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Surjectivity of certain word maps on PSL(2,C) and SL(2,C) 615

1 Introduction

The surjectivity of word maps on groups became recently a vivid topic: the review on
the latest activities may be found in [3,17,19,22].

Let w ∈ Fn be an element of the free group Fn on n > 1 generators g1, . . . , gn :

w =
k∏

i=1

gmi
ni , 1 � ni � n.

For a group G by the same letter w we shall denote the corresponding word map
w : Gn → G defined as a non-commutative product by the formula

w(x1, . . . , xn) =
k∏

i=1

xmi
ni . (1)

We call w(x1, . . . , xn) both a word in n letters if considered as an element of a free
group and a word map in n letters if considered as the corresponding map Gn → G.
We assume that it is reduced, i.e. ni �= ni+1 for every 1 � i � k − 1 and mi �= 0 for
1 � i � k.

Let K be a field and H a connected semisimple linear algebraic group that is
defined over K . Ifw is not the identity then, by the Borel theorem [6], the regular map
of (affine) K -algebraic varieties

w : Hn → H, (h1, . . . , hn) �→ w(h1, . . . , hn)

is dominant, i.e., its image is a Zariski dense subset of H . Let us consider the group
G = H(K ) and the image

wG = w(Gn) = {
z ∈ G : z = w(x1, . . . , xn) for some (x1, . . . , xn) ∈ Gn}.

We say that a word (word map) w is surjective on G if wG = G.
In [18, Problem 7], [19, Question 2.1 (i)], the following question is formulated:

Assume thatw is not a power of another reduced word and G = H(K ). Isw surjective
when K = C is a field of complex numbers and H is of adjoint type?

According to [19], Question 2.1 (i) is still open, even in the simplest case G =
PSL(2, C), even for words in two letters.

We consider word maps on groups G = SL(2, K ) and G̃ = PSL(2, K ). Put

F = Fn, F (1) = [F, F], F (2) = [
F (1), F (1)].

As usual, Z, Q, R, C stand for the ring of integers and fields of rational, real and com-
plex numbers respectively. A(K )mx1,...,xm or, simply, Am, stands for the m-dimensional
affine space over a field K with coordinates x1, . . . , xm . If K = C, we use the notation
C
m
x1,...,xm .
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616 T. Bandman, Yu.G. Zarhin

Let w ∈ F . For the corresponding word map on G = SL(2, K ) we check the
following properties of the image wG .

Properties 1.1

(a) wG contains all semisimple elements x with tr(x) �= 2;
(b) wG contains all unipotent elements x with tr(x) = 2;
(c) wG contains all minus unipotent elements x with tr(x) = −2 and x �= −id;
(d) wG contains −id.

The word map w is surjective on G = SL(2, K ) if all Properties 1.1 are satisfied.
For the surjectivity on G̃ = PSL(2, K ) it is sufficient that only Properties 1.1 (a), (b)
are valid.

Definition 1.2 (cf. [2]) We say that the word map w is almost surjective on G =
SL(2, K ) if it has Properties 1.1 (a)–(c), i.e. wG ⊃ SL(2, K )\− {id}.
The goal of the paper is to describe certain words w ∈ F such that the corresponding
word maps are surjective or almost surjective on G and/or G̃. Assume that the field K
is algebraically closed. If w(x1, . . . , xd) = xni then w is surjective on G if and only if
n is odd (see [10,11]). Indeed, the element

x =
(−1 1

0 −1

)

is not a square in SL(2, K ). Since only the elements with tr(x) = −2 may be outside
wG [10,11], the induced by w word map w̃ is surjective on G̃.

Consider a word map (1). For an index j � n let S j = ∑
ni= j mi . If, say, S1 �= 0,

then w(x1, id, . . . , id) = x S1
1 , hence the word w is surjective on PSL(2, K ). If S j = 0

for all 1 � j � n, then w ∈ F (1) = [F, F ]. In Sect. 5 we prove (see Corollary 5.4)
the following:

The word map defined by a word w ∈ F (1)\F (2) is surjective on PSL(2, K ) if
K is an algebraically closed field with char(K ) = 0.

The proof makes use of a variation on the Magnus Embedding Theorem, which is
stated in Sect. 3 and proven in Sect. 4.

In Sects. 6–8, we consider words in two variables, i.e. n = 2. In this case we give
explicit formulas for w(x, y), where x, y ∈ SL(2, C) are upper triangular matrices.
Using explicit formulas, in Sects. 7–8 we provide criteria for surjectivity and almost
surjectivity of a word map on G = SL(2, C). In Sect. 7, these criteria are formulated
in terms of exponents ai , bi , i = 1 . . . , k, of the word

w(x, y) =
k∏

i=1

xai ybi,

where ai �= 0 and bi �= 0 for all i = 1, . . . , k. A sample of such criteria is (Corol-
lary 7.4)
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Surjectivity of certain word maps on PSL(2,C) and SL(2,C) 617

If all bi are positive, then the word map w is either surjective or the square of
another word v �= id.

In Sect. 8, we connect the almost surjectivity of a word map with a property of the
corresponding trace map. The last sections contain explicit examples.

2 Semisimple elements

Let K be an algebraically closed fieldwith char(K ) = 0, andG = SL(2, K ). Consider
a word map w : Gn → G defined by (1). We consider G as an affine set

G = {ad − bc = 1} ⊂ A
4
a,b,c,d .

The following lemma is,may be, known, but the authors do not have a proper reference.

Lemma 2.1 A regular non-constant function on Gn omits no values in K .

Proof Since all sets are affine, a function f regular on Gk is a restriction of a polyno-
mial Pf onto Gk. We use induction on k.

Step 1. k = 1. G is an irreducible quadric. Assume that f ∈ K [G] omits a value.
Let p : G → A

1
a be a projection defined by p(a, b, c, d) = a. If a �= 0 then the fiber

Fa = p−1(a) ∼= A
2
b,c is an affine space with coordinates b, c because d = (1+bc)/a.

Since f omits a value, the restriction f |Fa is constant for every a �= 0. Therefore it is
constant on every fiber (note that the fiber a = 0 is connected). On the other hand, f
has to be constant along the curve

C = {(a, 1,−1, 0)} ∼= A
1
a(K ).

Since the curve C ⊂ G intersects every fiber Fa of projection p, the function f is
constant on G.

Step 2. Assume that the statement of the lemma is valid for all k � n. Let f ∈ K [Gn]
omit a value. We have Gn = M×N , where M = Gn−1 and N = G. Let p : Gn → N
be a natural projection. Then, by induction assumption, f is constant along every
fiber of this projection. Take x ∈ M and consider the set C = x×N ⊂ Gn. Then
f |C = const and C intersects every fiber of p. Hence, f is constant. 	

Proposition 2.2 For every word w(x1, . . . , xk) �= id the image wG contains every
element z ∈ G with a = tr(z) �= ±2.

Proof We consider Gn ⊂ A
4n as the product of

Gi = {aidi − bi ci = 1} ⊂ A
4
ai ,bi ,ci ,di ,

1 � i � n. The function f (a1, b1, c1, d1, . . . , an, bn, cn, dn) = tr(w(x1, . . . , xn)) is
a polynomial in 4n variables with integer coefficients, i.e., f ∈ K [Gn]. According to
Lemma 2.1, it takes on all values in K . Thus for every value A ∈ K there is an element
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618 T. Bandman, Yu.G. Zarhin

u = w(y1, . . . , yn) ∈ wG such that tr(u) = A. Let now z ∈ G, A = tr(z) �= ±2.
Since tr(z) = tr(u), z is conjugate to u, i.e., there is v ∈ G such that vuv−1 = z.
Hence z = w(vy1v−1, . . . , vynv−1). 	

It follows that in order to check whether the word map w is surjective on G (or on
G̃) it is sufficient to check whether the elements z with tr(z) = ±2 (or the elements
z with tr(z) = 2, respectively) are in the image. For that we need a version of the
Embedding Magnus Theorem.

3 Variation on the Magnus Embedding Theorem: statements

Let n � 2 be an integer and �n = Z[t1, t−1
1 , . . . , tn, t−1

n ] be the ring of Laurent
polynomials in n independent variables t1, . . . , tn over Z. Let F = Fn be a free group
of rank n with generators {g1, . . . , gn}. Recall: we write F (1) for the derived subgroup
of F and F (2) for the derived subgroup of F (1). We have

F (2) ⊂ F (1) ⊂ F;
both F (1) and F (2) are normal subgroups in F . The quotient A = F/F (1) = Z

n is a
free abelian group of rank n with (standard) generators {e1, . . . , en} where each ei is
the image of gi , 1 � i � n. The group ring Z[A] of A is canonically isomorphic to
�n : under this isomorphism each ei ∈ A ⊂ Z[A] goes to

ti ∈ Z
[
t1, t

−1
1 , . . . , tn, t

−1
n

] = �n .

We write Rn for the ring of polynomials

�n[s1, . . . , sn] = Z
[
t1, t

−1
1 , . . . , tn, t

−1
n ; s1, . . . , sn

]

in n independent variables s1, . . . , sn over �n . If R is a commutative ring with 1 then
we write T(R) for the group of invertible 2×2 matrices of the form

[
a 0
b 1

]

with a ∈ R∗, b ∈ R and ST(R) for the group of unimodular 2×2 matrices of the form

[
a 0
b a−1

]

with a ∈ R∗, b ∈ R. We have

T(R) ⊂ GL(2, R), ST(R) ⊂ SL(2, R).

Every homomorphism R → R′ of commutative rings (with 1) induces the natural
group homomorphisms

T(R) → T(R′), ST(R) → ST(R′),
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Surjectivity of certain word maps on PSL(2,C) and SL(2,C) 619

which are injective if R → R′ is injective.
The following assertion (that is based on the properties of the famous Magnus

embedding [20]) was proven in [26, Lemma 2].

Theorem 3.1 The assignment

gi �→
[
ti 0
si t

−1
i

]
, 1 � i � n,

extends to a group homomorphism μW : F → ST(Rn) with kernel F (2) and therefore
defines an embedding

F/F (2) ↪→ ST(Rn) ⊂ SL(2, Rn).

It follows from Theorem 3.1 that if K is a field of characteristic zero, whose transcen-
dence degree over Q is, at least, 2n then there is an embedding

F/F (2) ↪→ ST(K ) ⊂ SL(2, K ).

(In particular, it works for K = R, C or the field Qp of p-adic numbers [26].) The
aim of the following considerations is to replace in this statement the lower bound 2n
by n.

Theorem 3.2 The assignment

gi �→
[
ti 0
1 t−1

i

]
, 1 � i � n,

extends to a group homomorphism μ1 : F → ST(�n) with kernel F (2) and therefore
defines an embedding

F/F (2) ↪→ ST(�n) ⊂ SL(2,�n).

Remark 3.3 Let

ev1 : Rn = �n[s1, . . . , sn] → �n

be the �n-algebra homomorphism that sends all si to 1 and let

ev1
∗ : ST(Rn) → ST(�n)

be the group homomorphism induced by ev1. Thenμ1 coincides with the composition

ev1
∗◦μW : F → ST(Rn) → ST(�n).
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620 T. Bandman, Yu.G. Zarhin

Corollary 3.4 Let K be a field of characteristic zero. Suppose that the transcendence
degree of K over Q is, at least, n. Then there is a group embedding

F/F (2) ↪→ ST(K ) ⊂ SL(2, K ).

The proof of Theorem 3.2 is based on the following observation.

Lemma 3.5 Let K be a field of characteristic zero. Suppose that the transcendence
degree of K over Q is, at least, n and let {u1, . . . , un} ⊂ K be an n-tuple of alge-
braically independent elements (over Q). Let Q(u1, . . . , un) be the subfield of K
generated by {u1, . . . , un} and let us consider K as the Q(u1, . . . , un)-vector space.
Let {y1, . . . , yn} ⊂ K be an n-tuple that is linearly independent over Q(u1, . . . , un).
Let R be the subring of K generated by 3n elements u1, u

−1
1 , . . . , un, u−1

n ; y1, . . . , yn.
Then the assignment

gi �→
[
ui 0
yi 1

]
∈ T(R), 1 � i � n,

extends to a group homomorphism μ : F → T(R) ⊂ T(K ) with kernel F (2) and
therefore defines an embedding

F/F (2) ↪→ T(R) ⊂ T(K ).

Example 3.6 Let K be the field Q(t1, . . . , tn) of rational functions in n independent
variables t1, . . . , tn overQ. Onemay view�n as the subring of K generated by 2n ele-
ments t1, t

−1
1 , . . . , tn, t−1

n . By definition, the n-tuple {t1, . . . , tn} ⊂ K is algebraically
independent (over Q). Clearly, the n-tuple

{
u1 = t21 , . . . , ui = t2i , . . . , un = t2n

} ⊂ K

is also algebraically independent. Then the n elements y1 = t1, . . . , yi = ti , . . . , yn =
tn are linearly independent over the (sub)fieldQ(t21 , . . . , t2n ) = Q(u1, . . . , un). Indeed,
if a rational function

f (t1, . . . , tn) =
n∑

i=1

ti · fi

where all fi ∈ Q(t21 , . . . , t2n ) then

2t1 f1 = f (t1, t2, . . . , tn) − f (−t1, t2, . . . , tn), . . . ,

2ti fi = f (t1, . . . , ti , . . . , tn) − f (t1, . . . ,−ti , . . . , tn), . . . ,

2tn fn = f (t1, . . . , ti , . . . , tn) − f (t1, . . . , ti , . . . ,−tn).

This proves that if f = 0 then all fi are also zero, i.e., the set {t1, . . . , tn} is linearly
independent over Q(t21 , . . . t2n ).
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Surjectivity of certain word maps on PSL(2,C) and SL(2,C) 621

By definition, R coincides with the subring of K generated by 3n elements t21 , t−2
1 ,

. . . , t2n , t−2
n ; t1, . . . , tn . This implies easily that R = �n . Applying Lemma 3.5, we

conclude the example by the following statement.
The assignment

gi �→
[
t2i 0
ti 1

]
∈ T(�n), 1 � i � n,

extends to a group homomorphism μ : F → T(R) = T(�n) with kernel F (2) and
therefore defines an embedding

F/F (2) ↪→ T(�n).

We prove Lemma 3.5, Theorem 3.2 and Corollary 3.4 in Sect. 4.

4 Variation on the Magnus Embedding Theorem: proofs

Proof of Lemma 3.5 Let � ⊂ Q(u1, . . . , un) ⊂ K be the subring generated by 2n
elements u1, u

−1
1 , . . . , un, u−1

n . Since ui are algebraically independent over Q, the
assignment

ti �→ ui , t−1
i �→ u−1

i

extends to a ring isomorphism�n ∼= �. The linear independence of yi overQ(u1, . . . ,
un) implies that M = � · y1 + · · · + � · yn ⊂ R ⊂ K is a free �-module of rank n.
On the other hand, let

U ⊂ �∗ ⊂ Q(u1, . . . , un)
∗ ⊂ K ∗

be the multiplicative (sub)group generated by all ui . The assignment gi �→ ui extends
to the surjective group homomorphism δ : F � U with kernel F (1) and gives rise
to the group isomorphism A ∼= U , which sends ei to ui and allows us to identify
the group ring Z[U ] of U with � ∼= �n = Z[A]. Notice that M carries the natural
structure of free Z[U ]-module of rank n defined by

λ(m) = λ ·m ∈ K , λ ∈ Z[U ] = � ⊂ K , m ∈ M ⊂ K .

We have

μ(F) ⊂
[
U 0
M 1

]
⊂ T(R) ⊂ GL2(R).

It follows from [27, Lemma 1(c), p. 175] that ker(μ) coincides with the derived sub-
group of ker(δ). Since ker(δ) = F (1), we conclude that ker(μ) = F (2) and we are
done. 	
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622 T. Bandman, Yu.G. Zarhin

Proof of Theorem 3.2 Let us return to the situation of Example 3.6. In particular,
the group homomorphism (we know its kernel, thanks to already proven Lemma 3.5)
μ : F → T(�n) ⊂ GL2(�n) is defined by

μ(gi ) =
[
t2i 0
ti 1

]
∈ T(�n)

for all gi . Let us consider the group homomorphism

κ : F → �∗
n, gi �→ ti .

Since ti are algebraically independent, they are multiplicatively independent and
ker(κ) = F (1). We claim that μ1 : F → ST(�n) coincides with the group homo-
morphism

g �→ κ(g)−1 ·μ(g).

Indeed, we have for all gi

κ(gi )
−1 ·μ(gi ) = t−1

i ·
[
t2i 0
ti 1

]
=

[
ti 0
1 t−1

i

]
= μ1(gi ) ⊂ ST(�n),

which proves our claim. Recall that we need to check that ker(μ1) = F (2). In order
to do that, first notice that μ1(g) is of the form

[
κ(g) 0

∗ κ(g)−1

]

for all g ∈ F just because it is true for all g = gi . This implies that ker(μ1) ⊂
ker(κ) = F (1). But μ = μ1 on F (1). This implies that ker(μ1) = ker(μ) ∩ F (1).
However, as we have seen in Example 3.6, ker(μ) = F (2) ⊂ F (1). This implies that

ker(μ1) = F (2) ∩ F (1) = F (2)

and we are done. 	

Proof of Corollary 3.4 There exists an n-tuple {x1, . . . , xn} ⊂ K that is algebraically
independent over Q. The assignment

ti �→ xi , t−1
i �→ x−1

i

extends to an injective ring homomorphism

�n = Z
[
t1, t

−1
1 , . . . , tn, t

−1
n

]
↪→ K .
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Surjectivity of certain word maps on PSL(2,C) and SL(2,C) 623

This implies that ST(�n) is isomorphic to a subgroup of ST(K ). Thanks to Theo-
rem 3.2, F/F (2) is isomorphic to a subgroup of ST(�n). This implies that F/F (2) is
isomorphic to a subgroup of ST(K ). 	

Similar arguments prove the following generalization of Theorem 3.2.

Theorem 4.1 Let {b1, . . . , bn} be an n-tuple of non-zero integers. Then the assign-
ment

gi �→
[
ti 0
bi t

−1
i

]
, 1 � i � n,

extends to a group homomorphism F → ST(�n) with kernel F (2).

5 Word maps and unipotent elements

Lemma 5.1 Let w be an element of F (1) that does not belong to F (2). Then there
exists a non-zero Laurent polynomial

Lw = Lw(t1, . . . tn) ∈ Z
[
t1, t

−1
1 , . . . , tn, t

−1
n

] = �n

such that

μ1(w) =
[
1 0
Lw 1

]
.

Proof We have seen in the course of the proof of Theorem 3.2 that for all g ∈ F

μ1(g) =
[
κ(g) 0

∗ κ(g)−1

]
∈ ST(�n).

This means that there exists a Laurent polynomial Lg ∈ �n such that

μ1(g) =
[
κ(g) 0
Lg κ(g)−1

]
.

We have also seen that if g ∈ F (1) then κ(g) = 1. Since w ∈ F (1),

μ1(w) =
[
1 0
Lw 1

]

with Lw ∈ �n . On the other hand, by Theorem 3.2, ker(μ1) = F (2). Since w /∈ F (2),
Lw �= 0 in �n . 	

Corollary 5.2 Let w be an element of F (1) that does not belong to F (2). Suppose
that a = {a1, . . . , an} is an n-tuple of non-zero rational numbers such that c =
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624 T. Bandman, Yu.G. Zarhin

Lw(a1, . . . , an) �= 0. (Since Lw �= 0, such an n-tuple always exists.) Let us consider
the group homomorphism

γa : F → ST(Q) ⊂ SL(2, Q), gi �→
[
ai 0
1 a−1

i

]
= Zi .

Then

γa(w) =
[
1 0
c 1

]
= w(Z1, . . . , Zn).

is a unipotent matrix that is not the identity matrix.

Proof One has only to notice that γa is the composition of μ1 and the group homo-
morphism ST(�n) → ST(Q) induced by the ring homomorphism�n → Q, ti �→ ai ,
t−1
i �→ a−1

i . 	

Corollary 5.3 Let w be an element of F (1) that does not belong to F (2). Let K be a
field of characteristic zero. Then for every unipotent matrix X ∈ SL(2, K ) there exists
a group homomorphism ψw,X : F → SL(2, K ) such that ψw,X (w) = X. In other
words, there exist Z1, . . . , Zn ∈ SL(2, K ) such that w(Z1, . . . , Zn) = X.

Proof We have

Q ⊂ K , SL(2, Q) ⊂ SL(2, K ) � GL(2, K ).

We may assume that X is not the identity matrix. Let a = {a1, . . . , an} and γa be
as in Corollary 5.2. Recall that c = Lw(a1, . . . , an) �= 0. Then there exists a matrix
S ∈ GL(2, K ) such that

X = S

[
1 0
c 1

]
S−1.

Let us consider the group homomorphism ψw,X : F → SL(2, K ), g �→ Sγa(g)S−1.
Then ψw,X sends w to

Sγa(w)S−1 = S

[
1 0
c 1

]
S−1 = X. 	


Corollary 5.4 Let w be an element of F (1) that does not belong to F (2). Let K be an
algebraically closed field of characteristic zero. Then the word map w is surjective on
PSL(2, K ).

Proof Consider w as a word map on G = SL(2, K ). Due to Corollary 5.3, the
image wG contains all unipotents. According to Proposition 2.2, the image contains
all semisimple elements as well. Thus, the word map w has Properties 1.1 (a) and (b).
It follows that it is surjective on PSL(2, K ). 	
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Remark 5.5 In [12], the words from F (1)\F (2) are proved to be surjective on SU(n)

for an infinite set of integers n.

Theorem 5.6 Let w be an element of F (1) that does not belong to F (2). Let G be
a connected semisimple linear algebraic group of positive dimension over a field K
of characteristic zero. If u ∈ G(K ) is a unipotent element then there exists a group
homomorphism F → G(K ) such that the image ofw coincides with u. In other words,
there exist Z1, . . . , Zn ∈ G(K ) such that w(Z1, . . . , Zn) = u.

Proof Let a = {a1, . . . , an}, γa and c = Lw(a1, . . . , an) �= 0 be as in Corollary 5.2.
By Lemma 5.7 below, there exists a group homomorphism φ : ST(K ) → G(K ) such
that u = φ(u1) for

u1 =
[
1 0
c 1

]
∈ ST(K ).

Now the result follows from Corollary 5.2: the desired homomorphism is the compo-
sition φ◦γa : F → ST(K ) → G(K ). 	

Lemma 5.7 Let K be a field of characteristic zero, G a connected semisimple linear
algebraic K -group of positive dimension, and u a unipotent element of G(K ). Then
for every non-zero c ∈ K there is a group homomorphism φ : ST(K ) → G(K ) such
that u is the image of

u1 =
[
1 0
c 1

]
∈ ST(K ).

Proof Let us identify the additive algebraic K -group Ga with the closed subgroup H
of all matrices of the form

v(t) =
[
1 0
t 1

]

in SL(2). Its Lie subalgebra Lie(H) is the one-dimensional K -vector subspace
Lie(H) = {λx0 : λ ∈ K } of sl2(K ) generated by the matrix

x0 =
[
0 0
1 0

]
⊂ sl2(K ).

Here we view the K -Lie algebra sl2(K ) of 2×2 traceless matrices as the Lie algebra
of the algebraic K -group SL(2). Moreover, exp(λx0) = v(λ) for all λ ∈ K .

We may view G as a closed algebraic K -subgroup of the linear algebraic group
GL(N ) = GL(V ), whereV is an N -dimensional K -vector space for a suitable positive
integer N . Then

u ∈ G(K ) ⊂ AutK (V ) = GL(N , K ).

123



626 T. Bandman, Yu.G. Zarhin

Thus the K -Lie algebra Lie(G) becomes a certain semisimple Lie subalgebra of
EndK (V ). Here we view EndK (V ) as the Lie algebra Lie(GL(V )) of the K -algebraic
group GL(V ). As usual, we write

Ad : G(K ) → AutK (Lie(G))

for the adjoint action of G. We have

Ad(g)(u) = gug−1

for all g ∈ G(K ) ⊂ AutK (V ) and u ∈ Lie(G) ⊂ EndK (V ). Since u is a unipotent
element, the linear operator u − 1 : V → V is nilpotent. Let us consider the nilpotent
linear operator

x = log(u) =
∞∑

i=1

(−1)i+1 (u − 1)i

i
∈ EndK (V )

([7, Section 7, p. 106], [24, Section 23, p. 336]) and the corresponding homomorphism
of algebraic K -groups

ϕu : H → GL(V ), v(t) �→ exp(t x) = v(0) + t x + · · ·

In particular, since u1 = v(1), ϕu(u1) = u. Clearly, the differential of ϕu

dϕu : Lie(H) → Lie(GL(V )) = EndK (V )

is defined as

dϕu(λx0) = λx for all λ ∈ K ,

and sends x0 to x ∈ Lie(GL(V )). Since ϕu(m) = um ∈ G(K ) for all integers m
and G is closed in GL(V ) in Zariski topology, the image ϕu(H) of H lies in G and
therefore one may view ϕu as a homomorphism of algebraic K -groups ϕu : H → G.
This implies

dϕu(Lie(H)) ⊂ Lie(G);

in particular, x ∈ Lie(G).
There exists a cocharacter � : Gm → G ⊂ GL(V ) of K -algebraic group G such

that for each β ∈ K ∗ = Gm(K )

Ad(�(β))(x) = β2x
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(see [21, Section 6, pp. 402–403], here Gm is the multiplicative algebraic K -group).
This means that for all λ ∈ K

�(β)λx�(β)−1 = Ad(�(β))(λx) = λβ2x = β2λx ∈ Lie(G) ⊂ EndK (V ),

which implies that

�(β)(exp(λx))�(β)−1 = exp
(
�(β)λx�(β)−1) = exp(β2λx).

It follows that

�(β)

(
exp

(
λ

c
x

))
�(β)−1 = exp

(
β2 λ

c
x

)
.

Recall that ST(K ) is a semi-direct product of its normal subgroup H(K ) and the torus

T1(K ) =
{[

β−1 0
0 β

]
: β ∈ K ∗

}
⊂ ST(K ).

In addition,

[
β−1 0
0 β

] [
1 0
λ 1

] [
β−1 0
0 β

]−1

=
[

1 0
β2λ 1

]
for all λ ∈ K , β ∈ K ∗.

It follows from [8, Chapter III, Proposition 27, p. 240] that there is a group homomor-
phism φ : ST(K ) → G(K ) that sends each

(
1 0
λ 1

)
to exp(λx/c) and each

(
β−1 0
0 β

)
to

�(β). Clearly, φ sends u1 = (
1 0
c 1

)
to exp(cx/c) = exp(x) = u. 	


6 Words in two letters on SL(2,C)

In this section we consider words in two letters. We provide the explicit formulas for
w(x, y), where x, y are upper triangular matrices. This enables us to extract some
additional information on the image of words in two letters.

Consider a word map w(x, y) = xa1yb1 . . . xak ybk , where ai �= 0 and bi �= 0 for
all i = 1, . . . , k. Let A(w) = ∑k

i=1 ai and B(w) = ∑k
i=1 bi .

If A(w) = B(w) = 0, thenw ∈ F (1) = [F, F ]. Since F (1) is a free group generated
by elements wn,m = [xn, ym], n �= 0,m �= 0 [23, Chapter 1, Section 1.3], the word w

with A(w) = B(w) = 0 may be written as a (non-commutative) product (with si �= 0)

w =
r∏

i=1

wsi
ni ,mi

. (2)

Moreover, the shortest (reduced) representation of this kind is unique. We denote
by Sw(n,m) the number of appearances of wn,m in representation (2) of w and by
Rw(n,m) the sum of exponents at all appearances.We denote by Supp(w) the set of all
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pairs (n,m) such thatwn,m appears in the product. For example, ifw = w1,1w
5
2,2w

−1
1,1,

then

Supp(w) = {(1, 1), (2, 2)},
Sw(1, 1) = 2, Sw(2, 2) = 1,

Rw(1, 1) = 0, Rw(2, 2) = 5.

The subgroup

F (2) = [
F (1), F (1)] = {

w ∈ F (1) : Rw(n,m) = 0, (n,m) ∈ Supp(w)
}
.

Example 6.1 The Engel word

en = [. . . [x, y], y], . . . y]︸ ︷︷ ︸
n times

belongs to F (1)\F (2) (see also [12]). Indeed, the direct computation shows that

ywn,m = yxn ymx−n y−m

= yxn y−1x−n · xn y ymx−n y−m y−1 · y = w−1
n,1wn,m+1y,

yw−1
n,m = y · ymxn y−mx−n

= y(m+1)xn y−(m+1)x−n · xn yx−n y−1 · y = w−1
n,m+1wn,1 y.

It follows that

yws
1,m y−1 = (

w−1
1,1w1,m+1

)s
. (3)

Let us prove by induction that |Ren (1, n)| = 1, Sen (1, n) = 1 and Sen (r,m) = 0 if
r �= 1 or m > n, i.e.

en =
s∏

i=1

w
si
1,mi

· wε
1,n ·

t∏

j=1

w
t j
1,k j

(4)

for some integers t � 0, s � 0, mi < n, kj < n, and where ε = ±1.
Indeed e1 = w1,1. Assume that the claim is valid for all k � n. We have en+1 =

en ye−1
n y−1. Using (4), we get

en+1 = en

( 1∏

j=t

yw
−t j
1,k j

y−1
)
yw−ε

1,n y
−1

( 1∏

i=s

yw−si
1,mi

y−1
)

.

Applying (3) to every factor of this product, we obtain that en+1 has the needed form.
Thus the claim will remain valid for n + 1. Since |Ren (1, n)| = 1, en /∈ F (2). The

surjectivity of the Engel words on simple algebraic groups was studied in [2,12,16].
There is a beautiful proof of surjectivity of en on PSL(2, C) in [18, Corollary 4].
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Let us take

x =
(

λ c
0 1/λ

)
, (5)

y =
(

μ d
0 1/μ

)
. (6)

Then

xn =
(

λn c ·h|n|(λ) sgn(n)

0 1/λn

)
, ym =

(
μm d ·h|m|(μ) sgn(m)

0 1/μm

)
.

Here sgn is the signum function, and (see [1, Lemma 5.2]) for n � 1

hn(ζ ) = ζ 2n − 1

ζ n−1(ζ 2 − 1)
.

Note that hn(1) = n. Direct computations show that

xn ym =
(

λnμm d ·λn sgn(m)h|m|(μ) + c · sgn(n)h|n|(λ)μ−m

0 λ−nμ−m

)
, (7)

x−n y−m =
(

λ−nμ−m −d ·λ−n sgn(m)h|m|(μ) − c · sgn(n)h|n|(λ)μm

0 λnμm

)
,

wn,m(x, y) =
(
1 f (c, d, n,m)

0 1

)
,

where

f (c, d, n,m) = ch|n|(λ) sgn(n)λn(1 − μ2m) + dh|m|(μ) sgn(m)μm(λ2n − 1).

Hence,

w(x, y) =
r∏

i=1

wsi
ni ,mi

(x, y) =
(
1 Fw(c, d, λ, μ)

0 1

)
,

where

Fw(c, d, λ, μ) =
r∑

i=1

si f (c, d, ni ,mi ) = c�w(λ,μ) + d�w(λ,μ)

and

�w(λ,μ) =
∑

(α,β)∈Supp(w)

Rw(α, β) sgn(α)(1 − μ2β)
(λ2|α| − 1)λα

λ|α|−1 (λ2 − 1)
, (8)

�w(λ,μ) =
∑

(α,β)∈Supp(w)

Rw(α, β) sgn(β)(λ2α − 1)
(μ2|β| − 1)μβ

μ|β|−1 (μ2 − 1)
. (9)
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(Since the order of factors in w is not relevant for (8) and (9), we use here α, β instead
of ni ,mi to simplify the formulas).

Proposition 6.2 Rational functions �(λ,μ) and �(λ,μ) are non-zero linearly inde-
pendent rational functions.

Remark 6.3 It is evident from the Magnus Embedding Theorem that at least one of
functions �(λ,μ) and �(λ,μ) is not identical zero. It follows from Proposition 6.2
that the same is valid for both of them.

Proof The proof is based on the following

Claim 6.4 If �w(λ,μ) ≡ 0 then Rw(α, β) = 0 for all (α, β) ∈ Supp(w).

Proof We use induction by the number |Supp(w)| of elements in Supp(w) for the
word w. If Supp(w) contains only one pair (α, β), then there is nothing to prove,
because

�(λ,μ) = Rw(α, β)h|α|(λ) sgn(α)λα (1 − μ2β).

Assume that for words v with |Supp(v)| = l it is proved. Let w be such a word that
|Supp(w)| = l + 1. Let n = max{α : (α, β) ∈ Supp(w)}.
Case 1. n > 0. We have

�w(λ,μ) =
∑

(α,β)∈Supp(w)

Rw(α, β) sgn(α)(1 − μ2β)
(λ2|α| − 1)λα

λ|α|−1(λ2 − 1)

=
∑

(α,β)∈Supp(w)

Rw(α, β) sgn(α)(1 − μ2β)

· λa−|a|+1(1 + λ2 + · · · + λ2(|α|−1)).

It means that the coefficient of λ2|n|−1 in the rational function �w(λ,μ) is

p(μ) =
∑

(n,β)∈Supp(w)

Rw(n, β)(1 − μ2β).

Hence, if �w(λ,μ) ≡ 0, then p(μ) ≡ 0, and all Rw(n, β) = 0 for all β.
Thatmeans that�w(λ,μ) = �v(λ,μ), where v is such aword thatmay be obtained

from w(x, y) = ∏r
1 w

si
ni ,mi (x, y) by taking away every appearance of wn,β :

v =
r∏

i=1
ni �=n

wsi
ni ,mi

(x, y).

But |Supp(v)| � l and by the induction assumption Rv(α, β) = 0 for all (α, β) ∈
Supp(v). Thus claim is valid for w in this case.

123



Surjectivity of certain word maps on PSL(2,C) and SL(2,C) 631

Case 2. n < 0. Let −n′ = min{α : (α, β) ∈ Supp(w)}. We proceed as in Case 1 with
−n′ instead of n: the coefficient of λ−2n′+1 is

q(μ) =
∑

(−n′,β)∈Supp(w)

Rw(−n′, β)(1 − μ2β).

If �w(λ,μ) ≡ 0, then q(μ) ≡ 0, and all Rw(−n′, β) = 0 for all β. Once more, we
may replace w by a word v with |Supp(v)| � l. �

Clearly, the similar statement is valid for �w(λ,μ). The functions � and � are
linearly independent, because � is odd with respect to λ and even with respect to μ,
while � has opposite properties. 	

Proposition 6.5 Assume that the word w ∈ F (1)\F (2) and that �w(1, i) �= 0, where
i2 = −1. Then −id ∈ wG, where G = SL(2, C).

Proof Assume that �(1, i) �= 0. From (8) we get

�w(1, i) =
∑

(α,β)∈Supp(w)
β odd

2Rw(α, β)α.

Take

x =
(
a 0
0 a−1

)
, y =

(
0 1

−1 0

)
.

Then

[x, y] =
(
a2 0
0 a−2

)
.

Thus, if w = ∏r
1 w

s j
n j ,m j , then

w(x, y) =
∏

m j odd

(
a2n j s j 0
0 a−2n j s j

)
=

(
aN 0
0 a−N

)
,

where N = 2
∑

m j odd n j s j = �w(1, i) �= 0. Choose a such that aN = −1. Then
w(x, y) = −id. 	

Remark 6.6 The case �(i, 1) �= 0 may be treated in a similar way, one should only
exchange roles of x and y.

Remark 6.7 Let w = ∏r
1 w

s j
n j ,m j , let gcd(m j ) = k = 2ds, s odd. Put μ j = m j/k

and u = ∏r
1 w

s j
n j ,μ j . Note that some of μ j are odd. Let z ∈ SL(2, C) be such that

zk = y =
(

0 1
−1 0

)
.
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Then w(x, z) = u(x, y), hence, if �u(1, i) �= 0, then −id ∈ wG .

7 Surjectivity on SL(2,C)

We keep the notation of Sect. 6.

Lemma 7.1 Assume that w = xa1yb1 . . . xak ybk , ai �= 0, bi �= 0, i = 1, . . . , k,
A = ∑

ai �= 0 or B = ∑
bi �= 0 and x, y are defined by (5), (6) respectively. Then

w(x, y) =
(

λAμB F̃w(c, d, λ, μ)

0 λ−Aμ−B

)
,

where F̃w(c, d, λ, μ) = c�̃w(λ, μ) + d�̃w(λ, μ) and

�̃w(λ, μ) =
k∑

i=1

sgn(ai )h|ai |(λ)
λ

∑
j<i a j μ

∑
j<i b j

λ
∑

j>i a j μ
∑

j�i b j
, (10)

�̃w(λ, μ) =
k∑

i=1

sgn(bi )h|bi |(μ)
λ

∑
j�i a j μ

∑
j<i b j

λ
∑

j>i a j μ
∑

j>i b j
. (11)

Proof We use induction on the complexity k of the word w. Using (7), we get

xa1yb1 =
(

λa1μb1 d ·λa1 sgn(b1)h|b1|(μ) + c · sgn(a1)h|a1|(λ)μ−b1

0 λ−a1μ−b1

)
.

Thus for k = 1 the lemma is valid. Assume that it is valid for k′ < k. Let u =
xa1yb1 . . . xak−1ybk−1 and w = uxak ybk . By the induction assumption,

u(x, y) =
(

λA−akμB−bk F̃u(c, d, λ, μ)

0 λ−A+akμ−B+bk

)
.

From (7) we get

xak ybk =
(

λakμbk d ·λak sgn(bk)h|bk |(μ) + c · sgn(ak)h|ak |(λ)μ−bk

0 λ−akμ−bk

)
.

Multiplying matrices u and xak ybk , we get

F̃w(c, d, λ, μ) = λA−akμB−bk
(
d ·λak sgn(bk)h|bk |(μ) + c · sgn(ak)h|ak |(λ)μ−bk

)

+F̃u(c, d, λ, μ)λ−akμ−bk .
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Thus, the induction assumption implies that

�̃w(λ, μ) = sgn(ak)h|ak |(λ)μ−bk λA−akμB−bk

+
k−1∑

i=1

sgn(ai )h|ai |(λ)
λ

∑
j<i a j μ

∑
j<i b j

λ
∑k

j=i+1 a j μ
∑k

j=i b j

=
k∑

i=1

sgn(ai )h|ai |(λ)
λ

∑
j<i a j μ

∑
j<i b j

λ
∑

j>i a j μ
∑

j�i b j
.

�̃w(λ, μ) = sgn(bk)h|bk |(μ)λak λA−akμB−bk

+
k−1∑

i=1

sgn(bi )h|bi |(μ)
λ

∑
j�i a j μ

∑
j<i b j

λ
∑k

j=i+1 a j μ
∑k

j=i+1 b j

=
k∑

i=1

sgn(ai )h|ai |(λ)
λ

∑
j�i a j μ

∑
j<i b j

λ
∑

j>i a j μ
∑

j>i b j
. 	


Denote

Ai =
∑

j�i

ai , Bi =
∑

j<i

bi ,

and let C be a curve C = {λAμB = −1} ⊂ C
2
λ,μ.

Multiplying (10) and (11) by λAμB, we see that on C the following relations are
valid:

�̃w(λ, μ)|C = −
k∑

i=1

sgn(ai )h|ai |(λ)λ2Ai−ai μ2Bi,

�̃w(λ, μ)|C = −
k∑

i=1

sgn(bi )h|bi |(μ)λ2Ai μ2Bi+bi.

In particular, on C

�̃w(1, μ)|C = −
k∑

i=1

aiμ
2Bi, (12)

�̃w(λ, 1)|C = −
k∑

i=1

biλ
2Ai. (13)

Lemma 7.2 Assume that A �= 0 and the word map w is not surjective. Then

k∑

i=1

bi γ
2Ai = 0
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for every root γ of equation q(z) = zA + 1 = 0.
If B �= 0 and the word map w is not surjective, then

k∑

i=1

ai δ
2Bi = 0

for every root δ of equation p(z) = zB + 1 = 0.

Proof The matrices z with tr(z) = 2 are in the image, because w(x, id) = x A,
w(id, y) = yB. It is evident that −id is in the image: one may take c = d = 0.
Assume now that for complex numbers � �= 0 the matrices

(−1 �

0 −1

)

are not in the image. This implies that �̃w(λ, μ) ≡ 0 and �̃w(λ, μ) ≡ 0 on the defined
above curve C = {λAμB = −1} ⊂ C

2
λ,μ.

If A �= 0 or B �= 0, then the pair (γ, 1) or (1, δ) respectively belongs to the curve
C . We have to use only (12), (13), respectively. 	

Corollary 7.3 Let 2Bi = ki B + Ti , where ki are integers and 0 � Ti < B �= 0. If w
is not surjective, then for every 0 � T < B

∑

i :Ti=T

ai (−1)ki = 0.

Proof Indeed in this case

0 =
k∑

i=1

ai δ
2Bi =

B−1∑

T=0

δT
∑

i :Ti=T

ai (−1)ki

for any root δ of equation p(z) = zB + 1 = 0. Since p(z) has no multiple roots, it
implies that p(z) divides the polynomial

p1(z) =
B−1∑

T=0

zT
∑

i :Ti=T

ai (−1)ki.

But since degree of polynomial p(z) is bigger than degree of p1(z) that can be only if
p1(z) ≡ 0.

	

Corollary 7.4 If all bi are positive, then the word map w is either surjective or the
square of another word v �= id.
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Proof In this case 0 � 2Bi < 2B and the sequence Bi is increasing. If w is not
surjective, p1(z) ≡ 0, by Corollary 7.3. Thus for every Bi there is Bj such that
2Bi = 2Bj + B and ai − a j = 0.

Thus, the sequence of 2Bi looks like

0 = 2B1, 2b1 = 2B2, 2(b1 + b2) = 2B3, . . . ,

2(b1 + · · · + bs) = 2Bs+1 = B,

2(b1 + · · · + bs+1) = 2Bs+2 = B + 2B2 = B + 2b1,

2(b1 + · · · + bs+2) = 2Bs+3 = B + 2B3 = B + 2b1 + 2b2, . . . ,

2(b1 + · · · + b2s−1) = 2B2s = 2Bs + B,

2(b1 + · · · + b2s) = 2B2s+1 = B + 2Bs+1 = 2B.

It follows that k = 2s and

bs+1 = Bs+2 − Bs+1 = B2 − B1 = b1,

bs+2 = Bs+3 − Bs+2 = B3 − B2 = b2,

b2s−1 = B2s − B2s−1 = Bs − Bs−1 = bs−1,

bk = b2s = B2s+1 − B2s = Bs+1 − Bs = bs .

Thus,

bi = bi+s, 2Bi = 2Bi+s + B, ai = ai+s, i = 1, . . . , s.

Therefore the word is the square of v = xa1yb1 . . . xas ybs . 	

Corollary 7.5 If all bi are negative, then the word map of the word w is either sur-
jective or the square of another word v �= id.

Proof We may change y to z = y−1 and apply Corollary 7.4 to the word w(x, z). 	

Corollary 7.6 If all ai are positive, then thewordmapof thewordw is either surjective
or the square of another word v �= id.

Proof Consider v = x−1, z = y−1, a word

w′(z, v) = w(x, y)−1 = y−bk x−ak . . . y−b1x−a1 = zbkvak . . . zb1va1,

and apply Corollary 7.4 to the word w′(z, v). 	


8 Trace criteria of almost surjectivity

For every word map w(x, y) : G2 → G there are defined the trace polynomials
Pw(s, t, u) = tr(w(x, y)) and Qw = tr(w(x, y)y) in three variables s = tr(x),
t = tr(y), and u = tr(xy) [13–15,25].
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In other words, the maps

ϕw : G2 → G2, ϕw(x, y) = (w(x, y), y),

ψw : C
3
s,t,u → C

3
s,t,u, ψw(s, t, u) = (Pw(s, t, u), t, Qw(s, t, u))

may be included into the following commutative diagram:

G×G
ϕw ��

π

��

G×G

π

��
C
3
s,t,u

ψw �� C
3
s,t,u .

Moreover, π is a surjective map [15]. For details, one can be referred to [3,5].
Since the coordinate t is invariant under ψw, for every fixed value t = a ∈ C we

may consider the restriction ψa(s, u) = (Pw(s, a, u), Qw(s, a, u)) of morphism ψw

to the plane {t = a} = C
2
s,u .

Definition 8.1 We say that ψa(s, u) is Big if the image ψa(C
2
s,u) = C

2
s,u\Ta , where

Ta is a finite set. We say that the trace map ψw of a word w ∈ F is Big if there is a
value a such that ψa(s, u) is Big.

Proposition 8.2 If the trace map ψw of a word w ∈ F is Big then the word map
w : G2 → G is almost surjective.

Proof Let a be such a value of t that the map ψa is Big. Let Sa = Ta ∪ {(2, a)} ∪
{(−2,−a)}. Consider lines C+ = {s = 2} and C− = {s = −2} in C

2
s,u . Let

B+ = C+\(C+ ∩ Sa) and B− = C−\(C− ∩ Sa). Since Sa is finite, B+ �= ∅,
B− �= ∅.Moreover, since these curves are outside Sa,wehave: D+ = ψ−1(B+) �= ∅,
D− = ψ−1(B−) �= ∅. Take (s0, u0) ∈ D+ and (s1, u1) ∈ D−. Then ψw(s0, a, u0) =
(2, a, b) with a �= b and ψw(s1, a, u1) = (−2, a, d) with a �= −d. The projection
π : G2 → C

3
s,t,u is surjective, thus there is a pair (x0, y0) ∈ G2 such that tr(x0) = s0,

tr(y0) = a, tr(x0y0) = u0. Then π(w(x0, y0)) = ψw(s0, a, u0) = (2, a, b). Hence,
tr(w(x0, y0)) = 2, but w(x0, y0) �= id, since tr(w(x0, y0)y0) = b �= a = tr(y0).
Similarly, there is a pair (x1, y1) ∈ G2 such that tr(x1) = s1, tr(y1) = a, tr(x1y1) =
u1. Then π(w(x1, y1)) = ψw(s1, a, u1) = (−2, a, d). Hence, tr(w(x1, y1)) = −2,
but w(x1, y1) �= −id, since tr(w(x1, y1) y1) = d �= −a = − tr(y1). It follows that all
the elements z �= −id with trace 2 and −2 are in the image of the word map w. 	

Corollary 8.3 Assume that the trace mapψw of a wordw isBig. Consider a sequence
of words defined recurrently in the following way:

v1(x, y) = w(x, y), vn+1(x, y) = w(vn(x, y), y).

Then the word map vn : G2 → G is almost surjective for all n � 1.
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Proof The trace map ψn = ψvn of the word map vn is the nth iteration ψ
(n)
1 of the

trace map ψ1 = ψw (see [3,5]). Let us show by induction, that all maps ψn are Big.
Indeed ψ1 is Big by assumption, hence (ψ1)a(C

2
s,u) = C

2
s,u − Ta for some value a

and some finite set Ta . Assume now that ψn−1 is Big. Let for a value a of t the image
(ψn−1)a(C

2
s,u) = C

2
s,u\N for some finite set N . Hence

(ψn)a(C
2
s,u) = (ψ1)a((ψn−1)a(C

2
s,u)) = (ψ1)a(C

2
s,u\N )

⊃ (ψ1)a(C
2
s,u)\(ψ1)a(N ) = C

2
s,u \(Ta ∪ (ψ1)a(N )).

Thus (ψn)a is Big as well for the same value a.
According to Proposition 8.2, the word map vn is almost surjective. 	


Example 8.4 Consider the word w(x, y) = v1(x, y) = [yxy−1, x−1] and the corre-
sponding sequence

vn(x, y) = [
yvn−1y

−1, v−1
n−1

]
.

This is one of the sequences that were used for characterization of finite solvable
groups (see [3,5,9]).

We have [5, Section 5.1]

tr(w(x, y)) = f1(s, t, u) = (
s2 + t2 + u2 − ust − 4

)(
t2 + u2 − ust

) + 2,

tr(w(x, y)y) = f2(s, t, u) = f1t + (s(st − u) − t)
(
s2 + t2 + u2 − ust − 4

) − t.

We want to show that for a general value t = a the system of equations

f1(s, a, u) = A, f2(s, a, u) = B (14)

has solutions for all pairs (A, B) ∈ C
2\Ta , where Ta is a finite set.

Consider the system

h1(s, u, a,C) = (
s2 + a2 + u2 − usa − 4

)(
a2 + u2 − usa

) = A − 2 = C,

h2(s, u, a, D) = (s(sa − u) − a)
(
s2 + a2 + u2 − usa − 4

)

= B − a(C + 1) = D. (15)

Note that with respect to u the leading coefficients of h1 and h2 are 1 and −s respect-
fully. TheMAGMA computations show that the resultant (elimination of u) of h1−C
and h2 − D is of the form

R(s, a,C, D) = s4p1(a,C, D) + s2p2(a,C, D) + p3(a,C, D).

It has a non-zero root s �= 0 at any point (a,C, D), where at least two of three
polynomials p1, p2, p3 do not vanish. The MAGMA computations show that the
ideals J1 = 〈p1, p2〉 ⊂ Q[a,C, D], J2 = 〈p1, p3〉 ⊂ Q[a,C, D], J3 = 〈p2, p3〉 ⊂
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Q[a,C, D] generated, respectively, by p1(a,C, D) and p2(a,C, D), by p1(a,C, D)

and p3(a,C, D), by p2(a,C, D) and p3(a,C, D), are one-dimensional. It follows
that for a general value of a the set

{ p1(a,C, D) = p2(a,C, D) = 0} ∪ { p1(a,C, D) = p3(a,C, D) = 0}
∪ { p2(a,C, D) = p3(a,C, D) = 0}

is a finite subset Na ⊂ CC,D . On the other hand, at any point (C, D) outside Na

the polynomial Ra(s) = R(s, a,C, D) has a non-zero root, and, therefore system
(15) has a solution. Thus, outside the finite set of points Ta = {(A = C + 2, B =
D + a(C+1)) : (C, D) ∈ Na} ⊂ CA,B , system (14) has a solution as well. Thus,
ψw = ( f1, t, f2) is Big and all word maps vn are almost surjective on G. Let us cite
theMAGMA computations for t = a = 1, where p = h1 −C , q = h2 − D and R is
the resultant of p, q with respect to u.

> r := uˆ2 + sˆ2 + 1 - u*s;
>
> p := (r - 4) * (r - sˆ2) - C;
>
> q := (r - 4) * (s * (s - u) - 1) - D;
>
> R := Resultant(p,q,u);
> R;
- sˆ4*Cˆ3 - 2*sˆ4*Cˆ2*D + sˆ4*Cˆ2 - 2*sˆ4*C*Dˆ2 + sˆ4*C*D
- sˆ4*Dˆ3 + sˆ4*Dˆ2 + 4*sˆ2*Cˆ2*D - 4*sˆ2*Cˆ2 + 8*sˆ2*C*Dˆ2
- 6*sˆ2*C*D + 6*sˆ2*Dˆ3 - 8*sˆ2*Dˆ2
+ Cˆ2 - 2*C*Dˆ2 + 8*C*D + Dˆ4 - 8*Dˆ3 + 16*Dˆ2

>
> p1 := - Cˆ3 - 2*Cˆ2*D + Cˆ2 - 2*C*Dˆ2 + C*D - Dˆ3 + Dˆ2;
> p2 := 4*Cˆ2*D - 4*Cˆ2 + 8*C*Dˆ2 - 6*C*D + 6*Dˆ3 - 8*Dˆ2;
> p3 := Cˆ2 - 2*C*Dˆ2 + 8*C*D + Dˆ4 - 8*Dˆ3 + 16*Dˆ2;
> Factorization(p1);
[

<C + D - 1, 1>,
<Cˆ2 + C*D + Dˆ2, 1>

]
> Factorization(p2);
[

<Cˆ2*D - Cˆ2 + 2*C*Dˆ2 - 3/2*C*D + 3/2*Dˆ3
- 2*Dˆ2, 1>

]
> Factorization(p3);
[

<C - Dˆ2 + 4*D, 2>
]

Clearly every pair among polynomials p1, p2, p3 has only finite number of common
zeros. For example, p1 = p3 = 0 implies D2 − 5D + 1 = 0 or (D2−4D)2 +
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(D2−4D)D + D2 = 0. Computations show also that the word w(x, y) takes on
value −id. For example, one make take

x =
(−1 1

−2 1

)
, y =

(
1 t
0 1

)
,

where t2 = −1/2. Therefore, the word v1 is surjective. Here are computations:

> R<t> := PolynomialRing(Q);
> X := Matrix(R,2,2,[-1,1,-2,1]);
> Y := Matrix(R,2,2,[ 1,t,0,1]);
> X1 := Matrix(R,2,2,[1,-1,2,-1]);
> Y1 := Matrix(R,2,2,[1,-t,0,1]);
>
> Z := Y * X * Y1;
>
> p11 := Z[1,1];
> p12 := Z[1,2];
> p21 := Z[2,1];
> p22 := Z[2,2];
>
> Z1 := Matrix(R,2,2,[p22,-p12,-p21,p11]);
>
> W := Z * X1 * Z1 * X;
>
> q11 := W[1,1];
> q12 := W[1,2];
> q21 := W[2,1];
> q22 := W[2,2];
>
>
> q11;
16*tˆ4 + 8*tˆ3 + 12*tˆ2 + 4*t + 1
> q12;
-8*tˆ4 - 4*tˆ2
> q21;
16*tˆ3 + 8*t
> q22;
- 8*tˆ3 + 4*tˆ2 - 4*t + 1

Therefore, t2 = −1/2 implies that q11 = q22 = −1, q12 = q21 = 0.

9 The word v(x, y) = [[x, [x, y]], [ y, [x, y]]]
In this section we provide an example of a word v that is surjective though it belongs
to F (2). The interesting feature of this word is the following: if we consider it as a poly-
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nomial in the Lie algebra sl2 ([x, y] being the Lie bracket) then it is not surjective [4,
Example 4.9].

Theorem 9.1 The word v(x, y) = [[x, [x, y]], [y[x, y]]] is surjective on SL(2, C)

(and, consequently, on PSL(2, C)).

Proof As it was shown in Proposition 2.2, for every z ∈ SL(2, C) with tr(z) �= ±2
there are x, y ∈ SL(2, C)2 such that v(x, y) = z.

Assume now that a = ±2. We have to show that −id is in the image and that there
are matrices x, y in SL(2, C) such that

v(x, y) =
(
q11 q12
q21 q22

)

has the following properties:

• q12 + q22 = ±2,
• q12 �= 0.

We may look for these pairs among the matrices x = (
0 b
c d

)
and y = (

1 t
0 1

)
.

In the following MAGMA calculations C = [x, y], D = [[x, y], x ], B =
[[x, y], y], A = [D, B ]. The ideal I in the polynomial ring Q[b, c, d, t ] is defined by
conditions det(x) = 1, tr(A) = 2. The ideal J in the polynomial ring Q[b, c, d, t ] is
defined by conditions det(x) = 1, tr(A) = −2. Let T+ ⊂ SL(2)2 and T− ⊂ SL(2)2

be, respectively, the corresponding affine subsets in the affine variety SL(2)2. The
computations show that q12(b, c, d, t) does not vanish identically on T+ or T−.

> Q := Rationals();
> R<t,b,c,d> := PolynomialRing(Q,4);
> X := Matrix(R,2,2,[0,b,c,d]);
> Y := Matrix(R,2,2,[ 1,t,0,1]);
> X1 := Matrix(R,2,2,[d,-b,-c,0]);
> Y1 := Matrix(R,2,2,[1,-t,0,1]);
> C := X * Y * X1 * Y1;
> p11 := C[1,1];
> p12 := C[1,2];
> p21 := C[2,1];
> p22 := C[2,2];
> C1 := Matrix(R,2,2,[p22,-p12,-p21,p11]);
> D := C * X * C1 * X1;
>
> d11 := D[1,1];
> d12 := D[1,2];
> d21 := D[2,1];
> d22 := D[2,2];
> D1 := Matrix(R,2,2,[d22,-d12,-d21,d11]);
>
> B := C * Y * C1 * Y1;
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>
> b11 := B[1,1];
> b12 := B[1,2];
> b21 := B[2,1];
> b22 := B[2,2];
> B1 := Matrix(R,2,2,[b22,-b12,-b21,b11]);
>
> A := D * B * D1 * B1;
>
> TA := Trace(A);
>
> q12 := A[1,2];
> I := ideal<R | b*c + 1, TA - 2>;
>
> IsInRadical(q12,I);
false
> J := ideal<R | b*c + 1, TA + 2>;
>
> IsInRadical(q12,J);
false
>

It follows that the function q12(b, c, d, t) does not vanish identically on the sets T+ and
T−, hence, there are pairs with tr(v(x, y)) = 2, v(x, y) �= id, and tr(v(x, y)) = −2,
v(x, y) �= −id.

In order to produce the explicit solutions for v(x, y) = −id and v(x, y) = z,
z �= −id, tr(z) = −2, consider the following matrices depending on one parameter
d:

x =
(
1 − d 1
−2/3 d

)
, y =

(
2 − 3d 0

0 3d − 1

)
.

Since the images of the commutator word on GL(2, C) and SL(2, C) are the same,
we do not require that det(x) = 1 or det(y) = 1. We only assume that det(x) =
d2 − d − 2/3 �= 0 and det(y) = −9d2 + 9d2 − 2 �= 0. Let

A = v(x, y) =
(
q11(d) q12(d)

q21(d) q22(d)

)

and T A = tr(A). The MAGMA computations show that

q11(d) + 1 = N11

(
d2 − d + 1

3

)
H11(d),

q22(d) + 1 = N22

(
d2 − d + 1

3

)
H22(d),
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q21(d) = N21

(
d − 2

3

)2(
d − 1

2

)3(
d − 1

3

)2

·
(
d2 − d − 2

3

)(
d2 − d + 1

3

)
H21(d),

q12(d) = N21

(
d − 2

3

)2(
d − 1

2

)3(
d − 1

3

)2

·
(
d2 − d − 2

3

)(
d2 − d + 1

3

)
H12(d),

T A + 2 = N

(
d2 − d + 1

3

)
H(d),

where Ni j and N are non-zero rational numbers; Hi j and H are polynomials with
rational coefficients that are irreducible over Q. Moreover deg H21 = deg H12 = 25
and deg H = 38. It follows that if d2 − d + 1/3 = 0 then A = −id. If d is a root of
H that is not a root of H21, then A is a minus unipotent (which is not −id). 	
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