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Abstract In this paper, we apply some methods from ring theory to the framework
of prime ideals in tensor triangulated categories developed by Balmer. Given a thick
tensor idealA and a multiplicatively closed family S of objects in a tensor triangulated
category (C,⊗, 1), we say that a prime idealP realizes (A, S) ifP ⊇ A andP∩S = ∅.
Analogously to the results of Bergman with ordinary rings, we show how to construct
a realization of a family {(Ai , Si )}i∈I of such pairs indexed by a finite chain I , i.e.,
a collection {Pi }i∈I of prime ideals such that each Pi realizes (Ai , Si ) and Pi ⊆ Pj

for each i � j in I . Thereafter we obtain conditions on a family F of thick tensor
ideals of (C,⊗, 1) so that any ideal that is maximal with respect to not being contained
in F must be prime. This extends the Prime Ideal Principle of Lam and Reyes from
commutative algebra. We also combine these methods to consider realizations of
templates {(Ai ,Fi )}i∈I , where each Ai is a thick tensor ideal and each Fi is a family
of thick tensor ideals that is also a monoidal semifilter.

Keywords Tensor triangulated categories · Oka families

Mathematics Subject Classification 13A15 · 18E30

1 Introduction

Triangulated categories were introduced by Verdier [37] and have since assumed
an increasing significance in several fields of modern mathematics; from algebraic
geometry to motives and homotopy theory, modular representation theory and non-
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commutative geometry. Additionally, a triangulated category appearing in these areas
is often giftedwith a tensor structure,making it into a tensor triangulated category, i.e.,
a symmetric monoidal category (C,⊗, 1) such that C is triangulated and ⊗ is exact in
both variables. The classification of thick subcategories is a common theme that runs
through the work of Devinatz et al. [17] in homotopy theory, that of Thomason [36] in
algebraic geometry, the work of Benson et al. [11] in modular representation theory
and that of Friedlander and Pevtsova with finite group schemes [19]. Tensor triangular
geometry developed by Balmer (see [1–5,8]) unites these classifications in terms of
classification of thick tensor ideal subcategories in a tensor triangulated category (also
see further work by Balmer and Favi [9,10]).

Given a tensor triangulated category (C,⊗, 1), Balmer [1] associates to it a spectrum
Spec(C) consisting of prime ideals of C. A thick tensor ideal P (see Definition 2.1)
in (C,⊗, 1) is called prime if a⊗b ∈ P for any objects a, b ∈ C implies that at
least one of a, b lies in P. Then Spec(C) is equipped with a Zariski topology and
the support theory obtained by associating to each object a ∈ C the closed subset
Supp(a) = {P ∈ Spec(C) : a /∈ P} ⊆ Spec(C) unites various support theories
in algebraic geometry, modular representation theory and homotopy theory. Further,
support theory for a tensor triangulated category (C,⊗, 1) acting on a triangulated
category M has been developed by Stevenson [34]. Stevenson’s work in [34] may be
viewed as categorification of some of the work of Benson, Iyengar and Krause [12–
14] in the case of actions of the unbounded derived category D(R) for a commutative
noetherian ring R. Tensor triangular geometry has further emerged as an object of
study in its own right: for instance, Balmer [6] introduced Chow groups of rigid tensor
triangulated categories and properties of these Chow groups have been studied in
detail by Klein [23,24]. For further work in tensor triangular geometry, we refer the
reader, for example, to Dell’Ambrogio and Stevenson [16], Peter [28], Sanders [31],
Stevenson [35] and Xu [38].

The purpose of this paper is to bring some methods in ring theory to the framework
of tensor triangulated categories. Let R be an ordinary commutative ring, A be an
ideal in R and let S ⊆ R be a multiplicatively closed subset. Then, Bergman [15]
refers to a prime ideal P such that P ⊇ A and P ∩ S = ∅ as a realization of the pair
(A, S) and says that P ∈ Spec(A, S). More generally, if (I,�) is a partially ordered
set, Bergman [15] has studied conditions under which a template {(Ai , Si )}i∈I of such
pairs indexed by I admits a realization, i.e., a family {Pi }i∈I of prime ideals such
that Pi realizes (Ai , Si ) and Pi ⊆ Pj whenever i � j in I (see also further work by
Sharma [33]). In [1, Lemma 2.2], Balmer shows that if A is a thick tensor ideal in
(C,⊗, 1) and S is a multiplicatively closed family of objects of C such thatA∩S = ∅,
there exists a prime ideal P ⊇ A satisfying P ∩ S = ∅. Our first main aim in this
paper is to formulate conditions analogous to those of Bergman [15] for construction
of realizations of certain templates {(Ai , Si )}i∈I , where eachAi is a thick tensor ideal
in (C,⊗, 1) and each Si is a multiplicatively closed family of objects of C.

We start in Sect. 2 by defining a relation� among pairs such that (A, S)�(A′, S′) if
every prime idealP ′ realizing (A′, S′) contains a prime idealP realizing the pair (A, S).
Thereafter, given a template T = {(Ai , Si )}i∈I indexed by a finite decreasing chain
I , we show that its realizations can be described in terms of realizations of a template
D(T ) = {(Bi , Si )}i∈I satisfying (Bi , Si )�(Bj , S j ) for each i � j in I . Under certain
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finiteness conditions on the pairs in T , we construct a templateD(T ) = {(Bi ,Ti )}i∈I
such that for any fixed i0 ∈ I , we can start with a prime ideal P realizing the pair
(Bi0 ,Ti0) and obtain a realization {Pi }i∈I of T with Pi0 = P. Further, looking at the
subsets of the form Spec(A, S) ⊆ Spec(C) themselves, we show that these are exactly
the convex subsets of Spec(C), i.e., subsets X ⊆ Spec(C) satisfying the property that
if

⋃
P∈XP ⊆ Q ⊆ ⋃

P∈XP, then Q ∈ X. We also give necessary and sufficient
conditions for a family of finite chains of prime ideals to be a collection of realizations
of such template T = {(Ai , Si )}i∈I .

Since Spec(C) is a spectral space, following Hochster [21], we know that it is
equipped with an inverse topology where the open sets W ⊆ Spec(C) are given by
arbitrary unions W = ⋃

i∈I Yi with each Spec(C)\Yi open and quasi-compact in
Spec(C). Then, Spec(C) equipped with this inverse topology is denoted by Spec(C)∗.
Then, [4, Theorem 14] may be restated as follows: to every thick tensor ideal I in
(C,⊗, 1) there is associated the closed subspace

c(I) = {P ∈ Spec(C) : P ⊇ I} (1)

of Spec(C)∗. Then, [4, Theorem 14] shows that (1) gives a one-to-one order revers-
ing correspondence between the radical thick tensor ideals in (C,⊗, 1) and the closed
subspaces of Spec(C)∗.Wehave restated this theorem in termsof anorder reversing cor-
respondence with closed subspaces (rather than the order preserving correspondence
with open subspaces expressed in [4, Theorem 14]) in order to have a comforting
similarity with the standard Nullstellensatz. In fact, if X is a topologically noetherian
scheme, using the fact that there is a homeomorphism X 	 Spec(Dperf(X)) (see [1,
Corollary 5.6]), we see that the theorem gives us a correspondence between (radical)
thick tensor ideals in Spec(Dperf(X)) and closed subspaces of X in the inverse topol-
ogy. We can build on this idea in two ways: first, we can think about the constructible
topology on X , because the constructible topology on a spectral space always coincides
with the constructible topology on its inverse (see, for instance, [18, Corollary 4.8]).
Secondly, we can think about the closed irreducible subspaces of the scheme X in
inverse topology. More generally, for the tensor triangulated category C, we show that
subsets of the form Spec(A, S), which we have previously characterized as the con-
vex subsets of Spec(C), are pro-constructible subsets of Spec(C). Then, the subspaces
Spec(A, S) ⊆ Spec(C) themselves become spectral spaces in the induced topology.
Further, if C is assumed to be topologically noetherian (see [2, Definition 3.13]), i.e.,
Spec(C) is a noetherian space, then the constructible topology on Spec(C) has a basis
of subsets of the form Spec(A, S). Further, we show that any closed subspace of
Spec(C) in the constructible topology may be expressed as a union of subspaces of
the form Spec(A, S).

On the other hand, suppose that F∗ is a family of closed subspaces of Spec(C)∗
such that ∅ ∈ F∗ and F∗ is closed under finite unions. Then, it is clear that any
closed subspace K0 ⊆ Spec(C)∗ that is minimal with respect to not being in F∗ must
be irreducible. If C = Dperf(X) for a topologically noetherian scheme X , then such
K0 will correspond to a closed irreducible subspace of X in inverse topology. Now,
a collection F of thick tensor ideals of (C,⊗, 1) will be referred to as a monoidal
family if C ∈ F and I1⊗I2 ∈ F for every I1, I2 ∈ F (see Definition 3.1). Since
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c(I1)∪c(I2) = c(I1⊗I2) for thick tensor ideals I1, I2 in C, using the correspondence
above, we can translate this fact as follows: let F be a monoidal family of radical ideals
in C such that C ∈ F and let I0 be a radical ideal that is maximal with respect to being a
radical ideal not contained in F. Then, if J,K are radical ideals such that I0 ⊇ J⊗K,
we must have either I0 ⊇ J or I0 ⊇ K. However, this statement does not seem very
satisfactory and we would like to obtain better results on families of thick tensor ideals
in (C,⊗, 1). We therefore use some methods from commutative algebra, where there
are several results of the type “maximal implies prime”. For example, given an R-
module M , an ideal I ⊆ R that is maximal among annihilators of non-zero elements
of M must be prime. In [25], Lam and Reyes unified such results in the form of a
“Prime Ideal Principle”, i.e., criteria on a family F of ideals in R such that an ideal I
that is maximal with respect to not being in F must be prime (see also further work
by Lam and Reyes [26] and Reyes [29,30]). Then, the main purpose of Sect. 3 is to
construct an analogous Prime Ideal Principle for thick tensor ideals in (C,⊗, 1) (see
Theorem 3.5). For any thick tensor ideal I and any collection X of objects of C, we set

(I:X) = {a ∈ C : a⊗x ∈ I for each x ∈ X }.

Similarly to the terminology of Lam and Reyes [25], we say that a family F of thick
tensor ideals is an Oka family (resp. an Ako family) if given objects a, b ∈ C and a
thick tensor ideal I in (C,⊗, 1), then (I, a) ∈ F and (I:a) ∈ F implies I ∈ F (resp.
(I, a) ∈ F and (I, b) ∈ F implies (I, a⊗b) ∈ F). Thereafter, we show that any family
F of thick tensor ideals that is either Oka or Akomust satisfy the Prime Ideal Principle.
In particular, if S is a multiplicatively closed family of objects of C, we show that the
family

FS = {I : I is a thick tensor ideal and I ∩ S �= ∅}
is an Oka family (as well as an Ako family) and hence any thick tensor ideal maximal
with respect to being disjoint from S must be prime. In fact, FS is also a monoidal
semifilter (see Definition 3.1), i.e., the product of any two thick tensor ideals in FS
lies in FS and, given any I ∈ FS, any thick tensor ideal J ⊇ I also lies in FS. From
Theorem 3.5, a monoidal semifilter F is both an Oka family and an Ako family. We
also prove other results from [25] in the framework of thick tensor ideals in (C,⊗, 1),
such as any ideal that is maximal among thick tensor ideals satisfying I⊗n

� I⊗n+1

for each n � 0 must be prime. Using the notion from Stevenson [34] of a tensor
triangulated category (C,⊗, 1) having a module action on a triangulated categoryM,
we show that a thick tensor ideal that is maximal among annihilators of non-zero
objects ofM is also prime.

In Sect. 4, we combine the methods of Sects. 2 and 3. We consider pairs (A,F)

such that A is a thick tensor ideal and F is a monoidal semifilter. Further, we assume
that any non-empty increasing chain of ideals in the complement Fc of F has an upper
bound in Fc (see Definition 4.1), whence it follows that if A /∈ F, there always exists
a prime ideal P ⊇ A such that P /∈ F. We refer to such prime ideal P as a real-
ization of (A,F). Accordingly, we can define realizations of templates {(Ai ,Fi )}i∈I
indexed by a partially ordered set I . As in Sect. 2, we define a relation � among
pairs such that (A,F)�(A′,F′) if every prime ideal P ′ realizing (A′,F′) contains a
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prime ideal P realizing (A,F). We show how to construct realizations of a template
T = {(Ai ,Fi )}i∈I indexed by afinite decreasing chain I by replacing itwith a template
D(T ) = {(Bi ,Fi )}i∈I that satisfies (Bi ,Fi ) � (Bj ,F j ) for each i � j in I . Again,
under certain finiteness conditions, we construct a template D(T ) = {(Bi ,Gi )}i∈I
such that for any chosen i0 ∈ I , we can start with a prime ideal P realizing (Bi0 ,Gi0)

and obtain a realization {Pi }i∈I of T such that Pi0 = P. Towards the end of Sect. 4,
we also construct realizations for templates indexed by finite descending trees.

Finally, in Sect. 5, we assume that all thick tensor ideals in (C,⊗, 1) are radical, i.e.,
r(I) = I for all thick tensor ideals in (C,⊗, 1). In fact, this property is quite common
in examples of tensor triangulated categories (see [1, Remark 4.3]). For us, the key
consequence of this assumption is that it implies I⊗J = I∩J for all thick tensor ideals
I and J. We then show that all thick tensor ideals being radical, every monoidal family
F of thick tensor ideals satisfies the Prime Ideal Principle, i.e., any ideal that ismaximal
with respect to not being in F must be prime. Accordingly, we show that any ideal in
(C,⊗, 1) that is maximal with respect to not being principal is prime. An analogous
result holds for ideals that are maximal with respect to not being generated by a set
of cardinality � α for some infinite cardinal α. Thereafter, we formulate conditions
for the construction of realizations of certain templates {(Ai ,Fi )}i∈I indexed by an
infinite decreasing chain I . We conclude by showing how we can construct families
F∗ of closed subspaces of Spec(C)∗ that are not closed under finite unions such that
any closed subspace that is minimal with respect to not being in F∗ is irreducible. This
is done with the help of Ako families of thick tensor ideals in (C,⊗, 1).

We mention here that in [8], Balmer has proved a Going-Up Theorem in tensor
triangular geometry with profound connections to Quillen stratification in modular
representation theory. When C is idempotent-complete, Balmer’s result (see [8, Sec-
tion 1.5]) gives going-up and incomparability results for prime ideals in the spectra
of categories of modules over tt-rings in (C,⊗, 1). The tt-rings are commutative ring
objects in (C,⊗, 1) that are also separable in a suitable sense (see [8, Section 2] for
details). As such, it is hoped that the methods in this paper can be developed in the
future to study prime ideals in the spectra of categories of modules over tt-rings, thus
using tensor triangular geometry to obtain further connections between classical com-
mutative algebra and modular representation theory. For more on tt-rings in (C,⊗, 1),
we also refer the reader to Balmer [7].

In this paper, we will always assume that our categories are essentially small.
Further, by abuse of notation, for any categoryD, we will always write x ∈ D to mean
that x is an object of D.

2 Prime ideals in (C,⊗, 1) and realizations of pairs

Throughout this section and the rest of this paper, (C,⊗, 1) will be a symmetric
monoidal category with C also having the structure of a triangulated category (see
[37]). Further, we will always assume that the symmetric monoidal tensor product
⊗: C×C → C is exact in each variable and the category C contains all finite direct
sums. We will say that (C,⊗, 1) is a tensor triangulated category. Further, a tensor
triangulated functor F : (C,⊗, 1) → (D,⊗, 1) between tensor triangulated categories
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C and D will be an exact functor F : C → D that preserves the symmetric monoidal
product and carries the unit object in C to the unit object in D. Unless otherwise
mentioned,we do not require our tensor triangulated categories to satisfy the additional
axioms due to May [27].

Given an object a in the triangulated category C, we will denote the translation of
a in C by Ta. We now recall from Balmer [1] the notion of a prime ideal in the tensor
triangulated category (C,⊗, 1).

Definition 2.1 Let (C,⊗, 1) be a tensor triangulated category as given above and let
A be a full subcategory of C containing 0. Then, A will be called a thick tensor ideal
if it satisfies the following conditions:

• The subcategory A is triangulated, i.e. if a → b → c → Ta is a distinguished
triangle in C and any two of a, b and c lie in A, so does the third.

• The subcategory A is thick, i.e., if a ∈ A splits in C as a direct sum a ∼= b⊕c,
both direct summands b and c lie in A.

• The subcategory A is a tensor ideal, i.e., if a ∈ A and b ∈ C, then we must have
a⊗b ∈ A.

We will use the expression A�C to mean that A is a thick tensor ideal of (C,⊗, 1).
Given thick tensor ideals A, B�C, we will denote by A+B the smallest thick tensor
ideal containing both A and B.

Finally, if P is a proper thick tensor ideal in (C,⊗, 1), P is said to be prime if

a⊗b ∈ P �⇒ a ∈ P or b ∈ P.

A family S of objects of Cwill be said to bemultiplicatively closed if 1 ∈ S and for any
a, b ∈ S, we have a⊗b ∈ S. We will work with pairs (A, S), whereA is a thick tensor
ideal and S is a multiplicatively closed family of objects of C. From [1, Lemma 2.2],
we know that if (A, S) is such pair with A∩ S = ∅, there always exists a prime ideal
P such that A ⊆ P and P ∩ S = ∅. We start with a prime avoidance result for the
category (C,⊗, 1).

Proposition 2.2 Let A be a thick tensor ideal of (C,⊗, 1) that is contained in the
union

⋃n
i=1Pi of finitely many prime ideals Pi . Then, there exists some 1 � i � n

such that A ⊆ Pi .

Proof We proceed by induction on n. The result is obvious for n = 1.We suppose that
the result holds for all integers up to n − 1 and consider someA ⊆ ⋃n

i=1Pi . Suppose
that we can choose some object a j ∈ A for each 1 � j � n such that a j ∈ Pj and
a j /∈ ⋃n

i=1,i �= j Pi . We consider the object a = (a1⊗a2⊗ · · · ⊗an−1)⊕an ∈ A (since
A is triangulated, it is easy to check that it contains direct sums).

Now suppose that a ∈ Pn . Then, since Pn is thick, we must have a1⊗a2⊗ · · ·
⊗an−1 ∈ Pn . However, this is impossible, since Pn is prime and we have chosen
ai /∈ Pn for all 1 � i � n − 1. On the other hand, if a ∈ Pi for some 1 � i � n − 1,
it follows that an ∈ Pi which is also a contradiction. This contradicts the fact that
A ⊆ ⋃n

i=1Pi . Hence, it follows that the thick tensor ideal A is already contained in
the union of some proper subcollection of {Pi }1�i�n . Using the induction assumption,
the result follows. ��
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Analogously to the terminology of Bergman [15, Definition 7], we now introduce the
following definition.

Definition 2.3 Let (C,⊗, 1) be a tensor triangulated category as given above. Let
(A, S) be a pair such that A is a thick tensor ideal and S is a multiplicatively closed
family of objects of C. Then, a prime ideal P in C is said to be a realization of the
pair (A, S) if A ⊆ P and P ∩ S = ∅. The collection of all realizations of such a pair
(A, S) will be denoted by Spec(A, S). Further, we letM(A, S) be the multiplicatively
closed family given by the complement of

⋃
Q∈Spec(A,S) Q.

More generally, let (I,�) be a partially ordered set. By a template T indexed by
I , we will mean a family T = {(Ai , Si )}i∈I of pairs indexed by I . Then, we will say
that a collection {Pi }i∈I of prime ideals in C is a realization of the template T if each
Pi realizes the pair (Ai , Si ) and Pi ⊆ Pj for every i � j in I .

Given a thick tensor ideal A and a multiplicatively closed family S, we define A÷S

to be the full subcategory of C consisting of the following objects:

Ob(A÷S) = {x ∈ C : there exists s ∈ S such that x⊗s ∈ A}. (2)

Lemma 2.4 Let A be a thick tensor ideal and S be a multiplicatively closed family.
Then, the full subcategory A÷S as defined in (2) determines a thick tensor ideal in
(C,⊗, 1) containing A.

Proof From the definition in (2), it is clear that the full subcategory A÷S contains A
and that given any a ∈ A÷S and a′ ∈ C, we must have a′⊗a ∈ A÷S. In order to
check thatA÷S is thick, consider some a ∈ A÷S such that a decomposes as a direct
sum a ∼= b⊕c. We know that there exists s ∈ S such that a⊗s ∈ A. It follows that

a⊗s ∼= (b⊗s)⊕(c⊗s) ∈ A.

Since A is thick, it now follows that b⊗s, c⊗s ∈ A, whence we have b, c ∈ A÷S.
Finally, we consider a distinguished triangle

a → b → c → Ta,

where two out of a, b, c lie in A÷S. For the sake of definiteness, suppose that a, b ∈
A÷S and choose s, t ∈ S such that a⊗s, b⊗ t ∈ A. Since S is multiplicatively closed
and ⊗ : C×C → C is exact in both variables, we have a new distinguished triangle

a⊗s⊗ t → b⊗s⊗ t → c⊗s⊗ t → Ta⊗s⊗ t

in C. Since a⊗s⊗ t, b⊗s⊗ t ∈ A, we see that c⊗s⊗ t ∈ A and we have c ∈ A÷S.
This proves the result. ��
We note here that, by Definition 2.1, every thick tensor ideal is a full subcategory of
C. Hence,A÷{1} = A. Further, given any thick tensor idealA and a multiplicatively
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closed family of objects S, it is clear that A⊕S = {a⊕s : a ∈ A, s ∈ S} is also a
multiplicatively closed family of objects. Given multiplicatively closed families S, S′,
we can also form the multiplicatively closed family SS′ = {s⊗s′ : s ∈ S, s′ ∈ S′}. In
order to understand realizations of chains, we will need the following result.

Proposition 2.5 Let (A, S) be a pair such that A is a thick tensor ideal and S is a
multiplicatively closed family of objects of C. Then, we have:

(a) A prime ideal P contains A÷S if and only if it contains a prime ideal realizing
(A, S).

(b) If a prime ideal P is contained in a prime ideal that realizes (A, S), then P must
be disjoint from A⊕S.

(c) Suppose that Spec(A, S) is finite. Then, a prime ideal P is contained in a prime
ideal realizing (A, S) if and only if P is disjoint fromM(A, S).

Proof (a) From the definition of A÷S it is clear that any prime ideal Q realizing
(A, S) also contains A÷S. Hence, so does any prime ideal containing Q. Conversely,
if P is a prime ideal containing A÷S, it follows that (C − P) ∩ (A÷S) = ∅ whence
it follows that S(C − P) ∩ A = ∅. Accordingly, we can choose a prime ideal Q such
that Q∩ S(C−P) = ∅ and A ⊆ Q. Since Q∩ S ⊆ Q∩ S(C−P) = ∅, we know that
Q realizes (A, S). Finally, since Q ∩ (C − P) ⊆ Q ∩ S(C − P) = ∅, it follows that
Q ⊆ P.

(b) Suppose that Q realizes (A, S) and let a ∈ A, s ∈ S be such that a⊕s ∈ Q. Since
Q is thick, this implies that s ∈ Q which is a contradiction. Hence, Q ∩ (A⊕S) = ∅

and hence any prime ideal contained in Q is also disjoint from A⊕S.

(c) Suppose that P ⊆ Q for some Q ∈ Spec(A, S). Then, P ⊆ ⋃
Q∈Spec(A,S) Q and

henceP∩M(A, S) = ∅. Conversely, ifP∩M(A, S) = ∅, thenP ⊆ ⋃
Q∈Spec(A,S) Q.

However, since Spec(A, S) is finite, it follows from the prime avoidance result in
Proposition 2.2 that P ⊆ Q for some Q ∈ Spec(A, S). ��
Definition 2.6 Let (A, S) and (A′, S′) be two pairs as in Definition 2.3. Then, we will
say that (A, S) � (A′, S′) if every prime ideal P ′ realizing the pair (A′, S′) contains a
prime ideal P realizing (A, S).

We now recall from [1, Section 4] that, given any thick tensor ideal I, we can define
its radical r(I) as follows:

r(I) = {a ∈ C : there exists n � 1 such that a⊗n ∈ I}.

Then, from [1, Lemma 4.2], we know that r(I) is also a thick tensor ideal and indeed
r(I) is given by the intersection

⋂
I⊆P∈Spec(C) P of all prime ideals containing I.

Proposition 2.7 Let (A, S) and (A′, S′) be two pairs. Then, the following are equiv-
alent:

(a) The pairs are related as (A, S) � (A′, S′), i.e., any prime ideal realizing (A′, S′)
contains a prime ideal realizing (A, S).

(b) The radical of A÷S is contained in the radical of A′÷S′, i.e., r(A÷S) ⊆
r(A′÷S′).
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Proof (b)⇒ (a). Suppose that r(A÷S) ⊆ r(A′÷S′) and let P ′ be a prime ideal
realizing (A′, S′). Then, A′÷S′ ⊆ P ′ and P ′ being prime, we get r(A′÷S′) ⊆ P ′.
Then, we have

A÷S ⊆ r(A÷S) ⊆ r(A′÷S′) ⊆ P ′

and it follows from Proposition 2.5 that P ′ contains a prime ideal realizing the pair
(A, S).

(a)⇒ (b). Consider any prime ideal P ′ such that A′÷S′ ⊆ P ′. Then, from Proposi-
tion 2.5, we know that P ′ contains a prime ideal P ′′ realizing (A′, S′). By assumption,
there exists a prime ideal P ⊆ P ′′ such that P realizes (A, S). Hence, A÷S ⊆ P ⊆
P ′′ ⊆ P ′ and therefore r(A÷S) ⊆ P ′ for any prime ideal P ′ containing A′÷S′. It
now follows that r(A÷S) ⊆ r(A′÷S′) = ⋂

A′÷S′⊆P′∈Spec(C) P
′. ��

Remark 2.8 We note that � is not a partial order relation. In particular, if (A, S)�
(A′, S′) and (A′, S′)�(A, S), we do get r(A÷S) = r(A′÷S′) but not necessarily that
(A, S) = (A′, S′). However, it is clear that � is reflexive and transitive.

We now start by considering realizations of templates T = {(Ai , Si )}1�i�n indexed
by a finite chain of length n � 1. In particular, if the pairs in the finite chain template
also satisfy

(An, Sn)� · · · �(A2, S2)�(A1, S1) (3)

it is clear how to find a realization of such template: we choose any prime ideal
P1 realizing (A1, S1). Then, since (A2, S2)�(A1, S1), we can choose a prime ideal
P2 ⊆ P1 such that P2 realizes (A2, S2) and so on. We will now show that given any
finite chain template, its realizations can be described in terms of realizations of a
chain template satisfying the condition in (3). Given a partially ordered set (I,�), we
will denote by I op the partially ordered set obtained by reversing all order relations in
I .

Proposition 2.9 Let n � 1 and let T = {(Ai , Si )}i∈I op be a finite chain template
indexed by the opposite I op of the ordered set I = {1 < 2 < · · · < n}. We define
{Bi }1�i�n inductively by letting Bn = An and setting

Bi = Ai + (Bi+1÷Si+1) for all n > i � 1. (4)

Then, we have:

(a) A chain Pn ⊆ · · · ⊆ P2 ⊆ P1 is a realization of the template T = {(Ai , Si )}i∈I op
if and only if it is also a realization of the template D(T ) = {(Bi , Si )}i∈I op .

(b) The template T = {(Ai , Si )}i∈I op has a realization if and only if B1 ∩ S1 = ∅,
i.e.

(A1 + ((A2 + ((· · · (An−1 + (An÷Sn))÷Sn−1)) · · · ÷S3)÷S2)) ∩ S1 = ∅.

Proof (a) Let Pn ⊆ · · · ⊆ P2 ⊆ P1 be a realization of the template T . We know
that Bn = An and hence Pn realizes (Bn, Sn). Now suppose that Pi realizes (Bi , Si )

for each n � i > j for some given j . Then, since Pj ⊇ Pj+1 and Pj+1 realizes
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(Bj+1, S j+1), it follows from Proposition 2.5 thatPj⊇Bj+1÷S j+1. SincePj realizes
(A j , S j ), we already know that Pj⊇A j and Pj ∩ S j = ∅. From (4), it follows that
Pj⊇A j + (Bj+1÷S j+1) = Bj and Pj ∩ S j = ∅, i.e., Pj realizes the pair (Bj , S j ).
This proves the result by induction.

Conversely, let Pn ⊆ · · · ⊆ P2 ⊆ P1 be a realization of the template D(T ). Then,
for each 1 � i � n, we know that Pi realizes the pair (Bi , Si ). From (4), it is clear
that Ai ⊆ Bi and hence Pi realizes the pair (Ai , Si ).

(b) From part (a), it is clear that the template T can be realized if and only if the
template D(T ) can be realized. In particular, this means that if T has a realization,
the pair (B1, S1) can be realized and we must have B1 ∩ S1 = ∅. Conversely, if
B1 ∩ S1 = ∅, we can choose a prime ideal P1 realizing (B1, S1). From (4), it follows
that

Bi÷Si = (Ai + (Bi+1÷Si+1))÷Si ⊇ Ai + (Bi+1÷Si+1) ⊇ Bi+1÷Si+1. (5)

From (5) it is clear that r(Bi+1÷Si+1) ⊆ r(Bi÷Si ) and hence it follows from Propo-
sition 2.7 that

(Bn, Sn)� · · · �(B2, S2)�(B1, S1).

Thus, we can form a realization Pn ⊆ · · · ⊆ P2 ⊆ P1 of the template D(T ) (and
hence of T ) starting from P1. ��
From now onwards, we will say that two templates indexed by the same partially
ordered set are equivalent if they have the same realizations. In Proposition 2.9, we
have shown that the finite chain template T = {(Ai , Si )}i∈I op indexed by the opposite
I op of I = {1 < 2 < · · · < n} is equivalent to the modified chain template D(T ) =
{(Bi , Si )}i∈I op . Further, since the modified chain template D(T ) satisfies

(Bn, Sn)� · · · �(B2, S2)�(B1, S1),

we can start with an arbitrary realization P1 of (B1, S1) and pick a prime ideal P2 ⊆
P1 realizing (B2, S2) and so on to obtain a realization Pn ⊆ · · · ⊆ P2 ⊆ P1 of
D(T ). However, if we started with an arbitrary realization say P ′

2 of (B2, S2), it
is not necessary that we can find some prime P ′

1⊇P ′
2 realizing (B1, S1), i.e., the

process of realizing a finite chain in Proposition 2.9 can proceed in one direction
only. We will now show that under certain finiteness conditions, we can construct a
templateD(T ) = {(Bi ,Ti )}i∈I op equivalent to T such that starting from any arbitrary
realizationQ j of some (Bj ,Tj ), we can proceed in both directions to form a realization
Qn ⊆ · · · ⊆ Q j+1 ⊆ Q j⊆Q j−1 ⊆ · · · ⊆ Q1 of D(T ). Since D(T ) is equivalent to
the template T , this also becomes a realization of T .

Proposition 2.10 Let n � 1 and let T = {(Ai , Si )}i∈I op be a finite chain template
indexed by the opposite of the ordered set I = {1 < 2 < · · · < n}. Suppose that
for each 1 � i � n, Spec(Ai , Si ) is a finite set. We define {Bi }1�i�n inductively by
letting Bn = An and setting

Bi = Ai + (Bi+1÷Si+1) for all n > i � 1. (6)
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On the other hand, we define {Ti }1�i�n inductively by letting T1 = S1 and setting
Ti+1 to be the product of the multiplicatively closed families

Ti+1 = M(Ai ,Ti )Si+1 for all 1 � i � n − 1. (7)

Then, we have:

(a) A chain Qn ⊆ · · · ⊆ Q2 ⊆ Q1 of prime ideals is a realization of the template
T = {(Ai , Si )}i∈I op if and only if it is also a realization of the template D(T ) =
{(Bi ,Ti )}i∈I op , i.e., the templates T and D(T ) are equivalent.

(b) Fix any integer j ∈ {1, 2, . . . , n}. Then, the template T = {(Ai , Si )}i∈I op has a
realization if and only if Bj ∩ Tj = ∅.

Proof (a) Let Qn ⊆ · · · ⊆ Q2 ⊆ Q1 be a realization of the template T . From the proof
of Proposition 2.9 (a),weknow that eachBi ⊆ Qi . Bydefinition,weknow thatT1 = S1
and hence Q1 ∩ T1 = ∅. We now suppose that Qi ∩ Ti = ∅ for each 1 � i � j for
some given j . We know thatQ j+1 realizes (A j+1, S j+1) and henceQ j+1∩S j+1 = ∅.
Further, since Q j+1 ⊆ Q j and Q j ∩ Tj = ∅ (i.e., Q j ∈ Spec(A j ,Tj )), we have

Q j+1 ∩ M(A j ,Tj ) ⊆ Q j ∩ M(A j ,Tj ) = ∅.

Since Q j+1 is a prime ideal, Q j+1 ∩ Tj+1 = Q j+1 ∩ M(A j ,Tj )S j+1 = ∅. Hence,
each Qi realizes the pair (Bj ,Tj ).

Conversely, let Qn ⊆ · · · ⊆ Q2 ⊆ Q1 be a realization of the template D(T ). Then,
for each 1 � i � n, we know that Qi realizes the pair (Bi ,Ti ). From (6) and (7), it is
clear that each Ai ⊆ Bi and Si ⊆ Ti . Hence, each Qi realizes the pair (Ai , Si ).

(b) We fix some j ∈ {1, 2, . . . , n}. From part (a), it is clear that the template T can be
realized if and only if the templateD(T ) can be realized. In particular, this means that
if T has a realization, the pair (Bj ,Tj ) can be realized and wemust haveBj ∩Tj = ∅.
Conversely, if Bj ∩ Tj = ∅, we choose some Q j realizing (Bj ,Tj ). Then, we have

Q j ⊇ Bj = A j + (Bj+1÷S j+1) ⊇ Bj+1÷S j+1

and it follows from Proposition 2.5 (a) that there exists a prime ideal Q j+1 ⊆ Q j

realizing (Bj+1, S j+1). Further, sinceQ j+1 ⊆ Q j andQ j realizes (A j ,Tj ), we see that
Q j+1 ∩M(A j ,Tj ) = ∅. Accordingly, Q j+1 ∩Tj+1 = Q j+1 ∩M(A j ,Tj )S j+1 = ∅,
i.e., Q j+1 realizes (Bj+1,Tj+1). On the other hand, from (7), we have

Tj = M(A j−1,Tj−1)S j . (8)

Since S j−1 ⊆ Tj−1, we see that Spec(A j−1,Tj−1) ⊆ Spec(A j−1, S j−1) is finite.
From (8), we see thatQ j ∩M(A j−1,Tj−1) = ∅ and it follows fromProposition 2.5 (c)
that we can choose a prime ideal Q j−1 ⊇ Q j realizing (A j−1,Tj−1). Further, since
Q j realizes (Bj , S j ) (as Q j realizes (Bj ,Tj ) and S j ⊆ Tj ) and Q j−1 contains Q j , it
follows from Proposition 2.5 (a) that Q j−1 contains Bj ÷S j . Consequently, we have

Q j−1 ⊇ A j−1 + (Bj ÷S j ) = B j−1.
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Hence, Q j−1 realizes (B j−1,Tj−1). Accordingly, starting from Q j we can proceed in
both directions to give a realization Qn ⊆ · · · ⊆ Q2 ⊆ Q1 of D(T ). From part (a), it
follows that this is also a realization of the template T . ��
The next result will explain what kinds of collections of prime ideals may arise as
Spec(A, S) for some pair (A, S).

Proposition 2.11 Let (C,⊗, 1) be a tensor triangulated category and let X be a
collection of prime ideals of (C,⊗, 1). Then, the following are equivalent:

(a) The family X = Spec(A, S) for some thick tensor ideal A and some multiplica-
tively closed family of objects S.

(b) The family X satisfies the following property: given a prime ideal Q such that

⋂

P∈X
P ⊆ Q ⊆

⋃

P∈X
P (9)

then Q ∈ X.

Proof (a)⇒ (b). Since each P ∈ X realizes the pair (A, S), we have A ⊆ ⋂
P∈XP

and S ∩ ⋃
P∈XP = ∅. Hence, if a prime ideal Q satisfies the condition in (9), then Q

realizes (A, S), i.e., Q ∈ X = Spec(A, S).

(b)⇒ (a). Given a collection X of prime ideals satisfying the condition in (b), we set

A =
⋂

P∈X
P, S =

( ⋃

P∈X
P

)c
.

Then, a prime ideal Q realizes (A, S) if and only if it satisfies (9). Hence, X may be
expressed as Spec(A, S). ��
A collectionX of prime ideals of (C,⊗, 1) satisfying condition (b) in Proposition 2.11
will be referred to as a convex set. Under the finiteness conditions from Proposi-
tion 2.10, we will now characterize the families of chains of prime ideals that realize
a given finite chain template T = {(Ai , Si )}i∈I op .
Proposition 2.12 Let (C,⊗, 1) be a tensor triangulated category and fix some n � 1.
We consider decreasing chains of length n consisting of prime ideals of C

Pn ⊆ Pn−1 ⊆ · · · ⊆ P2 ⊆ P1.

LetX be a collection of such chains of prime ideals and for any 1 � j � n, we denote
by X j the collection of prime ideals arising as the j-th element of a chain in X. Then,
the following are equivalent:

(a) X is a collection of realizations of a finite chain template T = {(Ai , Si )}i∈I op
indexed by the opposite I op of the ordered set I = {1 < 2 < · · · < n} such that
each Spec(Ai , Si ) is a finite set.
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(b) For each 1 � j � n, X j is a finite convex set of prime ideals of (C,⊗, 1).
Further, X consists of all chains of prime ideals whose i-th element is in Xi for
each 1 � i � n. In other words, we have

X = {
Pn ⊆ Pn−1 ⊆ · · · ⊆ P2 ⊆ P1 : Pi ∈ Xi for each 1 � i � n

}
. (10)

Proof (a)⇒ (b). Let X be a collection of realizations of T = {(Ai , Si )}i∈I op . Since
each Spec(Ai , Si ) is finite, we can construct the equivalent modified templateD(T ) =
{(Bi ,Ti )}i∈I op as defined in Proposition 2.10. Fix some j and choose some prime ideal
P ∈ X j . Then, there exists a realization Pn ⊆ · · · ⊆ P2 ⊆ P1 of T such that Pj = P.
Since T is equivalent to the templateD(T ), we see that P = Pj realizes (Bj ,Tj ) and
hence X j ⊆ Spec(Bj ,Tj ). Conversely, given any prime P ∈ Spec(Bj ,Tj ), we can
construct as in the proof of Proposition 2.10 a realization Pn ⊆ · · · ⊆ P2 ⊆ P1 of
T such that Pj = P. Hence, X j = Spec(Bj ,Tj ) and each X j is a finite convex set.
Finally, any chain Pn ⊆ · · · ⊆ P2 ⊆ P1 such that each Pi ∈ Xi = Spec(Bi ,Ti ) is
a realization of D(T ) = {(Bi ,Ti )}i∈I op and hence of T . Therefore, the collection of
realizations X of T must be given by

X = {
Pn ⊆ Pn−1 ⊆ · · · ⊆ P2 ⊆ P1 : Pi ∈ Xi for each 1 � i � n

}
.

(b)⇒ (a). We define a template T = {(Ai , Si )}i∈I op as follows:

Ai =
⋂

P∈Xi

P, Si =
( ⋃

P∈Xi

P

)c
.

From the proof of Proposition 2.11, we know that Xi = Spec(Ai , Si ). Hence, any
chain Pn ⊆ · · · ⊆ P2 ⊆ P1 of prime ideals drawn from the set

X = {
Pn ⊆ Pn−1 ⊆ · · · ⊆ P2 ⊆ P1 : Pi ∈ Xi for each 1 � i � n

}

must be a realization of the template T = {(Ai , Si )}i∈I op . Conversely, given any
realization Pn ⊆ · · · ⊆ P2 ⊆ P1 of T , we know that each Pi ∈ Spec(Ai , Si ) = Xi

and hence condition (10) ensures that this chain lies in X. Finally, since each Xi is
finite, so is each Spec(Ai , Si ) = Xi . ��
We have described in Proposition 2.11 that the subsets Spec(A, S) are exactly the
convex subsets of Spec(C). Following Balmer [1, Section 2], the space Spec(C) is
endowed with a Zariski topology with the closed subsets being given by

Z(X) = {P ∈ Spec(C) : P ∩ X = ∅}

for each family X ⊆ C of objects of C. Then, open sets of Spec(C) are of the form
U (X) = {P ∈ Spec(C) : P ∩ X �= ∅} for X ⊆ C. Further, we know from [4,
Proposition 11] that the spectrum Spec(C) becomes a spectral space in the sense of
Hochster [21]. We will now show that the subsets Spec(A, S) (which are the convex
subsets of Spec(C)) are related to constructible subsets of the spectral space Spec(C).
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Since Spec(C) is a spectral space, every constructible subset Y ⊆ Spec(C) is of the
form

Y =
r⋃

i=1

(Ui ∩ Zi )

(see, for instance, [32, Section 2]) with each Ui and each Spec(C)\Zi quasi-compact
and open in Spec(C). From [1, Proposition 2.14], we know that each quasi-compact
open subset of Spec(C) is of the form U (a) = {P ∈ Spec(C) : a ∈ P} for some
a ∈ C. Further, we note that a thick tensor idealA contains a finite set {a1, . . . , ak} of
objects of C if and only if it contains the direct sum a1⊕ · · · ⊕ak , i.e., every finitely
generated thick tensor ideal is principal.

Wewill say that amultiplicatively closed family S is finitely generated if there exists
a finite set {s1, s2, . . . , sk} of objects of C such that S is the smallest multiplicatively
closed family containing all objects in {s1, s2, . . . , sk}.
Proposition 2.13 (a) Given a finitely generated (hence principal) thick tensor ideal

A and a finitely generated multiplicatively closed family S, Spec(A, S) is a con-
structible subset of Spec(C).

(b) Every convex subset of Spec(C) is pro-constructible, i.e., it may be expressed as
an intersection of a family of constructible subsets of Spec(C).

(c) For any thick tensor ideal A and any multiplicatively closed family S, the subset
Spec(A, S) ⊆ Spec(C) is a spectral space, i.e., Spec(A, S) is quasi-compact,
quasi-separated, has a basis of quasi-compact open subsets and every non-empty
irreducible closed subset has a unique generic point.

Proof (a) Since S is finitely generated, we can choose a finite set of objects {s1, s2,
. . . , sk} such that S is the smallest multiplicatively closed family containing all objects
in {s1, s2, . . . , sk}. Then, it is clear that for any object s ∈ S, we can choose non-
negative integers e1, e2, . . . , ek such that s = ⊗k

i=1 s
⊗ei
i . We now set s0 = ⊗k

i=1 si
and see that Z(S) = Z(s0). Then, U (s0) = Spec(C)\Z(s0) is quasi-compact and
open in Spec(C). Further, if A is generated by the object a ∈ C, it is clear that we
may express Spec(A, S) = U (a) ∩ Z(S) = U (a) ∩ Z(s0). Hence, Spec(A, S) is
constructible.

(b) From Proposition 2.11, we know that each convex subset of Spec(C) is of the form
Spec(A, S) for some thick tensor ideal A and some multiplicatively closed family S.
We now express Spec(A, S) = ⋂

a∈A, s∈SU (a) ∩ Z(s). Since each U (a) ∩ Z(s) is
constructible, it follows that the intersection Spec(A, S) is pro-constructible.

(c) follows from the fact that a pro-constructible subspace of a spectral space is always
spectral in the induced subspace topology (see, for instance, [32, Section 2]). ��
For the final result of this section, we will restrict ourselves to tensor triangulated
categories that are topologically noetherian (see [2, Definition 3.13]), i.e., Spec(C) is
a noetherian topological space. This happens, for instance, when X is a topologically
noetherian scheme and C = Dperf(X), i.e., the derived category of perfect complexes
over X (see [1, Corollary 5.6]).We denote by Spec(C)cons the space Spec(C) equipped
with the constructible topology. From Proposition 2.13 we know that for any thick ten-
sor idealA and any multiplicatively closed family S, Spec(A, S) is pro-constructible.
Equivalently, since Spec(C) is a spectral space, Spec(A, S) is closed in Spec(C)cons.
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Corollary 2.14 Let (C,⊗, 1) be a tensor triangulated category that is topologically
noetherian, i.e., Spec(C) is a noetherian space.

(a) Given a finitely generated (hence principal) thick tensor idealA and amultiplica-
tively closed family S, Spec(A, S) is a constructible subset of Spec(C). Further,
such subsets form a basis for the constructible topology on Spec(C).

(b) Any closed subset of Spec(C)cons may be expressed as a union
⋃

i∈I Spec(Ai , Si )

with each Ai a thick tensor ideal and each Si a multiplicatively closed family.

Proof (a) Since Spec(C) is noetherian, the open subset Spec(C)\Z(S) is quasi-
compact. If we choose an object a ∈ A generating A, we can express Spec(A, S) =
U (a) ∩ Z(S). Hence, Spec(A, S) is constructible. Further, let X and Y be families
of objects and consider the constructible subset U (X) ∩ Z(Y). From the definition of
U (X), it is clear that U (X) = ⋃

x∈XU (x) and hence we have

U (X) ∩ Z(Y) =
(⋃

x∈X
U (x)

)

∩ Z(Y) =
⋃

x∈X
U (x) ∩ Z(Y) =

⋃

x∈X
Spec((x), M(Y)),

where (x) is the ideal generated by x and M(Y) is the smallest multiplicatively closed
family containing Y. Further, every open in Spec(C) being quasi-compact, the open
sets in the constructible topology on Spec(C) are simply the unions of constructible
subsets. Thus, subsets of the form Spec(A, S) with A finitely generated form a basis
for the constructible topology on Spec(C).

(b) Since Spec(C) is spectral, a subset of Spec(C)cons is closed if and only if it is
pro-constructible, i.e., it is the intersection of a family of constructible subsets. Let us
consider a family Spec(A j , S j ), j ∈ J , with each Spec(A j , S j ) a constructible set.
Let B = ∑

j∈J A j be the smallest ideal containing each of the ideals A j and let T be
the smallest multiplicatively closed family containing each of the families S j . Then,
it is clear that

⋂
j∈J Spec(A j , S j ) = Spec(B,T). Combining with the fact (from part

(a)) that any constructible subset may be expressed as a union of constructible sets of
the form Spec(A, S), we obtain the result. ��
For a topologically noetherian scheme, we know that there is a homeomorphism
X 	 Spec(Dperf(X)) of X with the spectrum of the derived category of perfect
complexes (see [1, Corollary 5.6]). Then, Corollary 2.14 gives us an understanding of
the constructible topology on such a scheme in terms of the subsets Spec(A, S) for
the tensor triangulated category Dperf(X).

3 Oka families and a Prime Ideal Principle for tensor triangulated
categories

Let (C,⊗, 1) be a tensor triangulated category as before. As mentioned in the intro-
duction, [4, Theorem 14] shows that the association

I�C �→ c(I) = {P ∈ Spec(C) : P ⊇ I} (11)
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gives a one-to-one order reversing correspondence between radical thick tensor ideals
in C and closed subspaces of Spec(C)∗, where Spec(C)∗ denotes the spectrum of C
equipped with the inverse topology. In particular, if X is a topologically noetherian
scheme and we take C = Dperf(X), the derived category of perfect complexes on X ,
we know that there is a homeomorphism X 	 Spec(Dperf(X)) (see [1, Corollary 5.6])
and hence radical thick tensor ideals in Dperf(X) correspond to closed subspaces of X
in the inverse topology. We have restated [4, Theorem 14] as an order-reversing corre-
spondence with closed subspaces rather than as an order-preserving correspondence
with open subspaces in order to make it look more similar to the standard Nullstel-
lensatz. As such, this leads us to think about the irreducible closed subspaces of X
in the inverse topology. More generally, let F∗ be a family of closed subspaces of
Spec(C)∗ such that ∅ ∈ F∗ and suppose that F∗ is closed under finite unions. Then, if
we consider a closed subspace K0 ⊆ Spec(C)∗ such that K0 is minimal with respect
to not being in F∗, it is clear that K0 is irreducible. Using the correspondence in (11),
we have a radical thick tensor ideal I0 such that c(I0) = K0. Translated in terms of
ideals in C, we have a family F of radical ideals and I0 is maximal with respect to
being a radical ideal not contained in F. Then, it follows that if J,K are radical ideals
such that I0 ⊇ J⊗K, we must have either I0 ⊇ J or I0 ⊇ K. However, we would like
to have better results along these lines on families of thick tensor ideals in (C,⊗, 1).

Accordingly, we turn to some methods from commutative algebra, where there are
several well known results of the kind “maximal implies prime”. For example, given a
commutative ring R and an R-moduleM , an ideal I that ismaximal among annihilators
of non-zero elements of M must be prime (see, for example, [20, Proposition 3.12]).
In [25], Lam and Reyes gave a criterion that unifies these results, i.e., conditions on a
familyF of ideals in a ring such that any ideal that is maximal with respect to not being
contained in F must be prime. They referred to this as the “Prime Ideal Principle”.
Using the Prime Ideal Principle, the authors in [25] were also able to uncover several
new results of a similar nature (see also further work in Lam and Reyes [26] and Reyes
[29,30]). The purpose of this section is to construct an analogous Prime Ideal Principle
for thick tensor ideals in (C,⊗, 1).

We will need to introduce some notation: if I, J are thick tensor ideals in C, we set
(I, J) = I + J, i.e., the smallest thick tensor ideal containing both I and J. We may
easily verify that (I, J) = I+ J is the smallest thick tensor ideal containing all direct
sums x⊕ y where x ∈ I and y ∈ J. Given an object a ∈ C, we write (I, a) for the
smallest thick tensor ideal containing both I and a. For any collection X of objects of
C, we set

(I:X) = {a ∈ C : a⊗x ∈ I for each x ∈ X }. (12)

It may be easily verified that (I:X) contains 0 and satisfies the three conditions in
Definition 2.1, i.e., (I:X) is a thick tensor ideal. When X = {x} is a singleton, we
will denote (I:{x}) simply by (I:x). When X happens to be a multiplicatively closed
family, we note that (I:X) defined in (12) is not necessarily equal to I÷X as defined
in (2).

Further, given a thick tensor ideal I and an object a ∈ C, we will denote by a⊗I

the smallest thick tensor ideal containing all objects a⊗x , where x ∈ I. Similarly,
given thick tensor ideals I1, I2, we denote by I1⊗I2 the smallest thick tensor ideal
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containing all objects x1⊗x2, where x1 ∈ I1 and x2 ∈ I2. In a manner analogous
to [25], we will now define Oka families and Ako families of ideals in (C,⊗, 1).

Definition 3.1 Let F be a family of thick tensor ideals in (C,⊗, 1) such that C ∈ F.
In what follows, let I, J be thick tensor ideals in C. Then, we will say that

• F is a semifilter if I ⊆ J and I ∈ F implies that J ∈ F.
• F is a filter if it is a semifilter and for any ideals I, J ∈ F, the intersection I∩J ∈ F.
• F is monoidal if I, J ∈ F implies that I⊗J ∈ F.
• F is anOka family (resp. a strongly Oka family) if (I, a), (I:a) ∈ F for some object
a ∈ C (resp. (I,A), (I:A) ∈ F for some ideal A�C) implies that I ∈ F.

• F is an Ako family (resp. a strongly Ako family) if (I, a), (I, b) ∈ F for objects
a, b ∈ C (resp. (I, a), (I,B) ∈ F for some object a ∈ C and some ideal B�C)
implies that (I, a⊗b) ∈ F (resp. (I, a⊗B) ∈ F).

We will say that a family F of thick tensor ideals satisfies the “Prime Ideal Principle”
if any ideal that is maximal with respect to not being in F is also prime. We will now
prove the main Prime Ideal Principle for ideals in (C,⊗, 1).

Proposition 3.2 Let (C,⊗, 1) be a tensor triangulated category and let F be a family
of thick tensor ideals in C such that C ∈ F. Let I be a thick tensor ideal of (C,⊗, 1)
that is maximal with respect to not being contained in F. Then:

(a) If F is an Oka family of ideals, then I is a prime ideal.
(b) If F is an Ako family of ideals, then I is a prime ideal.
(c) In other words, ifF is either anOka family or an Ako family,F satisfies the “Prime

Ideal Principle”, i.e., any ideal that is maximal with respect to not being in Fmust
be prime.

Proof (a) We know that F is an Oka family. Suppose that I is not a prime ideal, i.e.,
we can choose a, b ∈ C such that a⊗b ∈ I but a /∈ I and b /∈ I. Then, we note that
I � (I:a) because the latter contains b and I � (I, a) because a /∈ I. However, since
I is maximal with respect to not being contained in F, we must have (I:a) ∈ F and
(I, a) ∈ F. Since F is an Oka family, we conclude that I ∈ F, which is a contradiction.

(b) Again, we suppose that I is not prime and choose a, b ∈ C such that a⊗b ∈ I

but a /∈ I and b /∈ I. As in part (a), we see that I � (I, a) and I � (I, b) because
a, b /∈ I. Then, I being maximal with respect to not being contained in F, we must
have (I, a), (I, b) ∈ F. Since F is an Ako family, this implies that (I, a⊗b) ∈ F. But
since a⊗b ∈ I, we have I = (I, a⊗b) ∈ F, which is a contradiction. ��
In order to proceed further, we will need a more explicit description of the thick tensor
ideal generated by a collection X of objects in C. For a collection X of objects of C, we
denote by X̃ the smallest thick tensor ideal containing all objects of X . Note that, by
definition, thick tensor ideals are full subcategories and hence it is enough to describe
the objects of X̃ . For any collection X of objects of C, we now set

X = {
x ∈ C : there exist a ∈ X, b, c ∈ C such that x⊕b = a⊗c

}
. (13)

From (13), it is clear that X = X . For a collection X of objects of C, we also consider
�(X), the collection of all objects a ∈ C such that there exist b, c ∈ X with a, b, c
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forming a distinguished triangle (in some order). We are now ready to describe the
thick tensor ideal X̃ more explicitly.

Proposition 3.3 Let X be a collection of objects in (C,⊗, 1). We set X0 = X and
inductively define

Xi+1 = �(Xi ) for all i � 0. (14)

Then, the smallest thick tensor ideal X̃ containing all objects in X is given by the
union of the increasing chain

X0 ⊆ X1 ⊆ X2 ⊆ · · ·

Proof From the definitions in (13) and (14), it is clear that each X i ⊆ X̃ . We set

X ′ =
∞⋃

i=0

Xi .

In order to prove the result, it suffices to show that X ′ is itself a thick tensor ideal. We
now consider some x ∈ X ′ and choose i � 0 such that x ∈ Xi . Hence, there exist
a ∈ Xi and b, c ∈ C such that x⊕b = a⊗c. Then, for any y ∈ C, it is clear that
(x⊗ y)⊕(b⊗ y) = a⊗(c⊗ y) and hence (x⊗ y) ∈ Xi ⊆ X ′. Further, if x splits as
x = x1⊕x2, we have x1⊕x2⊕b = a⊗c with a ∈ Xi and hence both x1, x2 ∈ Xi .
Finally, we consider a distinguished triangle

a → b → c → Ta

and assume for the sake of definiteness that a, c ∈ X ′. Then, we can choose j � 0
large enough so that a, c ∈ X j . From (14), it follows that b ∈ X j+1 = �(X j ) and
hence b ∈ X ′. We have shown that X ′ is a thick tensor ideal. ��
We remark here that, in particular, if we apply the explicit description in Proposi-
tion 3.3 to the case of a thick tensor ideal generated by a single object, it follows from
Definition 3.1 that a strongly Oka family is also an Oka family.

Lemma 3.4 Let I (resp. J) be a thick tensor ideal of (C,⊗, 1) that is generated by
X = {xi }i∈I (resp. Y = {y j } j∈J ). Then, the thick tensor ideal I⊗J is generated by
the collection {xi ⊗ y j }i∈I, j∈J .

Proof We consider some thick tensor ideal K containing all objects of the form
{xi⊗ y j }i∈I, j∈J . It suffices to show that K contains all objects of the form x⊗ y
with x ∈ I and y ∈ J. We start by fixing some j ∈ J . Then, we know that xi⊗ y j ∈ K

for each i ∈ I . We now use the notation of Proposition 3.3 and set X0 = X . Then, we
know from Proposition 3.3 that the ideal I may be described as the union

I =
∞⋃

n=0

Xn .
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We now consider some x ′ ∈ X0. From (13), we know that there exist x ∈ X0 = X
and b, c ∈ C such that x ′⊕b = x⊗c. Then, (x ′⊗ y j )⊕(b⊗ y j ) = (x⊗c⊗ y j ). Since
x⊗ y j⊗c ∈ K, it follows that x ′⊗ y j ∈ K for each x ′ ∈ X0. We will now proceed
by induction. Suppose that x ′⊗ y j ∈ K for every x ′ ∈ Xn and n � N for some given
N � 0. We consider some x ′ ∈ XN+1. By definition, XN+1 = �(XN ) and hence x ′
is a part of a distinguished triangle two of whose objects are already in XN . For the
sake of definiteness, we assume that we have a distinguished triangle

a′ → x ′ → c′ → Ta′

with a′, c′ ∈ XN . Since ⊗: C×C → C is exact in both variables, we have an induced
distinguished triangle

a′⊗ y j → x ′⊗ y j → c′⊗ y j → T(a′⊗ y j ).

Since a′⊗ y j , c′⊗ y j ∈ K, it follows that x ′⊗ y j ∈ K for each x ′ ∈ XN+1. Repeating
the reasoning for X0, we now see that x ′⊗ y j ∈ K for each x ′ ∈ XN+1. By induction,
it follows that x⊗ y j ∈ K for each x ∈ I. Now since {y j } j∈J generate J, it follows
similarly that x⊗ y ∈ K for each x ∈ I, y ∈ J. ��
We remark here that it follows from the proof of Lemma 3.4 and Definition 3.1 that a
strongly Ako family is also an Ako family.

Theorem 3.5 Let (C,⊗, 1) be a tensor triangulated category as above and let F be
a family of thick tensor ideals in (C,⊗, 1) such that C ∈ F. Consider the following
conditions:

(P1) F is a monoidal filter.
(P2) F is monoidal and, given thick tensor ideals I, J with J ∈ F and I ⊇ J ⊇ I2,

we must have I ∈ F.
(P3) For thick tensor ideals I,A,B such that (I,A), (I,B) ∈ F, we must have

(I,A⊗B) ∈ F.
(Q1) F is a monoidal semifilter.
(Q2) F is monoidal and, given thick tensor ideals I, J with J ∈ F and I ⊇ J ⊇ In

for some n > 1, we must have I ∈ F.
(Q3) If A,B ∈ F and I is a thick tensor ideal such that A⊗B ⊆ I ⊆ A ∩ B, we

must have I ∈ F.

Then, we have:

(a) The following chart of implications holds:

(P1) ��
��

��

(P2) ��
��

��

(P3)��

��
(Q1) �� (Q2) �� (Q3).
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(b) We have the following implications:

(P3) ��

��

strongly Ako

��
strongly Oka �� Oka.

In particular, a family F satisfying condition (P3) also satisfies the Prime Ideal
Principle, i.e., any ideal maximal with respect to not being in F must be prime.

Proof (a) For thick tensor ideals I, J, it is clear that I⊗J ⊆ I∩J and hence it follows
from Definition 3.1 that (P1)⇔ (Q1). Further, it is obvious that (Q2)⇒ (P2).

(Q1)⇒ (Q2). Since F is a semifilter, whenever we have I ⊇ J with J ∈ F, we see that
I ∈ F.

(P2)⇒ (P3). We consider thick tensor ideals I,A,B with (I,A), (I,B) ∈ F. Since
F is monoidal, we have (I,A)⊗(I,B) ∈ F. Further, since (I,A) ⊇ (I,A⊗B) and
(I,B) ⊇ (I,A⊗B), we have

(I,A)⊗(I,B) ⊇ (I,A⊗B)⊗(I,A⊗B) = (I,A⊗B)2. (15)

On the other hand, we know that (I,A) (resp. (I,B)) is generated by objects of the
form x⊕a with x ∈ I, a ∈ A (resp. y⊕b with y ∈ I, b ∈ B). From Lemma 3.4, it
follows that (I,A)⊗(I,B) is generated by objects of the form

(x⊕a)⊗(y⊗b) = ((x⊗ y)⊕(x⊗b)⊕(a⊗ y))⊕(a⊗b), (16)

x, y ∈ I, a ∈ A, b ∈ B. Since any element of the form in (16) is in (I,A⊗B), we
have

(I,A⊗B) ⊇ (I,A)⊗(I,B). (17)

From (15) and (17) and applying condition (P2), we see that (I,A⊗B) ∈ F. This
proves (P3).

(P2)⇒ (Q2). We suppose that there exist thick tensor ideals I, Jwith I /∈ F, J ∈ F and
I ⊇ J ⊇ In for some n > 1. Then, there is a largest integer k � 1 such that J+Ik /∈ F.
By Lemma 3.4, (J + Ik)2 is generated by objects of the form (x⊕ y)⊗(x ′⊕ y′) with
x, x ′ ∈ J and y, y′ ∈ Ik. Any such object lies in J + Ik+1 and hence we have

J + Ik ⊇ J + Ik+1 ⊇ (J + Ik)2.

Since J + Ik+1 ∈ F, it follows from condition (P2) that J + Ik ∈ F which is a
contradiction.

(P3)⇒ (Q3). Let A,B ∈ F and suppose that A⊗B ⊆ I ⊆ A ∩ B. Then, (I,A) =
A ∈ F and (I,B) = B ∈ F and hence it follows from (P3) that (I,A⊗B) ∈ F. But
since A⊗B ⊆ I, we have I = (I,A⊗B) ∈ F.
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(Q3)⇒ (P3). Suppose that (I,A), (I,B) ∈ F. It is clear that we have (I,A⊗B) ⊆
(I,A) ∩ (I,B). As in (17), we can show that (I,A)⊗(I,B) ⊆ (I,A⊗B). From
condition (Q3), it now follows that (I,A⊗B) ∈ F.

(b) We assume condition (P3). To show that F is strongly Ako, we consider a ∈ C

and thick tensor ideals I,B such that (I, a), (I,B) ∈ F. Let A be the thick tensor
ideal generated by a. Then, (I,A) = (I, a) lies in F and it follows from (P3) that
(I,A⊗B) ∈ F. From Lemma 3.4, it is clear that a⊗B = A⊗B. Hence, (I, a⊗B) ∈
F and F is strongly Ako.

In order to show thatF is stronglyOka, we consider ideals I,Awith (I,A), (I:A) ∈
F. We now set B = (I:A). Then, it is clear that (I,B) = B ∈ F and it follows from
condition (P3) that (I,A⊗B) ∈ F. From the definition in (12), we know that if a ∈ A

and b ∈ B = (I:A), we must have a⊗b ∈ I and hence A⊗B ⊆ I. It follows that
I = (I,A⊗B) ∈ F and F is strongly Oka. We have also noted before that strongly
Oka families are also Oka and hence it follows from Proposition 3.2 that F satisfies
the Prime Ideal Principle.

It remains to show that strongly Ako families are also Oka. Let F be strongly Ako
and suppose that (I, a), (I:a) ∈ F. We set B = (I:a). Again since (I,B) = B ∈ F,
we see that (I, a⊗B) ∈ F. But a⊗B ⊆ I and hence I = (I, a⊗B) ∈ F and hence F
is Oka. ��
For the rest of this section, we shall construct various families of thick tensor ideals
that satisfy the Prime Ideal Principle.

Proposition 3.6 Let (C,⊗, 1) be a tensor triangulated category as above. Let F1 and
F2 be families of thick tensor ideals in C such that F1 is monoidal and F2 is closed
under finite intersections. Consider the family

F = {C} ∪ {
I�C : there exist J1 ∈ F1, J2 ∈ F2 such that J1 ⊆ I ⊆ J2

}
. (18)

Then, F is both a strongly Oka family and a strongly Ako family. In particular, F
satisfies the Prime Ideal Principle.

Proof We will show that F satisfies condition (Q3) in Theorem 3.5. By Theo-
rem 3.5 (b), condition (P3) which is equivalent to (Q3) will then imply that F is a
strongly Oka and a strongly Ako family.

We choose A,B ∈ F and consider a thick tensor ideal I satisfying A⊗B ⊆ I ⊆
A∩B. If eitherA = C orB = C, the result is obvious. Hence, we suppose thatA �= C

and B �= C and choose J1,K1 ∈ F1 and J2,K2 ∈ F2 such that

J1 ⊆ A ⊆ J2, K1 ⊆ B ⊆ K2.

It now follows that

J1⊗K1 ⊆ A⊗B ⊆ I ⊆ A ∩ B ⊆ J2 ∩ K2.

Since F1 is monoidal and F2 is closed under finite intersections, we see that J1⊗K1 ∈
F1 and J2 ∩ K2 ∈ F2. Hence, it follows from the definition in (18) that I ∈ F. ��
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Corollary 3.7 (a) Let J,K be thick tensor ideals in (C,⊗, 1). Consider the following
family of ideals:

F = {C} ∪ {I�C : Jn ⊆ I ⊆ K for some n � 1}.

Then, F satisfies the Prime Ideal Principle, i.e., any thick tensor ideal that is
maximal with respect to not being in F must be prime.

(b) Let {J j } j∈J be a family of thick tensor ideals in (C,⊗, 1). Then, any ideal that is
maximal with respect to not containing a finite product of J j is prime.

Proof (a) We set F1 = {Jn : n � 1} and F2 = {K}. Then, F1 is monoidal and F2 is
closed under finite intersections. Now applying Proposition 3.6, we see that F satisfies
the Prime Ideal Principle.

(b) We set F1 = {J j1⊗ · · · ⊗J jk : j1, . . . , jk ∈ J } and F2 = {C}. It is clear that F1
is monoidal and F2 is closed under finite intersections. The result now follows from
Proposition 3.6. ��
Proposition 3.8 Let (C,⊗, 1) be a tensor triangulated category and let S be a multi-
plicatively closed family of objects of C. Then:

(a) A thick tensor ideal that is maximal with respect to being disjoint from S is also
prime.

(b) A thick tensor ideal that is maximal among ideals I satisfying
⋂∞

i=1 I
i ∩ S = ∅

is also prime.
(c) Let F be a monoidal semifilter. Then, a thick tensor ideal that is maximal among

ideals I satisfying
⋂∞

i=1 I
i /∈ F is also prime.

Proof (a) We consider the family

FS = {I�C : I ∩ S �= ∅}.

It is clear that FS is a semifilter. Further, if we choose x ∈ I ∩ S, y ∈ J ∩ S for thick
tensor ideals I, J ∈ FS, it follows that (x⊗ y) ∈ (I⊗J)∩S. Thus, FS is also monoidal
and we see that it satisfies condition (Q1) in Theorem 3.5. Hence, FS satisfies the
Prime Ideal Principle.

(c) Given the monoidal semifilter F, we consider

F∞ =
{

I�C :
∞⋂

i=1

Ii ∈ F

}

.

Since F is a semifilter, it is clear that so is F∞. We consider I, J ∈ F∞ and note that

∞⋂

i=1

(I⊗J)⊗i ⊇
∞⋂

i=1

Ii ⊗
∞⋂

i=1

Ji ∈ F.

Since F is a semifilter, it follows that
⋂∞

i=1(I⊗J)⊗i ∈ F and hence (I⊗J) ∈ F∞.
Hence, F∞ is a monoidal semifilter and satisfies the Prime Ideal Principle.
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(b) follows by applying the result of (c) with F = FS. ��
Remark 3.9 We mention here that the result of part (a) of Proposition 3.8 is already
known as a special case of [1, Lemma 2.2].

The next result will deal with thick tensor ideals that are annihilators of objects from
categories that are “modules” over the tensor triangulated category (C,⊗, 1). For this,
we recall that Stevenson [34, Definition 3.2] has introduced module actions for a
tensor triangulated category (C,⊗, 1) on a triangulated category M. More explicitly,
a module over (C,⊗, 1) consists of a triangulated category M along with an action

∗ : C×M → M (19)

that is exact in both variables; in other words, for any a ∈ C and m ∈ M, the functors
a∗· : M → M and ·∗m : C → M are exact. Further, the action in (19) satisfies appro-
priate associative, distributive and unit properties and is well behaved with respect to
the translation operator on the triangulated categoryM (see [34, Definition 3.2]). For
a detailed study on modules over tensor triangulated categories, we refer the reader
to [34].

Given an object m ∈ M, we let the annihilator Ann(m) be the collection of all
objects a ∈ C such that a∗m = 0. Given that the action ∗ in (19) is exact in both
variables, it is clear that Ann(m) ⊆ C is actually a thick tensor ideal.

Proposition 3.10 Let (C,⊗, 1) be a tensor triangulated category and let M be a
triangulated category that has the structure of a C-module.

(a) Let S be a multiplicatively closed family of objects in (C,⊗, 1). Consider the
following family of thick tensor ideals:

F = {
I�C : for any m ∈ M, I∗m = 0 ⇒ s∗m = 0 for some s ∈ S

}
. (20)

Then, F is a strongly Ako semifilter. In particular, the family F satisfies the Prime
Ideal Principle.

(b) A thick tensor ideal of (C,⊗, 1) that is maximal among the annihilators of non-
zero objects of M is also prime.

Proof (a) It is immediate from (20) thatF is a semifilter. To show thatF is stronglyAko,
we choose thick tensor ideals I,B�C and some object a ∈ C such that (I, a), (I,B) ∈
F. Suppose that (I, a⊗B)∗m = 0 for some m ∈ M. Then, I,B ⊆ Ann(a∗m) and
hence (I,B)∗(a∗m) = 0. Since (I,B) ∈ F, we conclude that there exists some s ∈ S

such that s∗a∗m = 0. It follows that a ∈ Ann(s∗m).
On the other hand, since I∗m = 0, we have I ⊆ Ann(m) ⊆ Ann(s∗m). Then,

(I, a)∗(s∗m) = 0. Since (I, a) ∈ F, it follows that there exists s′ ∈ S such that
s′∗(s∗m) = (s′⊗s)∗m = 0. Finally, since S is multiplicatively closed, we know that
s′⊗s ∈ S. This shows that (I, a⊗B) ∈ F and hence F is strongly Ako. In particular,
it now follows from Theorem 3.5 (b) that F satisfies the Prime Ideal Principle.

(b) In particular, we take S = {1}. Then, from the definition in (20), it is clear that

I /∈ F ⇐⇒ I ⊆ Ann(m) for some 0 �= m ∈ M.
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In part (a), we have shown that F satisfies the Prime Ideal Principle. Hence, if I is
maximal with respect to being contained in some Ann(m) with m �= 0, it must be
prime. Finally, it is clear that an ideal is maximal with respect to being contained in
some Ann(m) with m �= 0 if and only if it is maximal among the annihiliators of
non-zero objects of M. ��
Analogously to the usual definition in commutative algebra, we will say that a thick
tensor ideal I in (C,⊗, 1) is essential if it has non-trivial intersection with every non-
zero thick tensor ideal in (C,⊗, 1). Further, as in [1, Corollary 2.4], an object a ∈ C

will be called ⊗-nilpotent if there exists an integer n > 0 such that a⊗n = 0. As such,
we will say that (C,⊗, 1) is ⊗-reduced if it has no non-zero ⊗-nilpotent objects. We
now have the following result.

Proposition 3.11 Let (C,⊗, 1) be a tensor triangulated category and let F be the
family of essential thick tensor ideals of (C,⊗, 1). Then, if (C,⊗, 1) is ⊗-reduced, F
is a monoidal semifilter. In particular, a thick tensor ideal of (C,⊗, 1) that is maximal
with respect to not being essential must be prime.

Proof If I ∈ F is an essential ideal and J is a thick tensor ideal containing I, it is clear
that J is also essential. Hence, F is a semifilter.

We now suppose that I1, I2 ∈ F and consider some non-zero thick tensor ideal A.
Since I1 is essential, we can choose 0 �= x ∈ I1∩A. We now consider the thick tensor
ideal (x) generated by x . Now since I2 is essential,wemay choose 0 �= y ∈ (x)∩I2 and
consider y⊗ y. Since (C,⊗, 1) is⊗-reduced, it follows that 0 �= y⊗ y ∈ (I1⊗I2)∩A.
This shows that I1⊗I2 is essential and hence F is a monoidal semifilter. It now follows
from Theorem 3.5 that any ideal that is maximal with respect to not being essential is
also prime. ��
Proposition 3.12 Let (C,⊗, 1) be a tensor triangulated category. Then, an ideal that
is maximal among thick tensor ideals I satisfying I⊗n

� I⊗n+1 for each n � 0 must
be prime.

Proof We will show that the following family of thick tensor ideals:

F = {
I�C : there exists n � 0 such that I⊗n = I⊗(n+1)}

is anOka family by showing that it satisfies condition (Q2) inTheorem3.5. If J,K ∈ F,
we can choose N large enough so thatJ⊗N = J⊗(N+1) andK⊗N = K⊗(N+1). It follows
that we have (J⊗K)⊗N = (J⊗K)⊗(N+1) and hence F is monoidal.

We nowconsider a thick tensor ideal I such that there exists n > 1with I ⊇ J ⊇ I⊗n

and J ∈ F. We choose m � 0 such that J⊗m = J⊗(m+1). Then, we have

J⊗m ⊇ I⊗mn ⊇ J⊗mn = J⊗m �⇒ J⊗m = I⊗mn. (21)

By reasoning similar to (21), we see that J⊗(m+1) = I⊗(m+1)n and hence I⊗mn =
I⊗(m+1)n. Since n > 1, we now have

I⊗mn ⊇ I⊗(mn+1) ⊇ I⊗(m+1)n �⇒ I⊗mn = I⊗(mn+1).
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Then, I ∈ F and the family F satisfies condition (Q2) in Theorem 3.5. As such, F
satisfies the Prime Ideal Principle. ��

4 Monoidal semifilters of ideals and realizations of pairs

Let (C,⊗, 1) be a tensor triangulated category as before. In Sect. 2, we considered
pairs (A, S), where A is a thick tensor ideal and S is a multiplicatively closed family
of objects of C. In Sect. 3, we have already seen that for such a multiplicatively closed
family S, we can define

FS = {I�C : I ∩ S �= ∅}. (22)

Then, FS turns out to be a monoidal semifilter (and hence an Oka family) of ideals in
C. More generally, in this section, we will consider pairs (A,F), where A is a thick
tensor ideal and F is a monoidal semifilter. Our purpose is to study realizations of
templates of such pairs in a manner similar to Sect. 2.

Definition 4.1 Let (C,⊗, 1) be a tensor triangulated category as before. We consider
a pair (A,F) satisfying the following conditions:

• A is a thick tensor ideal in (C,⊗, 1).
• F is a family of thick tensor ideals that is a monoidal semifilter.
• Let Fc denote the collection of all thick tensor ideals of (C,⊗, 1) not contained in
F. Then, every non-empty increasing chain of ideals in Fc has an upper bound in
Fc.

Then, we will say that a prime ideal P is a realization of the pair (A,F) if A ⊆ P

and P /∈ F. We let Spec(A,F) denote the collection of all prime ideals realizing the
pair (A,F). Further, we let M(A,F) be the multiplicatively closed family given by
the complement of

⋃
Q∈Spec(A,F) Q.

More generally, let (I,�) be a partially ordered set and let T = {(Ai ,Fi )}i∈I be
a collection of such pairs indexed by I . Then, we will say that a collection {Pi }i∈I of
prime ideals in C is a realization of the template T if each Pi realizes the pair (Ai ,Fi )

and Pi ⊆ Pj for every i � j in I .

Henceforth, we will only consider pairs (A,F) as in Definition 4.1. Further, since F
is a semifilter, it is clear that if there exists a prime ideal P realizing a pair (A,F), we
must have A /∈ F.

Proposition 4.2 Let (A,F) be a pair as in Definition 4.1. Suppose that A /∈ F. Then,
there always exists a prime ideal in (C,⊗, 1) that realizes the pair (A,F).

Proof From Theorem 3.5, we know that a thick tensor ideal that is maximal with
respect to not being in the monoidal semifilter F must be prime. Further, since every
increasing chain of ideals in Fc has an upper bound in Fc, given thatA /∈ F, it follows
from Zorn’s lemma thatAmust be contained in a thick tensor ideal P that is maximal
with respect to not being in F. Then, P is a prime ideal realizing the pair (A,F). ��
Remark 4.3 In particular, let S be a multiplicatively closed family of objects of C and
set F = FS = {I�C : I ∩ S �= ∅} as in (22). It is clear that the union of any chain
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of ideals in the complement Fc
S of FS lies in Fc

S. Then, if A is a thick tensor ideal
such that A ∩ S = ∅, i.e., A /∈ FS, it follows from Proposition 4.2 that we can find a
prime ideal P realizing the pair (A,FS). This allows us to recover [1, Lemma 2.2] as
a special case.

Lemma 4.4 LetA be a thick tensor ideal and let F be a monoidal semifilter. Consider
the full subcategory A÷F of C defined by

A÷F = {a ∈ C : there exists I ∈ F such that a⊗I ⊆ A}. (23)

Then, A÷F is a thick tensor ideal in (C,⊗, 1).

Proof From (23), it is clear that if a ∈ A÷F, then a′⊗a ∈ A÷F for any a′ ∈ C. Now,
suppose that a ∈ A÷F splits as a = b⊕c. We choose I ∈ F such that a⊗I ⊆ A.
Then, for any x ∈ I, we have

a⊗x = (b⊗x)⊕(c⊗x).

Since a⊗x ∈ a⊗I ⊆ A and A is thick, it follows that b⊗x ∈ A and c⊗x ∈ A for
any x ∈ I. Hence, b⊗I ⊆ A and c⊗I ⊆ A and we see that b, c ∈ A÷F. Finally, we
consider a distinguished triangle

a → b → c → Ta,

where two out of a, b, c lie in A÷F. For the sake of definiteness, suppose that a, b ∈
A÷F. We now choose ideals I1, I2 ∈ F such that a⊗I1, b⊗I2 ⊆ A. Then, it is
clear that a⊗(I1⊗I2) ⊆ a⊗I1 ⊆ A and b⊗(I1⊗I2) ⊆ b⊗I2 ⊆ A. We choose
y ∈ I1⊗I2 and consider the induced triangle

a⊗ y → b⊗ y → c⊗ y → T(a⊗ y). (24)

It follows from (24) that c⊗ y ∈ A for each y ∈ I1⊗I2. Hence, c⊗(I1⊗I2) ⊆ A.
Since F is a monoidal family, we know that I1⊗I2 ∈ F and hence c ∈ A÷F. ��
Lemma 4.5 Let S be a multiplicatively closed family of objects of C and let F be a
monoidal semifilter. Suppose that every non-empty increasing chain of ideals in Fc

has an upper bound in Fc. Consider the family S⊗F of ideals of C defined by

S⊗F = {
I�C : I ⊇ s⊗I′ for some I′ ∈ F, s ∈ S

}
. (25)

Then, S⊗F is a monoidal semifilter. Further, every non-empty increasing chain of
ideals in the complement (S⊗F)c of S⊗F has an upper bound in (S⊗F)c.

Proof From the definition in (25), it is clear that if I ⊆ J and I ∈ S⊗F, then J ∈ S⊗F.
Further, let I1, I2 ∈ S⊗F and choose I′1, I′2 ∈ F as well as s1, s2 ∈ S such that
s1⊗I′1 ⊆ I1, s2⊗I′2 ⊆ I2. Since S is multiplicatively closed, we have s = s1⊗s2 ∈ S.
Then

s⊗(I′1⊗I′2) = (s1⊗I′1)⊗(s2⊗I′2) ⊆ I1⊗I2. (26)
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Since F is a monoidal semifilter, we know that I′1⊗I′2 ∈ F and it now follows from
(26) that I1⊗I2 ∈ S⊗F.

Finally, let {Jn}n∈N be an increasing chain of ideals in (S⊗F)c indexed by a totally
ordered set (N ,�) and consider J = ⋃

n∈N Jn . Suppose that J /∈ (S⊗F)c, i.e., there
exists s ∈ S and I′ ∈ F such that J ⊇ s⊗I′. We now consider

(Jn :s) = {a ∈ C : s⊗a ∈ Jn}, n ∈ N , (J:s) = {a ∈ C : s⊗a ∈ J}

as in (12). We know that each (Jn :s) and (J:s) are thick tensor ideals. Further, it is
also clear that

(J:s) =
⋃

n∈N
(Jn :s).

We claim that each ideal (Jn :s) ∈ Fc. Indeed if (Jn :s) ∈ F for some n ∈ N , we have
s⊗(Jn :s) ⊆ Jn and it follows from the definition in (25) that Jn ∈ S⊗F, which is
a contradiction. Accordingly, {(Jn :s)}n∈N is an increasing chain of ideals in Fc and
therefore we can choose an upper bound K ∈ Fc for {(Jn :s)}n∈N . Then, we have

(J:s) =
⋃

n∈N
(Jn :s) ⊆ K. (27)

Since F is a semifilter and K /∈ F, it follows from (27) that (J:s) /∈ F. We now recall
that I′ ∈ F is such that s⊗I′ ⊆ J from which it follows that I′ ⊆ (J:s). Since F is
a semifilter, it now follows that (J:s) ∈ F, which is a contradiction. Hence, we must
have J ∈ (S⊗F)c and thus J becomes an upper bound for the system {Jn}n∈N in
(S⊗F)c. ��
Proposition 4.6 (a) Let (A,F) be a pair and let Q be any prime ideal in (C,⊗, 1).

Then, Q contains a prime ideal realizing the pair (A,F) if and only ifA÷F ⊆ Q.
(b) Let (A,F) be a pair such that Spec(A,F) is finite. Then, a prime ideal P is con-

tained in a prime ideal realizing (A,F) if and only if P is disjoint fromM(A,F).

Proof (a) Let P be a prime ideal realizing the pair (A,F). Choose any a ∈ A÷F and
some I ∈ F such that a⊗I ⊆ A. Then, a⊗I ⊆ A ⊆ P. Suppose that a /∈ P. Then,
for any x ∈ I, we have a⊗x ∈ a⊗I ⊆ P and hence x ∈ P. Hence, I ⊆ P. Since F
is a semifilter and I ∈ F, it now follows that P ∈ F which is a contradiction. Hence,
A÷F is contained in P and hence in any prime ideal Q containing P.

Conversely, suppose that A÷F ⊆ Q. We claim that A /∈ (C − Q)⊗F. Otherwise,
there exists I ∈ F and s /∈ Q such that s⊗I ⊆ A, i.e., s ∈ A÷F ⊆ Q which is a
contradiction. Further, from Lemma 4.5, we know that any increasing chain of ideals
in ((C − Q)⊗F)c has an upper bound in ((C − Q)⊗F)c. Accordingly, we choose a
prime ideal P realizing the pair (A, (C−Q)⊗F). Now suppose that there exists some
x ∈ P ∩ (C − Q) and take any I′ ∈ F. Then, x⊗I′ ⊆ P and hence P ∈ (C − Q)⊗F,
which is a contradiction. Hence, P ⊆ Q.

(b) Suppose that we have prime ideals P ⊆ Q such that Q realizes (A,F). Then,
P ⊆ ⋃

Q∈Spec(A,F) Q and hence P ∩ M(A,F) = ∅. On the other hand, suppose that
P ∩ M(A,F) = ∅, i.e., P ⊆ ⋃

Q∈Spec(A,F) Q. Since Spec(A,F) is finite, it follows
from Proposition 2.2 that P ⊆ Q for some Q ∈ Spec(A,F). ��
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Definition 4.7 Let (A,F) and (A′,F′) be two pairs as in Definition 4.1. Then, we will
say that (A,F) � (A′,F′) if every prime ideal P ′ realizing the pair (A′,F′) contains a
prime ideal P that realizes (A,F).

Proposition 4.8 Let (A,F) and (A′,F′) be two pairs. Then, the following are equiv-
alent:

(a) We have (A,F) � (A′,F′), i.e., any prime ideal that realizes (A′,F′) contains a
prime ideal that realizes (A,F).

(b) The radical of A÷F is contained in the radical of A′÷F′, i.e., r(A÷F) ⊆
r(A′÷F′).

Proof (b)⇒ (a). Suppose that r(A÷F) ⊆ r(A′÷F′) and let P ′ be a prime ideal
realizing (A′,F′). Then, we see that

A÷F ⊆ r(A÷F) ⊆ r(A′÷F′) ⊆ P ′

and it follows from Proposition 4.6 that P ′ contains a prime ideal realizing the pair
(A,F).

(a)⇒ (b). Consider any prime ideal P ′ such that A′÷F′ ⊆ P ′ (if there is no such
prime ideal P ′, then A′÷F′ = C and we are done). Then, from Proposition 4.6, we
know that P ′ contains a prime ideal P ′′ realizing (A′,F′). By assumption, there exists
a prime ideal P ⊆ P ′′ such that P realizes (A,F). Hence, A÷F ⊆ P ⊆ P ′′ ⊆ P ′ and
therefore r(A÷F) ⊆ P ′ for any prime ideal P ′ containingA′÷F′. It now follows that
r(A÷F) ⊆ r(A′÷F′). ��
For the rest of this section, we will say that two templates indexed by the same par-
tially ordered set are equivalent if they have the same realizations. As with pairs in
Sect. 2, we will now show how to construct realizations of a finite chain template T =
{(Ai ,Fi )}1�i�n by showing that it is equivalent to a templateD(T ) = {(Bi ,Fi )}1�i�n
satisfying the additional condition that

(Bn,Fn) � (Bn−1,Fn−1) � · · · � (B2,F2) � (B1,F1). (28)

From Proposition 4.8, it is clear how one can construct a realization of a template of
the form (28) starting with a realization P1 of (B1,F1).

Proposition 4.9 Let n � 1 and let T = {(Ai ,Fi )}i∈I op be a finite chain template
indexed by the opposite I op of the ordered set I = {1 < 2 < · · · < n}. We define
{Bi }1�i�n inductively by letting Bn = An and setting

Bi = Ai + (Bi+1÷Fi+1) for all n > i � 1. (29)

Then, we have:

(a) A chain Pn ⊆ · · · ⊆ P2 ⊆ P1 is a realization of the template T = {(Ai ,Fi )}i∈I op
if and only if it is also a realization of the template D(T ) = {(Bi ,Fi )}i∈I op .
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(b) The template T = {(Ai ,Fi )}i∈I op has a realization if and only if B1 /∈ F1, i.e.,

(A1 + ((A2 + ((· · · (An−1 + (An÷Fn))÷Fn−1)) · · · ÷F3)÷F2)) /∈ F1.

Proof (a) Suppose that Pn ⊆ · · · ⊆ P2 ⊆ P1 is a realization of the template D(T ) =
{(Bi ,Fi )}i∈I op . From (29), it is clear that eachAi ⊆ Bi and hence Pi realizes the pair
(Ai ,Fi ). Hence, Pn ⊆ · · · ⊆ P2 ⊆ P1 is a realization of T .

Conversely, suppose that Pn ⊆ · · · ⊆ P2 ⊆ P1 is a realization of T . By definition,
we know that Bn = An and hence Bn ⊆ Pn . Suppose that Bi ⊆ Pi for all n � i > j
for some fixed j . Since Pj ⊇ P j+1 and P j+1 realizes (Bj+1,F j+1), it follows from
Proposition 4.6 (a) that Pj ⊇ Bj+1÷F j+1. Further, A j ⊆ P j because Pj realizes
(A j ,F j ). Hence, A j + (Bj+1÷F j+1) = Bj ⊆ Pj and Pj realizes the pair (Bj ,F j ).
Hence, Pn ⊆ · · · ⊆ P2 ⊆ P1 becomes a realization of D(T ).

(b) We claim that (Bi+1,Fi+1) � (Bi ,Fi ) for each 1 � i < n. For this, we note that

Bi÷Fi = (Ai + (Bi+1÷Fi+1))÷Fi ⊇ Bi+1÷Fi+1.

Hence, r(Bi+1÷Fi+1) ⊆ r(Bi÷Fi ) and it follows from Proposition 4.8 that (Bi+1,

Fi+1) � (Bi ,Fi ). Now suppose that B1 /∈ F1. Then, using Proposition 4.2, we can
obtain a prime idealP1 realizing (B1,F1). Since the template D(T ) = {(Bi ,Fi )}i∈I op ,
satisfies condition (28), we can now obtain a realizationPn ⊆ · · · ⊆ P2 ⊆ P1 of D(T )

starting from P1.
Conversely, suppose that the template T = {(Ai ,Fi )}i∈I op is realizable. From

part (a), it follows that the template D(T ) = {(Bi ,Fi )}i∈I op is also realizable and
in particular this means that the pair (B1,F1) is realizable. Hence, we must have
B1 /∈ F1. ��
Let T = {(Ai ,Fi )}i∈I op be a template as above. We will now show that under certain
finiteness conditions, wemay construct a templateD(T ) = {(Bi ,Gi )}i∈I op equivalent
to T such that if we start with an arbitrary realization Q j of some pair (Bj ,Gj ), we
can expand it in both directions to form a realization Qn ⊆ · · · ⊆ Q j ⊆ · · · ⊆ Q1 of
D(T ). We notice that since D(T ) is equivalent to T , the latter becomes a realization
of T .

Proposition 4.10 Let n � 1 and let T = {(Ai ,Fi )}i∈I op be a finite chain template
indexed by the opposite I op of the ordered set I = {1 < 2 < · · · < n}. Suppose that
for each 1 � i � n, Spec(Ai ,Fi ) is a finite set. We define {Bi }1�i�n inductively by
letting Bn = An and setting

Bi = Ai + (Bi+1÷Fi+1) for all n > i � 1. (30)

On the other hand, we define {Gi }1�i�n inductively by letting G1 = F1 and setting
Gi+1 to be

Gi+1 = M(Ai ,Gi )⊗Fi+1 for all 1 � i � n − 1. (31)

Then, we have:

(a) The templates T and D(T ) are equivalent.
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(b) Choose any integer j ∈ {1, 2, . . . , n}. Then, the template T = {(Ai ,Fi )}i∈I op
has a realization if and only if Bj /∈ Gj .

Proof (a) Suppose that Qn ⊆ · · · ⊆ Q2 ⊆ Q1 is a realization of D(T ). From (30)
and (31), it is clear that each Ai ⊆ Bi and Fi ⊆ Gi . Since each Qi realizes the pair
(Bi ,Gi ), we see that it also realizes (Ai ,Fi ).

Conversely, let Qn ⊆ · · · ⊆ Q2 ⊆ Q1 be a realization of T . From the proof of
Proposition 4.9 (a), we see that each Bi ⊆ Qi . By definition, we know that G1 = F1
and hence Q1 /∈ G1. To proceed by induction, we now suppose that Qi /∈ Gi for all
1 � i � j for some fixed j . Then, since Q j+1 ⊆ Q j and Q j /∈ Gj , we have

Q j+1 ∩ M(A j ,Gj ) ⊆ Q j ∩ M(A j ,Gj ) = ∅. (32)

Now if Q j+1 ∈ Gj+1 = M(A j ,Gj )⊗F j+1, it follows from (25) that there exists
s ∈ M(A j ,Gj ) and I′ ∈ F j+1 such that Q j+1 ⊇ s⊗I′. Since Q j+1 is a prime ideal, it
now follows from (32) thatQ j+1 ⊇ I′. But, F j+1 being a semifilter,Q j+1 ⊇ I′ ∈ F j+1
implies that Q j+1 ∈ F j+1, which is a contradiction. Hence, Q j+1 /∈ Gj+1 and Q j+1
realizes the pair (Bj+1,Gj+1).

(b) We choose some j ∈ {1, 2, . . . , n}. From part (a), we know that if T has a
realization, so doesD(T ). Hence, the pair (Bj ,Gj ) can be realized and we must have
Bj /∈ Gj . Conversely, suppose thatBj /∈ Gj and choose some prime idealQ j realizing
(Bj ,Gj ). Then, we have

Q j ⊇ Bj = A j + (Bj+1÷F j+1) ⊇ Bj+1÷F j+1

and it follows from Proposition 4.6 (a) that there exists a prime ideal Q j+1 ⊆ Q j

realizing (Bj+1,F j+1). Further, as in part (a), we see that Q j+1 ∩ M(A j ,Gj ) = ∅

and hence Q j+1 /∈ M(A j ,Gj )⊗F j+1 = Gj+1, i.e., Q j+1 realizes (Bj+1,Gj+1). On
the other hand, if j > 1, we have from (31)

Gj = M(A j−1,Gj−1)⊗F j . (33)

Since F j−1 ⊆ Gj−1, it follows that Spec(A j−1,Gj−1) ⊆ Spec(A j−1,F j−1) must
be finite. From (33), we see that Q j ∩ M(A j−1,Gj−1) = ∅ and it follows from
Proposition 4.6 (b) that there exists a primeQ j−1 ⊇ Q j realizing (A j−1,Gj−1). Again,
since Q j realizes (Bj ,F j ), Proposition 4.6 (a) implies that Q j−1 ⊇ Q j ⊇ Bj÷F j .
Hence,

Q j−1 ⊇ A j−1 + (Bj ÷F j ) = B j−1

and Q j−1 realizes (B j−1,Gj−1). Accordingly, starting from Q j we can proceed in
both directions to give a realization Qn ⊆ · · · ⊆ Q2 ⊆ Q1 of the template D(T ) (and
hence of T ). ��

Remark 4.11 In the proof above, we note that the finiteness condition is only used in
part (b), i.e., the templates T and D(T ) are always equivalent.
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For the final result of this section, we will consider finite descending trees. Given a
finite descending tree T, a node at the k-th level of T will be denoted by a multi-
index I = (i1, . . . , ik) with k-coordinates. If this node I has n(I ) branches, these
branch nodes will be denoted by multi-indices (I, l) = (i1, . . . , ik, l), with l varying
from 1 to n(I ). The root node appearing at the top will be denoted by (1). Then, if
there are n(1) branches leading out of the root node, these branches will be labelled
as (1, 1), (1, 2), . . . , (1, n(1)). The following diagram illustrates our labeling scheme
for the nodes of such a tree T.

(1)

(1, 1)

���������������
(1, 2)

����������������

(1, 1, 1)

�����������
(1, 1, 2) (1, 2, 1)

�������������

		������������
(1, 2, 2)





(1, 2, 3).

������������

We make T partially ordered by setting the branch nodes (I, i) � I , 1 � i � n(I ),
for each node I and consider templates of pairs indexed by T.

Proposition 4.12 Let {(AI ,FI )}I∈T be a template indexed by a finite descending tree
T. For each node I of the tree that has no further branches, we set BI = AI . Then,
we define BI for each multi-index I ∈ T inductively by setting

BI = AI +
n(I )∑

i=1

(B(I,i)÷F(I,i)), (34)

where the sum is taken over all nodes (I, 1), (I, 2), . . . , (I, n(I )) immediately below
the node I . Then, the template {(AI ,FI )}I∈T has a realization if and only if B(1) /∈
F(1).

Proof “If part”: we claim that starting with any prime ideal realizing (B(1),F(1)),
we can obtain a realization of the entire template {(AI ,FI )}I∈T. We prove this by
induction on |T|, the number of nodes in the tree T. This is obvious if |T| = 1 and
we assume that it holds for all trees with fewer than |T| nodes. Since B(1) /∈ F(1), we
can choose a prime P(1) realizing (B(1),F(1)). From the definition in (34), we know
that A(1) ⊆ B(1) and each B(1,i)÷F(1,i) ⊆ B(1) for each node (I, i) immediately
below the root node. Hence, P(1) realizes (A(1),F(1)) and contains prime ideals P(1,i)
realizing (B(1,i),F(1,i)) for each 1 � i � n(1). Now, n(1) different subtrees T1, …,
Tn(1) obtained by cutting off the root node all have strictly less than |T| nodes. By
the induction assumption, it follows that starting from each P(1,i), we may obtain a
realization of the subtree Ti . This proves the result.

For the “only if” part, we can reverse our arguments and prove by induction the
claim that if {PI }I∈T is a realization of {(AI ,FI )}I∈T, P(1) must be a realization of
(B(1),F(1)). Hence, B(1) /∈ F(1). ��
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5 Monoidal families and the Prime Ideal Principle

In this final section of the paper, we shall assume that the tensor triangulated category
(C,⊗, 1) has the additional property that all thick tensor ideals are radical, i.e., for
any thick tensor ideal I in (C,⊗, 1), we have r(I) = I. This additional assumption
is equivalent (see [1, Proposition 4.4]) to the assumption that for any object a ∈ C, a
lies in the ideal generated by the object a⊗a. In fact, it is very frequent for all thick
tensor ideals to be radical (see [1, Remark 4.3] and [22, Lemma A.2.6]). In particular,
this assumption holds in rigid tensor triangulated categories (see [34, Section 2]). For
us, the key consequence of this assumption is the following fact.

Proposition 5.1 (a) Let (C,⊗, 1) be a tensor triangulated category such that every
thick tensor ideal is a radical ideal. Then, for any thick tensor ideals I and J, we
have I⊗J = I ∩ J.

(b) Let F be a family of thick tensor ideals such that C ∈ F. Then, if F is monoidal,
the family F is a strongly Oka and a strongly Ako family. In particular, F satisfies
the Prime Ideal Principle.

Proof (a) It is clear that I⊗J ⊆ I ∩ J. We choose some object a ∈ I ∩ J. Then,
a⊗a ∈ I⊗J. Since all thick tensor ideals in (C,⊗, 1) are radical, it follows that a lies
in the ideal generated by a⊗a. We conclude that a ∈ I⊗J and hence I⊗J = I ∩ J.

(b) We will show that F is strongly Oka and strongly Ako by showing that it satisfies
condition (Q3) in Theorem 3.5. For this, we consider thick tensor ideals A,B ∈ F
and some ideal I such that A⊗B ⊆ I ⊆ A ∩ B. From part (a), it follows that
A⊗B = I = A ∩ B. By assumption, F is monoidal and hence I = A⊗B ∈ F.
Hence, the family F satisfies condition (Q3) in Theorem 3.5. ��
Remark 5.2 Proposition 5.1 (b) may also be proved as follows: all thick tensor ideals
being radical, [4, Theorem 14] now gives us a correspondence between closed sub-
spaces of Spec(C)∗ and all ideals in C. As such, if F is a monoidal family, then
F∗ = {c(I) : I ∈ F} is closed under finite unions and hence any closed subspace of
Spec(C)∗ that is minimal with respect to not being in F∗ must be irreducible.

Proposition 5.3 Let (C,⊗, 1) be a tensor triangulated category such that every thick
tensor ideal is a radical ideal. Then:

(a) Let I be a thick tensor ideal that is maximal with respect to being non-principal.
Then I is prime.

(b) Let α be an infinite cardinal and let Fα denote the family of thick tensor ideals
I having a generating set GI of cardinality |GI| � α. Then, any ideal that is
maximal with respect to not being in Fα is prime.

Proof (a) Using Proposition 5.1 (b), it is enough to show that the collection of principal
ideals is monoidal. If we have principal ideals I = (x) and J = (y) generated by
objects x, y ∈ C respectively, it follows from Lemma 3.4 that I⊗J is the principal
ideal generated by x⊗ y. Hence, the family of principal ideals is monoidal and satisfies
the Prime Ideal Principle. The result of part (b) follows similarly. ��
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Using the same approach as in Proposition 5.3, we can prove the following more
general result.

Proposition 5.4 Let (C,⊗, 1) be a tensor triangulated category such that every thick
tensor ideal is radical. Let S be a multiplicatively closed family of objects of C con-
taining 1 and also possibly 0. For any infinite cardinal α, letGS

�α
(resp.GS

<α) denote
the family of thick tensor ideals I having a generating set GI ⊆ S such that |GI| � α

(resp. |GI| < α). Then, any ideal that is maximal with respect to not being in GS
�α

(resp. GS
<α) is prime.

Proof We consider thick tensor ideals I, J ∈ GS
�α

with respective generating sets
GI = {xi }i∈I ⊆ S, GJ = {y j } j∈J ⊆ S of cardinality � α. Since S is multiplicatively
closed, we see that each xi⊗ y j ∈ S. It then follows from Lemma 3.4 that I⊗J may
be generated by the set {xi⊗ y j }i∈I, j∈J of cardinality |GI×GJ| � α. Hence,GS

�α
is

a monoidal family and satisfies the Prime Ideal Principle. The case of GS
<α follows

similarly. ��
Proposition 5.5 Let (C,⊗, 1) be a tensor triangulated category such that every thick
tensor ideal is radical. Then:

(a) Let F be a monoidal semifilter. Then, the family Div(F) defined by

Div(F) = {A�C : A÷F = A}

is a strongly Oka family and satisfies the Prime Ideal Principle.
(b) Let S be a multiplicatively closed family of objects of C such that 1 ∈ S and 0 /∈ S.

Then, the family Div(S) = {A�C : A÷S = A} is a strongly Oka family and
satisfies the Prime Ideal Principle.

Proof (a) From Proposition 5.1, it suffices to show that Div(F) is monoidal. Given
any thick tensor ideals A,B, it is clear from the definition in (23) that (A⊗B)÷F =
(A∩B)÷F ⊆ (A÷F) ∩ (B÷F) = (A÷F)⊗(B÷F). Conversely, choose an object
x ∈ (A÷F) ∩ (B÷F) = (A÷F)⊗(B÷F). Then, there exist I, J ∈ F such that
x⊗I ⊆ A and x⊗J ⊆ B. It follows that (x⊗x)⊗(I⊗J) ⊆ A⊗B. Since F is
monoidal, I⊗J ∈ F and hence (x⊗x) ∈ (A⊗B)÷F. Since all ideals in (C,⊗, 1)
are radical, it now follows that x ∈ (A⊗B)÷F. Hence,

(A÷F)⊗(B÷F) = (A⊗B)÷F. (35)

In particular, ifA,B ∈ Div(F), (35) reduces toA⊗B = (A⊗B)÷F. Hence,A⊗B ∈
Div(F) and Div(F) is monoidal. Finally, part (b) follows from part (a) by setting
F = FS where FS = {I�C : I ∩ S �= ∅}. ��
Proposition 5.6 Let (C,⊗, 1) be a tensor triangulated category such that every thick
tensor ideal is a radical ideal. Let I be a thick tensor ideal. Then:

(a) The family FI of thick tensor ideals containing I is a monoidal semifilter. In
particular, any ideal of (C,⊗, 1) that is maximal with respect to not containing I
must be prime.
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(b) Suppose that I is a finitely generated (hence principal) ideal. Then, any non-empty
increasing chain of ideals in the complement Fc

I of FI has an upper bound in F
c
I.

Proof (a) It is clear that FI is a semifilter. Further, if I ⊆ A and I ⊆ B for some
A,B ∈ FI, we have I ⊆ A ∩ B = A⊗B. Hence, FI is also monoidal.

(b) Suppose that I is generated by an object x .We consider an increasing chain {J j } j∈N
of ideals in Fc

I indexed by a totally ordered set (N ,�) and the union J = ⋃
j∈N J j .

Now, if J ∈ FI, there exists n ∈ N large enough such that x ∈ Jn . Hence, I ⊆ Jn and
Jn ∈ FI, which is a contradiction. We conclude that J /∈ FI. ��
We now consider templates that are infinite descending chains. For this we consider
the ordered infinite set I = {1 < 2 < · · · } and a collection of principal thick tensor
ideals Ii , i � 1. We consider a template T = {(Ai ,Fi )}i∈I op indexed by I op, where
each Fi is given by

Fi = FIi = {J�C : J ⊇ Ii } (36)

and Ai is any thick tensor ideal. From Proposition 5.6, we know that each Fi is a
monoidal semifilter and any non-empty increasing chain of ideals in the comple-
ment Fc

i of Fi has an upper bound in Fc
i . For any positive integers m � n, we let

Tm
n = {(Ai ,Fi )}n�i�m be the template obtained by truncating T . Then, the truncated

template Tm
n is indexedby the opposite of thefinite ordered set {m < m+1 < · · · < n}.

We now set Bn
n = An and define Bm

n by inductively setting

Bm
n = Am + (Bm+1

n ÷Fm+1) for all n > m � 1. (37)

For any given m, it is clear that we have an increasing chain Bm
m ⊆ Bm

m+1 ⊆ Bm
m+2 ⊆

· · · and we set Bm∞ = ⋃∞
n�mBm

n . We now let D(T ) = {(Bi∞,Fi )}i∈I op be the infinite
decreasing chain template indexed by the opposite I op of the ordered infinite set
I = {1 < 2 < · · · }.
Lemma 5.7 In the notation above, for any m � 1, we have (Bm+1∞ ,Fm+1) �
(Bm∞,Fm).

Proof By assumption, each Fi = FIi = {J�C : J ⊇ Ii } for the principal ideal Ii . In
particular, suppose that Im is generated by xm and consider some object a ∈ Bm∞÷Fm .
Then, there exists an ideal J ∈ Fm such that a⊗J ⊆ Bm∞. Since J ⊇ Im , it follows that
a⊗xm ∈ Bm∞. Accordingly, there exists N large enough so that a⊗xm ∈ Bm

N . In other
words, a⊗Im ⊆ Bm

N and we see that a ∈ Bm
N ÷Fm . Therefore, we have Bm∞÷Fm ⊆⋃∞

n�m(Bm
n ÷Fm). On the other hand, it is clear that Bm∞÷Fm ⊇ ⋃∞

n�m(Bm
n ÷Fm)

and hence Bm∞÷Fm = ⋃∞
n�m(Bm

n ÷Fm). Combining with (37), we have

Bm∞÷Fm =
∞⋃

n�m

(Bm
n ÷Fm) ⊇

∞⋃

n>m

(Am + (Bm+1
n ÷Fm+1))÷Fm

⊇
∞⋃

n�m+1

(Bm+1
n ÷Fm+1).
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As before, we must have Bm+1∞ ÷Fm+1 = ⋃∞
n�m+1(B

m+1
n ÷Fm+1) and hence

r(Bm∞÷Fm) = Bm∞÷Fm ⊇ Bm+1∞ ÷Fm+1 = r(Bm+1∞ ÷Fm+1). The result now fol-
lows from Proposition 4.8. ��
Proposition 5.8 Let (C,⊗, 1) be a tensor triangulated category such that all thick
tensor ideals are also radical. Let T = {(Ai ,Fi )}i∈I op be a template as in (36)
indexed by the opposite I op of the ordered infinite set I = {1 < 2 < · · · } and let
D(T ) = {(Bi∞,Fi )}i∈I op be as defined above. Then:

(a) A chain · · · ⊆ P2 ⊆ P1 of thick prime ideals is a realization of the template T if
and only if it is also a realization of the template D(T ).

(b) The template T has a realization if and only if B1∞ /∈ F1.
(c) The template T is realizable if and only if each of the truncated templates Tm

n is
realizable for 1 � m � n.

Proof (a) The “if part” is clear because each Bm∞ ⊇ Am . For the “only if” part,
consider a realization · · · ⊆ P2 ⊆ P1 of the template T = {(Ai ,Fi )}i∈I op . Then,
for any 1 � m � n, Pn ⊆ Pn−1 ⊆ · · · ⊆ Pm must be a realization of the truncated
template Tm

n . Looking at the expression forBm
n in (37), it follows from Proposition 4.9

that Pm realizes the pair (Bm
n ,Fm). Hence, for each n � m, we have Pm ⊇ Bm

n and
Pm /∈ Fm . It follows that

Pm ⊇
∞⋃

n�m

Bm
n = Bm∞, Pm /∈ Fm,

whence Pm realizes the pair (Bm∞,Fm).

(b) If T is realizable, it follows from part (a) that so is D(T ) = {(Bi∞,Fi )}i∈I op and
hence in particularB1∞ /∈ F1. Conversely, ifB1∞ /∈ F1, we can choose a prime idealP1
realizing (B1∞,F1). From Lemma 5.7, we know that (Bm+1∞ ,Fm+1) � (Bm∞,Fm) for
each m � 1. It follows that we can choose a prime ideal P2 ⊆ P1 realizing (B2∞,F2)

and so on to obtain a realization of D(T ) = {(Bi∞,Fi )}i∈I op . This gives a realization
of T .

(c) The “only if” part is obvious. For the “if part”, we suppose that each truncated
template Tm

n is realizable for 1 � m � n. In particular, the truncated template T 1
n is

realizable for each n � 1. Hence, B1
n /∈ F1 for each n � 1. We know that B1∞ =⋃∞

n�1B
1
n . From Proposition 5.6 (b), it follows that the increasing chain B1

1 ⊆ B1
2 ⊆

B1
3 ⊆ · · · of ideals inFc

1 must have some upper bound inFc
1 , sayB. But then,B ⊇ B1∞.

Since F1 is a semifilter and B /∈ F1, we must have B1∞ /∈ F1. From part (b), it now
follows that the template T is realizable. ��
Finally, we will translate our reasoning in terms of irreducible closed subspaces of the
inverse topology on Spec(C). We continue to assume that all thick tensor ideals in C

are radical. As in Sect. 3, we denote by Spec(C)∗ the spectral space Spec(C) equipped
with the inverse topology. As such, following [4, Theorem 14], for every thick tensor
ideal I�C, there is a closed subspace

c(I) = {P ∈ Spec(C) : P ⊇ I} ⊆ Spec(C)∗ (38)
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in inverse topology giving a one-to-one order reversing correspondence between thick
tensor ideals in (C,⊗, 1) and closed subspaces of Spec(C)∗. From (38), it is clear that
for ideals I, J�C, we must have c(I) ∪ c(J) = c(I⊗J) and

⋂
i∈I c(Ii ) = c

(∑
i∈I Ii

)

for any family {Ii }i∈I of thick tensor ideals.
Proposition 5.9 Let (C,⊗, 1) be a tensor triangulated category such that all thick
tensor ideals are radical and let {ci }i∈I be a basis of closed subspaces for Spec(C)∗.
Let F∗ be a family of closed subspaces of Spec(C)∗ having the following properties:

(a) ∅ ∈ F∗.
(b) For any closed K ⊆ Spec(C)∗ and any i, j ∈ I such that K ∩ ci , K ∩ c j ∈ F∗,

we must have K ∩ (ci ∪ c j ) ∈ F∗.
Then, if K0 ⊆ Spec(C)∗ is a closed subspace that is minimal with respect to not being
in F∗, K0 is an irreducible closed subspace of Spec(C)∗.

Proof Using the correspondence stated above, we must have ideals Ii �C, i ∈ I , such
that ci = c(Ii ). We now consider the family F = {I�C : c(I) ∈ F∗} of thick tensor
ideals. Since ∅ ∈ F∗, we have C ∈ F. Further, condition (b) above corresponds to the
following condition on F: given I�C and i, j ∈ I

I + Ii ∈ F and I + I j ∈ F �⇒ (I + Ii )⊗(I + I j ) ∈ F. (39)

Then, a closed subspace K0 ⊆ Spec(C)∗ that is minimal with respect to not being in
F∗ corresponds to a thick tensor ideal I0 that is maximal with respect to not being
in F. Now, suppose that there exist J, K�C such that I0 ⊇ J⊗K but I0 � J and
I0 � K. Since {c(Ii )}i∈I is a basis for closed subspaces of Spec(C)∗, there exist
GJ,GK ⊆ I such that J = ∑

j∈GJ
I j and K = ∑

k∈GK
Ik . Then, we can choose

j ′ ∈ GJ and k
′ ∈ GK such that I0 � Ij ′ and I0 � Ik′ . Since I0 is maximal with respect

to not being in F, we have I0 + Ij ′ ∈ F and I0 + Ik′ ∈ F. From (39), it follows that
(I0 + Ij ′)⊗(I0 + Ik′) ∈ F. As in (17), we now have (I0 + Ij ′)⊗(I0 + Ik′) ⊆
I0+(Ij ′ ⊗Ik′) ⊆ I0+(J⊗K) ⊆ I0. On the other hand, we have I0 = I0⊗I0 ⊆ (I0+
Ij ′)⊗(I0 + Ik′) and hence I0 = (I0 + Ij ′)⊗(I0 + Ik′) ∈ F, which is a contradiction.
Hence, I0 is prime and K0 = c(I0) is an irreducible closed subspace of Spec(C)∗. ��
Clearly, any familyF∗ of closed subspaces of Spec(C)∗ containing∅ and closed under
finite unions satisfies the conditions in Proposition 5.9. In that case, the corresponding
family F = {I�C : c(I) ∈ F∗} of thick tensor ideals in (C,⊗, 1) is simply a monoidal
family. We will conclude by showing how to construct a family F∗ that is not closed
under finite unions but still satisfies the conditions in Proposition 5.9. This will be
done with the help of Ako families of thick tensor ideals in (C,⊗, 1).

We consider the basis {c(a) = {P ∈ Spec(C) : a ∈ P}}a∈C of closed sets for
Spec(C)∗. Then, any closed subspace c(I) ⊆ Spec(C)∗ can be expressed as the
intersection c(I) = ⋂

a∈I c(a). Suppose that 0 �= x ∈ C is a zero-divisor, i.e.,
Ann(x) = {y ∈ C : x⊗ y = 0} �= 0. Further, suppose that we can choose a non-
principal thick tensor ideal J ⊆ Ann(x). Hence, x⊗J = 0. We now set

F = {K�C : (J, x) ⊆ K} ∪ {(x)} ∪ {J} (40)
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and consider the corresponding family F∗ = {c(I) : I ∈ F} of closed subspaces of
Spec(C)∗. Clearly, since x⊗J = 0 �= F, the family F is not monoidal and hence
the family F∗ of closed subspaces of Spec(C)∗ is not closed under finite unions.
Since C ∈ F, we know that ∅ ∈ F∗. We claim that F∗ also satisfies condition (b) in
Proposition 5.9. Otherwise, there exist basis elements c(a), c(b) with a, b ∈ C and
some closed subspace K ⊆ Spec(C)∗ such that K ∩ c(a) ∈ F∗ and K ∩ c(b) ∈ F∗
but K ∩ (c(a) ∪ c(b)) /∈ F∗. Since K is closed in Spec(C)∗, we can find a thick tensor
ideal L such that K = c(L). Then, we see that (L, a) ∈ F and (L, b) ∈ F, but
(L, a⊗b) = (L, a)⊗(L, b) /∈ F. From the expression for F in (40), this is possible
only if one of the two ideals (L, a) and (L, b) is equal to (x) and the other is equal to
J. Accordingly, we have

L = L⊗L ⊆ (L, a)⊗(L, b) = (x)⊗J = 0

and hence L = 0. But then, either J = (L, a) = (a) or J = (L, b) = (b) and J is
principal, which is a contradiction.
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