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Abstract We extend the polynomial approach to the hook length formula proposed
in Károlyi et al. Adv Math 277:252–282 (2015) to several other problems of the same
type, including the number of paths formula in the Young graph of strict partitions.
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The multivariate polynomial interpolation, or, in other words, the explicit form of
Alon’s Combinatorial Nullstellensatz [9,13], recently proved to be powerful in prov-
ing polynomial identities: in [9] it was used for the direct short proof of Dyson’s
conjecture, later generalized in [10] for the equally short proof of the q-version of
Dyson’s conjecture, then after additional combinatorial work it allowed to prove iden-
tities of Morris, Aomoto, Forrester (the last was open), their common generalizations,
both in classical and q-versions.

Here we outline how this method works in classical theory of symmetric functions,
“self-proving” polynomial identities corresponding to the counting paths in the Young
graph and “strict Young graph”, or, in other words, counting dimensions of linear and
projective representations of symmetric groups.
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The interpolation-based approach to symmetric functions has been earlier devel-
oped by Olshanski, Borodin, Okounkov, Vershik, Regev [5,14–16] and others. It may
sound speculatively, but according to author’s opinion, the novelty of my/author’s
approach consists in considering arbitrary polynomials (rather antisymmetric, than
symmetric) as functions of usual points and applying general facts about general (not
symmetric) polynomials instead of considering “symmetric functions as functions of
partitions” (formulation from [5]).

We start with a general framework of paths in graded graphs.

1 Graded graphs

Let G be aZ-graded countable directed graph with the vertex set V (G) = ⊔∞
i=−∞Vi ,

directed edges (u, v) ∈ E(G) joining vertices of the consecutive levels u ∈ Vi and
v ∈ Vi+1 for some integer i . In what follows both indegrees and outdegrees of all
vertices are bounded. This implies that the number PG(v, u) of directed paths from v

to u is finite for any two fixed vertices v, u. This number is known as the generalized
binomial coefficient (usual binomial coefficient appears for the Pascal triangle).

Fix a positive integer k. Our examples are induced subgraphs of the lattice Z
k.

Vertices are graded by the sum of coordinates, edges correspond to increasing of any
coordinate by 1. That is, indegree of any vertex equals its outdegree and equals k. It is
convenient to identify the vertex set V with the monomials xc11 · · · xckk , (c1, . . . , ck) ∈
Z
k. Then any edge corresponds to multiplying of monomial by some variable xi . Finite

linear combinations of elements of V (with, say, rational coefficients, it is not essential
hereafter) form a ring Q[x1, x−1

1 , . . . , xk, x
−1
k ] of Laurent polynomials in variables

x1, . . . , xk . Not necessary finite linear combinations form a Q[x1, x−1
1 , . . . , xk, x

−1
k ]-

module which we denote by �. For monomial v ∈ V and ϕ ∈ � we denote by [v]ϕ
the coefficient of v in the series ϕ.

Define the minimum of two monomials u = ∏
xaii and v = ∏

xbii as min(u, w) =
∏

xmin(ai ,bi )
i . If min(u, v) = u we say that the monomial v majorates u.
Now we describe three examples of graded graphs for which explicit formulae for

generalized binomial coefficients are known.

• Multidimensional Pascal graph Pk . This is a subgraph of Zk formed by the vectors
with integral non-negative coordinates (or, in the monomial language, by monomi-
als having all variables in non-negative power). For k = 2 this graph is isomorphic
to the Pascal triangle.

• Restricted Young graphYk . This is a subgraph of the Pascal graph formed by vectors
(c1, . . . , ck) with strictly increasing non-negative coordinates, 0 � c1 < c2 < · · ·
< ck . The vertices of Yk may be identified with the Young diagrams having at most
k rows (to any vertex (c1, . . . , ck) of Yk we assign a Young diagram with rows
(to any vertex (c1, . . . , ck) of Yk we assign a Young diagram with lengths of rows
c1 � c2 − 1 � · · · � ck − (k − 1)). Edges correspond to addition of boxes. The
usual Young graph has all Young diagrams as vertices, but when we count number
of paths between two diagrams we may always restrict ourselves to Yk with large
enough k.

123



446 F. Petrov

• Graph of strict partitions SYk . This is a subgraph of the Pascal graph formed
by vectors (c1, . . . , ck) with non-strictly increasing non-negative coordinates 0 �
c1 � c2 � · · · � ck satisfying the following condition: if ci = c j for i �= j , then
ci = 0. To any vertex (c1, . . . , ck) we may assign a Young diagram with lengths
of rows c1, . . . , ck . So, this diagram has at most k (non-empty) rows and they have
distinct lengths.

The following general straightforward fact connects generalized binomial coefficients
for subgraphs of Zk with coefficients of polynomials or power series.

Theorem 1.1 Let G be a subgraph of Zk, monomials u, v ∈ V (G) be two vertices of
G, deg u � deg v. Assume that ϕ ∈ � is a series satisfying the following conditions:

(i) [v]ϕ = 1;
(ii) if v′ ∈ V (G) and deg v = deg v′, then [v′]ϕ = 0;
(iii) if w /∈V (G), but xiw∈V (G) for some xi , then [w]ϕ ·(x1 + · · · + xk)degw−deg v

= 0.

Then the number of paths from v to u equals

PG(v, u) = [u]ϕ ·(x1 + · · · + xk)
deg u−deg v. (1)

Proof Induction on deg u. The base deg u = deg v follows from (i) and (ii). Denote
m = deg u − deg v and assume that the statement is proved for all vertices of degree
less than m + deg v. Let (ui , u), i = 1, . . . , s, be all edges of the graph G coming to
u. Clearly s � k and without loss of generality u = xiui for i = 1, . . . , s. Also note
that for s < i � k we have [ux−1

i ]ϕ ·(x1 + · · · + xk)m−1 = 0 by property (iii). Thus

[u]ϕ ·(x1 + · · · + xk)
m =

k∑

i=1

[
ux−1

i

]
ϕ ·(x1 + · · · + xk)

m−1

=
s∑

i=1

[ui ]ϕ ·(x1 + · · · + xk)
m−1

=
s∑

i=1

PG(v, ui ) = PG(v, u)

as desired. ��
Remark 1.2 In other words, both parts of (1) are fundamental solutions of the Laplace
equation on the part of our graph starting from the level of v.

Theorem 1.1 leads to a natural question: for which labeled graphs (G, u) there exists
a function ϕ such that conditions (i)–(iii) are satisfied?We do not know a full answer.
The following statement is at least general enough to cover all examples of this paper.

Theorem 1.3 Assume that V ⊂ Z
k, G is the induced subgraph of Pk with vertex set

V = V (G) and it satisfies the following two conditions:
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(i) (minimum-closed set) if u, w ∈ V , then also min(u, w) ∈ V .
(ii) (coordinate convexity) if u, w ∈ V ,w = uxmi for some index i and positive integer

m, then also uxsi ∈ V for all 0 � s � m.

Then for any v ∈ V there exists a function ϕ satisfying conditions of Theorem 1.1.

Proof Call a monomial u ∈ Z
k special if either u ∈ V , deg u = deg v (in particular, v

itself is special), or deg u � deg v, u /∈ V , xi u ∈ V for some variable xi . It suffices to
prove that there exists a function ϕ homogeneous of degree deg v with any prescribed
values of [u](∑ xi

)
deg u−deg vϕ for all special u. This is a linear system on coefficients

of ϕ.
By replacing V with v−1V we may suppose that v = 1. For any special monomial

u define its son S(u) as follows: if deg u = 0, then S(u) = 0, if u /∈ V , xi u ∈ V , then
S(u) = x− deg u

i u (if different indexes i satisfy xiu ∈ V , choose any).
If u �= w are two special monomials and w majorates S(u), then degw > deg u.

Indeed, assume that on the contrary degw � deg u. First, if deg u = 0, then degw = 0
and w = S(u) = u, a contradiction. Thus d = deg u > 0, we may suppose that
x1u ∈ V , S(u) = x−d

1 u. Denote w = xa1−d
1 xa22 · · · xakk u, ai � 0, d � a1 + · · · + ak ,

and eitherw ∈ V or xiw ∈ V for some i . Since w �= u, we have d > a1. Denote u0 =
min(xiw, x1u) if xiw ∈ V , and u0 = min(w, x1u) if w ∈ V . Then u0 = xa1−d+ε

1 u,
where ε ∈ {0, 1}, and u0 ∈ V since V is a minimum-closed set. The coordinate
convexity implies that if both u0, x1u belong to V , so does u. A contradiction.

Nowwe start to solve our linear system for coefficients of ϕ. For any special mono-
mial u we have a linear relation on themonomials of degree 0majorated by u. Between
them there is a monomial S(u), and it does not appear in relations corresponding to
special monomials w �= u with degw � deg u. It allows to fix coefficients of ϕ in the
appropriate order (by increasing the degree of u) and fulfil all our relations. ��

2 Observation on polynomials

Recall the Combinatorial Nullstellensatz of Alon [1].

Theorem 2.1 (Combinatorial Nullstellensatz) Let K be a field and Ai , i = 1, . . . , k,
be non-empty subsets of K , |Ai | = di + 1. Let f (x1, . . . , xk) ∈ K [x1, . . . , xk] be a
polynomial of degree at most d1 + · · · + dk such that f (c1, . . . , ck) = 0 for all points
(c1, . . . , ck) ∈ A1× A2× · · · × Ak. Then

[
xd11 xd22 · · · xdkk

]
f (x1, . . . , xk) = 0.

For verifying polynomial identities which allow to calculate coefficients we use the
following observation in the spirit of the Combinatorial Nullstellensatz.

Let K be a field and Ai = {ai0, ai1, . . . , ain} ⊂ K , i = 1, . . . , k, be its subsets of
size |Ai | = n + 1.

Observation 2.2 A polynomial f (x1, . . . , xk) ∈ K [x1, . . . , xk] of degree at most n
is uniquely determined by its values on the combinatorial simplex

� =
{
A(t1, . . . , tk) = (a1t1 , a2t2 , . . . , aktk ),

∑
ti � n

}
.
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Proof The number of points in� equals exactly the dimension of the space of polyno-
mials with degree at most n in k variables. Hence it suffices to check either existence
or uniqueness of the polynomial with degree at most n and with prescribed values on
�. Both tasks are easy as we may see:

Existence. Induction on n. The base n = 0 is clear. Assume that n > 1 and for the
simplex�′, which corresponds to the inequality

∑
ti � n−1, there exists a polynomial

f (x1, . . . , xk) with degree at most n − 1 and with prescribed values on �′. For any
point A(t1, . . . , tk) with

∑
ti = n we have a polynomial

∏

1�i�k
0�si<ti

(xi − aisi )

vanishing on all points of � but A(t1, . . . , tk). The appropriate linear combination of
f (x) and such polynomials gives a polynomial with the prescribed values on � (and
degree at most n).

Uniqueness. It suffices to prove that the polynomial f (x1, . . . , xk)with degree at most
n, which vanishes on �, identically equals 0. Assume the contrary. Let xt11 · · · xtkk be
a highest degree term in f . The set � contains the product B1× · · · ×Bk , where
Bi = {ai0, . . . , aiti }, |Bi | = ti + 1. By the Combinatorial Nullstellensatz, f cannot
vanish on

∏
Bi . A contradiction. ��

For Ai = {0, 1, . . . , n} we get the standard simplex

�n
k =

{
(t1, . . . , tk) : ti � 0, ti ∈ Z,

∑
ti � n

}
.

It is the main partial case for us. In the theory of q-identities its q-analogue, which
corresponds to the set {1, q, . . . , qn }, plays an analogous role.

We use notations xn = x(x − 1) · · · (x − n + 1) and
(x
n

) = xn/n!.
Remark 2.3 Some other notations, including x↓n, (x�n), (x |n), (x)n are used for
falling factorials. I/author prefer the Capelli–Toscano notation, popularized by Knuth,
see his arguments in [12]. The author finds it quite intuitive, particularly in the context
of this paper.

The following particular case of interpolation on �n
k appears to be useful.

Lemma 2.4 If f ∈ K [x1, . . . , xk], deg f � n and f vanishes on �n−1
k , then

f (x1, . . . , xk) =
∑

c1+···+ck=n

f (c1, . . . , ck) ·
k∏

i=1

(
xi
ci

)

=
∑

c1+···+ck=n

f (c1, . . . , ck)

c1! · · · ck ! ·
k∏

i=1

xi
ci .
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Proof It suffices to check the equality for values on �n
k . Both parts vanish on �n−1

k .
If (x1, . . . , xk) is a point on �n

k \�n−1
k , i.e.

∑
xi = n, then all summands on the right

vanish except (possibly) the summand with ci = xi for all i , and its value just equals
f (c1, . . . , ck) = f (x1, . . . , xk), i.e. the value of LHS at the same point, as desired. ��
We start our series of applications of Observation 2.2 along with the multinomial
version of the Chu–Vandermonde identity.

2.1 Example: Chu–Vandermonde identity and multinomial coefficient

(
x1 + · · · + xk

n

)

=
∑

c1+···+ck=n

k∏

i=1

(
xi
ci

)

. (2)

This immediately follows from Lemma 2.4.
Identity (2) has the following form in falling factorials:

(x1 + · · · + xk)
n =

∑

m1+···+mk=n

n!
∏

mi !
k∏

i=1

xi
mi . (3)

Taking only the leading terms in both sides we get the Multinomial Theorem, i.e.

(x1 + · · · + xk)
n =

∑

m1+···+mk=n

n!
∏

mi !
k∏

i=1

xi
mi. (4)

Returning back to graded graphs, for the multidimensional Pascal graph Pk we get the
following formula for the number of paths from the origin 1 to any vertex v = ∏

xmi
i ,

mi � 0, n = ∑
mi = deg v:

PPk(1, v) = [v]
(∑

xi
)n = n!

∏
mi ! .

This immediately follows from Theorem 1.1 for ϕ = 1 and identity (4).

3 Hook length formula

Westartwith a polynomial identitywhich is in a sense similar to theChu–Vandermonde
identity (3).

Theorem 3.1

∏

i< j

(x j − xi )

( k∑

i=1

xi − k(k − 1)

2

)n

=
∑

n1+···+nk=n+k(k−1)/2

n!
∏

ni !
∏

i< j

(n j − ni ) ·
∏

xi
ni .
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Proof By Lemma 2.4, it suffices to check that LHS vanishes on �
n+k(k−1)/2−1
k . Let

xi be non-negative integers and
∑

xi < n + k(k − 1)/2. If
∑

xi < k(k − 1)/2 then
some factor xi − x j vanishes, otherwise y = ∑

xi − k(k − 1)/2 is non-negative and
y < n, hence y n = 0. ��
As in the Chu–Vandermonde case, we may take only the leading terms and get the
identity

∏

i< j

(x j − xi )(x1 + · · · + xk)
n

=
∑

n1+···+nk=n+k(k−1)/2

n!
∏

ni !
∏

i< j

(n j − ni ) ·
∏

xi
ni.

(5)

Being divided by
∏

i< j (x j − xi ), this becomes a well-known expansion

(x1 + x2 + · · · )n =
∑

λ
n
dim λ · sλ

for the Schur symmetric functions (combined with the Frobenius formula for dimen-
sions).

Corollary 3.2 (Frobenius dimension formula)Forany vertexv = xn11 · · · xnkk ,
∑

ni =
n + k(k − 1)/2, of the Young graph Yk the number PYk(v0, v) of paths to this vertex
from v0 = (0, 1, . . . , k − 1) equals

PYk (v0, v) = n!
∏

ni !
∏

i< j

(n j − ni ) = [v]
∏

i< j

(x j − xi )
(∑

xi
)n

. (6)

Proof Take ϕ = ∏
i< j (x j − xi ) and apply Theorem 1.1. Conditions (i) and (ii) follow

from (5) with n = 0 (actually, this is just the Vandermonde determinant formula). For
checking (iii), note that such w = ∏

xnii satisfies either ni < 0 for some i or ni = n j

for some i, j . In both cases (5) yields that the corresponding coefficient vanishes. ��
Note that our proof of (6) does not use the Multinomial Theorem, but is proved in
the same way and the proof is almost equally short. Identity (5) appears also in the
important for the development of the polynomial method paper [2], where it is used
for appropriate application of the Combinatorial Nullstellensatz, while we show how
it may be proved by the (explicit version of) Combinatorial Nullstellensatz.

In the rest part of this section we explain the relation of (6) with hook lengths of
the Young diagram, this is mostly for the sake of completeness.

Recall that the graph Yk may be viewed as the graph of Young diagrams having
at most k rows. For a vertex v ∈ Yk , v = xn11 · · · xnkk , the corresponding diagram
λ(v) has k (possibly empty) rows with lengths n1 � n2 − 1 � · · · � nk − (k − 1).
Edges of the graph Yk correspond to adding boxes, and paths correspond to the skew
standard Young tableaux: for any path with, say m edges, put numbers 1, 2, . . . ,m in
the corresponding adding boxes. In this language, expression (6) counts the number of
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standard Young tableaux of the shape λ(v). Assuming n1 > 0 (i.e. the number of rows
equals k), we may interpret parameters n1, . . . , nk as hook lengths of k boxes in the
first column. Recall that (now specify that the largest column in the Young diagram is
the leftmost and the largest row is the lowest) a hook of a box X in the Young diagram
is a union of X ; all boxes in the same column which are higher than X ; all boxes in
the same row which are on the right to X .

Claim In the above notations the product of hook lengths of all boxes in the Young
diagram λ(v) equals

∏
h(�) =

∏
ni !

∏
i< j (n j − ni )

.

Proof Assume that boxes a, b of the Young diagram lie in the same row and a, c in
the same column. Let d be a box such that abdc is a rectangle. If d belongs to the
diagram then h(a) < h(b) + h(c), otherwise h(a) > h(b) + h(c). Hence we always
have the inequality h(a) �= h(b) + h(c). Now n1, . . . , nk are hook lengths of boxes
in the first column. In the i-th row there are ni − (i−1) boxes, and their hook lengths
are distinct numbers from 1 to ni , with i − 1 values excluded, and those excluded
values are ni − n1, ni − n2, . . . , ni − ni−1, by the inequality. It remains to multiply
over i = 1, 2, . . . , k. ��

The above claim allows to formulate Corollary 3.2 in the form of the hook length
formula [6].

Theorem 3.3 (hook length formula) The number of the standard Young tableaux of a
given shape λ with n boxes equals n!/∏

� h(�), where the product is taken over all
boxes of λ.

Remark 3.4 As the referee pointed out, Theorem 3.1 may be derived from the formal-
ism of [5] combined with the Frobenius dimension formula.

4 Skew Young tableaux

Here we get generalizations of Theorem 3.1, corresponding to counting paths between
two arbitrary vertices of Yk (i.e. the number of skew Young tableaux of a given shape).

The role of the Vandermonde determinant
∏

i< j (x j − xi ) = det
(
x j−1
i

)
i, j is played

by alternating determinants

am1,...,mk (x1, . . . , xk) = det
(
x
m j
i

)
, bm1,...,mk (x1, . . . , xk) = det

(
xi

m j
)
.

The following identity specializes to Theorem 3.1 for mi = i − 1, i = 1, 2, . . . , k.
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452 F. Petrov

Theorem 4.1 If m1 < · · · < mk are distinct non-negative integers, m = ∑
mi , then

bm1,...,mk (x1, . . . , xk)
(∑

xi − m
)n

=
∑

n1+···+nk=n+m

n!
∏

ni ! bm1,...,mk (n1, . . . , nk) ·
∏

xi
ni .

Proof Due to Lemma 2.4, it suffices to check that LHS vanishes on �n+m−1
k . Fix a

point (x1, . . . , xk) ∈ �n−1
k . Let y1 � · · · � yk be the increasing permutation of x ′

i . If
yi < mi for some i , then the matrix (yi

m j ) is singular as it has i×(n− i+1) minor
of zeros, and the matrix (xi

m j ) is therefore singular too. If yi � mi for all i , then
denoting y = ∑

xi − m = ∑
(yi − mi ) � 0 we have 0 � y < n, hence y n = 0. ��

Taking the leading terms we get the following identity for homogeneous polynomials:

am1,...,mk (x1, . . . , xk)
(∑

xi
)n

=
∑

n1+···+nk=n+m

n!
∏

ni ! bm1,...,mk (n1, . . . , nk) ·
∏

xi
ni.

(7)

Corollary 4.2 (skew dimension formula) Let v1 = xm1
1 · · · xmk

k , v2 = xn11 · · · xnkk be
two vertices of the Young graph Yk such that ni � mi for all i = 1, 2, . . . , k. Denote∑

mi = m,
∑

ni = n+m. Then the number PYk(v1, v2) of paths from v1 to v2 equals

PYk(v1, v2) = n!
∏

ni ! bm1,...,mk (n1, . . . , nk)

= [v2]am1,...,mk (x1, . . . , xk)
(∑

xi
)n

.

Proof Take ϕ = am1,...,mk (x1, . . . , xk) and apply Theorem 1.1. Conditions (i) and (ii)
follow from (7) with n = 0 (or from expanding the determinant). For checking (iii),
note that such w = ∏

xnii satisfies either ni < 0 for some i or ni = n j for some i, j .
In both cases (7) yields that the corresponding coefficient vanishes. ��

Remark 4.3 This formula for the number of paths between two arbitrary vertices of
the Young graph appeared in [15, Theorem 8.1], see also [16]. Recently it appeared
in the context of additive combinatorics in [3, Lemma 4], [4].

The value bm1,...,mk (n1, . . . , nk) has a combinatorial interpretation following from
the Lindström–Gessel–Viennot Lemma: up to a multiple

∏
mi ! it is a number of

semistandard Young tableaux of a given shape and content. See details in [7].
A.M.Vershik pointed out that similar results are known for the graph of strict

diagrams. It also may be included in our framework.
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5 Strict diagrams

For counting the number of paths in the graph SYk we need series which are not
polynomials.

Let x1, . . . , xk be variables (as before). Consider the setM of rational functions in
those variables with denominator

∏
i< j (xi+ x j ). Expand such functions in Laurent

series in x1, x2/x1, x3/x2, . . . , xk/xk−1 (i.e., (xi+ x j )−1 = x−1
i − x j x

−2
i + x2j x

−3
i −

· · · for i < j). Define the value of such function at a point (c1, . . . , ck) with non-
negative coordinates as follows: if coordinates are positive, just substitute them in the
function, if some coordinates vanish, replace them by positive numbers t, t2, . . . (in
such order), and let t tend to +0. What we actually need is that for i < j the value
x j/(xi+ x j ) with xi = x j = 0 equals 0. Each function f ∈ M may be expanded as
f = P[ f ]+ Q[ f ], where P[ f ] is a polynomial in x1, . . . , xk , and in Q[ f ] each term∏
xcii contains at least one variable xi in a negative power ci < 0. We say that P[ f ]

is the polynomial component of f and Q[ f ] is the antipolynomial component of the
function f (x1, . . . , xk).

Lemma 5.1 Define a function fn(x1, . . . , xk) ∈ M by the formula

fn(x1, . . . , xk) =
∏

1�i< j�k

xi − x j
xi + x j

· (x1 + · · · + xk)
n .

Then

(i) its antipolynomial component Q[ fn] vanishes on the standard simplex �n
k ,

(ii) if c1, . . . , ck are integers such that c j < 0, ci � 0 for i = j + 1, . . . , k, then[∏
xcii

]
fn = 0.

Proof Wemay suppose that k = 2d is even (else replace kwith k+1 andput xk+1 = 0).
Consider the following antisymmetric k×k matrix: ai j = (xi− x j )/(xi+ x j ). Note
that its Pfaffian lies in M, it is homogeneous of order 0, it vanishes for xi = x j and
is singular for xi = −x j . Thus up to a constant multiple (it is not hard to verify
that actually up to a sign) it equals

∏
1�i< j�k(xi− x j )/(xi+ x j ). The Pfaffian is an

alternating sum of expressions like

d∏

i=1

ξi − ζi

ξi + ζi
,

where {ξ1, ζ1, . . . , ξd , ζd} = {x1, . . . , xk}. On the other hand, the Vandermonde iden-
tity (2) allows to express the falling factorial (x1 + · · · + xk)n as a linear combination
of expressions like

d∏

i=1

(ξi+ζi )
αi , αi � 0, α1 + · · · + αd = n.
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Fixing at first the partition into pairs and next the exponents α1, . . . , αd , we reduce
both claims to the expression

F(x1, . . . , xk) =
d∏

i=1

ξi − ζi

ξi + ζi
· (ξi+ζi )

αi .

Note that variables are separated here, thus the polynomial component of this product
is just the product of polynomial components of the factors. We have

Q[F ] = F − P[F ] =
d∏

i=1

ξi − ζi

ξi + ζi
· (ξi+ζi )

αi −
d∏

i=1

P

[
ξi + ζi

ξi + ζi
· (ξi+ζi )

αi

]

.

If αi � 1, the corresponding fraction is a polynomial. If αi = 0, we have ξi = xa ,
ζi = xb for some indexes a < b, we use the relation P[(xa− xb)/(xa+ xb)] = 1.
Substituting (x1, . . . , xk) ∈ �n

k , we see that if ξi + ζi < αi for some index i , both
minuend and the subtrahend take zero value, otherwise ξi = ζi = 0 for all i with
αi = 0, thus the corresponding factors in the minuend and subtrahend are equal.

For proving (ii), note that we should have x j = ξs for some s, but if ξs is taken in
negative power, then ζs = xbs must be taken in positive power and bs > j . ��
Modulo this lemma everything is less or more the same as in previous sections.

Theorem 5.2 The polynomial component of the function fn(x1, . . . , xk) equals

P

[ ∏

1�i< j�k

xi − x j
xi + x j

· (x1 + · · · + xk)
n
]

=
∑

m1+···+mk=n

∏

i< j

mi − m j

mi + m j
· n!
∏

mi ! ·
∏

xi
mi

(recall that (mi−m j )/(mi+m j ) for mi = m j = 0 is equal to 1).

Proof Both parts are polynomials of degree at most n, thus it suffices to check that
their values at each point (c1, . . . , ck) ∈ �n

k are equal. The polynomial component of
fn(x1, . . . , xk) takes the same values on �n

k as the function fn . Thus, by Lemma 2.4,
it suffices to check that fn vanishes on �n−1

k . But already the factor (x1 + · · · + xk)n

vanishes on �n−1
k . ��

Corollary 5.3 The coefficient H(m1, . . . ,mk) of the Laurent series

∏

1�i< j�k

xi − x j
xi + x j

· (x1 + · · · + xk)
n

in monomial
∏

xmi
i , mi � 0, equals

∏
i< j (mi−m j )/(mi+m j ) ·n!/∏

mi !.
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Corollary 5.4 If u = ∏
xmi
i is a vertex of SYk , n = ∑

mi , then the number of paths
from the origin to v equals

PSYk(1, u) =
∏

i< j

mi − m j

mi + m j
· n!
∏

mi ! .

Proof Apply Theorem 1.1 to the function ϕ = ∏
1�i< j�k(xi− x j )/(xi+ x j ). Then

the result directly follows from Corollary 5.3, so it suffices to check all conditions
of Theorem 1.1. Condition (i) follows from Corollary 5.3 for n = 0 (or just from
common sense). In condition (ii) there is nothing to check since 1 is the unique vertex
of SYk with degree 0. Let us check condition (iii). Assume thatw = ∏

xcii is such that
xiw is a vertex of SYk butw is not. There are two cases: either all coordinates ofw are
non-negative and c j = cl > 0 for some j, l, or ci = −1, c j = 0 for all j � i . In the
first case apply Corollary 5.3, in the second case apply statement (ii) of Lemma 5.1. ��

6 Skew strict Young tableaux

Here we give an identity corresponding to the formula [8,17] for the number of paths
between any two vertices of the graph SYk , or, in other words, for the number of strict
skew Young tableaux of a given shape.

Let v = ∏k
i=1 x

mi
i , m1 > m2 > · · · > m
 > m
+1 = 0 = · · · = mk , be a vertex

of SYk , u = ∏
xnii be another vertex of SYk and ni � mi for all i (thus there exists

some path from u to v). Denote m = ∑
mi , n = ∑

ni .
For counting such paths we introduce the following polynomial (Ivanov in [8]

attributes it to Okounkov):

ψv(x1, . . . , xk) = 1

(k − 
)! Sym
(∏

i�


xi
mi

∏

i�
,i< j

xi + x j
xi − x j

)

.

Here Sym F(x1, . . . , xk) = ∑
π F(xπ1, . . . , xπk ), where summation is taken over all

k! permutations of numbers 1, . . . , k. (For concluding that it is indeed a polynomial
note that any multiple xi − x j in denominator disappears after natural pairing of
summands. It is a super-symmetric polynomial, but we do not use this fact.)

Then define the function

ϕv(x1, . . . , xk) =
∏

i< j

xi − x j
xi + x j

· ψv(x1, . . . , xk).

The following theorem generalizes results of the previous section.

Theorem 6.1 Denote g(x1, . . . , xk) = ϕv(x1, . . . , xk) ·(x1 + · · · + xk − m)n−m.

(i) The antipolynomial component Q[g] vanishes on the simplex �n
k .
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(ii) The polynomial component of g has the expansion

P[g] =
∑

c1+···+ck=n
ci�0

(n − m)!
∏

ci ! · ϕv(c1, . . . , ck) ·
∏

xi
ci . (8)

(iii) The number of paths from v = ∏
xmi
i to u = ∏

xnii equals

(n − m)!
∏

ni ! · ϕv(n1, . . . , nk).

Proof (i) Fix a permutation π and prove the statement for the antipolynomial com-
ponent of the corresponding summand in the definition of ϕv . Denote yi = xπi . Note
that up to a sign our summand is

(y1 + · · · + yk − m)n−m
∏

yi
mi

∏


<i< j

yi − y j
yi + y j

.

We expand
∏


<i< j (yi− y j )/(yi+ y j ) as a Pfaffian as explained in the proof of
Lemma 5.1 (if k − 
 is odd do the same thing as before: add a vanishing vari-
able; so let k − 
 = 2d be even). Expand this Pfaffian, and take a summand like∏d

i=1(ξi−ζi )/(ξi+ζi ), where {ξ1, ζ1, . . . , ξd , ζd} = {y
+1, . . . , yk}.
Expand also (x1 + · · · + xk − m)n−m by the Chu–Vandermonde identity (2) as a

linear combination of terms like

(y1 − m1)
α1 · · · (y
 − m
)

α
 (ξ1 + ζ1)
β1 · · · (ξd + ζd)

βd ,

∑
αi + ∑

βi = n − m. Thus it suffices to prove that the antipolynomial component
of the following product vanishes on �n

k :

∏

i�


yi
mi+αi

d∏

i=1

ξi − ζi

ξi + ζi
· (ξi+ζi )

βi .

The variables are separated, hence the polynomial component P
[∏ · · · ] of the product

is a product
∏

P[ · · · ] of polynomial components. It suffices to verify that whenever
yi , ξi , ζi are non-negative integers with sum at most n, the values of

∏
( · · ·) and∏

P[ · · · ] are equal. Ifβi � 1, the corresponding fraction (ξi−ζi )/(ξi+ζi ) ·(ξi+ζi )
βi

is a polynomial. If βi = 0, we have ξi = xa , ζi = xb for some indexes a < b,
then P[(xa− xb)/(xa+ xb)] = 1. Substituting (x1, . . . , xk) ∈ �n

k , we see that if
yi < mi + αi or ξi + ζi < βi for some index i , then both products take zero value,
otherwise ξi = ζi = 0 for all i with βi = 0, thus the corresponding fractions (values
of the function and its polynomial part) are equal.

Note that as in Lemma 5.1 wemay also conclude that if c1, . . . , ck are integers such
that c j < 0, ci � 0 for i = j + 1, . . . , k, then

[∏
xcii

]
g = 0.
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(ii) The values of P[g] on �n
k are the same as values of g. Any summand of the above

expansion for g vanishes on �n−1
k . Thus it suffices to use Lemma 2.4.

(iii) Apply Theorem 1.1 to the function ϕv (or its leasing part, it is a matter of taste).
It suffices to check all conditions of Theorem 1.1. Conditions (i) and (ii) follow from
the above expansion of g (with n = 0). There are exactly (k−
)! permutations with
yi = xi , i = 1, . . . , 
, for each of them we get coefficient 1 in the monomial v and
coefficient 0 in other monomials of degree m. For other permutations we do not get
non-zero coefficients in monomials which are vertices of SYk . Let us check condition
(iii). Assume that w = ∏

xcii is such that xiw is a vertex of SYk but w is not. There
are two cases: either all coordinates of w are non-negative and c j = cl > 0 for some
j, l, or ci = −1, c j = 0 for all j � i . In the first case apply identity (8), in the second
case apply the above remark after the proof of part (i) of the theorem. ��

7 Concluding remarks

For the sake of convenience we summarize here the list of functions ϕ for which
coefficients of ϕ

(∑
xi

)N count the number of paths from the vertex v in some graded
graph G.

(a) ϕ = ∏
xmi
i , v = ∏

xmi
i , G is the multidimensional Pascal graph Pk .

(b) ϕ = det(xmi
i ), m1 < m2 < · · · < mk , v = ∏

xmi
i , G is the Young graph Yk

formed by strictly increasing sequences.
(c) ϕ = ∏

i< j (xi− x j )/(xi+ x j ), v is the origin, G = SY k is the graph of strict
Young diagrams. When v is not the origin, the corresponding function ϕv should
be multiplied by the Okounkov polynomial, as described in Sect. 6.

We may observe that functions ϕ in examples (b) and (c) vanish on the “boundary” of
the corresponding graph considered as a subgraph of Pk . However, we do not know
how to guess the function of example (c) without knowing it a priori. Hopefully, the
answer to this question may help to generalize this machinery to other graphs.

Another question which has to be answered is how identities with falling factorials
are related with asymptotics of dimensions.
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