν̂ = hν (this is the so-called equilibrium state of f ) is

σ -invariant and ν̂ = ν f̂ , where f̂ = f − log(h◦σ) + log h − log λ. Moreover
L f̂ 1 = 1.

(iii) For every g ∈ Fθ (�
+
A ) and every integer n � 0 we have

∥
∥
∥
∥
1

λn
Ln
f g − h

∫
gdν

∥
∥
∥
∥

θ

� Dρn‖g‖θ ,

where we can take

ρ =
(

1 − 1 − θ

4s2M0 e8θbf /(1−θ)e4M| f |∞

)1/2M
∈ (0, 1)

and

D = 108
b7f

θ10(1 − θ)8
s17M0 e40bf /(1−θ)e33M| f |∞.

Remark 2.2 Theconstants that appear in the above estimates are not optimal. Theproof
of [11, Theorem 2] follows that in [1, Section 1.B] with a more careful analysis of the
estimates involved. The main point here is that, apart from their obvious dependence
on parameters related to the subshift of finite type σ : �+

A → �+
A , these constants can

be taken to depend only on | f |θ and | f |∞.

2.2 Reductions

Let f ∈ Fθ (�
+
A ) be the fixed function from Sect. 1 and let μ = μ f be as before. It

follows from the properties of pressure (see, e.g. [10] or [7]) that Pr(g+c) = Pr(g)+c
for every continuous function g and every constant c ∈ R. Thus, replacing f by
f − Pr( f ), we may assume that Pr( f ) = 0. Moreover, if g and h are cohomologous
continuous functions on �+

A , then Pr(g) = Pr(h) and the equilibrium states μg of g
andμh of h on�+

A coincide. Since f is cohomologous to a function φ ∈ Fθ (�
+
A )with

Lφ1 = 1 (see, e.g. [7]), it is enough to prove the main result with f replaced by such
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1018 L. Stoyanov

a function φ. Moreover, |φ|∞ and |φ|θ can be estimated by means of | f −Pr( f )|∞
and | f |θ [see e.g. Theorem 2.1 (ii)].

So, from now on we will assume that Lφ1 = 1. It then follows that Pr(φ) = 0. Let
μ = μφ be the equilibrium state of φ on �+

A .
For the proof of Theorem 1.1 we may assume that ψ � 0. Indeed, assuming the

statement of the theorem is true in this case, suppose ψ takes negative values. Set
ψ1 = ψ + c, where c = −minψ . Then ψ1 � 0. Moreover, ψ̃1 = ∫

ψ1dμ = ψ̃ + c,
Bψ1 = Bψ , and for p1 = p + c we have

�1(q) = p1q − Pr(φ+qψ1)

= (p+c)q − Pr(φ+qψ +qc) = pq − Pr(φ+qψ) = �(q)

for all q ∈ R. Therefore (2) implies

Iψ(p) = sup
{
pq−Pr(φ+qψ) : q ∈ R

}

= sup
{
p1q−Pr(φ+qψ1) : q ∈ R

} = Iψ1(p1).

Moreover, if 0 < δ0 < Bψ = Bψ1 , then p /∈ [ψ̃ −δ0, ψ̃ +δ0] is equivalent to
p1 = p + c /∈ [ψ̃1−δ0, ψ̃1+δ0]. Since |ψ1|θ = |ψ |θ and |ψ1|∞ � 2|ψ |∞, using
Theorem 1.1 for Iψ1(p1) and changing appropriately the value of the constant q0, we
get a similar estimate for Iψ(p).

2.3 Proof of Theorem 1.1 for ψ � 0

From now on we will assume that φ,ψ ∈ Fθ (�
+
A ) are fixed real-valued functions

such that ψ � 0, ψ is not cohomologous to a constant, and

Lφ1 = 1. (4)

Given any q ∈ R, set

fq = φ + qψ, Lq = L fq .

In what follows we will assume

|q| � q0 � 1

b
(5)

for some constant q0 > 0 which will be chosen below. Then | fq |θ � |φ|θ + 1 for all
q with (5), and also | fq |∞ � |φ|∞ + |ψ |∞. Thus, setting

C0 = ‖φ‖θ + 2max{|ψ |∞, 1} � 1,

we have
‖ fq‖θ � C0, |q| ∈ [0, q0]. (6)
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A uniform estimate for rate functions in large deviations 1019

Let νq be the probability measure on �+
A with

L∗
qνq = λqνq , (7)

where λq is the maximal eigenvalue of Lq = L fq , and let hq > 0 be a corresponding
normalised eigenfunction, i.e. hq ∈ Fθ (�

+
A ), Lqhq = λqhq and

∫
hq dνq = 1. Then

μq = hqνq is the equilibrium state of fq , i.e. μq = μφ+qψ . Clearly h0 = 1 and
μ0 = μ.

Using the uniform estimates in Theorem 2.1, it follows from (6) that there exist
constants D � 1 and ρ ∈ (0, 1), depending on C0 but not on q0, such that

∥
∥
∥
∥
1

λnq
Ln
qg − hq

∫
gdνq

∥
∥
∥
∥

θ

� Dρn‖g‖θ (8)

for all integers n � 0, all functions g ∈ Fθ (�
+
A ) and all q with |q| ∈ [0, q0].

Set L = Lφ . Given x ∈ �+
A and m � 0, set gm(x) = g(x) + g(σ x) + · · · +

g(σm−1x).
It follows from (7) with g = 1 that λq = ∫

Lq1dνq . Now

(Lq1)(x) =
∑

σ y=x

e fq (y) =
∑

σ y=x

eφ(y)+qψ(y) � eq0|ψ |∞ (L1)(x) = eq0|ψ |∞

for all x ∈ �+
A implies λq � eq0|ψ |∞ . Similarly, λq � e−q0|ψ |∞ . Thus,

e−q0C0 � λq � eq0C0, |q| � q0. (9)

To estimate hq for q with (5), first use (8) with g = 1 to get

∥
∥
∥
∥
1

λnq
Ln
q1 − hq

∥
∥
∥
∥

θ

� Dρn.

Using (4), this gives

hq(x) �
(Ln

q1)(x)

λnq
+ Dρn = 1

λnq

∑

σ n y=x

e(φ+qψ)n(y) + Dρn

� eq0C0n

λnq
(L1)(x) + Dρn � e2q0C0n + Dρn

for all x ∈ �+
A and n � 0. Similarly,

hq � e−q0C0n

λnq
(L1) − Dρn � e−2q0C0n − Dρn
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1020 L. Stoyanov

for all n � 0. Thus,

max
{
0, e−2q0C0n − Dρn} � hq � e2q0C0n + Dρn, n � 0, |q| � q0. (10)

From now on we will assume that p /∈ [ψ̃ −δ0, ψ̃ +δ0] is fixed. Consider the function

�(q) = pq − Pr(φ+qψ), q ∈ R.

Then I (p) = supq∈R �(q). Clearly, �(0) = 0 and moreover by (3),

�′(q) = p −
∫

ψdμφ+qψ. (11)

In particular, �′(0) = p − ψ̃ /∈ [−δ0, δ0].
We will now estimate the integral in the right-hand side of (11). Let α > 0 be the

constant so that ρ1 = max{ρ, θ} = e−α.

Lemma 2.3 Assume that ψ � 0 on �+
A and 0 < δ0 < Bψ = ψ̃ . Set

q0 = min

{
δ0

100C2
0 n0

,
1

b

}

, (12)

where n0 is the integer with

n0 − 1 � 1

α

∣
∣
∣
∣log

δ0

16C0D

∣
∣
∣
∣ < n0. (13)

Then �(q0) � δ0q0/2 and �(−q0) � δ0q0/2.

Proof For any q ∈ [0, q0] and any integer n � 0, (7), (9) and (10) yield

∫
ψdμq =

∫
ψhq dνq = 1

λnq

∫
Ln
q(ψhq) dνq

= 1

λnq

∫ ∑

σ n y=x

e(φ+qψ)n(y)ψ(y)hq(y) dνq(x)

� e2q0C0n
(
e2qC0n + Dρn)

∫
Lnψdνq .

It follows from (8) with q = 0 and g = ψ and the choice of C0 that

∣
∣
∣
∣L

nψ −
∫

ψdμ

∣
∣
∣
∣ =

∣
∣
∣
∣L

nψ −
∫

ψdν

∣
∣
∣
∣ � DρnC0, (14)

therefore Lnψ � ψ̃ + C0Dρn. Combining this with the above gives

∫
ψdμq � e2q0C0n

(
e2q0C0n + Dρn)(ψ̃ + C0Dρn). (15)
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A uniform estimate for rate functions in large deviations 1021

Let n0 = n0( f, θ, δ0) � 1 be the integer such that

e−n0α <
δ0

16C0D
� e−(n0−1)α. (16)

Then −n0α < log δ0/(16C0D) � −(n0−1)α, so n0 satisfies (13). With this choice
of n0 define q0 by (12). Then for q ∈ [0, q0] we have 12qC2

0n0 � δ0/8 and so
12qC0n0 � 1. It now follows from (15) with q ∈ [0, q0] and n = n0, 0 < δ0 � Bψ =
ψ̃ � C0, (16) and the fact that ex � 1 + 3x for x ∈ [0, 1] that

∫
ψdμq �

(
e4q0C0n0 + De2q0C0n0 e−αn0

)(
ψ̃ + C0De−αn0

)

�
(

1 + 12q0C0n0 + (1 + 6q0C0n0)
δ0

16C0

)(

ψ̃ + δ0

16

)

� ψ̃ + 12q0C
2
0n0 + (1 + 6q0C0n0)

δ0

16
+

(

2 + 2
δ0

16C0

)
δ0

16

� ψ̃ + δ0

8
+ δ0

8
+ 3δ0

16
< ψ̃ + δ0

2
.

Thus, in the case p � ψ̃+δ0, it follows from (11) that�′(q) � δ0/2 for all q ∈ [0, q0],
and therefore �(q0) � δ0q0/2.

Next, assume that p � ψ̃ − δ0. We will now estimate
∫
ψdμq from below for

q ∈ [−q0, 0]. As in the previous estimate, using (9) and (10), for such q we get

∫
ψdμq =

∫
ψhq dνq = 1

λ
n0
q

∫
Ln0
q (ψhq) dνq

= 1

λ
n0
q

∫ ∑

σ n0 y=x

e(φ+qψ)n0 (y)ψ(y)hq(y) dνq(x)

� e−2q0C0n0
(
e−2q0C0n0 − Dρn0

)
∫

Ln0ψdνq .

Notice that by the choice of q0 and n0 we have e−2q0C0n0 − Dρn0 > 0. In fact, it
follows from e−x > 1 − x for x > 0 that e−2q0C0n0 > 1 − 2q0C0n0, while (16)
implies Dρn0 < δ0/(16C0). Thus,

e−2q0C0n0 − Dρn0 > 1 − 2q0C0n0 − δ0

16C0
> 1 − δ0

8C0
.

On the other hand, (14) yields
∫
Ln0ψdνq � ψ̃ − DC0ρ

n0 > ψ̃ − δ0/16. Hence for
q ∈ [−q0, 0] we get
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1022 L. Stoyanov

∫
ψdμq � (1 − 2q0C0n0)

(

1 − δ0

8C0

)(

ψ̃ − δ0

16

)

�
(

1 − 2q0C0n0 − δ0

8C0

)(

ψ̃ − δ0

16

)

� ψ̃ − ψ̃

(

2q0C0n0 + δ0

8C0

)

− δ0

16
� ψ̃ − δ0

50
− δ0

8
− δ0

16
> ψ̃ − δ0

2
.

Thus, for q ∈ [−q0, 0] we have

�′(q) = p −
∫

ψdμq � ψ̃ − δ0 − (ψ̃ − δ0/2) � − δ0

2
,

and therefore �(−q0) � δ0q0/2. �
Proof of Theorem 1.1 Assume again that ψ � 0. Let p � ψ̃ + δ0. Then I (p) =
supq∈R �(q), so by Lemma 2.3, I (p) � �(q0) � δ0q0/2. Similarly, for p � ψ̃ − δ0
we get I (p) � δ0q0/2.

As explained in Sect. 2.2, the case of an arbitrary real-valued ψ ∈ Fθ (�
+
A ) follows

from the case ψ � 0. �
Acknowledgments Thanks are due to the referees for their valuable comments and suggestions.
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