

RESEARCH ARTICLE

A uniform estimate for rate functions in large deviations

Luchezar Stoyanov¹

Received: 24 July 2016 / Revised: 26 September 2016 / Accepted: 10 October 2016 / Published online: 24 October 2016 © Springer International Publishing AG 2016

Abstract Given Hölder continuous functions f and ψ on a subshift of finite type Σ_A^+ such that ψ is not cohomologous to a constant, the classical large deviation principle holds with a rate function $I_{\psi} \ge 0$ such that $I_{\psi}(p) = 0$ iff $p = \int \psi d\mu$, where $\mu = \mu_f$ is the equilibrium state of f. In this paper we derive a uniform estimate from below for I_{ψ} for p outside an interval containing $\tilde{\psi} = \int \psi d\mu$, which depends only on the subshift Σ_A^+ , the function f, the norm $|\psi|_{\infty}$, the Hölder constant of ψ and the integral $\tilde{\psi}$. Similar results can be derived in the same way, e.g. for Axiom A diffeomorphisms on basic sets.

Keywords Large deviations \cdot Rate function \cdot Subshift of finite type \cdot Equilibrium state

Mathematics Subject Classification 37A05 · 37B10 · 37D20

1 Introduction

Let $T: X \to X$ be a transformation preserving an ergodic probability measure μ on a set *X*. Given an observable $\psi: X \to \mathbb{R}$, Birkhoff's ergodic theorem implies that

$$\frac{\psi_n(x)}{n} = \frac{\psi(x) + \psi(T(x)) + \dots + \psi(T^{n-1}(x))}{n} \to \int_X \psi d\mu$$

Luchezar Stoyanov luchezar.stoyanov@uwa.edu.au

¹ School of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia

for μ -almost all $x \in X$. It follows from general large deviation principles (see [3,6,12]) that if X is a mixing basic set for an Axiom A diffeomorphism T, and f and ψ are Hölder continuous functions on X with *equilibrium states* $\mu = \mu_f$ and μ_{ψ} , respectively, and ψ is not cohomologous to a constant (see the definition below), then there exists a real-analytic *rate function* $I = I_{\psi}$: Int $(\mathfrak{I}_{\psi}) \rightarrow [0, \infty)$, where $\mathfrak{I}_{\psi} = \{\int \psi \, dm : m \in \mathcal{M}_T\}$, such that

$$\lim_{\delta \to 0} \lim_{n \to \infty} \frac{1}{n} \log \mu \left(\left\{ x \in X : \frac{\psi_n(x)}{n} \in (p - \delta, p + \delta) \right\} \right) = -I_{\psi}(p)$$
(1)

for all $p \in \text{Int}(\mathcal{I}_{\psi})$. Here \mathcal{M}_T is the set of all *T*-invariant Borel probability measures on *X*. Moreover, I(p) = 0 if and only if $p = \int \psi d\mu$, and the (closed) interval \mathcal{I}_{ψ} is non-trivial, since ψ is not cohomologous to a constant.

Similar large deviation principles apply for any subshift of finite type $\sigma : \Sigma_A^+ \to \Sigma_A^+$ on a one-sided shift space

$$\Sigma_A^+ = \{ \xi = (\xi_0, \xi_1, \dots, \xi_m, \dots) : 1 \le \xi_i \le s_0, \ A(\xi_i, \xi_{i+1}) = 1 \text{ for all } i \ge 0 \}.$$

Here *A* is an $s_0 \times s_0$ -matrix of 0's and 1's ($s_0 \ge 2$). We assume that *A* is *aperiodic*, i.e. there exists an integer M > 0 such that $A^M(i, j) > 0$ for all i, j (see, e.g. [7, Chapter 1]). The *shift map* σ is defined by $\sigma(\xi) = \xi'$, where $\xi'_i = \xi_{i+1}$ for all $i \ge 0$. We consider Σ^+_A with a metric d_θ defined for some constant $\theta \in (0, 1)$ by $d_\theta(\xi, \eta) = 0$ if $\xi = \eta$ and $d_\theta(\xi, \eta) = \theta^k$ if $\xi \neq \eta$ and $k \ge 0$ is the maximal integer with $\xi_i = \eta_i$ for $0 \le i \le k$.

For any function $g: \Sigma_A^+ \to \mathbb{R}$ set

$$\begin{aligned} \operatorname{var}_{k}g &= \sup\left\{|g(\xi) - g(\eta)| : \xi_{i} = \eta_{i}, 0 \leq i \leq k\right\}, \quad |g|_{\theta} = \sup\left\{\frac{\operatorname{var}_{k}g}{\theta^{k}} : k \geq 0\right\}, \\ |g|_{\infty} &= \sup\left\{|g(\xi)| : \xi \in \Sigma_{A}^{+}\right\}, \qquad \qquad \|g\|_{\theta} = |g|_{\theta} + |g|_{\infty}. \end{aligned}$$

Denote by $\mathcal{F}_{\theta}(\Sigma_A^+)$ the space of all functions g on Σ_A^+ with $||g||_{\theta} < \infty$.

Two functions f, g on $\mathcal{F}_{\theta}(\Sigma_A^+)$ are called *cohomologous* if there exists a continuous function h on Σ_A^+ such that $f = g + h \circ \sigma - h$.

The Ruelle transfer operator $L_f \colon C(\Sigma_A^+) \to C(\Sigma_A^+)$ is defined by

$$L_f g(x) = \sum_{\sigma(y)=x} e^{f(y)} g(y).$$

Here $C(\Sigma_A^+)$ denotes the space of all continuous functions $g: \Sigma_A^+ \to \mathbb{R}$ with respect to the metric d_{θ} . Denote by $\Pr(\psi)$ the *topological pressure*

$$\Pr(\psi) = \sup_{m \in \mathcal{M}_{\sigma}} \left(h_{\sigma}(m) + \int \psi \, dm \right)$$

of ψ with respect to the map σ , where \mathcal{M}_{σ} is the *set of all* σ -*invariant probability* measures on Σ_A^+ and $h_{\sigma}(m)$ is the measure theoretic entropy of m with respect to σ (see [7] or [10]). Given $\psi \in \mathcal{F}_{\theta}(\Sigma_A^+)$, there exists a unique σ -invariant probability measure μ_{ψ} on Σ_A^+ such that

$$\Pr(\psi) = h_{\sigma}(\mu_{\psi}) + \int \psi d\mu_{\psi}$$

(see, e.g. [7, Theorem 3.5]). The measure μ_{ψ} is called the *equilibrium state* of ψ .

For brevity throughout we write $\int hdm$ for $\int_{\Sigma_A^+} hdm$. In what follows we assume that $\theta \in (0, 1)$ is a fixed constant, $f \colon \Sigma_A^+ \to \mathbb{R}$ is a fixed function in $\mathcal{F}_{\theta}(\Sigma_A^+)$ and $\mu = \mu_f$.

As we mentioned earlier, it follows from the Large Deviation Theorem [3,6,12] that if ψ is not cohomologous to a constant, then there exists a real analytic *rate function* $I = I_{\psi} : \operatorname{Int}(\mathbb{J}_{\psi}) \to [0, \infty)$ with I(p) = 0 iff $p = \int \psi d\mu$ for which (1) holds. More precisely, we have

$$-I(p) = \inf \left\{ \Pr(f + q\psi) - \Pr(f) - qp : q \in \mathbb{R} \right\}.$$
 (2)

It is also known that

$$\left[\frac{d}{dq}\Pr(f+q\psi)\right]_{q=\eta} = \int \psi d\mu_{f+\eta\psi},\tag{3}$$

and $Pr(f + q\psi)$ is a strictly convex function of q (see [7, 10] or [4]).

In his paper we derive an estimate from below for $I_{\psi}(p)$ for p outside an interval containing

$$\widetilde{\psi} = \int \psi d\mu.$$

The estimate depends only on $|\psi|_{\infty}$, $\tilde{\psi}$, $|\psi|_{\theta}$ and some constants determined by the given function *f*. In what follows we use the notation $\min \psi = \min_{x \in \Sigma_{A}^{+}} \psi(x)$,

 $b = b_{\psi} = \max\{1, |\psi|_{\theta}\}, \qquad B_{\psi} = \widetilde{\psi} - \min\{0, \min\psi\}.$

Since $\tilde{\psi} > \min \psi$ (ψ is not cohomologous to a constant), we have $\tilde{\psi} - \min \psi > 0$, so $B_{\psi} > 0$ always.

Theorem 1.1 Let $f, \psi \in \mathcal{F}_{\theta}(\Sigma_A^+)$ be real-valued functions. Assume that ψ is not cohomologous to a constant, and let $0 < \delta_0 < B_{\psi}$. Then for all $p \notin [\tilde{\psi} - \delta_0, \tilde{\psi} + \delta_0]$ we have

$$I_{\psi}(p) \geqslant \frac{\delta_0 q_0}{2},$$

Deringer

where $q_0 = \min\{C, 1/b\}$ for some constant C > 0 depending only on $|f - \Pr(f)|_{\infty}$, $|f|_{\theta}, |\psi|_{\infty}, \widetilde{\psi}$ and δ_0 .

The motivation to try to obtain estimates of the kind presented in Theorem 1.1 comes from attempts to get some kind of an 'approximate large deviation principle' for characteristic functions χ_K of arbitrary compact sets *K* of positive measure. In the special case when the boundary ∂K of *K* is 'relatively regular' (e.g. $\mu(\partial K) = 0$) large deviation results were established by Leplaideur and Saussol in [5], and also by Kachurovskii and Podvigin [2]. The next example presents a first step in the case of an arbitrary compact set *K* of positive measure.

Example 1.2 Let *K* be a compact subset of Σ_A^+ with $0 < \mu(K) < 1$, let $0 < \delta_0 \leq \mu(K)$, and let ψ be a Hölder continuous function that approximates χ_K from above, i.e. $0 \leq \psi \leq 1$, $\psi = 1$ on *K* and $\psi = 0$ outside a small neighbourhood *V* of *K*. Then $b = |\psi|_{\theta} \gg 1$ if *V* is sufficiently small, so q_0 in Theorem 1.1 has the form $q_0 = 1/b$. It then follows from Theorem 1.1 (in fact, from Lemma 2.3) that $I_{\psi}(p) \geq \delta_0/(2|\psi|_{\theta})$ for $p \notin [\tilde{\psi} - \delta_0, \tilde{\psi} + \delta_0]$.

A result similar to Theorem 1.1 can be stated, e.g. for Axiom A diffeomorphisms on basic sets. Recall that if $F: M \to M$ is a C^1 Axiom A diffeomorphism on a Riemannian manifold M, a non-empty subset Λ of M is called a *basic set* for F if Λ is a locally maximal compact F-invariant subset of M which is not a single orbit, Fis hyperbolic and transitive on Λ , and the periodic points of F in Λ are dense in Λ (see, e.g. [1] or [7, Appendix III]). It follows from the existence of Markov partitions that there exists a two-sided subshift of finite type $\sigma: \Sigma_A \to \Sigma_A$ and a continuous surjective map $\pi: \Sigma_A \to \Lambda$ such that: (i) $F \circ \pi = \pi \circ \sigma$, and (ii) for every Hölder continuous function g on Λ , $f = g \circ \pi \in \mathcal{F}_{\theta}$ for some $\theta \in (0, 1)$ and π is oneto-one almost everywhere with respect to the equilibrium state of f. Given a Hölder continuous function g on Λ , the rate function I_g is naturally related to the rate function I_f of $f = g \circ \pi$. On the other hand, f is cohomologous to a function $f' \in \mathcal{F}_{\sqrt{\theta}}(\Sigma_A)$ which depends on forward coordinates only, so $f' \in \mathcal{F}_{\sqrt{\theta}}(\Sigma_A^+)$. Applying Theorem 1.1 to f' provides a similar result for f and therefore for g.

For some hyperbolic systems, large deviation principles similar to (1), however with shrinking intervals, have been established recently in [8,9].

2 Proof of Theorem 1.1

2.1 The Ruelle–Perron–Frobenius Theorem

For convenience of the reader we state here a part of the estimates in [11] that will be used in this section.

Theorem 2.1 (Ruelle–Perron–Frobenius) Let the $s_0 \times s_0$ -matrix A and M > 0 be as in Sect. 1, let $f \in \mathcal{F}_{\theta}(\Sigma_A^+)$ be real-valued, and let $b_f = \max\{1, |f|_{\theta}\}$. Then:

(i) There exist a unique $\lambda = \lambda_f > 0$, a probability measure $\nu = \nu_f$ on Σ_A^+ and a positive function $h = h_f \in \mathcal{F}_{\theta}(\Sigma_A^+)$ such that $L_f h = \lambda h$ and $\int h d\nu = 1$. The

spectral radius of L_f as an operator on $\mathfrak{F}_{\theta}(\Sigma_A^+)$ is λ , and its essential spectral radius is $\theta \lambda$. The eigenfunction h satisfies

$$\|h\|_{\theta} \leqslant \frac{6s_0^M b_f}{\theta^2 (1-\theta)} e^{4b_f/(1-\theta)} e^{2M|f|_{\infty}}, \quad \min h \geqslant \frac{1}{e^{2b_f/(1-\theta)} s_0^M e^{2M|f|_{\infty}}}$$

Moreover,

$$\frac{\min h}{|h|_{\infty}}\lambda^n \leqslant L_f^n 1 \leqslant \frac{|h|_{\infty}}{\min h}\lambda^n,$$

for any integer $n \ge 0$.

- (ii) The probability measure $\hat{v} = hv$ (this is the so-called equilibrium state of f) is σ -invariant and $\hat{v} = v_{\hat{f}}$, where $\hat{f} = f \log(h \circ \sigma) + \log h \log \lambda$. Moreover $L_{\hat{f}} = 1$.
- (iii) For every $g \in \mathcal{F}_{\theta}(\Sigma_A^+)$ and every integer $n \ge 0$ we have

$$\left\|\frac{1}{\lambda^n}L_f^ng-h\int gd\nu\right\|_{\theta}\leqslant D\rho^n\|g\|_{\theta},$$

where we can take

$$\rho = \left(1 - \frac{1 - \theta}{4s_0^{2M} e^{8\theta b_f / (1 - \theta)} e^{4M|f|_{\infty}}}\right)^{1/2M} \in (0, 1)$$

and

$$D = 10^8 \frac{b_f^7}{\theta^{10}(1-\theta)^8} s_0^{17M} e^{40b_f/(1-\theta)} e^{33M|f|_\infty}.$$

Remark 2.2 The constants that appear in the above estimates are not optimal. The proof of [11, Theorem 2] follows that in [1, Section 1.B] with a more careful analysis of the estimates involved. The main point here is that, apart from their obvious dependence on parameters related to the subshift of finite type $\sigma \colon \Sigma_A^+ \to \Sigma_A^+$, these constants can be taken to depend only on $|f|_{\theta}$ and $|f|_{\infty}$.

2.2 Reductions

Let $f \in \mathcal{F}_{\theta}(\Sigma_A^+)$ be the fixed function from Sect. 1 and let $\mu = \mu_f$ be as before. It follows from the properties of pressure (see, e.g. [10] or [7]) that $\Pr(g+c) = \Pr(g)+c$ for every continuous function g and every constant $c \in \mathbb{R}$. Thus, replacing f by $f - \Pr(f)$, we may assume that $\Pr(f) = 0$. Moreover, if g and h are cohomologous continuous functions on Σ_A^+ , then $\Pr(g) = \Pr(h)$ and the equilibrium states μ_g of g and μ_h of h on Σ_A^+ coincide. Since f is cohomologous to a function $\phi \in \mathcal{F}_{\theta}(\Sigma_A^+)$ with $L_{\phi}1 = 1$ (see, e.g. [7]), it is enough to prove the main result with f replaced by such a function ϕ . Moreover, $|\phi|_{\infty}$ and $|\phi|_{\theta}$ can be estimated by means of $|f - \Pr(f)|_{\infty}$ and $|f|_{\theta}$ [see e.g. Theorem 2.1 (ii)].

So, from now on we will assume that $L_{\phi} 1 = 1$. It then follows that $\Pr(\phi) = 0$. Let $\mu = \mu_{\phi}$ be the *equilibrium state* of ϕ on Σ_A^+ .

For the proof of Theorem 1.1 we may assume that $\psi \ge 0$. Indeed, assuming the statement of the theorem is true in this case, suppose ψ takes negative values. Set $\psi_1 = \psi + c$, where $c = -\min \psi$. Then $\psi_1 \ge 0$. Moreover, $\tilde{\psi}_1 = \int \psi_1 d\mu = \tilde{\psi} + c$, $B_{\psi_1} = B_{\psi}$, and for $p_1 = p + c$ we have

$$\Gamma_1(q) = p_1 q - \Pr(\phi + q\psi_1)$$

= $(p+c)q - \Pr(\phi + q\psi + qc) = pq - \Pr(\phi + q\psi) = \Gamma(q)$

for all $q \in \mathbb{R}$. Therefore (2) implies

$$I_{\psi}(p) = \sup \left\{ pq - \Pr(\phi + q\psi) : q \in \mathbb{R} \right\}$$

= sup $\left\{ p_1q - \Pr(\phi + q\psi_1) : q \in \mathbb{R} \right\} = I_{\psi_1}(p_1).$

Moreover, if $0 < \delta_0 < B_{\psi} = B_{\psi_1}$, then $p \notin [\tilde{\psi} - \delta_0, \tilde{\psi} + \delta_0]$ is equivalent to $p_1 = p + c \notin [\tilde{\psi}_1 - \delta_0, \tilde{\psi}_1 + \delta_0]$. Since $|\psi_1|_{\theta} = |\psi|_{\theta}$ and $|\psi_1|_{\infty} \leq 2|\psi|_{\infty}$, using Theorem 1.1 for $I_{\psi_1}(p_1)$ and changing appropriately the value of the constant q_0 , we get a similar estimate for $I_{\psi}(p)$.

2.3 Proof of Theorem 1.1 for $\psi \ge 0$

From now on we will assume that $\phi, \psi \in \mathcal{F}_{\theta}(\Sigma_A^+)$ are fixed real-valued functions such that $\psi \ge 0, \psi$ is not cohomologous to a constant, and

$$L_{\phi} 1 = 1. \tag{4}$$

Given any $q \in \mathbb{R}$, set

$$f_q = \phi + q\psi, \qquad L_q = L_{f_q}.$$

In what follows we will assume

$$|q| \leqslant q_0 \leqslant \frac{1}{b} \tag{5}$$

for some constant $q_0 > 0$ which will be chosen below. Then $|f_q|_{\theta} \leq |\phi|_{\theta} + 1$ for all q with (5), and also $|f_q|_{\infty} \leq |\phi|_{\infty} + |\psi|_{\infty}$. Thus, setting

$$C_0 = \|\phi\|_{\theta} + 2\max\{|\psi|_{\infty}, 1\} \ge 1,$$

we have

$$|f_q||_{\theta} \leqslant C_0, \quad |q| \in [0, q_0].$$
 (6)

🖉 Springer

Let v_q be the *probability measure* on Σ_A^+ with

$$L_q^* \nu_q = \lambda_q \nu_q, \tag{7}$$

where λ_q is the maximal eigenvalue of $L_q = L_{f_q}$, and let $h_q > 0$ be a corresponding normalised eigenfunction, i.e. $h_q \in \mathcal{F}_{\theta}(\Sigma_A^+)$, $L_q h_q = \lambda_q h_q$ and $\int h_q dv_q = 1$. Then $\mu_q = h_q v_q$ is the equilibrium state of f_q , i.e. $\mu_q = \mu_{\phi+q\psi}$. Clearly $h_0 = 1$ and $\mu_0 = \mu.$

Using the uniform estimates in Theorem 2.1, it follows from (6) that there exist constants $D \ge 1$ and $\rho \in (0, 1)$, depending on C_0 but not on q_0 , such that

$$\left\|\frac{1}{\lambda_q^n}L_q^ng - h_q \int g d\nu_q\right\|_{\theta} \leqslant D\rho^n \|g\|_{\theta}$$
(8)

for all integers $n \ge 0$, all functions $g \in \mathcal{F}_{\theta}(\Sigma_A^+)$ and all q with $|q| \in [0, q_0]$. Set $L = L_{\phi}$. Given $x \in \Sigma_A^+$ and $m \ge 0$, set $g_m(x) = g(x) + g(\sigma x) + \cdots + g(\sigma x) + g(\sigma x) + \cdots + g(\sigma x) + g(\sigma x) + g(\sigma x) + \cdots + g(\sigma x) + g(\sigma x) + \cdots + g(\sigma x) + g(\sigma x$ $g(\sigma^{m-1}x).$

It follows from (7) with g = 1 that $\lambda_q = \int L_q 1 d\nu_q$. Now

$$(L_q 1)(x) = \sum_{\sigma y = x} e^{f_q(y)} = \sum_{\sigma y = x} e^{\phi(y) + q\psi(y)} \leqslant e^{q_0 |\psi|_{\infty}} (L1)(x) = e^{q_0 |\psi|_{\infty}}$$

for all $x \in \Sigma_A^+$ implies $\lambda_q \leq e^{q_0|\psi|_{\infty}}$. Similarly, $\lambda_q \geq e^{-q_0|\psi|_{\infty}}$. Thus,

$$e^{-q_0C_0} \leqslant \lambda_q \leqslant e^{q_0C_0}, \quad |q| \leqslant q_0.$$
 (9)

To estimate h_q for q with (5), first use (8) with g = 1 to get

$$\left\|\frac{1}{\lambda_q^n}L_q^n1-h_q\right\|_{\theta} \leq D\rho^n$$

Using (4), this gives

$$h_q(x) \leqslant \frac{(L_q^n 1)(x)}{\lambda_q^n} + D\rho^n = \frac{1}{\lambda_q^n} \sum_{\sigma^n y = x} e^{(\phi + q\psi)_n(y)} + D\rho^n$$
$$\leqslant \frac{e^{q_0 C_0 n}}{\lambda_q^n} (L1)(x) + D\rho^n \leqslant e^{2q_0 C_0 n} + D\rho^n$$

for all $x \in \Sigma_A^+$ and $n \ge 0$. Similarly,

$$h_q \ge \frac{e^{-q_0 C_0 n}}{\lambda_q^n} (L1) - D\rho^n \ge e^{-2q_0 C_0 n} - D\rho^n$$

🖉 Springer

for all $n \ge 0$. Thus,

$$\max\{0, e^{-2q_0C_0n} - D\rho^n\} \leqslant h_q \leqslant e^{2q_0C_0n} + D\rho^n, \quad n \ge 0, \quad |q| \leqslant q_0.$$
(10)

From now on we will assume that $p \notin [\tilde{\psi} - \delta_0, \tilde{\psi} + \delta_0]$ is fixed. Consider the function

$$\Gamma(q) = pq - \Pr(\phi + q\psi), \quad q \in \mathbb{R}$$

Then $I(p) = \sup_{q \in \mathbb{R}} \Gamma(q)$. Clearly, $\Gamma(0) = 0$ and moreover by (3),

$$\Gamma'(q) = p - \int \psi d\mu_{\phi+q\psi}.$$
(11)

In particular, $\Gamma'(0) = p - \tilde{\psi} \notin [-\delta_0, \delta_0].$

We will now estimate the integral in the right-hand side of (11). Let $\alpha > 0$ be the constant so that $\rho_1 = \max\{\rho, \theta\} = e^{-\alpha}$.

Lemma 2.3 Assume that $\psi \ge 0$ on Σ_A^+ and $0 < \delta_0 < B_{\psi} = \widetilde{\psi}$. Set

$$q_0 = \min\left\{\frac{\delta_0}{100C_0^2 n_0}, \frac{1}{b}\right\},$$
(12)

where n_0 is the integer with

$$n_0 - 1 \leqslant \frac{1}{\alpha} \left| \log \frac{\delta_0}{16C_0 D} \right| < n_0.$$
⁽¹³⁾

Then $\Gamma(q_0) \ge \delta_0 q_0/2$ and $\Gamma(-q_0) \ge \delta_0 q_0/2$.

Proof For any $q \in [0, q_0]$ and any integer $n \ge 0$, (7), (9) and (10) yield

$$\int \psi d\mu_q = \int \psi h_q \, d\nu_q = \frac{1}{\lambda_q^n} \int L_q^n(\psi h_q) \, d\nu_q$$
$$= \frac{1}{\lambda_q^n} \int_{\sigma^n y = x} e^{(\phi + q\psi)_n(y)} \psi(y) h_q(y) \, d\nu_q(x)$$
$$\leqslant e^{2q_0 C_{0n}} \left(e^{2qC_{0n}} + D\rho^n \right) \int L^n \psi \, d\nu_q.$$

It follows from (8) with q = 0 and $g = \psi$ and the choice of C_0 that

$$\left|L^{n}\psi - \int \psi d\mu\right| = \left|L^{n}\psi - \int \psi d\nu\right| \leqslant D\rho^{n}C_{0},$$
(14)

therefore $L^n\psi\leqslant\widetilde{\psi}+C_0D\rho^n$. Combining this with the above gives

$$\int \psi d\mu_q \leqslant e^{2q_0 C_0 n} \left(e^{2q_0 C_0 n} + D\rho^n \right) \left(\widetilde{\psi} + C_0 D\rho^n \right). \tag{15}$$

Deringer

Let $n_0 = n_0(f, \theta, \delta_0) \ge 1$ be the *integer* such that

$$e^{-n_0\alpha} < \frac{\delta_0}{16C_0D} \leqslant e^{-(n_0-1)\alpha}.$$
 (16)

Then $-n_0\alpha < \log \delta_0/(16C_0D) \leq -(n_0-1)\alpha$, so n_0 satisfies (13). With this choice of n_0 define q_0 by (12). Then for $q \in [0, q_0]$ we have $12qC_0^2n_0 \leq \delta_0/8$ and so $12qC_0n_0 \leq 1$. It now follows from (15) with $q \in [0, q_0]$ and $n = n_0, 0 < \delta_0 \leq B_{\psi} = \tilde{\psi} \leq C_0$, (16) and the fact that $e^x \leq 1 + 3x$ for $x \in [0, 1]$ that

$$\begin{split} \int \psi \, d\mu_q &\leqslant \left(e^{4q_0 C_0 n_0} + D e^{2q_0 C_0 n_0} e^{-\alpha n_0} \right) \left(\widetilde{\psi} + C_0 D e^{-\alpha n_0} \right) \\ &\leqslant \left(1 + 12q_0 C_0 n_0 + (1 + 6q_0 C_0 n_0) \frac{\delta_0}{16C_0} \right) \left(\widetilde{\psi} + \frac{\delta_0}{16} \right) \\ &\leqslant \widetilde{\psi} + 12q_0 C_0^2 n_0 + (1 + 6q_0 C_0 n_0) \frac{\delta_0}{16} + \left(2 + 2 \frac{\delta_0}{16C_0} \right) \frac{\delta_0}{16} \\ &\leqslant \widetilde{\psi} + \frac{\delta_0}{8} + \frac{\delta_0}{8} + \frac{3\delta_0}{16} < \widetilde{\psi} + \frac{\delta_0}{2} \,. \end{split}$$

Thus, in the case $p \ge \tilde{\psi} + \delta_0$, it follows from (11) that $\Gamma'(q) \ge \delta_0/2$ for all $q \in [0, q_0]$, and therefore $\Gamma(q_0) \ge \delta_0 q_0/2$.

Next, assume that $p \leq \tilde{\psi} - \delta_0$. We will now estimate $\int \psi d\mu_q$ from below for $q \in [-q_0, 0]$. As in the previous estimate, using (9) and (10), for such q we get

$$\begin{split} \int \psi \, d\mu_q &= \int \psi h_q \, d\nu_q = \frac{1}{\lambda_q^{n_0}} \int L_q^{n_0}(\psi h_q) \, d\nu_q \\ &= \frac{1}{\lambda_q^{n_0}} \int_{\sigma^{n_0} y = x} e^{(\phi + q\psi)_{n_0}(y)} \psi(y) h_q(y) \, d\nu_q(x) \\ &\geqslant e^{-2q_0 C_0 n_0} \left(e^{-2q_0 C_0 n_0} - D\rho^{n_0} \right) \int L^{n_0} \psi \, d\nu_q. \end{split}$$

Notice that by the choice of q_0 and n_0 we have $e^{-2q_0C_0n_0} - D\rho^{n_0} > 0$. In fact, it follows from $e^{-x} > 1 - x$ for x > 0 that $e^{-2q_0C_0n_0} > 1 - 2q_0C_0n_0$, while (16) implies $D\rho^{n_0} < \delta_0/(16C_0)$. Thus,

$$e^{-2q_0C_0n_0} - D\rho^{n_0} > 1 - 2q_0C_0n_0 - \frac{\delta_0}{16C_0} > 1 - \frac{\delta_0}{8C_0}$$

On the other hand, (14) yields $\int L^{n_0} \psi d\nu_q \ge \tilde{\psi} - DC_0 \rho^{n_0} > \tilde{\psi} - \delta_0/16$. Hence for $q \in [-q_0, 0]$ we get

Springer

$$\begin{split} \int \psi d\mu_q &\ge (1 - 2q_0 C_0 n_0) \left(1 - \frac{\delta_0}{8C_0}\right) \left(\widetilde{\psi} - \frac{\delta_0}{16}\right) \\ &\ge \left(1 - 2q_0 C_0 n_0 - \frac{\delta_0}{8C_0}\right) \left(\widetilde{\psi} - \frac{\delta_0}{16}\right) \\ &\ge \widetilde{\psi} - \widetilde{\psi} \left(2q_0 C_0 n_0 + \frac{\delta_0}{8C_0}\right) - \frac{\delta_0}{16} \ge \widetilde{\psi} - \frac{\delta_0}{50} - \frac{\delta_0}{8} - \frac{\delta_0}{16} > \widetilde{\psi} - \frac{\delta_0}{2}. \end{split}$$

Thus, for $q \in [-q_0, 0]$ we have

$$\Gamma'(q) = p - \int \psi d\mu_q \leqslant \tilde{\psi} - \delta_0 - (\tilde{\psi} - \delta_0/2) \leqslant -\frac{\delta_0}{2},$$

and therefore $\Gamma(-q_0) \ge \delta_0 q_0/2$.

Proof of Theorem 1.1 Assume again that $\psi \ge 0$. Let $p \ge \tilde{\psi} + \delta_0$. Then $I(p) = \sup_{q \in \mathbb{R}} \Gamma(q)$, so by Lemma 2.3, $I(p) \ge \Gamma(q_0) \ge \delta_0 q_0/2$. Similarly, for $p \le \tilde{\psi} - \delta_0$ we get $I(p) \ge \delta_0 q_0/2$.

As explained in Sect. 2.2, the case of an arbitrary real-valued $\psi \in \mathcal{F}_{\theta}(\Sigma_A^+)$ follows from the case $\psi \ge 0$.

Acknowledgments Thanks are due to the referees for their valuable comments and suggestions.

References

- Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)
- Kachurovskii, A.G., Podvigin, I.V.: Large deviations and rates of convergence in the Birkhoff ergodic theorem: from Hölder continuity to continuity. Dokl. Math. 93(1), 6–8 (2016)
- Kifer, Yu.: Large deviations in dynamical systems and stochastic processes. Trans. Amer. Math. Soc. 321(2), 505–524 (1990)
- Lalley, S.P.: Distribution of periodic orbits of symbolic and Axiom A flows. Adv. in Appl. Math. 8(2), 154–193 (1987)
- Leplaideur, R., Saussol, B.: Large deviations for return times in non-rectangle sets for Axiom A diffeomorphisms. Discrete Contin. Dyn. Syst. 22(1–2), 327–344 (2008)
- Orey, S., Pelikan, S.: Deviations of trajectory averages and the defect in Pesin's formula for Anosov diffeomorphisms. Trans. Amer. Math. Soc. 315(2), 741–753 (1989)
- Parry, W., Pollicott, M.: Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics. Astérisque, vol. 187–188. Société Mathmatique de France, Paris (1990)
- Petkov, V., Stoyanov, L.: Sharp large deviations for some hyperbolic systems. Ergodic Theory Dynam. Systems 35(1), 249–273 (2015)
- Pollicott, M., Sharp, R.: Large deviations, fluctuations and shrinking intervals. Comm. Math. Phys. 290(1), 321–334 (2009)
- Ruelle, D.: Thermodynamic Formalism. Encyclopedia of Mathematics and its Applications, vol. 5. Addison-Wesley, Reading (1978)
- 11. Stoyanov, L.: On the Ruelle-Perron-Frobenius theorem. Asymptot. Anal. 43(1-2), 131-150 (2005)
- 12. Young, L.-S.: Large deviations in dynamical systems. Trans. Amer. Math. Soc. 318(2), 525–543 (1990)

П