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1 Introduction

The surjectivity of word maps on groups became recently a vivid topic: the review on
the latest activities may be found in [3,17,19,22].

Let w € F,, be an element of the free group F, onn > 1 generators g1, ..., gn:
k
w=Hg,'Z", 1 <n <n.
i=1

For a group G by the same letter w we shall denote the corresponding word map
w: G" — G defined as a non-commutative product by the formula

k
w(xl,...,xn)zl_[x,'l'l’,". (1)
i=1

We call w(xq, ..., x,) both a word in n letters if considered as an element of a free
group and a word map in n letters if considered as the corresponding map G" — G.
We assume that it is reduced, i.e. n; # n;4+1 forevery 1 <i < k — 1 and m; # 0 for
1<i <k

Let K be a field and H a connected semisimple linear algebraic group that is
defined over K. If w is not the identity then, by the Borel theorem [6], the regular map
of (affine) K -algebraic varieties

w: H" — H, (hi,....hy) — why, ..., hy)

is dominant, i.e., its image is a Zariski dense subset of H. Let us consider the group
G = H(K) and the image

we =w(G") ={z€G:z=wxi,...,x,) forsome (xi,...,x,) € G"}.

We say that a word (word map) w is surjective on G if wg = G.

In [18, Problem 7], [19, Question 2.1 (i)], the following question is formulated:
Assume that w is not a power of another reduced word and G = H (K). Is w surjective
when K = C is a field of complex numbers and H is of adjoint type?

According to [19], Question 2.1 (i) is still open, even in the simplest case G =
PSL (2, C), even for words in two letters.

We consider word maps on groups G = SL(2, K) and G = PSL(2, K). Put

F=F, FY=[FF, F®=[FV FD]
As usual, Z, Q, R, C stand for the ring of integers and fields of rational, real and com-
plex numbers respectively. A(K)Y, . or, simply, A™, stands for the m-dimensional

affine space over a field K with coordinates x1, . . ., x,,. If K = C, we use the notation
Cy
1
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616 T. Bandman, Yu.G. Zarhin

Let w € F. For the corresponding word map on G = SL(2, K) we check the
following properties of the image wg.

Properties 1.1

(a) wg contains all semisimple elements x with tr(x) # 2;

(b) wg contains all unipotent elements x with tr(x) = 2;

(c) wg contains all minus unipotent elements x with tr(x) = —2 and x # —id;
(d) wg contains —id.

The word map w is surjective on G = SL(2, K) if all Properties 1.1 are satisfied.
For the surjectivity on G = PSL (2, K) it is sufficient that only Properties 1.1 (a), (b)
are valid.

Definition 1.2 (cf. [2]) We say that the word map w is almost surjective on G =
SL (2, K) if it has Properties 1.1 (a)—(c), i.e. wg D SL(2, K)\ — {id}.

The goal of the paper is to describe certain words w € F such that the corresponding
word maps are surjective or almost surjective on G and/or G. Assume that the field K
is algebraically closed. If w(x1, ..., x4) = x' then w is surjective on G if and only if
n is odd (see [10,11]). Indeed, the element

(-1 1
*=\o -1
is not a square in SL(2, K). Since only the elements with tr (Zﬁ) = —2 may be outside
wg [10,11], the induced by w word map w is surjective on G.

Consider a word map (1). For an index j < nlet§; = Zni:j m;. If, say, S1 # 0,
then w(xy,id, ...,id) = xfl , hence the word w is surjective on PSL(2, K).If §; =0
forall 1 < j < n,thenw € FO = [F, F]. In Sect. 5 we prove (see Corollary 5.4)
the following:

The word map defined by a word w € FW\ F® is surjective on PSL(2, K) if
K is an algebraically closed field with char (K) = 0.

The proof makes use of a variation on the Magnus Embedding Theorem, which is
stated in Sect. 3 and proven in Sect. 4.

In Sects. 6-8, we consider words in two variables, i.e. n = 2. In this case we give
explicit formulas for w(x, y), where x, y € SL(2, C) are upper triangular matrices.
Using explicit formulas, in Sects. 7-8 we provide criteria for surjectivity and almost
surjectivity of a word map on G = SL(2, C). In Sect. 7, these criteria are formulated
in terms of exponents a;, b;, i = 1..., k, of the word

k
w(x,y) = [ [x“y",
i=1

where a; # 0 and b; # O foralli = 1, ..., k. A sample of such criteria is (Corol-
lary 7.4)
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Surjectivity of certain word maps on PSL(2, C) and SL(2, C) 617

If all b; are positive, then the word map w is either surjective or the square of
another word v # id.

In Sect. 8, we connect the almost surjectivity of a word map with a property of the
corresponding trace map. The last sections contain explicit examples.

2 Semisimple elements

Let K be an algebraically closed field with char (K) = 0,and G = SL(2, K). Consider
a word map w: G" — G defined by (1). We consider G as an affine set

G={ad —bc=1}C Ai,b,c,d'

The following lemma is, may be, known, but the authors do not have a proper reference.

Lemma 2.1 A regular non-constant function on G" omits no values in K.

Proof Since all sets are affine, a function f regular on G* is a restriction of a polyno-
mial Py onto G*. We use induction on k.

Step 1. k = 1. G is an irreducible quadric. Assume that f € K[G] omits a value.
Letp: G — A}l be a projection defined by p(a, b, c,d) = a. If a # 0 then the fiber
F,=p Ya)= A}z,,c is an affine space with coordinates b, ¢ because d = (1 +bc)/a.
Since f omits a value, the restriction f|f, is constant for every a # 0. Therefore it is
constant on every fiber (note that the fiber a = 0 is connected). On the other hand, f
has to be constant along the curve

C={@al1,-1,0})=AlK).

Since the curve C C G intersects every fiber F, of projection p, the function f is
constant on G.

Step 2. Assume that the statement of the lemma is valid for all k < n. Let f € K[G"]
omit a value. We have G = M x N, where M = G" 1 and N = G. Letp: G" - N
be a natural projection. Then, by induction assumption, f is constant along every
fiber of this projection. Take x € M and consider the set C = x x N C G™ Then
flc = const and C intersects every fiber of p. Hence, f is constant. O

Proposition 2.2 For every word w(xy, ..., x;) # id the image wg contains every
element z € G witha = tr(z) # 2.

Proof We consider G” C A*" as the product of
Gi = {aid; = bic; =1} C Ay .. 4.
1 < i < n. The function f(ay, b1, c1,d1, ..., an, by, cn,dy) = tr(w(xy, ..., x,)) is

a polynomial in 4n variables with integer coefficients, i.e., f € K[G"]. According to
Lemma 2.1, it takes on all values in K. Thus for every value A € K there is an element
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618 T. Bandman, Yu.G. Zarhin

u = wy,...,Yn) € wg such that tr(y) = A. Letnow z € G, A = tr(z) # 2.
Since tr(z) = tr(u), z is conjugate to u, i.e., there is v € G such that vuv~! = z.
Hence 7z = w(vylv_l,...,vy,,v_l). |
It follows that in order to check whether the word map w is surjective on G (or on
G) it is sufficient to check whether the elements z with tr(z) = £2 (or the elements
z with tr(z) = 2, respectively) are in the image. For that we need a version of the

Embedding Magnus Theorem.

3 Variation on the Magnus Embedding Theorem: statements

Let n > 2 be an integer and A, = Z[1, tl_l, R t_l] be the ring of Laurent

n
polynomials in n independent variables ¢1, . .., t, over Z. Let F = F, be a free group

of rank n with generators {g1, . .., g,}. Recall: we write F (! for the derived subgroup
of F and F® for the derived subgroup of F1). We have

F® c FD c F;

both F( and F® are normal subgroups in F. The quotient A = F/F() = 7" is a
free abelian group of rank n with (standard) generators {e1, ..., e,} where each ¢; is
the image of g;, 1 < i < n. The group ring Z[A] of A is canonically isomorphic to
A,: under this isomorphism each ¢; € A C Z[A] goes to

teZ[n, .t ty ] = An
We write R, for the ring of polynomials

—1
An[sl,...,s,,]:Z[z‘l,t1 R A ;sl,...,sn]

in n independent variables sy, ..., s, over A,.If R is a commutative ring with 1 then
we write T(R) for the group of invertible 2 x 2 matrices of the form

]

witha € R*, b € R and ST (R) for the group of unimodular 2 x 2 matrices of the form
a 0
ba!

T(R) C GL(2, R), ST(R) C SL(2, R).

witha € R*, b € R. We have

Every homomorphism R — R’ of commutative rings (with 1) induces the natural
group homomorphisms

T(R) — T(R'), ST(R) — ST(R'),
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Surjectivity of certain word maps on PSL(2, C) and SL(2, C) 619

which are injective if R — R’ is injective.
The following assertion (that is based on the properties of the famous Magnus
embedding [20]) was proven in [26, Lemma 2].

Theorem 3.1 The assignment

; 0 .
gi—> | 1|, 1<i<n,
Si[i

extends to a group homomorphism pw: F — ST(R,,) with kernel F® and therefore
defines an embedding

F/F® < ST(R,) C SL(2, Ry,).

It follows from Theorem 3.1 that if K is a field of characteristic zero, whose transcen-
dence degree over QQ is, at least, 2n then there is an embedding

F/F® < ST(K) C SL(2, K).

(In particular, it works for K = R, C or the field Q, of p-adic numbers [26].) The
aim of the following considerations is to replace in this statement the lower bound 2n
by n.

Theorem 3.2 The assignment

ti 0 .
8>~ 1<i<n,
i

extends to a group homomorphism wy: F — ST(A,) with kernel F® and therefore
defines an embedding

F/F® < ST(A,) C SL(2, Ay).
Remark 3.3 Let
evi: R, = Aulst, ..., sn]l — Ay
be the A,-algebra homomorphism that sends all s; to 1 and let
evi*: ST(R,) — ST(A,)
be the group homomorphism induced by ev;. Then 11 coincides with the composition

evifouw: F — ST(R,) — ST(A,).
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620 T. Bandman, Yu.G. Zarhin

Corollary 3.4 Let K be a field of characteristic zero. Suppose that the transcendence
degree of K over Q is, at least, n. Then there is a group embedding

F/F® < ST(K) C SL(2, K).

The proof of Theorem 3.2 is based on the following observation.

Lemma 3.5 Let K be a field of characteristic zero. Suppose that the transcendence

degree of K over Q is, at least, n and let {uy, ...,u,} C K be an n-tuple of alge-

braically independent elements (over Q). Let Q(uy, ..., u,) be the subfield of K

generated by {uy, ..., u,} and let us consider K as the Q(uy, ..., u,)-vector space.

Let {y1, ..., yu} C K be an n-tuple that is linearly independent over Q(uy, ..., uy).

Let R be the subring of K generated by 3n elements u1, ufl, c, Uy, u;l; Viyeves Ve
Then the assignment

gm[ifﬂenm, 1<i<n,

1

extends to a group homomorphism p: F — T(R) C T(K) with kernel F® and
therefore defines an embedding

F/F® < T(R) C T(K).

Example 3.6 Let K be the field Q(tq, ..., t,) of rational functions in n independent
variables t1, .. ., t, over Q. One may view A, as the subring of K generated by 2n ele-
ments tq, t, 1, NP A - 1 By definition, the n-tuple {f, ..., #,} C K is algebraically
independent (over QQ). Clearly, the n-tuple

{ul :tlz,...,u,- :tiz,...,u,, :t,%} CcK
is also algebraically independent. Then the n elements y| = #1, ...,y =t, ..., Vp =
t, are linearly independent over the (sub)field Q(tlz, e t,%) = Q(ui, ..., u,).Indeed,

if a rational function
n
fn ) =D f;
i=1

where all f; € Q(tlz, R t,f) then

2t1f1 :f(tl,t2,...,tn)_f(_tl,t2,...,tn),...,
2tiﬁ:f(t17"'7ti7"'1tn)_f(tlf"'7_tiﬁ"'7tn)7"'7
2l‘nfn=f(t1,...,l‘,',...,tn)—f(tl,...,ti,...,—tn).

This proves that if f = O then all f; are also zero, i.e., the set {t1, ..., t,} is linearly
independent over Q(tlz, .. t,%).
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Surjectivity of certain word maps on PSL(2, C) and SL(2, C) 621

By definition, R coincides with the subring of K generated by 3n elements tlz, t 2
e, t,%, tn_z; 1, ..., ty. This implies easily that R = A,. Applying Lemma 3.5, we
conclude the example by the following statement.

The assignment

20
g | et 1<i<n,
1

extends to a group homomorphism w: F — T(R) = T(A,) with kernel F® and
therefore defines an embedding

F/F® < T(A,).

We prove Lemma 3.5, Theorem 3.2 and Corollary 3.4 in Sect. 4.

4 Variation on the Magnus Embedding Theorem: proofs

Proof of Lemma 3.5 Let A C Q(uq,...,u,) C K be the subring generated by 2n
elements u1, ul_l, cey Up, Uy, L Since u; are algebraically independent over Q, the
assignment

t = uj, e u!

extends to aring isomorphism A, = A. The linear independence of y; over Q(uy, . . .,
u,) implies that M = A-y; +---+ A-y, C R C K is a free A-module of rank n.
On the other hand, let

UcA CcQuy,...,up)*C K*

be the multiplicative (sub)group generated by all u;. The assignment g; — u; extends
to the surjective group homomorphism 8: F — U with kernel F(! and gives rise
to the group isomorphism A = U, which sends ¢; to u; and allows us to identify
the group ring Z[U] of U with A = A, = Z[A]. Notice that M carries the natural
structure of free Z[U]-module of rank n defined by

A(m)=A-me K, LeZIlUl=ACK, meMCK.
We have

u(F) C |:AI{[ (1)] C T(R) C GL2(R).

It follows from [27, Lemma 1 (c), p. 175] that ker (i) coincides with the derived sub-
group of ker(8). Since ker(§) = F M we conclude that ker (W) = F @ and we are
done. O
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622 T. Bandman, Yu.G. Zarhin

Proof of Theorem 3.2 Let us return to the situation of Example 3.6. In particular,
the group homomorphism (we know its kernel, thanks to already proven Lemma 3.5)
w: F— T(A,) C GL2(A,) is defined by

120
w(gi) = |:ti J € T(Axn)

for all g;. Let us consider the group homomorphism
kK: F— A7, gi—t.
Since #; are algebraically independent, they are multiplicatively independent and
ker(k) = F. We claim that ;u;: F — ST(A,) coincides with the group homo-
morphism
g k(@) u(g).

Indeed, we have for all g;

2 ;0
K(g) (g =" [t;l (1)] = [tl t‘lj| = p1(gi) C ST(An),

which proves our claim. Recall that we need to check that ker (i) = F @, In order
to do that, first notice that p(g) is of the form

k(g O
* Kk(g)!

for all g € F just because it is true for all g = g;. This implies that ker(u;) C

ker(k) = FW, But u = p; on FU. This implies that ker(;1) = ker(u) N FO.

However, as we have seen in Example 3.6, ker () = F @ < FO_ This implies that
ker(u)) = FNnFD = p®

and we are done. O

Proof of Corollary 3.4 There exists an n-tuple {x1, ..., x,} C K that is algebraically
independent over Q. The assignment

ti = X, . > X,
extends to an injective ring homomorphism
An =20ttt ] = K.

n
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This implies that ST (A,,) is isomorphic to a subgroup of ST(K). Thanks to Theo-
rem 3.2, F/F® is isomorphic to a subgroup of ST (A,). This implies that F/F® is
isomorphic to a subgroup of ST(K). O

Similar arguments prove the following generalization of Theorem 3.2.

Theorem 4.1 Let {by, ..., b,} be an n-tuple of non-zero integers. Then the assign-
ment

b,’lil

1

ti 0
giH[’ ] 1<i<n,
extends to a group homomorphism F — ST(A,) with kernel F®.

5 Word maps and unipotent elements

Lemma 5.1 Let w be an element of FV that does not belong to F®. Then there
exists a non-zero Laurent polynomial

Lo =Lyt ... t)) € Z[ti, 17 ooty 1, ] = A

such that

b (w) = [Llw (1’] .

Proof We have seen in the course of the proof of Theorem 3.2 that for all g € F

ui(g) = [Kig) K(;)—l} e ST(Ay).

This means that there exists a Laurent polynomial L, € A, such that

k(@ 0
ni(g) = |: c, K(g)1]

We have also seen that if g € F(D then «(g) = 1. Since w € F),

i =[]

with £, € A,,. On the other hand, by Theorem 3.2, ker(t1) = F @), Since w ¢ F @),
Ly #0in A,. O

Corollary 5.2 Let w be an element of FV that does not belong to F®. Suppose
that a = {ay,...,a,} is an n-tuple of non-zero rational numbers such that ¢ =
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624 T. Bandman, Yu.G. Zarhin

Ly(ay,...,ay) #0. (Since L, # 0, such an n-tuple always exists.) Let us consider
the group homomorphism

va: F — ST(Q) c SL(2,Q), gi— [ali a91:| =Z7;.

Then
10
va(w) = |:C 1] =w(Zy,..., Zy).

is a unipotent matrix that is not the identity matrix.

Proof One has only to notice that y, is the composition of 11 and the group homo-
morphism ST(A,) — ST(Q) induced by the ring homomorphism A, — Q,t; — a;,
I > ai_l. O
Corollary 5.3 Let w be an element of FV that does not belong to F®). Let K be a
field of characteristic zero. Then for every unipotent matrix X € SL(2, K) there exists
a group homomorphism yr, x: F — SL(2, K) such that {, x(w) = X. In other

words, there exist 2y, ..., Z, € SL(2, K) such that w(Z, ...,7Z,) = X.

Proof We have
QCKk, SL(2,Q) Cc SL(2,K) < GL(2, K).

We may assume that X is not the identity matrix. Let a = {ay, ..., a,} and y, be
as in Corollary 5.2. Recall that ¢ = Ly, (ay, ..., a,) # 0. Then there exists a matrix
S € GL(2, K) such that

X:S[IO]S‘.
c1

Let us consider the group homomorphism ¥, x: F — SL(2, K), g = Sy.(g)S~".
Then v, x sends w to

Sya(w)s~' =58 [i ﬂ s~ =x. O

Corollary 5.4 Let w be an element of FV that does not belong to F®. Let K be an

algebraically closed field of characteristic zero. Then the word map w is surjective on
PSL(2, K).

Proof Consider w as a word map on G = SL(2, K). Due to Corollary 5.3, the
image wg contains all unipotents. According to Proposition 2.2, the image contains
all semisimple elements as well. Thus, the word map w has Properties 1.1 (a) and (b).
It follows that it is surjective on PSL(2, K). O
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Surjectivity of certain word maps on PSL(2, C) and SL(2, C) 625

Remark 5.5 In [12], the words from F(D\ F® are proved to be surjective on SU (1)
for an infinite set of integers n.

Theorem 5.6 Let w be an element of FV that does not belong to F®. Let G be
a connected semisimple linear algebraic group of positive dimension over a field K
of characteristic zero. If u € G(K) is a unipotent element then there exists a group
homomorphism F — G (K) such that the image of w coincides with u. In other words,
there exist Z1, ..., Z, € G(K) such that w(Z,, ..., Z,) = u.

Proof Leta = {ay,...,ay}, ya and c = Ly (ay, ..., a,) % 0 be as in Corollary 5.2.
By Lemma 5.7 below, there exists a group homomorphism ¢: ST(K) — G(K) such
that u = ¢ (u;) for

u = [i ?i| e ST(K).

Now the result follows from Corollary 5.2: the desired homomorphism is the compo-
sition poy,: F — ST(K) — G(K). O

Lemma 5.7 Let K be a field of characteristic zero, G a connected semisimple linear
algebraic K -group of positive dimension, and u a unipotent element of G(K). Then
for every non-zero ¢ € K there is a group homomorphism ¢: ST(K) — G(K) such
that u is the image of

u = [i (1)1| e ST(K).

Proof Let us identify the additive algebraic K -group G, with the closed subgroup H
of all matrices of the form
10
v(t) = [r 1}

in SL(2). Its Lie subalgebra Lie(H) is the one-dimensional K-vector subspace
Lie(H) = {Ax¢ : A € K} of s[(K) generated by the matrix

Here we view the K -Lie algebra sl (K) of 2 x 2 traceless matrices as the Lie algebra
of the algebraic K-group SL(2). Moreover, exp(Axo) = v(A) forall A € K.

We may view G as a closed algebraic K-subgroup of the linear algebraic group
GL(N) = GL(V),where V is an N-dimensional K -vector space for a suitable positive
integer N. Then

ue G(K) CAutg(V) =GL(N, K).
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626 T. Bandman, Yu.G. Zarhin

Thus the K-Lie algebra Lie(G) becomes a certain semisimple Lie subalgebra of
Endg (V). Here we view Endg (V) as the Lie algebra Lie (GL (V)) of the K -algebraic
group GL (V). As usual, we write

Ad: G(K) — Autg (Lie(G))
for the adjoint action of G. We have
Ad(g) () = gug™
forall g € G(K) C Autg(V) and u € Lie(G) C Endg (V). Since u is a unipotent

element, the linear operator u — 1: V — V is nilpotent. Let us consider the nilpotent
linear operator

[e%e] ) -1 i
x =log(u) = ;(—1)%1% € Endg (V)

([7, Section 7, p. 106], [24, Section 23, p.336]) and the corresponding homomorphism
of algebraic K-groups

oy H— GL(V), v(t) — exp(tx) =v(0) +tx +---
In particular, since u; = v(1), ¢, (u;) = u. Clearly, the differential of ¢,
dy,: Lie(H) — Lie(GL(V)) = Endg (V)
is defined as
de,(Axg) = Ax  forall X e K,

and sends xg to x € Lie(GL(V)). Since ¢, (m) = u™ € G(K) for all integers m
and G is closed in GL (V) in Zariski topology, the image ¢, (H) of H lies in G and
therefore one may view ¢, as a homomorphism of algebraic K-groups ¢,: H — G.
This implies

dy,(Lie(H)) C Lie(G);

in particular, x € Lie(G).
There exists a cocharacter ®: G,, — G C GL(V) of K-algebraic group G such
that for each 8 € K* = G,,(K)

Ad(® () (x) = p*x
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Surjectivity of certain word maps on PSL(2, C) and SL(2, C) 627

(see [21, Section 6, pp.402-403], here G,, is the multiplicative algebraic K -group).
This means that for all A € K

D(B)AxP(B) ! = Ad(@(B)) (Ax) = AB%x = B?Ax € Lie(G) C Endg (V),
which implies that

D(B) (exp(rx) D (B) " = exp(P(BAxD(B) ") = exp(B2ax).

A 1 s A
o (s0(2)) o =en(21)

Recall that ST (K) is a semi-direct product of its normal subgroup H (K ) and the torus

It follows that

-1
Ti(K) = Hﬁo g] :Be K] C ST(K).

In addition,

B _ -1
L Y e e

It follows from [8, Chapter III, Proposition 27, p. 240] that there is a group homomor-

phism ¢: ST(K) — G(K) that sends each ()1»(1)) to exp(Ax/c) and each (ﬁ(;l 2) to

®(B). Clearly, ¢ sends u; = (i?) to exp(cx/c) = exp(x) = u. O

6 Words in two letters on SL (2, C)

In this section we consider words in two letters. We provide the explicit formulas for
w(x, y), where x, y are upper triangular matrices. This enables us to extract some
additional information on the image of words in two letters.

Consider a word map w(x, y) = x@yP1. . x%yP where a; # 0 and b; # 0 for
alli=1,...,k Let A(w) = >*_ a; and B(w) = 3%, b;.

If A(w) = B(w) = 0,thenw € FY = [F, F]. Since FV is a free group generated
by elements wy, , = [x", y"],n # 0,m # 0[23, Chapter 1, Section 1.3], the word w
with A(w) = B(w) = 0 may be written as a (non-commutative) product (with s; # 0)

)
— Si
w=[Tw @
i=1

Moreover, the shortest (reduced) representation of this kind is unique. We denote
by Sy (n, m) the number of appearances of w, ,, in representation (2) of w and by
R, (n, m) the sum of exponents at all appearances. We denote by Supp (w) the set of all
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628 T. Bandman, Yu.G. Zarhin

pairs (n, m) such that wy, ,, appears in the product. For example, if w = wj | wg 2 wf},
then

Supp(w) = {(1, 1), (2,2)},
Sp(l,1)=2, 8,2,2)=1,
Ry(1,1) =0, Ry,(2,2)=5.

The subgroup
FO=[FD FO={we F:Rym,m) =0, (n,m) € Suppw)}.
Example 6.1 The Engel word

enz[[-xvy]ayLy]

n times

belongs to F(W\ F® (see also [12]). Indeed, the direct computation shows that

YWp,m = yxnymxfnyfm
— yxny—l
yw;}n =y- ymxny—mx—n

— y(n1+l)xny—(n1+l)x—n . xnyx—ny—l cy = wni,lﬂ+1wn,1y'

n 1

— n m.,—n,—m_ — —1
X XYy x oy oy Yy =W, 1 Wam+1),

It follows that

1

- —1
ywi vy = (Wi wim)” A3)

Let us prove by induction that |R,, (1,n)] =1, S, (1,n) = 1 and S, (r,m) = 0 if

r#1lorm>n,i.e.
s t
_ si e Lj
en = [Jwi, -wi,-[Twis, @
i=1 j=1

for some integers ¢ > 0, s > 0, m; < n, k; < n, and where ¢ = % 1.
Indeed e; = wy, 1. Assume that the claim is valid for all kK < n. We have e,+1 =

enye,; 'y~1 Using (4), we get

1 1
—t;  _1 o 1 —5; -1
€n+1 = €n (H ywl,]gjy )ywl,iy (H ywl,iﬂiy )
j=t i=s

Applying (3) to every factor of this product, we obtain that e, 11 has the needed form.
Thus the claim will remain valid for n + 1. Since |R,, (1,n)| = 1, e, ¢ F®. The

surjectivity of the Engel words on simple algebraic groups was studied in [2,12,16].

There is a beautiful proof of surjectivity of ¢, on PSL(2, C) in [18, Corollary 4].
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Surjectivity of certain word maps on PSL(2, C) and SL(2, C) 629

Let us take

A ocC

= (o 1 /x) ’ ©)
_(r 4
Then
X = Al C‘hlnl()L) sgn(n) ym — u™ d'hlm\(ﬂ) sgn(m)
0 L/A" ’ 0 1/u™ ’

Here sgn is the signum function, and (see [1, Lemma 5.2]) forn > 1

§-2n _ 1

ha () = o)

Note that 4, (1) = n. Direct computations show that

nom _ (AT d-Asgn(m) by () + c-sgn(n) by (M) ™ 7
x y - 0 A,_nl,l,_m ’ ( )
gty (MR AT sgnm) B () — ¢ sgn () g ()
0 knum ’
1 9 d! b
wn’m(x’ y) — (O f(C 1 n m)) ,
where

fle.d.n,m) = chiy() sgn(m) A" (1= ") + dhymy () sgn(m) p™ 02" = 1).

Hence,
-
) 1 Fy(c,d, X,
w(x,y)=wa,’,.,m,,(x,y)=(0 wl 1 “)),
i=1
where

,
Fye.d, h ) = Y sif(e.d,ni,m) = c®y(h, ) + dWy (1, )

i=1

and
(2 — 1)
— 2p
Dy (hy ) = . ﬂ)g‘pp(jw(a, psen@ U = 1) o= ®
_ 2 _py WP =P
W) = D Rule, B)sgn(B)(x “Doprgeon @

(a, B)eSupp (w)
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630 T. Bandman, Yu.G. Zarhin

(Since the order of factors in w is not relevant for (8) and (9), we use here «, g instead
of n;, m; to simplify the formulas).

Proposition 6.2 Rational functions ® (A, w) and W (A, u) are non-zero linearly inde-
pendent rational functions.

Remark 6.3 1t is evident from the Magnus Embedding Theorem that at least one of
functions ® (A, ) and W (A, ) is not identical zero. It follows from Proposition 6.2
that the same is valid for both of them.

Proof The proof is based on the following
Claim 6.4 If &, (A, u) = 0 then Ry («, B) = 0 for all (a, B) € Supp(w).

Proof We use induction by the number |Supp(w)| of elements in Supp(w) for the
word w. If Supp(w) contains only one pair (¢, B), then there is nothing to prove,
because

D, 1) = Ry (@, B) hig (1) sgn(@) A% (1 — ).

Assume that for words v with |[Supp(v)| = [ it is proved. Let w be such a word that
[Supp(w)| =1+ 1. Let n = max{« : (o, B) € Supp(w)}.

Case 1. n > 0. We have

(}LZ\(xl — DAY

Quhw) = D, Rl psen) - p*) ooy

(et, B)€Supp (w)

= D Rul@psgm@—p*)

(v, )€Supp (w)
_)La—la|+l(1 +A2+.-~+A2(|a|_l)).

It means that the coefficient of 221~ in the rational function ®,, (A, w) is

pw) = D Ry By —pu*).

(n,B)€Supp (w)

Hence, if (X, ) =0, then p(n) =0, and all R, (n, 8) = O for all g.
That means that @, (%, n) = &, (X, 1), where v is such a word that may be obtained
from w(x, y) = [} wy'.m, (x, y) by taking away every appearance of wy,, B

p
o = [T im0
i=1
ni#n

But |Supp(v)| < [/ and by the induction assumption R,(«, 8) = 0 for all («, 8) €
Supp (v). Thus claim is valid for w in this case.
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Surjectivity of certain word maps on PSL(2, C) and SL(2, C) 631

Case2.n < 0.Let —n’ = min{« : (o, B) € Supp(w)}. We proceed as in Case 1 with
—n’ instead of n: the coefficient of A=27+! g

qw = D Ry(=n’ ) — ).

(=n',B)€Supp (w)

If @, (A, u) = 0, then g(v) = 0, and all R, (—n’, B) = 0 for all 8. Once more, we
may replace w by a word v with |Supp (v)| < I. |

Clearly, the similar statement is valid for W, (A, u). The functions ® and W are
linearly independent, because ® is odd with respect to A and even with respect to u,
while W has opposite properties. O

Proposition 6.5 Assume that the word w € F D\ F® and that ®,,(1, i) # 0, where
i? = —1. Then —id € wg, where G = SL(2, C).

Proof Assume that ®(1,i) # 0. From (8) we get

@y, (1i) = D 2Ry(a Be

(ct, B)eSupp (w)
B odd

Take

Then

a’> 0
[-xvy]: (0 a—2)'

. Si
Thus, if w = [T} wn"f,mj, then

2n;s; N
a“isi 0 a 0
wex, ) =[] ( 0 a—2nm)=(0 a—N)’

m_/odd
where N = 2Zm/0dd njsj = ®,(1,i) # 0. Choose a such that a¥ = —1. Then
w(x,y) = —id. ' O

Remark 6.6 The case W (i, 1) # 0 may be treated in a similar way, one should only
exchange roles of x and y.

Remark 6.7 Let w = [ wf,’}.,mj, let ged(m;) = k = 295, s odd. Put ju; = m;/k
andu = [} w,s/;.,uj. Note that some of ; are odd. Let z € SL(2, C) be such that

01
aoa=().
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632 T. Bandman, Yu.G. Zarhin

Then w(x, z) = u(x, y), hence, if ®,(1,i) # 0, then —id € wg.

7 Surjectivity on SL (2, C)
We keep the notation of Sect. 6.

Lemma 7.1 Assume that w = x“y?1 . x%ybk a; £ 0, b; #0,i = 1,...,k,
A=2"a; #00r B=>Y_b; # 0and x, y are defined by (5), (6) respectively. Then

AAuB F c,d, \,
weo = (Mo P8 5),

where Fy(c,d, A, n) = ¢y (X, ”w) +dWy,(h, ) and

k Cas b
~ )LZ./<1 aj ,uz/« bj
Dy (0, 1) = D sgn(a;) hig (M)

i=1

—_—, 10
)LZj>iajMZj>i”j (10)

AZi<i 9 Xj<ibj

k
Wy, (0, 1) = D sgn(bi) hjpy (1) (11)

— AZj>i“jMZj>ibj ’
=

Proof We use induction on the complexity k of the word w. Using (7), we get

LA A pbr d o sgn(by) hyp, (1) + - sgn(ar) hyay (M) p =21
y = 0 )L*ullufb] :

Thus for k = 1 the lemma is valid. Assume that it is valid for k¥’ < k. Let u =
x@ybr | x@—1ybi-t and w = ux®yb* . By the induction assumption,

A= B=be Fe,d,n, p)
ulx,y) = ( 0 kqu+akM*B+bk :

From (7) we get

acbe (AP d- A sgn(by) hyp (1) + ¢ sgnag) hyg () %
Yo Ak b '

Multiplying matrices u and x% y% we get

Fy(e,d, n, ) = 247 % P70 (d- 2% sgn (bg) iy (1) + ¢+ sgniag) hjay (1) ™)
+F(c.d, h ) A~
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Surjectivity of certain word maps on PSL(2, C) and SL(2, C) 633

Thus, the induction assumption implies that

Doy (A, ) = sgn(ag) hyg (0) o p A%y B=be
k—1

+ D sn (@) hyg; ()

i=1

A2j<id) M2j<i bj
3 Zhsinay le;=i bj
ij<ittjMZj<ibj

k
= ngn(ai)h‘ai‘()») m
i=1

Wy (h, ) = sgn(bg) iy () A% RA~% B0
k—1

+ " san(by) by, (1)

i=1

AZi<iZi<ibi

% TSk .
AL j=i+19 'uz_j=i+l bj
AZi<ipZi<ibi

k
= Z;sgn(ai)h‘ai‘(k) W
=

Denote

Ai=zai, Bi=zbi,

J<i j<i

andlet Cbeacurve C = (M uf =—1} C (C%,u'

Multiplying (10) and (11) by A4 w5, we see that on C the following relations are
valid:

k
Dy (h, Wl = — D sen (@) ha () A2 B,

i=1

k
Wy (0, e = — Zsgn(bi)hlbil(M)AZAiuzBi+bi-

i=1
In particular, on C

k
@y (1, wWle == D ain®, (12)

i=1

k
Wy (h Dle = =D bir®™, (13)

i=1

Lemma 7.2 Assume that A # 0 and the word map w is not surjective. Then

k
i=1
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634 T. Bandman, Yu.G. Zarhin

for every root y of equation q(z) = z* 4+ 1 = 0.
If B # 0 and the word map w is not surjective, then

k

Za,’523i =0

i=1

for every root 8 of equation p(z) =z +1=0.

Proof The matrices z with tr(z) = 2 are in the image, because w(x,id) = x4,
w(id, y) = yB. It is evident that —id is in the image: one may take ¢ = d = 0.

Assume now that for complex numbers » # 0 the matrices

(o' %)

are not in the image. This implies that d~>w (A, n) =0and \wa (A, ) = 0 on the defined

above curve C = {A4uf = -1} C Ci,u'
If A # 0or B # 0, then the pair (y, 1) or (1, §) respectively belongs to the curve
C. We have to use only (12), (13), respectively. O

Corollary 7.3 Let 2B; = ki B + T;, where k; are integers and 0 < T; < B # 0. If w
is not surjective, then for every 0 < T < B

> a1k =0.
iT=T
Proof Indeed in this case

k B—1
0=>a;8% =>"6" > ai(—-1)"
i=1 T

=0 i:T;=T

for any root 8 of equation p(z) = z% + 1 = 0. Since p(z) has no multiple roots, it
implies that p(z) divides the polynomial

B-1
P1(2) = Z T z ai(— Dk,
T=0 i:T;=T

i

But since degree of polynomial p(z) is bigger than degree of pi(z) that can be only if
r1(2) =0.
O

Corollary 7.4 If all b; are positive, then the word map w is either surjective or the
square of another word v # id.

@ Springer



Surjectivity of certain word maps on PSL(2, C) and SL(2, C) 635

Proof In this case 0 < 2B; < 2B and the sequence B; is increasing. If w is not
surjective, p1(z) = 0, by Corollary 7.3. Thus for every B; there is B; such that
ZB,' =2Bj + B andai —4aj =0.

Thus, the sequence of 2 B; looks like

0 =28y, 2by = 2By, 2(b1 + b2) = 2B;3, ce

2(by + -+ +by) = 2Bs11 = B,
2(by + -+ bsy1) =2Bg12 = B+2B; = B +2by,
2(by + -+ +bsi2) =2By13 = B+2B3 = B + 2by + 2bs, s
2(by + -+ + bas—1) =2Bys = 2B + B,

2(by + -+ -+ b2s) =2Bys1 = B+ 2Byt =2B.

It follows that £k = 2s and

bs+1 = Byy2 — Byy1 = By — By = by,
bsy2 = Bsy3 — Byyo = B3 — By = bo,
bys—1 = Bag — Bos—1 = By — Bs—1 = b1,
bk = bys = Bas41 — Bas = Bsq1 — By = by.

Thus,
bi = bi+s, 2B;i =2Bjys+ B, a; = ajts, i=1,...,s.
Therefore the word is the square of v = x@ yb1. . x®% ybs, O

Corollary 7.5 If all b; are negative, then the word map of the word w is either sur-
Jective or the square of another word v # id.

1

Proof We may change y to z =y~ and apply Corollary 7.4 to the word w(x, z). O

Corollary 7.6 Ifalla; are positive, then the word map of the word w is either surjective
or the square of another word v # id.

1 1

Proof Considerv =x"",z =y, aword
w(z,v) = wx, y) =yl % | yThixm@ = by byan

and apply Corollary 7.4 to the word w’(z, v). O

8 Trace criteria of almost surjectivity

For every word map w(x, y): G> — G there are defined the trace polynomials
Py(s,t,u) = tr(w(x,y)) and Q, = tr(w(x,y)y) in three variables s = tr(x),
t =tr(y), and u = tr(xy) [13-15,25].
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636 T. Bandman, Yu.G. Zarhin

In other words, the maps

ouw: G*— G2 Puw(x,y) = (w(x,y), ),
Yw: C = Clun V(s t,u) = (Py(s, t,u), t, Quls, t,u))

may be included into the following commutative diagram:

GxG -2~ GxG

3 3
Cs,t,u (Cs,t,u'

Moreover, 7 is a surjective map [15]. For details, one can be referred to [3,5].

Since the coordinate ¢ is invariant under v, for every fixed value t = a € C we
may consider the restriction ¥, (s, u) = (Py(s, a, u), Qu(s, a, u)) of morphism i,
to the plane {t = a} = Ciu.

Definition 8.1 We say that v/, (s, u) is BIG if the image ¥, ((Cfvu) = (Cf)u \ T, where
T, is a finite set. We say that the trace map v, of a word w € F is BIG if there is a
value a such that ¥, (s, u) is BIG.

Proposition 8.2 If the trace map Y, of a word w € F is BIG then the word map
w: G? — G is almost surjective.

Proof Let a be such a value of ¢ that the map v, is BIG. Let S, = T, U {(2,a)} U
{(=2, —a)}. Consider lines C; = {s = 2} and C_ = {s = —2} in (C%M Let
By = Ci\(C+ N Sy) and B = C_\(C- N S,). Since S, is finite, B4+ # O,
B_ # @.Moreover, since these curves are outside S,,, we have: D, = ¥~ 1(B}) # @,
D_ =y~ Y(B_) # @. Take (50, o) € Dy and (s1, u1) € D_. Then ¥, (so, a, uo) =
(2,a,b) with a # b and V¥, (s1,a,u1) = (—2,a,d) with a # —d. The projection
7 G*— C?,t,u is surjective, thus there is a pair (xg, yo) € G? such that tr (xg) = so,
tr(yo) = a, tr(xgyo) = ug. Then 7w (w(xg, yo)) = V¥ (S0, a, ug) = (2, a, b). Hence,
tr(w(xo, yo)) = 2, but w(xo, yo) # id, since tr(w(xo, yo)yo) = b # a = tr(yo).
Similarly, there is a pair (x1, y1) € G? such that tr(x;) = sy, tr(y1) = a, tr(x1y1) =
u1. Then w(w(xy, y1)) = Yu(s1,a,u1) = (—2,a,d). Hence, tr(w(x, y1)) = —2,
but w(xi, y1) # —id, since tr(w(xy, y1)y1) =d # —a = —tr(yy). It follows that all
the elements z # —id with trace 2 and —2 are in the image of the word map w. O

Corollary 8.3 Assume that the trace map Vr, of a word w is BIG. Consider a sequence
of words defined recurrently in the following way:

Ul(xa)’):w(x»)’), Un+1(xa)’)=w(vn(xa)’)vy)-

Then the word map vy, : G* — G is almost surjective for alln > 1.
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Surjectivity of certain word maps on PSL(2, C) and SL(2, C) 637

Proof The trace map v, = , of the word map v, is the n'" iteration 1//1(") of the
trace map Y1 = Yy, (see [3,5]). Let us show by induction, that all maps 1, are BIG.
Indeed vy is BIG by assumption, hence (v/1), (Cf’ W) = (Ci « — T for some value a
and some finite set 7,,. Assume now that v,,_1 is BIG. Let for a value a of ¢ the image
(t/fn_l)a(Cf,’u) = C2,\ N for some finite set N. Hence

S, u

WUn)a(C3 ) = WDa (W14 (CS) = WD (CF,\N)
S (Y1) (CE I\ WD (N) = CF,\ (Ta U (Y1) o (N)).
Thus (), is BIG as well for the same value a.
According to Proposition 8.2, the word map v,, is almost surjective. O

1

Example 8.4 Consider the word w(x, y) = v1(x, y) = [yxy~!, x~'] and the corre-

sponding sequence

-1 -1
vn(x, y) = [yoa—1y "L v ]
This is one of the sequences that were used for characterization of finite solvable

groups (see [3,5,9]).
We have [5, Section 5.1]

tr(w(x, y)) = fi(s,t,u) = (s2 + 12+ u® —ust — 4) (t2 +u? - ust) + 2,
tr(w(x, y)y) = fols, t,u) = fit + (s(st —u) — 1) (s> + 12+ u? —ust —4) —1.

We want to show that for a general value # = a the system of equations
fils,a,u) =A,  fals,a,u) =B (14)

has solutions for all pairs (A, B) € (Cz\ T,, where T, is a finite set.
Consider the system

hi(s,u,a,C) = (s2+a2+u2—usa—4)(a2+u2—usa) =A-2=C,
hy(s,u,a, D) = (s(sa —u) —a) (s2 +a* +u® —usa — 4)
=B—-a(C+1)=D. (15)
Note that with respect to u the leading coefficients of 41 and A, are 1 and —s respect-

fully. The MAGMA computations show that the resultant (elimination of ) of h; — C
and hy — D is of the form

R(s,a,C, D) = s*pi(a, C, D) + s’pa(a, C, D) + p3(a, C, D).
It has a non-zero root s # 0 at any point (a, C, D), where at least two of three

polynomials pi, p2, p3 do not vanish. The MAGMA computations show that the
ideals /1 = (p1, p2) C Qla, C, D],J2 = {p1, p3) C Qla, C, D], J3 = (p2, p3) C
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638 T. Bandman, Yu.G. Zarhin

Qla, C, D] generated, respectively, by pi(a, C, D) and p>(a, C, D), by pi(a, C, D)
and p3(a, C, D), by pa(a, C, D) and p3(a, C, D), are one-dimensional. It follows
that for a general value of a the set

{pi(a, C, D) = pa(a,C, D) =0}U{pi(a, C, D) = p3(a, C, D) = 0}
U{p2(a,C, D) = p3(a, C, D) =0}

is a finite subset N, C Cc p. On the other hand, at any point (C, D) outside N,
the polynomial R,(s) = R(s,a, C, D) has a non-zero root, and, therefore system
(15) has a solution. Thus, outside the finite set of points 7, = {(A = C +2,B =
D +a(C+1)) : (C,D) € Ny} C Cy_p, system (14) has a solution as well. Thus,
Yrw = (f1,t, f») is BIG and all word maps v,, are almost surjective on G. Let us cite
the MAGMA computations fort =a = 1, where p =h; —C,q = h, — D and R is
the resultant of p, g with respect to u.

>r :=u"2 + 872 + 1 - u*s;

>

>p := (r - 4) * (r - s72) - C;

>

>qg := (r - 4) * (¢ * (s - u) - 1) - D;
>

> R := Resultant(p,q,u);

> R;

- 874*C"3 - 2*s74*C"2*D + s74*C"2 - 2*s74*C*D"2 + s74*C*D
- 874*D"3 4+ s874*D"2 4+ 4*s72*C"2*D - 4*gs72*C"2 + 8*s”2*C*D"2
- 6*s72*C*D + 6*s”"2*D"3 - 8*s"2*D"2

+ C"2 - 2*C*D"2 + 8*C*D + D"4 - 8*D"3 + 16*D"2

pl - C"3 - 2*C"2*D + C"2 - 2*C*D"2 + C*D - D3 + D"2;
P2 4*C"2*D - 4*C"2 + 8*C*D"2 - 6*C*D + 6*D"3 - 8*D"2;
p3 := C"2 - 2*C*D"2 + 8*C*D + D"4 - 8*D"3 + 16*D"2;
Factorization(pl) ;

— V. V V V V

<C + D -1, 1>,
<C"2 + C*D + D"2, 1>

> Factorization (p2) ;

<C"2*D - C"2 + 2*C*D"2 - 3/2*C*D + 3/2*D"3
- 2*D"2, 1>

> Factorization (p3);

<C - D"2 + 4*D, 2>

Clearly every pair among polynomials p1, p2, p3 has only finite number of common
zeros. For example, p; = p3 = 0 implies D*—5D+1=0or (D2—4D)2 +
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(D*—4D)D + D* = 0. Computations show also that the word w(x, y) takes on
value —id. For example, one make take

(-11 (1t
=\ \=21) YT \o1)

where 12 = —1 /2. Therefore, the word v is surjective. Here are computations:
R<t> := PolynomialRing(Q);
X := Matrix(R,2,2,[-1,1, ,11);
Y := Matrix(R,2,2,[ 1, t O l]),
X1l := Matrix(R,2,2,[1, -11);
Yl := Matrix(R,2,2,[1, —t O 11);
Z =Y * X * Y1l;
pll := z[1,11;
pl2 := z[1,2];
p21 Z[2,11;
p22 := 7[2,2];

Z1 := Matrix(R,2,2, [p22,-pl2,-p21,pll]);

VVVVVVVVVVVVVVVVVVVVVYVVYV

W :=2 * X1 * zZ1 * X;
gll := w[l,1];
gl2 := W[l,2];
a2l := wW[2,1];
a2 := W[2,2];
gll;
16*t™4 + 8*t"3 + 12*t"2 + 4*t + 1
> gl2;
-8*t"4 - 4*t"2
> g2l;
16*t"3 + 8*t
> g22;

- 8*%t"3 + 4*t"2 - 4%t + 1

Therefore, 12 = —1/2 implies that 11 = g2 = —1,q12 = g21 = 0.

9 The word v(x, y) = [[x, [x, y1I, [y, [x, y]1l]

In this section we provide an example of a word v that is surjective though it belongs
to F @, The interesting feature of this word is the following: if we consider it as a poly-
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nomial in the Lie algebra sl, ([x, y] being the Lie bracket) then it is not surjective [4,
Example 4.9].

Theorem 9.1 The word v(x,y) = [[x, [x, ¥1], [y[x, y11] is surjective on SL(2, C)
(and, consequently, on PSL(2, C)).

Proof As it was shown in Proposition 2.2, for every z € SL(2, C) with tr(z) # +2
there are x, y € SL(2, C)? such that v(x, y) = z.

Assume now that a = £2. We have to show that —id is in the image and that there
are matrices x, y in SL(2, C) such that

q11 912
v(x,y) =
(x.3) <f121 6122)
has the following properties:

® g2 +qn = =£2,
o qip #0.

We may look for these pairs among the matrices x = ( ) and y = ( L )

In the following MAGMA calculations C = [x, y] D = [[x, y] x], B =
[[x,y], y], A = [D, B]. The ideal I in the polynomial ring Q[b, ¢, d, t]is defined by
conditions det(x) = 1, tr(A) = 2. The ideal J in the polynomial ring Q[b, ¢, d, t] is
defined by conditions det(x) = 1, tr(A) = —2. Let Ty  SL(2)? and T_ C SL(2)?
be, respectively, the corresponding affine subsets in the affine variety SL(2)% The
computations show that g12(b, c, d, t) does not vanish identically on 7 or 7_.

> Q := Rationals();

> R<t,b,c,d> := PolynomialRing(Q,4);
> X := Matrix(R,2,2,[0,b,c,d]l);

> Y := Matrix(R,2,2,[ 1,t,0,11);

> X1 := Matrix(R,2,2,I[d,-b,-c,0]);

> Y1l := Matrix(R,2,2,[1,-t,0,11);

> C := X * Yy * X1 * Y1l;

> pll := C[1,1];

> pl2 := [1,2],

> p2l := C[2,171;

> p22 := C[2,2];

> Cl := Matrix(R,2,2, [p22,-pl2,-p21,pl1ll]);
>D :=C * X * Cl * X1;

>

> dll := D[1,171;

> dl2 := D[1,2];

> d21 := D[2,1];

> d22 := DI[2,2];

> D1 := Matrix(R,2,2,[d22,-d12,-d21,d11]);
>

>B :=C *Y * Cl * Y1l;
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>

> bll := B[1,1];

> bl2 := B[1,2];

> b21 := B[2,1];

> b22 := B[2,2];

> Bl := Matrix(R,2,2,[b22,-bl2,-b21,bll]);
>

> A :=D * B * DI * Bl;

>

> TA := Trace(A);

>

> gl2 := A[l1,2];

> I := ideal<R | b*c + 1, TA - 2>;
>

> IsInRadical(gl2,I);

false

> J := ideal<R | b*c + 1, TA + 2>;
>

> IsInRadical (gl2,J);

false

>

It follows that the function g2 (b, ¢, d, t) does not vanish identically on the sets 7.y and
T_, hence, there are pairs with tr(v(x, y)) = 2, v(x, ¥) # id, and tr(v(x, y)) = —2,

v(x,y) # —id.

In order to produce the explicit solutions for v(x, y) = —id and v(x,y) = z,
7z # —id, tr(z) = —2, consider the following matrices depending on one parameter
d:

(1-d 1 (2-3d 0
*T\-2134d) YT\ 0 3¢d-1)

Since the images of the commutator word on GL(2, C) and SL(2, C) are the same,
we do not require that det(x) = 1 or det(y) = 1. We only assume that det(x) =
d?>—d —2/3 #0and det(y) = —9d% +9d> — 2 # 0. Let

B B qll(d) qu(d)
A= U(.x, )’) - (q2l(d) 6122(d))

and TA = tr(A). The MAGMA computations show that

1
g +1= Nll(d2 —d+ g)Hll(d),

1
god)+1= 1\’22(612 —d+ 3) Hy (d),
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2\ 2 N 2
6121(d)=N21(d—§) (d—z) (d—g)

2 2 1 3 1 2
Q12(d)=N21(d—§) ( _E) (d— 5)
-(ﬁ—d—g)cﬂ—d+l)Mﬂ@
3 3 ’

1
TA+2=NGF—d+§)HWL

where N;; and N are non-zero rational numbers; H;; and H are polynomials with
rational coefficients that are irreducible over Q. Moreover deg Hp; = deg Hjp = 25
and deg H = 38. It follows that if > — d + 1/3 = 0 then A = —id. If d is a root of
H that is not a root of H»1, then A is a minus unipotent (which is not —id). m]
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