A uniform estimate for rate functions in large deviations

Luchezar Stoyanov ${ }^{1}$

Received: 24 July 2016 / Revised: 26 September 2016 / Accepted: 10 October 2016 /
Published online: 24 October 2016
© Springer International Publishing AG 2016

Abstract

Given Hölder continuous functions f and ψ on a subshift of finite type Σ_{A}^{+} such that ψ is not cohomologous to a constant, the classical large deviation principle holds with a rate function $I_{\psi} \geqslant 0$ such that $I_{\psi}(p)=0$ iff $p=\int \psi d \mu$, where $\mu=\mu_{f}$ is the equilibrium state of f. In this paper we derive a uniform estimate from below for I_{ψ} for p outside an interval containing $\widetilde{\psi}=\int \psi d \mu$, which depends only on the subshift Σ_{A}^{+}, the function f, the norm $|\psi|_{\infty}$, the Hölder constant of ψ and the integral $\widetilde{\psi}$. Similar results can be derived in the same way, e.g. for Axiom A diffeomorphisms on basic sets.

Keywords Large deviations • Rate function • Subshift of finite type • Equilibrium state

Mathematics Subject Classification 37A05 • 37B10 • 37D20

1 Introduction

Let $T: X \rightarrow X$ be a transformation preserving an ergodic probability measure μ on a set X. Given an observable $\psi: X \rightarrow \mathbb{R}$, Birkhoff's ergodic theorem implies that

$$
\frac{\psi_{n}(x)}{n}=\frac{\psi(x)+\psi(T(x))+\cdots+\psi\left(T^{n-1}(x)\right)}{n} \rightarrow \int_{X} \psi d \mu
$$

[^0]for μ-almost all $x \in X$. It follows from general large deviation principles (see $[3,6,12]$) that if X is a mixing basic set for an Axiom A diffeomorphism T, and f and ψ are Hölder continuous functions on X with equilibrium states $\mu=\mu_{f}$ and μ_{ψ}, respectively, and ψ is not cohomologous to a constant (see the definition below), then there exists a real-analytic rate function $I=I_{\psi}: \operatorname{Int}\left(J_{\psi}\right) \rightarrow[0, \infty)$, where $\mathcal{J}_{\psi}=\left\{\int \psi d m: m \in \mathcal{M}_{T}\right\}$, such that
\[

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \log \mu\left(\left\{x \in X: \frac{\psi_{n}(x)}{n} \in(p-\delta, p+\delta)\right\}\right)=-I_{\psi}(p) \tag{1}
\end{equation*}
$$

\]

for all $p \in \operatorname{Int}\left(\mathcal{J}_{\psi}\right)$. Here \mathcal{M}_{T} is the set of all T-invariant Borel probability measures on X. Moreover, $I(p)=0$ if and only if $p=\int \psi d \mu$, and the (closed) interval \mathcal{J}_{ψ} is non-trivial, since ψ is not cohomologous to a constant.

Similar large deviation principles apply for any subshift of finite type $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$ on a one-sided shift space

$$
\Sigma_{A}^{+}=\left\{\xi=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{m}, \ldots\right): 1 \leqslant \xi_{i} \leqslant s_{0}, A\left(\xi_{i}, \xi_{i+1}\right)=1 \text { for all } i \geqslant 0\right\} .
$$

Here A is an $s_{0} \times s_{0}$-matrix of 0 's and 1's $\left(s_{0} \geqslant 2\right)$. We assume that A is aperiodic, i.e. there exists an integer $M>0$ such that $A^{M}(i, j)>0$ for all i, j (see, e.g. [7, Chapter 1]). The shift map σ is defined by $\sigma(\xi)=\xi^{\prime}$, where $\xi_{i}^{\prime}=\xi_{i+1}$ for all $i \geqslant 0$. We consider Σ_{A}^{+}with a metric d_{θ} defined for some constant $\theta \in(0,1)$ by $d_{\theta}(\xi, \eta)=0$ if $\xi=\eta$ and $d_{\theta}(\xi, \eta)=\theta^{k}$ if $\xi \neq \eta$ and $k \geqslant 0$ is the maximal integer with $\xi_{i}=\eta_{i}$ for $0 \leqslant i \leqslant k$.

For any function $g: \Sigma_{A}^{+} \rightarrow \mathbb{R}$ set

$$
\begin{array}{rlrl}
\operatorname{var}_{k} g & =\sup \left\{|g(\xi)-g(\eta)|: \xi_{i}=\eta_{i}, 0 \leqslant i \leqslant k\right\}, & |g|_{\theta}=\sup \left\{\frac{\operatorname{var}_{k} g}{\theta^{k}}: k \geqslant 0\right\}, \\
|g|_{\infty} & =\sup \left\{|g(\xi)|: \xi \in \Sigma_{A}^{+}\right\}, & & \|g\|_{\theta}=|g|_{\theta}+|g|_{\infty}
\end{array}
$$

Denote by $\mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$the space of all functions g on Σ_{A}^{+}with $\|g\|_{\theta}<\infty$.
Two functions f, g on $\mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$are called cohomologous if there exists a continuous function h on Σ_{A}^{+}such that $f=g+h \circ \sigma-h$.

The Ruelle transfer operator $L_{f}: C\left(\Sigma_{A}^{+}\right) \rightarrow C\left(\Sigma_{A}^{+}\right)$is defined by

$$
L_{f} g(x)=\sum_{\sigma(y)=x} e^{f(y)} g(y)
$$

Here $C\left(\Sigma_{A}^{+}\right)$denotes the space of all continuous functions $g: \Sigma_{A}^{+} \rightarrow \mathbb{R}$ with respect to the metric d_{θ}. Denote by $\operatorname{Pr}(\psi)$ the topological pressure

$$
\operatorname{Pr}(\psi)=\sup _{m \in \mathcal{M}_{\sigma}}\left(h_{\sigma}(m)+\int \psi d m\right)
$$

of ψ with respect to the map σ, where \mathcal{M}_{σ} is the set of all σ-invariant probability measures on Σ_{A}^{+}and $h_{\sigma}(m)$ is the measure theoretic entropy of m with respect to σ (see [7] or [10]). Given $\psi \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$, there exists a unique σ-invariant probability measure μ_{ψ} on Σ_{A}^{+}such that

$$
\operatorname{Pr}(\psi)=h_{\sigma}\left(\mu_{\psi}\right)+\int \psi d \mu_{\psi}
$$

(see, e.g. [7, Theorem 3.5]). The measure μ_{ψ} is called the equilibrium state of ψ.
For brevity throughout we write $\int h d m$ for $\int_{\Sigma_{A}^{+}} h d m$. In what follows we assume that $\theta \in(0,1)$ is a fixed constant, $f: \Sigma_{A}^{+} \rightarrow \mathbb{R}$ is a fixed function in $\mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$and $\mu=\mu_{f}$.

As we mentioned earlier, it follows from the Large Deviation Theorem [3,6,12] that if ψ is not cohomologous to a constant, then there exists a real analytic rate function $I=I_{\psi}: \operatorname{Int}\left(\mathcal{J}_{\psi}\right) \rightarrow[0, \infty)$ with $I(p)=0$ iff $p=\int \psi d \mu$ for which (1) holds. More precisely, we have

$$
\begin{equation*}
-I(p)=\inf \{\operatorname{Pr}(f+q \psi)-\operatorname{Pr}(f)-q p: q \in \mathbb{R}\} \tag{2}
\end{equation*}
$$

It is also known that

$$
\begin{equation*}
\left[\frac{d}{d q} \operatorname{Pr}(f+q \psi)\right]_{q=\eta}=\int \psi d \mu_{f+\eta \psi} \tag{3}
\end{equation*}
$$

and $\operatorname{Pr}(f+q \psi)$ is a strictly convex function of q (see [7,10] or [4]).
In his paper we derive an estimate from below for $I_{\psi}(p)$ for p outside an interval containing

$$
\widetilde{\psi}=\int \psi d \mu
$$

The estimate depends only on $|\psi|_{\infty}, \widetilde{\psi},|\psi|_{\theta}$ and some constants determined by the given function f. In what follows we use the notation $\min \psi=\min _{x \in \Sigma_{A}^{+}} \psi(x)$,

$$
b=b_{\psi}=\max \left\{1,|\psi|_{\theta}\right\}, \quad B_{\psi}=\widetilde{\psi}-\min \{0, \min \psi\}
$$

Since $\widetilde{\psi}>\min \psi(\psi$ is not cohomologous to a constant), we have $\widetilde{\psi}-\min \psi>0$, so $B_{\psi}>0$ always.

Theorem 1.1 Let $f, \psi \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$be real-valued functions. Assume that ψ is not cohomologous to a constant, and let $0<\delta_{0}<B_{\psi}$. Then for all $p \notin\left[\widetilde{\psi}-\delta_{0}, \widetilde{\psi}+\delta_{0}\right]$ we have

$$
I_{\psi}(p) \geqslant \frac{\delta_{0} q_{0}}{2}
$$

where $q_{0}=\underset{\sim}{\min }\{C, 1 / b\}$ for some constant $C>0$ depending only on $|f-\operatorname{Pr}(f)|_{\infty}$, $|f|_{\theta},|\psi|_{\infty}, \widetilde{\psi}$ and δ_{0}.

The motivation to try to obtain estimates of the kind presented in Theorem 1.1 comes from attempts to get some kind of an 'approximate large deviation principle' for characteristic functions χ_{K} of arbitrary compact sets K of positive measure. In the special case when the boundary ∂K of K is 'relatively regular' (e.g. $\mu(\partial K)=0$) large deviation results were established by Leplaideur and Saussol in [5], and also by Kachurovskii and Podvigin [2]. The next example presents a first step in the case of an arbitrary compact set K of positive measure.

Example 1.2 Let K be a compact subset of Σ_{A}^{+}with $0<\mu(K)<1$, let $0<\delta_{0} \leqslant$ $\mu(K)$, and let ψ be a Hölder continuous function that approximates χ_{K} from above, i.e. $0 \leqslant \psi \leqslant 1, \psi=1$ on K and $\psi=0$ outside a small neighbourhood V of K. Then $b=|\psi|_{\theta} \gg 1$ if V is sufficiently small, so q_{0} in Theorem 1.1 has the form $q_{0}=1 / b$. It then follows from Theorem 1.1 (in fact, from Lemma 2.3) that $I_{\psi}(p) \geqslant \delta_{0} /\left(2|\psi|_{\theta}\right)$ for $p \notin\left[\widetilde{\psi}-\delta_{0}, \widetilde{\psi}+\delta_{0}\right]$.

A result similar to Theorem 1.1 can be stated, e.g. for Axiom A diffeomorphisms on basic sets. Recall that if $F: M \rightarrow M$ is a C^{1} Axiom A diffeomorphism on a Riemannian manifold M, a non-empty subset Λ of M is called a basic set for F if Λ is a locally maximal compact F-invariant subset of M which is not a single orbit, F is hyperbolic and transitive on Λ, and the periodic points of F in Λ are dense in Λ (see, e.g. [1] or [7, Appendix III]). It follows from the existence of Markov partitions that there exists a two-sided subshift of finite type $\sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ and a continuous surjective map $\pi: \Sigma_{A} \rightarrow \Lambda$ such that: (i) $F \circ \pi=\pi \circ \sigma$, and (ii) for every Hölder continuous function g on $\Lambda, f=g \circ \pi \in \mathcal{F}_{\theta}$ for some $\theta \in(0,1)$ and π is one-to-one almost everywhere with respect to the equilibrium state of f. Given a Hölder continuous function g on Λ, the rate function I_{g} is naturally related to the rate function I_{f} of $f=g \circ \pi$. On the other hand, f is cohomologous to a function $f^{\prime} \in \mathcal{F}_{\sqrt{\theta}}\left(\Sigma_{A}\right)$ which depends on forward coordinates only, so $f^{\prime} \in \mathcal{F}_{\sqrt{\theta}}\left(\Sigma_{A}^{+}\right)$. Applying Theorem 1.1 to f^{\prime} provides a similar result for f and therefore for g.

For some hyperbolic systems, large deviation principles similar to (1), however with shrinking intervals, have been established recently in $[8,9]$.

2 Proof of Theorem 1.1

2.1 The Ruelle-Perron-Frobenius Theorem

For convenience of the reader we state here a part of the estimates in [11] that will be used in this section.

Theorem 2.1 (Ruelle-Perron-Frobenius) Let the $s_{0} \times s_{0}$-matrix A and $M>0$ be as in Sect. 1, let $f \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$be real-valued, and let $b_{f}=\max \left\{1,|f|_{\theta}\right\}$. Then:
(i) There exist a unique $\lambda=\lambda_{f}>0$, a probability measure $v=\nu_{f}$ on Σ_{A}^{+}and a positive function $h=h_{f} \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$such that $L_{f} h=\lambda h$ and $\int h d v=1$. The
spectral radius of L_{f} as an operator on $\mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$is λ, and its essential spectral radius is $\theta \lambda$. The eigenfunction h satisfies

$$
\|h\|_{\theta} \leqslant \frac{6 s_{0}^{M} b_{f}}{\theta^{2}(1-\theta)} e^{4 b_{f} /(1-\theta)} e^{2 M|f|_{\infty}}, \quad \min h \geqslant \frac{1}{e^{2 b_{f} /(1-\theta)} s_{0}^{M} e^{2 M|f|_{\infty}}}
$$

Moreover,

$$
\frac{\min h}{|h|_{\infty}} \lambda^{n} \leqslant L_{f}^{n} 1 \leqslant \frac{|h|_{\infty}}{\min h} \lambda^{n}
$$

for any integer $n \geqslant 0$.
(ii) The probability measure $\widehat{v}=h \nu$ (this is the so-called equilibrium state of f) is σ-invariant and $\widehat{v}=v_{\hat{f}}$, where $\widehat{f}=f-\log (h \circ \sigma)+\log h-\log \lambda$. Moreover $L_{\hat{f}} 1=1$.
(iii) For every $g \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$and every integer $n \geqslant 0$ we have

$$
\left\|\frac{1}{\lambda^{n}} L_{f}^{n} g-h \int g d v\right\|_{\theta} \leqslant D \rho^{n}\|g\|_{\theta},
$$

where we can take

$$
\rho=\left(1-\frac{1-\theta}{4 s_{0}^{2 M} e^{8 \theta b_{f} /(1-\theta)} e^{4 M|f|_{\infty}}}\right)^{1 / 2 M} \in(0,1)
$$

and

$$
D=10^{8} \frac{b_{f}^{7}}{\theta^{10}(1-\theta)^{8}} s_{0}^{17 M} e^{40 b_{f} /(1-\theta)} e^{33 M|f|_{\infty}}
$$

Remark 2.2 The constants that appear in the above estimates are not optimal. The proof of [11, Theorem 2] follows that in [1, Section 1.B] with a more careful analysis of the estimates involved. The main point here is that, apart from their obvious dependence on parameters related to the subshift of finite type $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$, these constants can be taken to depend only on $|f|_{\theta}$ and $|f|_{\infty}$.

2.2 Reductions

Let $f \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$be the fixed function from Sect. 1 and let $\mu=\mu_{f}$ be as before. It follows from the properties of pressure (see, e.g. [10] or [7]) that $\operatorname{Pr}(g+c)=\operatorname{Pr}(g)+c$ for every continuous function g and every constant $c \in \mathbb{R}$. Thus, replacing f by $f-\operatorname{Pr}(f)$, we may assume that $\operatorname{Pr}(f)=0$. Moreover, if g and h are cohomologous continuous functions on Σ_{A}^{+}, then $\operatorname{Pr}(g)=\operatorname{Pr}(h)$ and the equilibrium states μ_{g} of g and μ_{h} of h on Σ_{A}^{+}coincide. Since f is cohomologous to a function $\phi \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$with $L_{\phi} 1=1$ (see, e.g. [7]), it is enough to prove the main result with f replaced by such
a function ϕ. Moreover, $|\phi|_{\infty}$ and $|\phi|_{\theta}$ can be estimated by means of $|f-\operatorname{Pr}(f)|_{\infty}$ and $|f|_{\theta}$ [see e.g. Theorem 2.1 (ii)].

So, from now on we will assume that $L_{\phi} 1=1$. It then follows that $\operatorname{Pr}(\phi)=0$. Let $\mu=\mu_{\phi}$ be the equilibrium state of ϕ on Σ_{A}^{+}.

For the proof of Theorem 1.1 we may assume that $\psi \geqslant 0$. Indeed, assuming the statement of the theorem is true in this case, suppose ψ takes negative values. Set $\psi_{1}=\psi+c$, where $c=-\min \psi$. Then $\psi_{1} \geqslant 0$. Moreover, $\widetilde{\psi}_{1}=\int \psi_{1} d \mu=\widetilde{\psi}+c$, $B_{\psi_{1}}=B_{\psi}$, and for $p_{1}=p+c$ we have

$$
\begin{aligned}
\Gamma_{1}(q) & =p_{1} q-\operatorname{Pr}\left(\phi+q \psi_{1}\right) \\
& =(p+c) q-\operatorname{Pr}(\phi+q \psi+q c)=p q-\operatorname{Pr}(\phi+q \psi)=\Gamma(q)
\end{aligned}
$$

for all $q \in \mathbb{R}$. Therefore (2) implies

$$
\begin{aligned}
I_{\psi}(p) & =\sup \{p q-\operatorname{Pr}(\phi+q \psi): q \in \mathbb{R}\} \\
& =\sup \left\{p_{1} q-\operatorname{Pr}\left(\phi+q \psi_{1}\right): q \in \mathbb{R}\right\}=I_{\psi_{1}}\left(p_{1}\right) .
\end{aligned}
$$

Moreover, if $0<\delta_{0}<B_{\psi}=B_{\psi_{1}}$, then $p \notin\left[\widetilde{\psi}-\delta_{0}, \widetilde{\psi}+\delta_{0}\right]$ is equivalent to $p_{1}=p+c \notin\left[\widetilde{\psi}_{1}-\delta_{0}, \widetilde{\psi}_{1}+\delta_{0}\right]$. Since $\left|\psi_{1}\right|_{\theta}=|\psi|_{\theta}$ and $\left|\psi_{1}\right|_{\infty} \leqslant 2|\psi|_{\infty}$, using Theorem 1.1 for $I_{\psi_{1}}\left(p_{1}\right)$ and changing appropriately the value of the constant q_{0}, we get a similar estimate for $I_{\psi}(p)$.

2.3 Proof of Theorem 1.1 for $\psi \geqslant 0$

From now on we will assume that $\phi, \psi \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$are fixed real-valued functions such that $\psi \geqslant 0, \psi$ is not cohomologous to a constant, and

$$
\begin{equation*}
L_{\phi} 1=1 . \tag{4}
\end{equation*}
$$

Given any $q \in \mathbb{R}$, set

$$
f_{q}=\phi+q \psi, \quad L_{q}=L_{f_{q}}
$$

In what follows we will assume

$$
\begin{equation*}
|q| \leqslant q_{0} \leqslant \frac{1}{b} \tag{5}
\end{equation*}
$$

for some constant $q_{0}>0$ which will be chosen below. Then $\left|f_{q}\right|_{\theta} \leqslant|\phi|_{\theta}+1$ for all q with (5), and also $\left|f_{q}\right|_{\infty} \leqslant|\phi|_{\infty}+|\psi|_{\infty}$. Thus, setting

$$
C_{0}=\|\phi\|_{\theta}+2 \max \left\{|\psi|_{\infty}, 1\right\} \geqslant 1,
$$

we have

$$
\begin{equation*}
\left\|f_{q}\right\|_{\theta} \leqslant C_{0}, \quad|q| \in\left[0, q_{0}\right] . \tag{6}
\end{equation*}
$$

Let v_{q} be the probability measure on Σ_{A}^{+}with

$$
\begin{equation*}
L_{q}^{*} v_{q}=\lambda_{q} v_{q}, \tag{7}
\end{equation*}
$$

where λ_{q} is the maximal eigenvalue of $L_{q}=L_{f_{q}}$, and let $h_{q}>0$ be a corresponding normalised eigenfunction, i.e. $h_{q} \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right), L_{q} h_{q}=\lambda_{q} h_{q}$ and $\int h_{q} d v_{q}=1$. Then $\mu_{q}=h_{q} v_{q}$ is the equilibrium state of f_{q}, i.e. $\mu_{q}=\mu_{\phi+q \psi}$. Clearly $h_{0}=1$ and $\mu_{0}=\mu$.

Using the uniform estimates in Theorem 2.1, it follows from (6) that there exist constants $D \geqslant 1$ and $\rho \in(0,1)$, depending on C_{0} but not on q_{0}, such that

$$
\begin{equation*}
\left\|\frac{1}{\lambda_{q}^{n}} L_{q}^{n} g-h_{q} \int g d v_{q}\right\|_{\theta} \leqslant D \rho^{n}\|g\|_{\theta} \tag{8}
\end{equation*}
$$

for all integers $n \geqslant 0$, all functions $g \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$and all q with $|q| \in\left[0, q_{0}\right]$.
Set $L=L_{\phi}$. Given $x \in \Sigma_{A}^{+}$and $m \geqslant 0$, set $g_{m}(x)=g(x)+g(\sigma x)+\cdots+$ $g\left(\sigma^{m-1} x\right)$.
It follows from (7) with $g=1$ that $\lambda_{q}=\int L_{q} 1 d v_{q}$. Now

$$
\left(L_{q} 1\right)(x)=\sum_{\sigma y=x} e^{f_{q}(y)}=\sum_{\sigma y=x} e^{\phi(y)+q \psi(y)} \leqslant e^{q_{0}|\psi|_{\infty}}(L 1)(x)=e^{q_{0}|\psi|_{\infty}}
$$

for all $x \in \Sigma_{A}^{+}$implies $\lambda_{q} \leqslant e^{q_{0}|\psi|_{\infty}}$. Similarly, $\lambda_{q} \geqslant e^{-q_{0}|\psi|_{\infty}}$. Thus,

$$
\begin{equation*}
e^{-q_{0} C_{0}} \leqslant \lambda_{q} \leqslant e^{q_{0} C_{0}}, \quad|q| \leqslant q_{0} \tag{9}
\end{equation*}
$$

To estimate h_{q} for q with (5), first use (8) with $g=1$ to get

$$
\left\|\frac{1}{\lambda_{q}^{n}} L_{q}^{n} 1-h_{q}\right\|_{\theta} \leqslant D \rho^{n} .
$$

Using (4), this gives

$$
\begin{aligned}
h_{q}(x) & \leqslant \frac{\left(L_{q}^{n} 1\right)(x)}{\lambda_{q}^{n}}+D \rho^{n}=\frac{1}{\lambda_{q}^{n}} \sum_{\sigma^{n} y=x} e^{(\phi+q \psi)_{n}(y)}+D \rho^{n} \\
& \leqslant \frac{e^{q_{0} C_{0} n}}{\lambda_{q}^{n}}(L 1)(x)+D \rho^{n} \leqslant e^{2 q_{0} C_{0} n}+D \rho^{n}
\end{aligned}
$$

for all $x \in \Sigma_{A}^{+}$and $n \geqslant 0$. Similarly,

$$
h_{q} \geqslant \frac{e^{-q_{0} C_{0} n}}{\lambda_{q}^{n}}(L 1)-D \rho^{n} \geqslant e^{-2 q_{0} C_{0} n}-D \rho^{n}
$$

for all $n \geqslant 0$. Thus,

$$
\begin{equation*}
\max \left\{0, e^{-2 q_{0} C_{0} n}-D \rho^{n}\right\} \leqslant h_{q} \leqslant e^{2 q_{0} C_{0} n}+D \rho^{n}, \quad n \geqslant 0, \quad|q| \leqslant q_{0} \tag{10}
\end{equation*}
$$

From now on we will assume that $p \notin\left[\widetilde{\psi}-\delta_{0}, \widetilde{\psi}+\delta_{0}\right]$ is fixed. Consider the function

$$
\Gamma(q)=p q-\operatorname{Pr}(\phi+q \psi), \quad q \in \mathbb{R}
$$

Then $I(p)=\sup _{q \in \mathbb{R}} \Gamma(q)$. Clearly, $\Gamma(0)=0$ and moreover by (3),

$$
\begin{equation*}
\Gamma^{\prime}(q)=p-\int \psi d \mu_{\phi+q \psi} \tag{11}
\end{equation*}
$$

In particular, $\Gamma^{\prime}(0)=p-\widetilde{\psi} \notin\left[-\delta_{0}, \delta_{0}\right]$.
We will now estimate the integral in the right-hand side of (11). Let $\alpha>0$ be the constant so that $\rho_{1}=\max \{\rho, \theta\}=e^{-\alpha}$.
Lemma 2.3 Assume that $\psi \geqslant 0$ on Σ_{A}^{+}and $0<\delta_{0}<B_{\psi}=\widetilde{\psi}$. Set

$$
\begin{equation*}
q_{0}=\min \left\{\frac{\delta_{0}}{100 C_{0}^{2} n_{0}}, \frac{1}{b}\right\} \tag{12}
\end{equation*}
$$

where n_{0} is the integer with

$$
\begin{equation*}
n_{0}-1 \leqslant \frac{1}{\alpha}\left|\log \frac{\delta_{0}}{16 C_{0} D}\right|<n_{0} \tag{13}
\end{equation*}
$$

Then $\Gamma\left(q_{0}\right) \geqslant \delta_{0} q_{0} / 2$ and $\Gamma\left(-q_{0}\right) \geqslant \delta_{0} q_{0} / 2$.
Proof For any $q \in\left[0, q_{0}\right]$ and any integer $n \geqslant 0$, (7), (9) and (10) yield

$$
\begin{aligned}
\int \psi d \mu_{q} & =\int \psi h_{q} d v_{q}=\frac{1}{\lambda_{q}^{n}} \int L_{q}^{n}\left(\psi h_{q}\right) d v_{q} \\
& =\frac{1}{\lambda_{q}^{n}} \int \sum_{\sigma^{n} y=x} e^{(\phi+q \psi)_{n}(y)} \psi(y) h_{q}(y) d v_{q}(x) \\
& \leqslant e^{2 q_{0} C_{0} n}\left(e^{2 q C_{0} n}+D \rho^{n}\right) \int L^{n} \psi d v_{q}
\end{aligned}
$$

It follows from (8) with $q=0$ and $g=\psi$ and the choice of C_{0} that

$$
\begin{equation*}
\left|L^{n} \psi-\int \psi d \mu\right|=\left|L^{n} \psi-\int \psi d \nu\right| \leqslant D \rho^{n} C_{0} \tag{14}
\end{equation*}
$$

therefore $L^{n} \psi \leqslant \widetilde{\psi}+C_{0} D \rho^{n}$. Combining this with the above gives

$$
\begin{equation*}
\int \psi d \mu_{q} \leqslant e^{2 q_{0} C_{0} n}\left(e^{2 q_{0} C_{0} n}+D \rho^{n}\right)\left(\widetilde{\psi}+C_{0} D \rho^{n}\right) \tag{15}
\end{equation*}
$$

Let $n_{0}=n_{0}\left(f, \theta, \delta_{0}\right) \geqslant 1$ be the integer such that

$$
\begin{equation*}
e^{-n_{0} \alpha}<\frac{\delta_{0}}{16 C_{0} D} \leqslant e^{-\left(n_{0}-1\right) \alpha} \tag{16}
\end{equation*}
$$

Then $-n_{0} \alpha<\log \delta_{0} /\left(16 C_{0} D\right) \leqslant-\left(n_{0}-1\right) \alpha$, so n_{0} satisfies (13). With this choice of n_{0} define q_{0} by (12). Then for $q \in\left[0, q_{0}\right]$ we have $12 q C_{0}^{2} n_{0} \leqslant \delta_{0} / 8$ and so $12 q C_{0} n_{0} \leqslant 1$. It now follows from (15) with $q \in\left[0, q_{0}\right]$ and $n=n_{0}, 0<\delta_{0} \leqslant B_{\psi}=$ $\widetilde{\psi} \leqslant C_{0}$, (16) and the fact that $e^{x} \leqslant 1+3 x$ for $x \in[0,1]$ that

$$
\begin{aligned}
\int \psi d \mu_{q} & \leqslant\left(e^{4 q_{0} C_{0} n_{0}}+D e^{2 q_{0} C_{0} n_{0}} e^{-\alpha n_{0}}\right)\left(\widetilde{\psi}+C_{0} D e^{-\alpha n_{0}}\right) \\
& \leqslant\left(1+12 q_{0} C_{0} n_{0}+\left(1+6 q_{0} C_{0} n_{0}\right) \frac{\delta_{0}}{16 C_{0}}\right)\left(\widetilde{\psi}+\frac{\delta_{0}}{16}\right) \\
& \leqslant \widetilde{\psi}+12 q_{0} C_{0}^{2} n_{0}+\left(1+6 q_{0} C_{0} n_{0}\right) \frac{\delta_{0}}{16}+\left(2+2 \frac{\delta_{0}}{16 C_{0}}\right) \frac{\delta_{0}}{16} \\
& \leqslant \widetilde{\psi}+\frac{\delta_{0}}{8}+\frac{\delta_{0}}{8}+\frac{3 \delta_{0}}{16}<\widetilde{\psi}+\frac{\delta_{0}}{2}
\end{aligned}
$$

Thus, in the case $p \geqslant \widetilde{\psi}+\delta_{0}$, it follows from (11) that $\Gamma^{\prime}(q) \geqslant \delta_{0} / 2$ for all $q \in\left[0, q_{0}\right]$, and therefore $\Gamma\left(q_{0}\right) \geqslant \delta_{0} q_{0} / 2$.

Next, assume that $p \leqslant \psi-\delta_{0}$. We will now estimate $\int \psi d \mu_{q}$ from below for $q \in\left[-q_{0}, 0\right]$. As in the previous estimate, using (9) and (10), for such q we get

$$
\begin{aligned}
\int \psi d \mu_{q} & =\int \psi h_{q} d v_{q}=\frac{1}{\lambda_{q}^{n_{0}}} \int L_{q}^{n_{0}}\left(\psi h_{q}\right) d v_{q} \\
& =\frac{1}{\lambda_{q}^{n_{0}}} \int \sum_{\sigma^{n_{0}} y=x} e^{(\phi+q \psi)_{n_{0}}(y)} \psi(y) h_{q}(y) d v_{q}(x) \\
& \geqslant e^{-2 q_{0} C_{0} n_{0}}\left(e^{-2 q_{0} C_{0} n_{0}}-D \rho^{n_{0}}\right) \int L^{n_{0}} \psi d v_{q}
\end{aligned}
$$

Notice that by the choice of q_{0} and n_{0} we have $e^{-2 q_{0} C_{0} n_{0}}-D \rho^{n_{0}}>0$. In fact, it follows from $e^{-x}>1-x$ for $x>0$ that $e^{-2 q_{0} C_{0} n_{0}}>1-2 q_{0} C_{0} n_{0}$, while (16) implies $D \rho^{n_{0}}<\delta_{0} /\left(16 C_{0}\right)$. Thus,

$$
e^{-2 q_{0} C_{0} n_{0}}-D \rho^{n_{0}}>1-2 q_{0} C_{0} n_{0}-\frac{\delta_{0}}{16 C_{0}}>1-\frac{\delta_{0}}{8 C_{0}} .
$$

On the other hand, (14) yields $\int L^{n_{0}} \psi d v_{q} \geqslant \widetilde{\psi}-D C_{0} \rho^{n_{0}}>\widetilde{\psi}-\delta_{0} / 16$. Hence for $q \in\left[-q_{0}, 0\right]$ we get

$$
\begin{aligned}
\int \psi d \mu_{q} & \geqslant\left(1-2 q_{0} C_{0} n_{0}\right)\left(1-\frac{\delta_{0}}{8 C_{0}}\right)\left(\widetilde{\psi}-\frac{\delta_{0}}{16}\right) \\
& \geqslant\left(1-2 q_{0} C_{0} n_{0}-\frac{\delta_{0}}{8 C_{0}}\right)\left(\widetilde{\psi}-\frac{\delta_{0}}{16}\right) \\
& \geqslant \widetilde{\psi}-\widetilde{\psi}\left(2 q_{0} C_{0} n_{0}+\frac{\delta_{0}}{8 C_{0}}\right)-\frac{\delta_{0}}{16} \geqslant \widetilde{\psi}-\frac{\delta_{0}}{50}-\frac{\delta_{0}}{8}-\frac{\delta_{0}}{16}>\widetilde{\psi}-\frac{\delta_{0}}{2} .
\end{aligned}
$$

Thus, for $q \in\left[-q_{0}, 0\right]$ we have

$$
\Gamma^{\prime}(q)=p-\int \psi d \mu_{q} \leqslant \widetilde{\psi}-\delta_{0}-\left(\widetilde{\psi}-\delta_{0} / 2\right) \leqslant-\frac{\delta_{0}}{2},
$$

and therefore $\Gamma\left(-q_{0}\right) \geqslant \delta_{0} q_{0} / 2$.
Proof of Theorem 1.1 Assume again that $\psi \geqslant 0$. Let $p \geqslant \widetilde{\psi}+\delta_{0}$. Then $I(p)=$ $\sup _{q \in \mathbb{R}} \Gamma(q)$, so by Lemma 2.3, $I(p) \geqslant \Gamma\left(q_{0}\right) \geqslant \delta_{0} q_{0} / 2$. Similarly, for $p \leqslant \widetilde{\psi}-\delta_{0}$ we get $I(p) \geqslant \delta_{0} q_{0} / 2$.

As explained in Sect. 2.2, the case of an arbitrary real-valued $\psi \in \mathcal{F}_{\theta}\left(\Sigma_{A}^{+}\right)$follows from the case $\psi \geqslant 0$.

Acknowledgments Thanks are due to the referees for their valuable comments and suggestions.

References

1. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)
2. Kachurovskii, A.G., Podvigin, I.V.: Large deviations and rates of convergence in the Birkhoff ergodic theorem: from Hölder continuity to continuity. Dokl. Math. 93(1), 6-8 (2016)
3. Kifer, Yu.: Large deviations in dynamical systems and stochastic processes. Trans. Amer. Math. Soc. 321(2), 505-524 (1990)
4. Lalley, S.P.: Distribution of periodic orbits of symbolic and Axiom A flows. Adv. in Appl. Math. 8(2), 154-193 (1987)
5. Leplaideur, R., Saussol, B.: Large deviations for return times in non-rectangle sets for Axiom A diffeomorphisms. Discrete Contin. Dyn. Syst. 22(1-2), 327-344 (2008)
6. Orey, S., Pelikan, S.: Deviations of trajectory averages and the defect in Pesin's formula for Anosov diffeomorphisms. Trans. Amer. Math. Soc. 315(2), 741-753 (1989)
7. Parry, W., Pollicott, M.: Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics. Astérisque, vol. 187-188. Société Mathmatique de France, Paris (1990)
8. Petkov, V., Stoyanov, L.: Sharp large deviations for some hyperbolic systems. Ergodic Theory Dynam. Systems 35(1), 249-273 (2015)
9. Pollicott, M., Sharp, R.: Large deviations, fluctuations and shrinking intervals. Comm. Math. Phys. 290(1), 321-334 (2009)
10. Ruelle, D.: Thermodynamic Formalism. Encyclopedia of Mathematics and its Applications, vol. 5. Addison-Wesley, Reading (1978)
11. Stoyanov, L.: On the Ruelle-Perron-Frobenius theorem. Asymptot. Anal. 43(1-2), 131-150 (2005)
12. Young, L.-S.: Large deviations in dynamical systems. Trans. Amer. Math. Soc. 318(2), 525-543 (1990)

[^0]: \boxtimes Luchezar Stoyanov
 luchezar.stoyanov@uwa.edu.au
 1 School of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia

