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Abstract We present (and prove) two “obvious” theorems in topological dynamics.
That is, it would appear that the conclusion follows immediately from the definitions,
but in fact this is not the case. While these results are “well known” the author has not
seen them in print.
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A flow (X, T ) is a jointly continuous action of the topological group T on the
compact Hausdorff space X , (t, x) �→ t x , ex = x , and s(t x) = st x for x ∈ X ,
s, t ∈ T .

If (X, T ) is a flow and x ∈ X the orbit of x is the set T x = {t x : t ∈ T }, and its
closure T x is the orbit closure of x . A subset of X is said to be invariant if it is a union
of orbits.

If (X, T ) is a flow, a minimal set is a non-empty, closed, invariant set which is
minimal with respect to these properties. Equivalently it is the orbit closure of each
of its points. A simple Zorn’s Lemma argument shows that minimal sets always exist
for flows on a compact space. If (X, T ) is itself minimal it is called a minimal flow.

This paper is dedicated to the memory of Robert Ellis, who died in December 2013. Bob Ellis was the
leading researcher in the abstract theory of topological dynamics and much of what is in this paper was
directly inspired by his work.
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540 J. Auslander

If (X, T ) and (Y, T ) are flows, a homomorphism from X to Y is a continuous
surjective map π : X → Y such that π(t x) = tπ(x) for t ∈ T and x ∈ X . We say
that Y is a factor of X , and that X is an extension of Y .

The simplest flows are the equicontinuous ones, where the maps defined by the
group T form an equicontinuous family. (In the case of a metric space these are
characterized by the “ε-δ” definition: if ε > 0 there is δ > 0 such that whenever
d(x, x ′) < δ then d(t x, t x ′) < ε for all t ∈ T .)

A more general notion is distality. This is defined in terms of the proximal relation
P . We say that x and y in X are proximal ((x, y) ∈ P) if for any neighborhood W
of the diagonal � there is t ∈ T such that (t x, t y) ∈ W . In the metric case this says
inf t∈T d(t x, t y) = 0. If x and y are not proximal, they are said to be distal, and the
flow (X, T ) is distal if any pair of distinct points are distal. It is easily checked that an
equicontinuous flow is distal. An example of a distal flow which is not equicontinuous
will be given later (in the discussion of regional proximality).

Equicontinuous and distal flows are reasonably well understood. In both cases they
are the (necessarily disjoint) union of minimal sets. Equicontinuous minimal flows are
homogeneous spaces of topological groups. The analysis of distal minimal flows was
carried out in a deep paper of Hillel Furstenberg [4], where it is shown that such flows
can be obtained by a (possibly transfinite) sequence of “equicontinuous extensions”
starting with the “trivial” one point flow.

Therefore, given an arbitrary flow (X, T ), one might try to “reduce” it to a dis-
tal or equicontinuus flow by a homomorphism, or what is the same thing, to find a
closed T invariant equivalence relation R so that the factor flow (X/R, T ) is distal or
equicontinous.

Indeed (considering distality for now) it is easy to see that a flow has a maximal
distal factor. Equivalently there is a smallest closed T invariant equivalence relation
Sd (the distal structure relation) such that the factor flow (X/Sd, T ) is distal.

This is a consequence of the easily proved facts that an arbitrary product of distal
flows is distal, as is a closed invariant subset, and the trivial, one point flow. It follows
that if {Ri } is the set of closed invariant equivalence relations such that (X/Ri , T ) is
distal, and R = ⋂

Ri then (X/R, T ) is the maximal distal factor of (X, T ).
Since for any flow homomorphism π : X → Y , π(PX ) ⊂ PY it follows that Sd

contains P — that is, to obtain a distal flow from a given one, it is necessary to
collapse proximal pairs. In general P is not an equivalence relation. For example, this
is the case for a weakly mixing minimal flow [1, Chapter 9], so P may be a proper
subset of Sd.

A natural conjecture is that Sd is the closed T invariant equivalence relation gen-
erated by P . This is in fact the case, and it is proved in [3]. The proof is by no means
trivial. The first of our “folk theorems” is a generalization.

Theorem 1 Let π : X → Y be a homomorphism of flows such that if (x, x ′) ∈ P then
π(x) = π(x ′). Then Y is distal.

Note that if it were the case that whenever π : X → Y is a flow homomorphism, then
π(PX ) = PY then the conclusion would follow immediately. But this is not true in
general. Here is a simple counterexample.
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Let X consist of two copies of the unit interval equipped with the map x �→ x2.
Let Y be obtained from X by identifying the endpoints, giving a homeomorphism of
the circle (so T = Z the additive group of integers). Any pair of points from the upper
and lower arc are proximal, but clearly their (unique) inverse image consists of points
on different intervals so are not proximal.

(If (Y, T ) is minimal then it can be shown that π(PX ) = PY .)
The proof of Theorem 1 depends on the enveloping semigroup, which is one of

Ellis’ major contributions.
If X is a compact Hausdorff space, XX consists of the collection of all (not just

continuous) maps from X to itself, provided with the topology of pointwise conver-
gence. By Tychonoff’s theorem XX is compact. XX is a semigroup under composition
of maps. It has very limited continuity properties — if fi , f, g ∈ XX with fi → f ,
then fi g → f g, and in general that is all one can say.

Now identify the group T with the self maps of X given by its action, so we may
regard T as a subset of XX . Let E(X, T ) (or E(X) or E) denote the closure of T
in XX so E(X) is compact. Moreover E is a subsemigroup of XX , and is called the
enveloping semigroup of the flow (X, T ). The maps in E are not in general continuous
or even Borel, and E has the same limited continuity properties as XX . (Note that they
are limits of nets, not necessarily of sequences.) As if to compensate for this, E has
a rich algebraic structure, which can be correlated with the dynamical properties of
(X, T ).

The enveloping semigroup is particularly useful in studying proximality. Suppose
(x, x ′) ∈ P . Then there is a net {ti } in T such that ti (x, x ′) → �. Let (a subnet) of
ti → η ∈ E . Then we have ηx = ηx ′. A similar argument shows that if ηx = ηx ′ for
some η ∈ E then x and x ′ are proximal. Therefore (x, x ′) ∈ P if and only if ηx = ηx ′
for some η ∈ E(X).

If (x, x ′) ∈ P , let H = {η ∈ E : ηx = ηx ′}. As we have just seen H �= ∅ and it is
immediate that H is closed. Moreover, H is a left ideal — if λ ∈ E and η ∈ H , then
λη ∈ H . It can be shown that every non-empty closed left ideal contains a minimal
left ideal. So we have (x, x ′) ∈ P if and only if px = px ′ for all p ∈ I for some
minimal left ideal I in E .

Also, it can be shownby aZorn’s Lemma argument that aminimal left ideal contains
idempotents u ∈ I with u2 = u. The dynamical significance of this is that if u is an
idempotent and x ∈ X then x and ux are proximal, since ux = u2x = u(ux).

If (Y, T ) is a factor of (X, T ), π : X → Y then there is induced a (semigroup)
homomorphism θ : E(X) → E(Y ) such that π(px) = θ(p)π(x). We suppress θ

notationally and regard E(X) as acting onY andwriteπ(px) = pπ(x), for p ∈ E(X).
Now for the proof of Theorem 1. Suppose (y, y′) ∈ P . Then py = py′ for p ∈ I a

minimal left ideal. In particular uy = uy′ for u an idempotent in I . Now let (x, x ′) ∈
X×X with π(x, x ′) = (y, y′). Then (x, ux) ∈ P so π(x) = π(ux) and similarly
π(ux ′) = π(x ′). Then y = π(x) = π(ux) = uy = uy′ = π(ux ′) = π(x ′) = y′.

Just as for distal, given a flow (X, T ), there is an equicontinuous structure rela-
tion, a smallest closed T invariant equivalence relation Seq(X) such that the factor
flow (X/Seq(X), T ) is equicontinuous, and the proof of the existence of Seq(X) is
completely analogous to the proof for Sd(X) given earlier.
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The key to Seq is the regionally proximal relation RP . The pair (x, x ′) ∈ RP if there
are nets {xi } and {x ′

i } in X and {ti } in T with xi → x , x ′
i → x ′ and ti (xi , x ′

i ) → �.
(If X is a metric space, then (x, x ′) ∈ RP if and only if, given ε > 0 there are z and
z′ in X and t ∈ T such that d(x, z) < ε, d(x ′, z′) < ε and d(t z, t z′) < ε.)

Clearly P ⊂ RP . The relation RP is reflexive, symmetric, T invariant, and closed,
but not in general an equivalence relation.

A simple example illustrating regional proximality is provided by the homeomor-
phism of the disc in polar coordinates f (r, θ) = (r, r+θ). The flow generated by f
is distal, but RP is not trivial. For example ((1, θ1), (1, θ2)) ∈ RP for all θ1, θ2.

It is immediate that a flow (X, T ) is equicontinuous if and only if RP = �.
If Y is a factor of X , then π(RPX ) ⊂ RPY , and just as in the case of Sd one expects

that Seq is the smallest closed invariant equivalence relation containing RP . Again,
this is in fact the case. Its proof, given in [3], depends on a deep theorem of Ellis,
namely that a flow is equicontinuous if and only if its enveloping semigroup is a group
of homeomorphisms [2, Chapter 4]. (A related theorem, also due to Ellis, which has
applications in other branches of analysis, is that a locally compact Hausdorff group
for which multiplication is separately continuous is a topological group.)

A generalization is our second folk theorem, concerning equicontinuity.

Theorem 2 Let π : X → Y be a homomorphism, with π(RP) = �. Then (Y, T ) is
equicontinuous.

In fact there is a simple proof of Theorem 2, which does not require the joint continuity
theorem.

Let yn → y, tn(y, yn) → (y′, y′′). It is an elementary exercise to check that for
equicontinuity of (Y, T ) it is sufficient to show that y′ = y′′. Let π(xn) = yn , xn → x
so π(x) = y. Let tn(x, xn) → (x ′, x ′′) so π(x ′, x ′′) = (y′, y′′). But (x ′, x ′′) ∈ RP ,
t−1
n (tnx, tnxn) = (x, xn) → (x, x), so π(x ′) = π(x ′′). That is y′ = y′′.
So, somewhat surprisingly, the proof for equicontinuity and regional proximality

is easier than for distality and proximality.
It is natural to consider the relative versions of the above theorems. That is, let

(X, T ) and (Y, T ) be flows and let π : X → Y be a homomorphism. Let Pπ be the
relative proximal relation, Pπ = {(x, x ′) : π(x) = π(x ′) and (x, x ′) ∈ P}. Suppose
(Z , T ) is a flow, and α : X → Z and β : Z → Y are homomorphisms with π = βα

and α(Pπ ) = �Z . (If Y = 1 the trivial one point flow, this is the situation considered
in Theorem 1.) The natural conjecture is that β is a distal homomorphism, that is that
Pβ = �.

However, without some additional assumptions this is not the case. Let X , as in
the example given earlier, be two copies of I with the homeomorphism x �→ x2 on
each interval. Let Y = I with the same homeomorphism. Let Z be the circle with
the induced homeomorphism (called Y in the first example), and let α : X → Z ,
β : Z → Y , π : X → Y be the obvious homomorphisms. Then Pπ = � so of course
α(Pπ ) = � but β is not distal, in fact it is proximal.

If we assume that (Y, T ) is minimal then β : Z → Y is a distal homeomorphism.
The proof, included for completeness, is almost the same as in the absolute case.

Let (z, z′) ∈ Pβ and let y = β(z) = β(z′). Let I be a minimal left ideal for which
pz = pz′ for p ∈ I and let u be an idempotent in I such that uy = y. Let x, x ′ ∈ X

123



Two folk theorems in topological dynamics 543

with α(x, x ′) = (z, z′) (so π(x) = π(x ′)). Then (x, ux) ∈ Pπ so α(ux) = α(x) and
similarly α(ux ′) = α(x ′). Then z = α(x) = α(ux) = uz = uz′ = α(ux ′) = α(x ′) =
z′.

Similar considerations apply to the relative regionally proximal relation RPπ ,
(x, x ′) ∈ RPπ if there are nets (xn, x ′

n) → (x, x ′) with π(xn) = π(x ′
n) (so

π(x) = π(x ′)) and tn ∈ T such that tn(xn, x ′
n) → �.

It is easily checked that the homomorphism π is equicontinuous if and only if
RPπ = �. The same counterexample shows that if α(RPπ ) = � it does not follow
that β is an equicontinuous extension.

Just as in the case of the relative proximal relation, if (Y, T ) is minimal, then β is
equicontinuous. This follows from amore general result [1]: If (X, T ), (Y, T ), (Z , T ),
π, α, and β are as above with (Y, T ) minimal, then α(RPπ ) = RPβ . Therefore if
α(RPπ ) = �, then RPβ = � and β is equicontinuous.

In conclusion we would like to call the reader’s attention to a recent book [2] of
BobEllis and his sonDavid,Automorphisms andEquivalenceRelations in Topological
Dynamics, which develops topological dynamics from the point of view of “ICERS”
(invariant closed equivalence relations).
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