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1 Introduction

Let n > 2 be an integer, R = K [x1, x2, . . . , xn] the n-variable polynomial ring over
the field K of characteristic 0. A derivation of R is a K -linear map δ : R → R that
satisfies the Leibniz rule δ( f g) = f δ(g) + gδ( f ) for every pair of polynomials. By
this identity, the values at the generators δ(xi ) = gi ∈ R, i = 1, . . . , n, determine δ.
Another way of expressing this is

δ = g1
∂

∂x1
+ g2

∂

∂x2
+ · · · + gn

∂

∂xn
.
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The constants of Lotka–Volterra derivations 545

The polynomial f ∈ R is a constant of the derivation δ if δ( f ) = 0. The set of
constants of R is a subalgebra of R due to the Leibniz rule, we shall denote it Rδ . A
central problem concerning derivations is to describe their rings of constants. There
is no general procedure for determining Rδ and it may be neither a polynomial ring
nor a finitely generated ring (see [5] for more details).

Given parameters Ci ∈ K , i = 1, . . . , n, the Lotka–Volterra derivation d is defined
on the generators as

d(xi ) = xi (xi−1 − Ci xi+1),

where (and further on) the indexing is circular, that is n + e and e are identified for
every integer e. The special case of the Volterra derivation, where all Ci = 1, was
considered in [2]. In the present paperwe shall observe a confirmationwhy theVolterra
case is remarkable. The case n = 3 for arbitrary parameters Ci was considered in the
paper [4]. Here we assume n > 3.

The Lotka–Volterra derivations are a type of factorizable derivations, that is, deriva-
tions defined by d(xi ) = xi fi , where fi are polynomials of degree 1 for i = 1, . . . , n.
Wemay associate the factorizable derivationwith any given derivation of a polynomial
ring, this helps to determine constants of arbitrary derivations (see, for example, [3]).
Moreover, Lotka–Volterra systems play a significant role in population biology, laser
physics and plasma physics (see for instance [1] and references therein).

Before stating the main theorem, we define the generating polynomials. Let f =∑n
i=1

(∏i−1
j=1 C j

)
xi = x1+C1x2+C1C2x3+· · · . Take any nonempty subsetA ⊆ Zn

of integers mod n closed under i �→ i +2. If n is odd thenA = Zn ; for n even we have
two additional proper subsets E = {2i : i � n/2} and O = {2i − 1 : i � n/2}. Given
A, let Ci , i ∈ A, be positive rational numbers such that

∏
i∈ACi = 1. Then there exist

unique coprime positive integers θi , i ∈ A, such that θi+2 = Ciθi . (Indeed, the rational
vectors (τi )i∈A form a 1-dimensional subspace because of fixed positive ratios. Hence
if we take the given positive rational vectors, thenmultiplying by the smallest common
denominator and dividing by the greatest common divisor of the numerators we obtain
(θi )i∈A.) Let us define gA = ∏

i∈A xθi
i . Let A′ = {i + 1 : i ∈ A}.

Our main results are the following two theorems.

Theorem 1.1 Let d be the Lotka–Volterra derivation with parameters C1, . . . , Cn.
Then the ring of constants Rd is a polynomial algebra. Assume that not all parameters
are equal to 1 and n > 4. Then the number of generators is equal to

• 0 if
∏

Ci �= 1 and no gA is defined;
• 3 if n is even and both gE and gO are defined;
• 2 if n is odd and gZn is defined, or n is even and

∏
Ci = 1 but only one of gE and

gO is defined;
• 1 if

∏
Ci = 1 but no gA is defined, or n is even and

∏
Ci �= 1 but only one of gE

and gO is defined.

Suppose now that n = 4. In this case there is a further quadratic invariant if
C1C2C3C4 = −1 and there are two consecutive indices such that both corresponding
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546 P. Hegedűs, J. Zieliński

parameters are equal to 1. Assume C1 = C2 = 1 and C4 = −1/C3 (for the other
possibilities one has to rotate the indices appropriately), then

f4 = x21 + x22 + x23 + C2
3 x24 + 2x1x2 − 2x1x3

− 2C3x1x4 + 2x2x3 − 2C3x2x4 + 2C3x3x4.

If C1 = C2 = C3 = 1 and C4 = −1 then this procedure would give two possibilities
for f4, they differ by 4x1x3. As 4x1x3 = 4gO, which is defined in this case, one of the
two possibilities for f4 is sufficient.

Theorem 1.2 Assume n = 4 and let d be the Lotka–Volterra derivation with para-
meters C1, . . . , C4. Then the ring of constants Rd is a polynomial algebra. If not all
parameters are equal to 1 then the number of generators is equal to

• 0 if
∏

Ci �= 1 and none of gO, gE, f4 is defined;
• 3 if both gE and gO are defined;
• 2 if

∏
Ci = 1 but only one of gE and gO is defined or one of parameters is equal

to −1 and the other three are equal to 1;
• 1 if

∏
Ci = 1 but gO, gE are not defined, or

∏
Ci = −1 and only two consecutive

parameters are equal to 1, or
∏

Ci �= ±1 but one of gO, gE is defined.

It is not stated explicitly in the theorems but the generators are always those polyno-
mials gA that are defined together with f if

∏
Ci = 1 (or together with f4 if n = 4,

C1C2C3C4 = −1 and two consecutive parameters are equal to 1). Denote by H this
set of generators. (If n is even and both gE and gO are defined, then of course gZn is
also defined. But it is superfluous in the generating set because gZn = gEgO.)

It is routine to check, see Lemma 2.1, that f is a constant if and only if
∏

Ci = 1,
each gA is constant if defined and f4 is a constant if n = 4, C1 = C2 = 1, and
C4 = −1/C3.

The statements of theorems are similar to [2, Theorem 1.1] where all parameters
are equal to 1 and there are [n/2] + 1 free generators of the ring of constants. As
it was noted there, the surprising feature is that the generators are independent. This
phenomenon might deserve further study.

The outline of proofs of theorems is also similar to the proof of [2, Theorem 1.1]
subject to new complications related to arithmetic properties of parameters Ci which
require different arguments in different cases.

The case n = 4 was also investigated in [6]. The problem is solved there for
parameters such thatC1C2C3C4 is either 1 or not a root of unity. The last sentence of the
statement in [6, Lemma 3.2] is not correct. The assumption should be (C1 · · · Cn)m �=
1 instead of C1 · · · Cn �= 1. In this paper we treat the more difficult case, when
C1C2C3C4 �= 1 is a root of unity. See Propositions 2.10 and 2.11.

2 Proofs

We prove Theorems 1.1 and 1.2 simultaneously, indicating the differences along the
way. The proof splits into three parts. First, we show that the polynomials are indeed
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in the kernel of d. Second, that any polynomial in Rd can be expressed as a polyno-
mial of elements of H. And finally, that they are algebraically independent. As the
case n = 4 requires a special attention, Proposition 2.10 will be partly replaced by
Proposition 2.11.

Before embarking on the proof we make a short observation. The polynomial ring
has a grading R = ⊕∞

a=0 Ra , where Ra is the K -vectorspace of homogeneous poly-
nomials of degree a. The derivation d admits this grading of R, more precisely,
d(Ra) ⊆ Ra+1. So the ring of constants has a grading Rd = ⊕∞

a=0 Rd
a . In partic-

ular, if a polynomial is a constant of d, then so are all its homogeneous components.
For a polynomial g ∈ R let M(g) denote the set of monomials occurring in g with a
nonzero coefficient.

Let m = ∏n
i=1 xαi

i be a monomial, then

d(m) =
n∑

i=1

αi (xi−1 − Ci xi+1)m =
n∑

i=1

(αi+1 − Ci−1αi−1)xi m.

That is, the coefficient of mxi in d(m) is αi+1 − Ci−1αi−1. So

mxi ∈ M(d(m)) ⇐⇒ αi+1 �= Ci−1αi−1. (1)

Looking at it from the back end, consider the monomial m′ = ∏n
i=1 xβi

i . Then

m′ ∈ M(d(m′/xi )) ⇐⇒ βi > 0 and βi+1 �= Ci−1βi−1. (2)

Now let us proceed with the first part of the proof.

Lemma 2.1 The elements of H are in Rd .

Proof If
∏

Ci = 1 then

d( f ) =
n∑

i=1

i−1∏

j=1

C j d(xi ) =
n∑

i=1

i−1∏

j=1

C j xi (xi−1 − Ci xi+1)

=
n−1∑

i=1

( i∏

j=1

C j −
i∏

j=1

C j

)

xi xi+1 +
(

1 −
n∏

j=1

C j

)

x1xn = 0.

If
∏

i∈ACi = 1 and each factor is positive and rational then gA is defined and

d(gA) =
∏

i∈A
xθi

i ·
∑

i∈A
θi (xi−1 − Ci xi+1)

=
∏

i∈A
xθi

i ·
∑

i∈A′
(θi+1 − Ci−1θi−1)xi = 0.
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If n = 4, C1 = C2 = 1, C4 = −1/C3, then f4 is defined and

d( f4) = 2x21 (x4 − x2) + 2x22 (x1 − x3) + 2x23 (x2 − C3x4)

+ 2C2
3 x24

(

x3 + x1
C3

)

+ 2x1x2(x4 − x2 + x1 − x3)

− 2x1x3(x4 − x2 + x2 − C3x4) − 2C3x1x4

(

x4 − x2 + x3 + x1
C3

)

+ 2x2x3(x1 − x3 + x2 − C3x4) − 2C3x2x4

(

x1 − x3 + x3 + x1
C3

)

+ 2C3x3x4

(

x2 − C3x4 + x3 + x1
C3

)

= 0. ��
The following proposition is technical in nature. Its function is to provide a tool for
showing that if one monomial is in M(h), h ∈ Rd , then many others are there as
well. This to work we have to assume that for indices i (outside the examined area)
either βi = 0 or βi−1 = βi+1 = 0 so that by (2) the exponent of xi might not
decrease. It is not powerful enough in every case, so partial extensions are necessary
in Propositions 2.10 and 2.11.

Proposition 2.2 Let m = ∏
x

βi
i be a monomial in M(h) for some h ∈ Rd and let

1 � j � n be an index such that C j > 0. Assume that β j−1 = 0 = β j+3 and for every
i < j −1 or i > j +2 one of βi and βi+1 is zero. Further put r = β j+2+β j+1−C jβ j .
Then there exists an integer t0 � r such that s0 = (r − t0)/C j is also an integer and

m xs
j x

t0−s−βj+1
j+1 x

βj+1−t0
j+2 ∈ M(h), s0 � s � t0.

Conversely, if

m xs
j x

t−s−βj+1
j+1 x

βj+1−t

j+2 ∈ M(h)

then s0 � s � t � t0. If C j+1 �= 0, then

m xs0
j x

−βj+1
j+1 xj+2

βj+1−s0 ∈ M(h),

too. If C j+1 = 0 then r � β j+1.

Proof Denote by es,t the coefficient of m xs
j x

t−s−βj+1
j+1 x

βj+1−t

j+2 in h. We have e0,βj+1 �= 0
and would like to conclude that et,t �= 0 for some t � r .

We observe that the coefficient of m xs
j x

1+t−s−βj+1
j+1 x

βj+1−t

j+2 in d(h) is equal to

0 = (1 + t − s)(es−1,t − C j+1es,t+1)

+ es,t (β j+2 + β j+1 − t − C j (β j + s))

= (1 + t − s)(es−1,t − C j+1es,t+1) + es,t (r − t − C j s).

(3)
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Note that no othermonomialmight contribute tom xs
j x

1+t−s−βj+1
j+1 x

βj+1−t

j+2 by our assump-
tion on the exponents and by (2). See the comment preceding the proposition.

Pick the minimal s0 such that there exists some t for which es0,t �= 0. (We have
s0 � 0, since e0,β j+1 �= 0.) Consider the set T = {t ∈ Z : es0,t �= 0}. Of course,
max T � β j+2 + β j+1 and min T � s0. From (3) it follows that if t ∈ T then
t + 1 ∈ T unless possibly for t = t0 = r − C j s0. If t0 is not an integer or if it happens
that max T > t0 then T is not bounded from above, a contradiction. So max T = t0
must be an integer.

Pick the maximal t1 such that there exists some s for which es,t1 �= 0. (By the
above, t1 � t0 � r and, by assumption, t1 � β j+1.) Let S = {s ∈ Z : es,t1 �= 0}.
Again min S � −β j and max S � t1. From (3) it follows that if s − 1 ∈ S then s ∈ S
unless possibly for s = s1 = (r − t1)/C j or s = t1 + 1. If s1 is not an integer or
if it happens that min S < s1 then S is not bounded from below, a contradiction. So
s1 = min S must be an integer and S = [s1; t1] ∩ Z.

By minimality, we have s0 � s1 so r − t0 = C j s0 � C j s1 = r − t1 � r − t0. Hence
s1 = s0 and t1 = t0. Thus es,t �= 0 implies s0 � s � t � t0. The previous paragraph
also implies that es,t0 �= 0 for s0 � s � t0, as claimed.

If C j+1 = 0 then by (3) we get 0 �= es−1,β j+1 ⇐ 0 �= es,β j+1 unless possibly for
s = (r − β j+1)/C j . As e0,β j+1 �= 0 we must have s = (r − β j+1)/C j � 0 is an
integer, as claimed.

If C j+1 �= 0 then by (3) we also have that t + 1 ∈ T implies t ∈ T unless possibly
for t = s0 − 1. So T = [s0; t0] ∩ Z, so 0 �= es0,s0 . ��
In the following proposition the coefficients are determined. The monomial can be

chosen to be m xs0
j x

t0−s0−βj+1
j+1 x

βj+1−t0
j+2 from the previous proposition.

Proposition 2.3 Let h ∈ Rd and m = ∏
x

βi
i be a monomial in M(h) with the coef-

ficient equal to A. Let 1 � j0 � n be an index such that m x p
j0

x−p−q
j0+1 xq

j0+2 ∈ M(h)

implies p, q � 0. Assume that for every i < j0 or i > j0 + 2 one of βi and βi+1 is
zero and that β j0+2 − β j0C j0 = 0.

(i) If C j0 �= 0 then m x p
j0

x−p
j0+1 has the coefficient equal to

(
β j0+1 − C j0−1β j0−1

p

)

C−p
j0

A.

(ii) If C j0+1 = 0 = β j0+3 then m x−q
j0+1x

q
j0+2 has the coefficient equal to 0. If C j0+1 �= 0

then m x−q
j0+1xq

j0+2 has the coefficient equal to

(
β j0+1 − β j0+3/C j0+1

q

)

Cq
j0+1A.

(iii) Assume C j0 �= 0 and β j0−1 = 0 = β j0+3. Suppose C j0 is not positive rational
or C j0 = a/b with (a, b) = 1 and p < a or q < b. Then the coefficient of
m x p

j0
x−p−q

j0+1 xq
j0+2 is equal to
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550 P. Hegedűs, J. Zieliński

(
β j0+1

p + q

)(
p + q

q

)

Cq
j0+1C−p

j0
A.

Proof Let f p,q denote the coefficient of m x p
j0

x−p−q
j0+1 xq

j0+2 in M(h). By assumption,
f p,q = 0 if p < 0 or q < 0. As in the previous proof the coefficient ofm x p

j0
x1−p−q

j0+1 xq
j0+2

in d(h) is equal to

0 = (
q + β j0+2 − (p+β j0)C j0

)
f p,q

+ (
β j0+1 + 1 − p − q − β j0−1C j0−1

)
f p−1,q

+ (
β j0+3 − (β j0+1 + 1 − p − q)C j0+1

)
f p,q−1.

(4)

Let us first show (i). Put q = 0 and t = β j0+1 − C j0−1β j0−1. Then

f p,0 = f p−1,0
β j0+1 − C j0−1β j0−1 + 1 − p

−β j0+2 + β j0C j0 + pC j0
= f p−1,0

t + 1 − p

pC j0
.

By induction it implies f p,0 = ( t
p

)
C−p

j0
A. Similarly, if C j0+1 = 0 = β j0+3 then

q f0,q = β j0+3 f0,q−1 = 0. If C j0+1 �= 0 then put t = β j0+1 − β j0+3/C j0+1 and

f0,q = f0,q−1
(β j0+1 − β j0+3/C j0+1 + 1 − q)C j0+1

q + β j0+2 − β j0C j0

= f0,q−1
(t + 1 − q)C j0+1

q
.

So f0,q = ( t
q

)
Cq

j0+1A as claimed in (ii). To obtain (iii), let t = β j0+1. Equality (4)
simplifies to

0 = (q − pC j0) f p,q + (t + 1 − p − q) f p−1,q − (t + 1 − p − q)C j0+1 f p,q−1.

By (i) and (ii), the claim is true for p = 0 or q = 0 and we may apply induction on
p + q as long as 0 < p, q but p < a or q < b. These conditions imply 0 �= q − pC j0
so from the above and by the inductive assumption, we obtain

f p,q = t + 1 − p − q

q − pC j0

((
t

p + q − 1

)(
p + q − 1

q − 1

)

Cq
j0+1C−p

j0

−
(

t

p + q − 1

)(
p + q − 1

q

)

Cq
j0+1C−p+1

j0

)

= t + 1 − p − q

q − pC j0

t !
(t − p − q + 1)! p! q! Cq

j0+1C−p
j0

(q − pC j0)

=
(

t

p + q

)(
p + q

q

)

Cq
j0+1C−p

j0
. ��

The second andmost difficult part of the proof of Theorems 1.1 and 1.2 is the following.
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Lemma 2.4 If h ∈ R is such that d(h) = 0 then it is a polynomial in the elements of
H.

Proof As the indexing of variables in the definition of the derivation is circular, we
have freedom to choose the starting index. Not all of parameters are equal to 1 so
without loss of generality we can assume that Cn �= 1. We would also choose Cn �= 0
if possible. That is impossible only if all parameters take values in the set {0, 1}. In this
case either all parameters are equal to 0 or there is one parameter equal to 1 following
another parameter equal to 0, then we let Cn = 0 and C1 = 1.

Clearly, it is enough to prove the lemma for homogeneous polynomials, so let
h ∈ Ra . We use the standard lexicographic ordering on monomials of Ra . That is,∏

x
αi
i ≺ ∏

x
βi
i if αi < βi at the first index that they are not equal. For a homogenous

polynomial k ∈ Ra the leading monomial is the lexicographically largest monomial
in M(k).

Assume by induction that h has lexicographically the smallest leading monomial
among all homogenous polynomials that are counterexamples to the lemma.We prove
that there is a polynomial expression F of the elements ofH that has the same leading
monomial (of course, it can have also the same coefficient, we may assume that the
coefficient is equal to 1). So h − F has only lexicographically smaller monomials and
hence can be expressed by induction. This will finish the proof of the lemma.

Let m1 = ∏n
i=1 x

αi
i be the leading monomial of h. The following two propositions

describe the exponents of the leading monomial in detail. The first one implies that
the even-indexed exponents of m1 are determined by αn = α0, namely, for every
n/2 � i � 1 we have α2i = C2i−2α2i−2. Indeed, if it fails for some even indices then
for the smallest such index 2r � 2 all assumptions of the proposition would hold. But
the conclusion m1 /∈ M(h) would contradict the original choice of m1 ∈ M(h). ��
Proposition 2.5 Suppose m = ∏n

i=1 x
γi
i is a monomial and r is a positive integer

with the following properties:

(i) γn = αn;
(ii) γ2i−1 = α2i−1 for 1 � i � r;
(iii) γ2i = C2i−2γ2i−2 for 1 � i � r − 1;
(iv) γ2r �= C2r−2γ2r−2.

Then m /∈ M(h).

Proof Assume by contradiction that m ∈ M(h). The proof is by induction on r . Let
r = 1. The coefficient of mx1 in d(m) is γ2 − Cnαn �= 0, see the line before (1).
In turn, by (2), it may occur only in M(d(mx1/xi )) for any index i . However, by
the assumption, γ1 = α1 so we have mx1/xi �m1 for i > 1. By maximality of m1,
these are not in M(h) so mx1 cannot be canceled. This contradiction establishes the
proposition for r = 1 for every monomial.

Assume now r > 1 and that for r ′ < r the proposition holds for every monomial.
Suppose the set S = {r ′ < r : α2r ′ �= C2r ′−2α2r ′−2} is nonempty. Let r ′ be its
smallest element. As assumptions of the proposition hold for m = m1 and r = r ′ but
the conclusion m1 /∈ M(h) does not, we must have S = ∅. In other words,

α2i = C2i−2α2i−2, 1 � i � r − 1. (5)
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552 P. Hegedűs, J. Zieliński

As in the first paragraph,mx2r−1 has the nonzero coefficient equal to γ2r −C2r−2γ2r−2
in d(m). Again, by (2), this may occur only in M(d(mx2r−1/xi )) for some index i . If
i > 2r −1 then, by virtue of (5),mx2r−1/xi �m1 so it cannot be in M(h). If i < 2r −1
is odd then, by assumption (iii), the coefficient of mx2r−1 is γi+1 − Ci−1γi−1 = 0
in d(mx2r−1/xi ) so it cannot help in canceling the coefficient γ2r − C2r−2γ2r−2 of
mx2r−1 in d(m).

If however i = 2r ′ < 2r − 1 is even then mx2r−1/xi satisfies assumptions of the
proposition with r ′. So, by induction, mx2r−1/xi /∈ M(h). This proves that if m ∈
M(h) then d(h) �= 0. This contradiction establishes the proposition. �

Remark 2.6 In fact, in the proof we used (i’) Cnγn = Cnαn , so the lemma holds if we
assume Cn = 0 instead of (i). It implies α2i = 0 for all i � n/2.

Proposition 2.7 Suppose m = ∏n
i=1 x

γi
i ∈ M(h) is a monomial and r < n/2 is a

positive integer with the following properties:

(i) γn = αn (or Cn = 0);
(ii) γ2i−1 = α2i−1 for 1 � i � r;
(iii) γ2i = α2i for 1 � i � r .

Then there exists a nonnegative integer β2r−1 such that C2r−1(γ2r−1−β2r−1) = γ2r+1
and m′ = m(x2r/x2r−1)

β2r−1 ∈ M(h). In particular, there exist nonnegative integers
β ′
2i−1 such that C2i−1(α2i−1 − β ′

2i−1) = α2i+1 for 1 � i < n/2.

Proof The proof is by contradiction. Assume that there exists the smallest positive
integer r for which there is no such nonnegative integer β2r−1. Let m2 ∈ M(h).
Suppose that

for r > 1 : the exponent of xk is 0 in m2/m for k < 2r − 1
(and for k = n if Cn �= 0);

for r = 1 : the exponent of xn is at most γn in m2.

(6)

Denote by s the exponent of x2r−1 and by t the exponent of x2r in m2/m. We claim
that s + t � 0, which we prove by (decreasing) induction on s.

As m1 is the leading monomial, s � 0. If s = 0, then t � 0, indeed. So let
s < 0. If t � 0, then we are done, so assume t > 0. Hence, by (1), the monomial
m2x2r−1 ∈ M(d(m2)) has the coefficient equal to t + γ2r − C2r−2γ2r−2 = t �= 0 if
r > 1, by Proposition 2.5, assumption (iii) and equation (6). If r = 1 and Cn > 0 then
the coefficient of m2x1 in d(m2) is at least t + γ2 − Cnγn = t > 0, so m2x2r−1 ∈
M(d(m2)). If r = 1 and Cn ≯ 0 then γ2 = α2 = Cnαn = Cnγn = 0 and the
coefficient of m2x1 in d(m2) is t > 0. So m2x2r−1 ∈ M(d(m2)) also in this case.

This monomial may also occur only in M(d(m2x2r−1/xi )) for some indices i .
If i < 2r − 1 is even then, by Proposition 2.5, it does not occur in M(h). (Note
that here r > 1, so the exponent of xn is γn in m2x2r−1/xi , so all assumptions of
Proposition 2.5 are satisfied. If Cn = 0 then see Remark 2.6.) If i < 2r − 1 is odd
then γi+1 − Ci−1γi−1 = 0 is the coefficient of m2x2r−1 in d(m2x2r−1/xi ). Otherwise
i > 2r −1. Nowwe apply induction form2x2r−1/xr which still satisfies the conditions
of (6), unless r > 1, i = n and Cn �= 0. If induction applies then the exponent of
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x2r−1 is equal to s + 1 and the exponent of x2r is equal to t or t − 1, their sum is at
least s + t . But, by induction, their sum is at most 0, hence s + t � 0.

If, however, induction does not apply then m3 = m2x2r−1/xn ∈ M(h). Hence
m3x1 ∈ M(d(m3)) has the coefficient equal to γ2 −Cn(γn −1) = Cn �= 0. Now, for a
monomial m4 = m3x1/xl ∈ M(h) to cancel this the exponent of x1 is γ1+1 = α1+1
in m4, so m1≺m4, a contradiction. So in fact, induction must apply and we conclude
s + t � 0, as claimed.

We claim next that for every 0 � l the monomial m1(x2r/x2r−1)
l ∈ M(h). This

is proved by induction on l. The case l = 0 is given, so let l > 0 and put m =
m1(x2r/x2r−1)

l−1 ∈ M(h). By the assumption on exponents, mx2r ∈ M(d(m)), the
coefficient is α2r+1 − C2r−1(α2r−1 − l + 1) �= 0 as we argue by contradiction.

To cancel this from d(h) there must exist a monomial m2 = mx2r/xi ∈ M(h). If
2 < 2r < i < n or 2 = 2r < i then we contradict the above claim on s + t . (In our
situation s = 1 − l, t = l and the conditions of (6) are satisfied.) If, however, r > 1
and i = n then mx2r/xn ∈ M(h) so mx2r x1/xn ∈ M(d(mx2r/xn)) has the coefficient
γ2 − Cn(γn − 1) = Cn �= 0. The exponent of x1 in any mx2r x1/(xn xj ) is larger than
γ1 = α1, so m1≺mx2r x1/(xn xj ) which means that mx2r x1/xn cannot be canceled,
also a contradiction.

If i < 2r then, by Proposition 2.5, i cannot be even. So i must be odd, but if
i < 2r −1 then (1) shows that the coefficient ofmx2r in d(m2) is γi+1−Ci−1γi−1 = 0.
These imply that only m2 = mx2r/x2r−1 = m1(x2r/x2r−1)

l can cancel it, so it must
be in M(h). This proves our claim for every l � 0.

However, m1(x2r/x2r−1)
l ∈ R only if l � α2r−1 so the claim cannot be true for

every l. This contradiction shows that indeed there must exist β2r−1 � 0 satisfying
the proposition. �

Proposition 2.8 Suppose Cn �= 0 and m = ∏
x

γi
i ∈ M(h) is such that γn = αn,

γ1 = α1 and γ2 = α2 = Cnαn. If mxk
n/m2 ∈ M(h), where xn �m2, then m2 = xk

1 .

Proof The proof is by induction on the exponent i of x1 in m2. Let m′ = mxk
n/m2 =

∏
j x

β j
j . Of course, β j � γ j for j < n. We have γ2 = Cnγn , so if γn > 0 then

Cn = γ2/γn > 0. If, on the other hand, γn = 0 then γ2 = β2 = 0.
Now x1m′ ∈ M(d(m′)) has the coefficient β2 − Cnβn = γ2 − Cnγn − (γ2 − β2) −

Cnk = 0 − · · · �= 0. It could be canceled only by some x1m′/xj , where 1 < j . All
these are lexicographically larger than m1 if i = 0, a contradiction.

If i > 0, then the exponent of x1 is i − 1 in m2xj/x1. If j < n then
x1m′/xj = mxk

n/(m2xj/x1) satisfies the assumption of the proposition, so by induc-
tion m2xj/x1 = xk

1 , a contradiction. So we must have xj = xn and x1m′/xn =
mxk−1

n /(m2/x1) satisfies the assumption of the proposition. Here induction gives
m2/x1 = xk−1

1 andm2 = xk
1 , as required. �

Corollary 2.9 Suppose Cn �= 0 and m = ∏
x

γi
i ∈ M(h) is such that γn = αn,

γ1 = α1 and γ2 = α2 = Cnαn. Then l = γ1 − Cn−1γn−1 is a nonnegative integer and
m′ = m(xn/x1)l ∈ M(h). In particular, α1 − Cn−1αn−1 is a nonnegative integer.

Proof We show that otherwise m(xn/x1)l ∈ M(h) for every l � 0, an obvious con-
tradiction.
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For l = 0 this holds vacuously. Let l > 0 and suppose it holds for l, that is m′ =
mxl

n/xl
1 ∈ M(h). The coefficient of m′xn ∈ M(d(m′)) is γ1 − l − Cn−1γn−1. If it is 0

thenγ1−Cn−1γn−1 = l a nonnegative integer aswe claimed.Otherwise, itmust be can-
celed by somem′xn/xj = mxl+1

n /xj xl
1 ∈ M(h). By Proposition 2.8, j = 1 and we get

the required monomial for l + 1, too. �

Proposition 2.10 Let h, g ∈ Rd, where g is a monomial. If the leading monomial of
h is m1 = xk

1g with k > 0 then C1C2 · · · Cn is a k-th root of unity, in particular, all
Ci �= 0. If further n > 4 then C1C2 · · · Cn = 1.

Proof If 1 �= g = ∏
i x

γi
i (with γi = αi for i �= 1) is the monomial constant then

0 = d(g) =
∏

i

xγi
i ·

∑

i

γi (xi−1 − Ci xi+1) = g
∑

i

(γi+1 − Ci−1γi−1)xi .

Hence γi+2 = Ciγi for every i . If n is odd then C1C2 · · · Cn = 1 so the proposition is
proved. Exactly the same works if n is even and γ1 �= 0 �= γ2.

So we have to consider two cases. Either g = 1 or g = gl
A with l > 0 and

A ∈ {E,O}. If l > 0 then we will use Ci �= 0 for i ∈ A to prove that in certain
monomials the exponent of xi is not smaller than in g. For l = 0 this is obvious. The
rest of the proof works equally for arbitrary l.

The proof is almost the same for E and forO. First we assumeA = O and l > 0, so
C2i−1 > 0 for every 1 � i � n/2.We apply Proposition 2.2 for j = n−1, n−3, . . . , 1
consecutively. In the first step r = k and m = m1. By Proposition 2.2, we obtain
mn−1 = m1(xn−1/x1)kn−1 ∈ M(h) with kn−1 � k. If Cn = 0 then we get k � 0,
contrary to our assumption. So Cn �= 0 and we also get m1(x1/xn−1)

(kn−1−k)/Cn−1 ∈
M(h). As m1 is the leading monomial k = kn−1.

By induction, we obtain monomials m2i−1 = m2i+1(x2i−1/x2i+1)
k2i−1 ∈ M(h)

with k2i−1 � k2i+1. Finally we reach i = 1 and obtain a monomial m = m3(x1/x3)k1

in M(h) such that the exponent of x1 is α1 − kn−1 + k1 � α1. As m1 is the leading
monomial we must have k1 = k3 = · · · = kn−1 = k. So in each of the applications of
Proposition 2.2 we have r = t0 = kn−1 = k, hence if gxj

s xt−s
j+1xj+2

k−t ∈ M(h) then
0 � s � t � k.

Let now A = E and l > 0, so C2i > 0 for every 1 � i � n/2. First we apply
Proposition 2.2 for j = n,m = m1. Then r = k and we get for s = 0, kn = t0 � k that
mn = m1xkn

n x−k
1 xk−kn

2 ∈ M(h). Nowwe proceed as in the odd case and consecutively
we obtain monomials m2i = m2i+2(x2i/x2i+2)

k2i ∈ M(h) with k2i � k2i+2. Thus we
find that in m2 the exponent of xn is αn + kn − kn−2 � αn and the exponent of x2 is
α2 + k − kn + k2 � α2 + k. Now apply Proposition 2.2 for j = n, m = m3. Then
r � k, so t0 � k and s = s0 � 0 gives m3xs

n xt0−s0
1 x−t0

2 ∈ M(h). By m1 being the
leading term, at every application of Proposition 2.2 we have r = t0 = k and s0 = 0
and all k2i = k.

From now on there is no loss of generality in assuming A = O or g = 1, that is,
α2i = 0 for every i .

Wenowdetermine the coefficients in question.Wewill applyProposition 2.3 repeat-
edly, but first we have to establish that all Ci are nonzero. Without loss of generality
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we assume that m1 has a coefficient equal to 1. We prove by induction on i that the
coefficient of gxk

i is
∏

j<i Ck
j . We would like to apply Proposition 2.3 for j0 = i − 1.

If i is even then the coefficient of gxk
i+1 is

∏
j<i+1 Ck

j by considering q = k in Propo-

sition 2.3 (ii). (By Proposition 2.2, m x p
j0

x−p−q
j0+1 xq

j0+2 ∈ M(h) implies p, q � 0.) If
i is odd, then β j0+3 > 0 implies C j0+1 > 0 and k = β j0+1 − β j0+3/C j0+1. So we
can apply Proposition 2.3 (ii) again. Finally, for i = n + 1 we get 1 = Ck

1 · · · Ck
n so

z = C1C2 · · · Cn is a k-th root of unity, in particular, all Ci �= 0. Let us abbreviate
di = ∏

j<i Ck
j . We see from our applications of Proposition 2.3 that for every i, s the

coefficient of gxk−s
i xs

i+1 is di
(k

s

)
Cs

i .
Now let n > 4. If z �= 1 then there must be an index j such that C j is not positive

rational. For otherwise every 0 < C j and hence 0 <
∏

C j = z implies z = 1 as the
only such root of unity. Fix this index j .

Case (	): j is odd. We use Proposition 2.3 with j0 = j and m = gxk
j0
. All

assumptions are satisfied, so the coefficient of gxj xk−1
j+2 is equal to kd j+1C−1

j Ck−1
j+1 =

kd j Ck−1
j Ck−1

j+1. Also, the coefficient of gxk−1
j x1j+2 is equal to kd j C j C j+1.

Case (		): Ci is positive rational for every odd index i , so j is even. Proposition 2.2
is not sufficient in this case, we have to treat five consecutive indices. This is the
point where it is crucial that n �= 4, so n � 6. Let ea,b,c,d denote the coefficient of
gxa

j−1xb
j xc

j+1xd
j+2xk−a−b−c−d

j+3 . Here we rely on the following equation expressing the

coefficient of gxa
j−1xb

j xc
j+1xd

j+2xk−a−b−c−d+1
j+3 in d(h) = 0:

0 = bea−1,b,c,d + (c − C j−1a)ea,b−1,c,d + (d − C j b)ea,b,c−1,d

+ (k − a − b − c − d + 1 − C j+1c)ea,b,c,d−1 − C j+2dea,b,c,d .
(7)

As j is even, we have e0,0,0,0 = d j+3 �= 0. We claim that if a < 0 or c < 0
or k − a − b − c − d < 0 then ea,b,c,d = 0. Its proof is similar to the proof of
Proposition 2.2.

Let a0 � 0 be the smallest possible such that there exist b0, c0, d0 with ea0,b0,c0,d0 �=
0.Without loss of generality also assume that c0 is as small as possible for this a0. Sup-
pose here c0 �= C j−1a0. Then by (7) for a0, b0+1, c0, d0 we have ea0,b0+1,c0,d0−1 �= 0
or ea0,b0+1,c0,d0 �= 0. In either case we can increase b again. But clearly b is bounded,
so we conclude that c0 = C j−1a0. Mutatis mutandis we get that if c1 � c0 is the
smallest possible and a1 is the smallest possible for such c1 then c1 = C j−1a1. As
C j−1 > 0 we have c1 = c0 and a1 = a0. The same proof shows that k −a −b − c −d
is the smallest for k − a − b − c − d = C j+1c0.

Consider now ea0,b0,c0,d0 �= 0 where c0 = C j−1a0 and k − a0 − b0 − c0 − d0 =
C j+1c0. By assumption, C j is not positive rational (and nonzero), in particular, for
nonnegative integers b, d the expression d −C j b = 0 only if b = d = 0. Hence in (7)
for a0, b0, c0 + 1, d0 we have ea0,b0,c0+1,d0−1 �= 0 or ea0,b0−1,c0+1,d0 �= 0. We repeat
this step b0 + d0 times to obtain ea0,0,c0+b0+d0,0 �= 0. Suppose a0 < 0 and hence
k − a0 − b0 − c0 − d0 = C j+1C j−1a0 < 0. We now apply Proposition 2.2 for the
first three indices, that is for j − 1, j, j + 1. We get t0 � r = c0 + b0 + d0 − C j−1a0
resulting in a0 + t0 � k +a0 +b0 + c0 +d0 − k −C j−1a0 > k −C j−1a0 > k. That is
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m j−1 = gxa0+t0
j−1 xc0+b0+d0−t0

j+1 xk−a0−b0−c0−d0
j+3 ∈ M(h) the exponent of xj−1 is at least

α j−1 + k + 1. By induction for i = j − 3, j − 5, . . . , 3 we obtain that the exponent
of xi in mi ∈ M(h) is at least αi + k + 1. Thus we reach i = 1 and a monomial in
M(h) where the exponent of x1 is at least α1 + 1, contradicting that m1 is the leading
monomial. So a0 = c0 = k − b0 − d0 = 0.

Now determine e0,s,k−1−s,1 using Proposition 2.3 for j0 = j and m = gxk
j+1. The

above discussion confirms that the assumptions are satisfied. So

e0,k−1,0,1 = kd j+1C j+1

Ck−1
j

and e0,1,0,k−1 = kd j+1Ck−1
j+1

C j
.

As j is even, the assumptions of Proposition 2.3 (i) are satisfied for j0 = j − 1, m =
gxk−1

j xj+2 and t = β j0+1−C j0−1β j0−1 = k−1. So ek−1,0,0,1 = kd j−1C j−1C j C j+1.

We can now apply it again to j0 = j + 1, m = gxk−1
j−1 xj+2 and t = β j0+1 −

C j0−1β j0−1 = 1 to get ek−1,0,1,0 = kd j−1C j−1C j . Exactly the same way we obtain
e1,0,k−1,0 = kd j−1Ck−1

j−1Ck−1
j .

So in both cases (	) and (		) we find an odd index j such that the coefficient of
gxj xk−1

j+2 is kd j Ck−1
j Ck−1

j+1, while the coefficient of gxk−1
j xj+2 is kd j C j C j+1.We shift

the indices by 2 in the secondmonomial using Proposition 2.3 again first for j0 = j +2
and then for j0 = j . The coefficient of gxk−1

j xj+4 is kd j C j C j+1C j+2C j+3. Then

the coefficient of gxk−1
j+2 xj+4 is kd j+2C j+2C j+3.

Ifn = 5 thenwe cannot do this as j+4 and j are adjacent. Butn = 5 is odd, so g = 1
and there is no worry that the exponent of xi becomes smaller than in g (see the remark
at the beginning of the proof). So we use Proposition 2.3 to compute the coefficients in
a different way, we increase the indices one-by-one. Now the coefficient of xk−1

j xj+3
is kd j C j C j+1C j+2 and using Proposition 2.3 for j0 = j − 1 the coefficient of
xk−1

j+1 xj+3 is kd j+1C j+1C j+2. Doing this again, the coefficient of xk−1
j+1 xj+4 is equal

to kd j+1C j+1C j+2C j+3 and the coefficient of xk−1
j+2 xj+4 is equal to kd j+2C j+2C j+3,

the same as above.
By a final induction we prove that the coefficient of gxk−1

j+2 xj+s is equal to

kd j+2
∏s−1

i=2 C j+i . The details are omitted. The case s = n − 2 implies that the coeffi-
cient of gxj xk−1

j+2 is kd j+2C j+2C j+3 · · · C j−1. However, we have already determined

that to be kd j Ck−1
j Ck−1

j+1. So

0 = kd j+2C j+2C j+3 · · · C j−1 − kd j Ck−1
j Ck−1

j+1 = kd j Ck−1
j Ck−1

j+1(z − 1).

Hence z = 1 as required. �

Proposition 2.11 Let n = 4 and h, g ∈ Rd, where g is a monomial. Assume either
every Ci is positive rational, or C4 is not. If the leading monomial of h is m1 = xk

1 g
with k > 0 then C1C2C3C4 = ±1. If C1C2C3C4 = −1 then C2 = 1 and at least
one of C1 = 1 and C3 = 1 also holds.

Proof By Proposition 2.10, we have z = C1C2C3C4 is a k-th root of 1. If all parame-
ters are positive rational numbers then the product must be 1. From now on assume C4
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is not positive rational. First we prove that if z �= 1 then z = −C2. In the next step we
verify that z = −1 so k is even. Then we suppose by contradiction that C1 �= 1 �= C3
from which we derive C1C3 = 1 and subsequently we reach a contradiction.

As C4 is not positive rational, gE is not defined, so g = gl
O or g = 1. Let fa,b,c

denote the coefficient of gxk−a−b−c
1 xa

2 xb
3 xc

4 in h. By assumption, without loss of
generality f0,0,0 = 1. We observe that the coefficient of gxk+1−a−b−c

1 xa
2 xb

3 xc
4 in d(h)

is equal to

0 = (a − C4c) fa,b,c + (b − C1(k + 1 − a − b − c)) fa−1,b,c

+ (c − C2a) fa,b−1,c + (k + 1 − a − b − c − C3b) fa,b,c−1.
(8)

We have to prove again that exponents cannot become negative, so a, b, c, k − (a +
b + c) � 0 if fa,b,c �= 0. Of course, this holds if g = 1.

Suppose b0 is the smallest such that there exist a0, c0 such that fa0,b0,c0 �= 0. If
a0, c0 are not both 0 then by (8) one of themmight be decreased by 1. (Using here that
a0 − C4b0 �= 0). Repeating this until both a0, c0 become 0 we conclude f0,b0,0 �= 0.
This is the coefficient of gxk−b0

1 xb0
3 , so by m1 being the leading monomial, b0 � 0. By

a similar argument, if a1+b1+c1 is the maximal possible such that fa1,b1,c1 �= 0, then
we conclude that f0,a1+b1+c1,0 �= 0. If a1 + b1 + c1 > k then apply Proposition 2.2
for j = 1. We have t � r � a1 + b1 + c1 − C1(k − a1 − b1 − c1) > a1 + b1 + c1
(as C1 = 1 if g �= 1). By Proposition 2.2, f0,a1+b1+c1−t,0 �= 0 contradicting b0 � 0.
Thus indeed k − (a + b + c) � 0, if fa,b,c �= 0.

We have from the proof of Proposition 2.10 that

fs,0,0 =
(

k

s

)

Cs
1, fk−s,s,0 =

(
k

s

)

Ck
1Cs

2,

f0,k−s,s =
(

k

s

)

Ck
1Ck

2Cs
3, f0,0,k−s =

(
k

s

)

Ck
1Ck

2Ck
3Cs

4.

(9)

We apply Proposition 2.3 for j0 = 1, m = m1 to obtain

ft,0,s =
(

k

s + t

)(
s + t

t

)

Ct
1C−s

4 , (10)

as C4 is not positive rational.
Next we claim that

fk−1−s,1,s = k
Ck−s
1

Cs
4

(

(z − 1)
s−1∑

i=0

zi

Ci
2

(
k − 1

s − 1 − i

)

+
(

k − 1

s

)

C2

)

.

The proof is by induction on s, for s = 0 we know it from (9). By (8) for (k − s, 1, s)
we get

0 = fk−1−s,1,s + (s − (k − s)C2) fk−s,0,s − C3 fk−s,1,s−1
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= fk−1−s,1,s + (s − (k − s)C2)

(
k

s

)
Ck−s
1

Cs
4

− kCk−s+1
1 C3

Cs−1
4

(z − 1)
s−2∑

i=0

zi

Ci
2

(
k − 1

s − 2 − i

)

−
(

k − 1

s − 1

)
kC2C3Ck−s+1

1

Cs−1
4

= fk−1−s,1,s + k

(
k − 1

s − 1

)
Ck−s
1

Cs
4

− C2

(
k − 1

s

)
kCk−s

1

Cs
4

− kCk−s
1

Cs
4

(z − 1)
s−2∑

i=0

zi+1

Ci+1
2

(
k − 1

s − 1 − (i + 1)

)

− z

(
k − 1

s − 1

)
kCk−s

1

Cs
4

,

proving the claim for s.
We compare it for s = k − 1 to (9):

kCk
1Ck

2Ck−1
3 = f0,1,k−1 = kC1

Ck−1
4

(

(z − 1)
k−2∑

i=0

zi

Ci
2

(
k − 1

k − 2 − i

)

+ C2

)

. (11)

The sum is equal to ((z/C2+1)k−1−1)/(z/C2) so in the parentheses above we have

C2

z

(

(z − 1)

((
z

C2
+ 1

)k−1

− 1

)

+ z

)

= C2

z

(

(z − 1)

(
z

C2
+ 1

)k−1

+ 1

)

.

Dividing both sides of (11) by kC1C2 and multiplying by zCk−1
4 we get

1 = zk = (z − 1)

(
z

C2
+ 1

)k−1

+ 1.

If z �= 1 then z = −C2, as claimed. From now on we assume z = −C2 �= 1. In
particular, C2 = 1 implies z = −1 and k � 2 is even. Otherwise, C2 is not rational.

If C2 is not rational then, using Proposition 2.3 (ii) for j0 = 2, we get

fs,k−t−s,t =
(

k

s + t

)(
s + t

t

)

Ck
1Ck

2Ct
3C−s

2 .

Comparing the case s = k − 1, t = 1 to (10) for t = k − 1, s = 1, we have

kCk
1C2C3 = fk−1,0,1 = k

Ck−1
1

C4
= kCk

1C2C3

z
,

implying z = 1, as claimed.
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From now on we assume that k is even, C2 = 1, z = C1C3C4 = −1 and we also
suppose C1 �= 1 �= C3 to derive contradiction. Next we claim

fk−t−s,t,s =
(

k

s + t

)(
s + t

t

)

Ck
1 (−C3)

s
s∏

i=1

k + 1 − 2t − 2i

k + 1 − 2i
. (12)

It is true for s = 0 and for t = 0 so we use induction for t + s assuming s, t > 0.
From (8) for (k + 1 − t − s, t, s) we obtain

fk−t−s,t,s = k + 1 − t − 2s

t
fk−(t−1)−s,t−1,s − (−C3) fk−t−(s−1),t,s−1. (13)

We use the inductive assumption on the right hand side. We find identical factors
F = Ck

1 (−C3)
s
( k

s+t−1

)∏s−1
i=1 (k + 1 − 2t − 2i)/(k + 1 − 2i) at both terms. Now we

have

1

F

(
k + 1 − t − 2s

t
fk−(t−1)−s,t−1,s − (−C3) fk−t−(s−1),t,s−1

)

= k + 1 − t − 2s

t

(
s + t − 1

t − 1

)
k + 1 − 2t

k + 1 − 2s
−

(
s + t − 1

t

)

=
(

s + t

t

) (
k + 1 − t − 2s

s + t

k + 1 − 2t

k + 1 − 2s
− s

s + t

k + 1 − 2s

k + 1 − 2s

)

=
(

s + t

t

)
(k + 1)2 − (k + 1)(3t + 3s) + 2t (2s + t) + 2s2

(s + t)(k + 1 − 2s)

= k + 1 − s − t

s + t

(
s + t

t

)
k + 1 − 2t − 2s

k + 1 − 2s
.

If we multiply by F , using
( k

s+t

) = (k + 1− s − t)/(s + t) · ( k
s+t−1

)
, then we get that

(13) implies (12).
Now we go on to prove that C1C3 = 1. We use (8) for (k − s − 1, 1, s):

0 = (1 − C1) fk−s−2,1,s + (1 − C3) fk−s−1,1,s−1

+ (2s − k + 1) fk−s−1,0,s + (k − 1 − s − sC4) fk−s−1,1,s

Let us multiply this equation by (1− C3)
−s(1− C1)

s(−1)s and sum them up through
s = 0, . . . , k − 1. In the resulting sum

k−1∑

s=0

fk−s−2,1,s
(1 − C1)

s+1

(1 − C3)s
(−1)s +

k−1∑

s=0

fk−s−1,1,s−1
(1 − C1)

s

(1 − C3)s+1 (−1)s = 0
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because each term appears with opposite signs. For the rest we apply (10) and (12) to
get

0 = kCk−1
1

k−1∑

s=0

(
1 − C1

1 − C3

)s

Cs
3

(
k − 1

s

)

· (2s − (k − 1))

(

1 − C1 + C1s(C4 + 1)

k − 1

)

.

(14)

We divide by the nonzero kCk−1
1 . We first split

(2s − (k − 1))

(

1 − C1 + C1s(C4 + 1)

k − 1

)

= A0 + s A1 + s2A2,

where

A0 = (k − 1)(C1 − 1), A1 = 2 − 3C1 − C1C4, A2 = 2(1 + C4)C1

k − 1
.

Now we determine sums of the three distinct series. For this we abbreviate y =
C3(1− C1)/(1− C3), so y + 1 = (1− C1C3)/(1− C3), C1C3(1+ C4) = C1C3 − 1
and yC1(1 + C4) = (y + 1)(C1 − 1). We have

k−1∑

s=0

ys
(

k − 1

s

)

A0 = (k − 1)(C1 − 1)(y + 1)k−1,

k−1∑

s=1

ys
(

k − 1

s

)

s A1 = (2 − 3C1 − C1C4)(k − 1)(y + 1)k−2y,

k−1∑

s=1

ys
(

k − 1

s

)

s2A2 =
k−2∑

s=0

ys
(

k − 2

s

)

(s + 1)2(y + 1)(C1 − 1)

= 2(y + 1)(C1 − 1)
(
(k − 2)(y + 1)k−3y + (y + 1)k−2)

= 2(C1 − 1)(y + 1)k−2((k − 1)y + 1).

(Note that the third conclusion is correct even for k = 2.)
Summing them up we get

0 = (y + 1)k−2(C1 − 1)

{

(k − 1)

[

(y + 1) + (2 − 3C1 − C1C4)

C1 − 1
y + 2y

]

+ 2

}

= (y + 1)k−2(C1 − 1)

{

(k − 1)

[

y + 1 − C1(1 + C4) y

C1 − 1

]

+ 2

}

= 2(y + 1)k−2(C1 − 1).

Hence y + 1 = 0, that is C1C3 = 1 = −C4.
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Now we derive the final contradiction. Use (8) for (1, k −1, 0) and for (0, k −1, 1)
to get

0 = (k − 1 − C1) f0,k−1,0 − f1,k−2,0 + f1,k−1,0,

0 = (1 − (k − 1)C3) f0,k−1,0 + f0,k−2,1 − C4 f0,k−1,1.

The last terms in each of these equations can be obtained from (9)

f1,k−1,0 = kCk
1 , f0,k−1,1 = kCk

1C3 = kCk−1
1 .

We multiply the first equation by C3 and add to the second, thus canceling the coeffi-
cient of f0,k−1,0

0 = f0,k−2,1 − C3 f1,k−2,0 + 2kCk−1
1 .

On the other hand, using (8) for (1, k − 2, 1), we get

0 = (k − 2 − C1) f0,k−2,1 + (1 − (k − 2)C3) f1,k−2,0 + (1 − C4) f1,k−2,1

= (k − 2 − C1)( f0,k−2,1 − C3 f1,k−2,0) + 2k(k − 1)(−1)Ck
1C3

3 − k

k − 1

= (k − 2 − C1)(−2)kCk−1
1 − 2k(3 − k)Ck−1

1 = −2kCk−1
1 (1 − C1).

This implies C1 = 1 contradicting our assumptions. This finishes the proof of the
proposition. �

We are now ready to finish the proof of Lemma 2.4.We have h ∈ Rd of positive degree
and m1 ∈ M(h), the leading monomial of h with respect to the lexicographic ordering
of monomials. Recall that we assumed Cn �= 1. We also assumed that if Cn = 0 then
every Ci ∈ {0, 1} and either all Ci = 0 or C1 = 1. Of course, by Proposition 2.5,
every exponent with even index α2i = 0 in this case.

If allCi = 0 then, by Propositions 2.5 and 2.7, all αi = 0 save possibly α1 > 0. But
then Proposition 2.10 implies that all Ci �= 0. This contradiction shows that α1 = 0
and Rd = K in this case.

If Cn = 0 but C1 = 1 then α1 � α3 � · · · , by Proposition 2.7. If all αi are equal
and n is even then all coefficients with odd indices C2i+1 = 1 and m = gα1

O as we
wanted. Otherwise, αn−1 < α1 (this clearly holds if n is odd, because then αn−1 = 0)
so xnm1 ∈ M(d(m)). But this can be canceled only by xnm1/xn−1 and this can be
repeated αn−1 steps until no division by xn−1 is possible. (No other decrease is ever
possible.) This contradiction shows that Rd = K also in this case.

So from now on we assume Cn �= 0. If C1 = 0 then all α2i+1 = 0 for i > 0.
If n is odd then it implies αn = 0 and hence all αi = 0 save possibly α1 > 0. But
then Proposition 2.10 is a contradiction and Rd = K again. If n is even then gE is
defined and m1 = gl

Exα1
1 . If α1 > 0 then Proposition 2.10 implies that C1 �= 0, a

contradiction. So α1 = 0 and m1 = gl
E is a constant and the proof is done by induction

for h − m1.
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From now onwe assumeC1 �= 0. For n = 4 also assume that either every parameter
is positive rational, or that C4 is not.

We are going to derive a contradiction, so Rd = K unless the following two
conditions hold:

(A) In Proposition 2.7 we have C2i−1α2i−1 = α2i+1 for every 1 < i < n/2.
(B) In Proposition 2.7 and Corollary 2.9 the two integers coincide:C1(α1−β1) = α3

and α′
1 = α1 − β1 = Cn−1αn−1. In other words, Cn−1αn−1 is a nonnegative

integer and C1Cn−1αn−1 = α3.

Claim 2.12 If (A) and (B) hold then h is a polynomial in the elements of H.

Proof Let α′
i = αi for i > 1. The equalities in (A) and (B) together with Proposi-

tion 2.5 imply that g = ∏n
i=1 x

α′
i

i is a constant of d. If α′
i �= 0 then α′

i−2Ci−2 �= 0 so by
backward induction we get that all Ci−2l are positive rational. Take A ⊆ Zn minimal
closed under j �→ j + 2 such that i ∈ A. Then by the above, α′

i = α′
i

∏
j∈AC j

so
∏

j∈AC j = 1, hence gA is defined and α′
j = eθ j for every j ∈ A with

e = gcd(α′
j ) j∈A. So g can be expressed using the defined ones of gZn , gE, gO. If

α′
1 = α1 then g is the leading monomial of h so h − g is lexicographically smaller so

the proof is done by induction.
Suppose that α′

1 < α1 and first assume n > 4. Then Proposition 2.10 applies and
it follows that f is defined. Hence f α1−α′

1g has the same lexicographically largest
monomial as h, we may cancel it and the proof is done by induction.

Finally, if n = 4 then Proposition 2.11 applies and it follows that f is defined orα1−
α′
1 is even and f4 is defined. So either f is defined and f α1−α′

1g has the same lexico-

graphically largest monomial as h, or f4 is defined and f
(α1−α′

1)/2

4 g has the same lexico-
graphically largest monomial as h. In both cases wemay cancel it and the proof is done
by induction. �
For the rest we assume that at least one of (A) and (B) does not hold. We first construct
a monomial m = ∏

x
γi
i ∈ M(h) such that

γn = αn, γ1 = α1, γ2 = α2, C1Cn−1γn−1 �= γ3. (15)

If (B) does not hold, then m = m1 suffices. If (B) holds and Cn−1 = 0 or αn−1 = 0
then (A) also holds with α2i+1 = 0 for i > 0.

Suppose (B) holds but (A) does not, and let i be the smallest index such that
C2i−1α2i−1 �= α2i+1. We apply Proposition 2.7 for decreasing indices r = i, i −
1, . . . , 2. Suppose we have reached the step r , that is, given m = ∏

x
γi
i ∈ M(h) with

γi = αi if i < 2r + 1 and for i = n. By Proposition 2.7, there exists a nonnegative
integerβ2r−1 such thatC2r−1(γ2r−1−β2r−1) = γ2r+1 andm′ = m(x2r/x2r−1)

β2r−1 ∈
M(h).We replacem for thism′. In the step r the exponent of γ2r−1 decreases, so finally
γ3 < α3 = C1Cn−1αn−1. In every step γn−1 is constant, only in step r = (n − 1)/2
may it grow. As C1Cn−1 �= 0 and 0 < αn−1 � γn−1 so γ3 = C1Cn−1γn−1 implies
thatC1Cn−1 > 0 is rational. But forC1Cn−1 > 0 we have γ3 < α3 = C1Cn−1αn−1 �
C1Cn−1γn−1. So in any case C1Cn−1γn−1 �= γ3. And we have constructed m ∈ M(h)

with properties (15).
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Claim 2.13 There is a monomial m2 = ∏
i x

αi +βi
i ∈ M(h) such that

βn + β1 + β2 > 0. (16)

We may choose to further assume one of β2 � 1 and βn � 1.

Proof We use Corollary 2.9 to obtain m = m1(xn/x1)l so βn = l = −β1 and
Cn−1γn−1 = γ1 + β1 = α1 − l. By (15), C1(γ1 − l) �= γ3 so mx2 ∈ M(d(m)), hence
it should be canceled by some mx2/xi ∈ M(h). By the previous equality, i �= n so
either i > 2 and we have the desired βn + β1 + β2 = l − l + 1 > 0 with β2 = 1, or
i = 1. If i = 1 then Cn−1γn−1 �= γ1 − l − 1 so mx2xn/x1 ∈ M(d(mx2/x1)). Again,
it has to be canceled by mx2xn/x21 or mxn/x1, for otherwise we would get the desired
βn, β1, β2 with β2 � 1. This is repeated a number of times, each time increasing βn by
1 and decreasing one of β1 and β2 by 1. We cannot go on infinitely because β1 � −γ1
and β2 � −γ2.

Similarly, if we desire βn � 1, we use Proposition 2.7 to obtain m = m1(x2/x1)l so
β2 = l = −β1 andC1(γ1−l) = γ3. By (15),Cn−1γn−1 �= γ1−l somxn ∈ M(d(m)),
hence it should be canceled by some mxn/xi ∈ M(h). By the previous equality, i �= 2
so either i > 2 and we have the desired βn + β1 + β2 = 1 − l + l > 0 with
βn = 1, or i = 1. If i = 1 then C1(γ1 − l − 1) = γ3 − C1 �= γ3 so mxn x2/x1 ∈
M(d(mxn/x1)). Again, it has to be canceled by mxn x2/x21 or mx2/x1, for otherwise
we would get the desired βn, β1, β2 with βn � 1. This is repeated a number of
times but at most until we reach β1 = −γ1, βn = −γn , it cannot be continued
further. �

We use this claim in the following way: If

Cnβn �= β2, (17)

then Cn(αn +βn) �= α2 + β2 so m2x1 ∈ M(d(m2)) and it must be canceled by d(m3)

for some m3 = ∏
x

αi +β′
i

i ∈ M(h). For this m3/m2 = x1/xi so β ′
1 = β1 + 1 and

β ′
n +β ′

1 +β ′
2 � βn +β1 +β2 > 0. We may replace m2 by this m3 and (16) still holds

with larger β1. We can continue as long as (17) holds. Reaching some m2 for which
β1 > 0 or β1 = 0 < β2 would imply that m2 is lexicographically larger than m1. This
is our aim.

If |Cn| > 1 then we use m2 from Claim 2.13 such that βn + β1 + β2 > 0 and
β2 � 1, consequently, βn is not negative. Now βn = β1 = 0 and β2 = 1 mean that
m2 is larger than m1, a contradiction. If βn � |β2| then |Cnβn| > βn � |β2| implying
Cnβn − β2 �= 0. So (17) is satisfied and we obtain a monomial that is larger than
m2. If, however, βn < |β2|, then β2 = 1 and βn = 0 and still Cnβn − β2 �= 0 and
we obtain a monomial that is larger than m2. We can continue and finally we get a
monomial that is larger than m1, a contradiction.

If 0 < |Cn| < 1 then we use m2 from Claim 2.13 such that βn + β1 + β2 > 0
and βn � 1. Proceeding exactly as in the previous case (but using β2 � |βn| or
β2 = 0, βn = 1), we obtain a contradiction.
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If Cn is not real then we use m2 from Claim 2.13 such that βn + β1 + β2 > 0. We
can proceed the same way as Cnβn = β2 would imply βn = β2 = 0 so β1 > 0, which
is a contradiction.

Finally, if Cn = −1 then we use m2 from Claim 2.13 such that βn + β1 + β2 > 0.
We can proceed the same way as Cnβn = β2 would imply βn + β2 = 0 so β1 > 0
which is a contradiction.

This finishes the proof of Lemma 2.4. ��
For the third part we use the following Jacobi criterion for the algebraic indepen-

dence of polynomials: Let F1, . . . , Fk be polynomials in R. Let J (F1, . . . , Fk) denote
the k ×n matrix, whose (i, j)-entry is ∂ Fi/∂xj . Then F1, . . . , Fk are algebraically
independent if and only if J (F1, . . . , Fk) has rank k.

Lemma 2.14 The polynomials in H are algebraically independent.

Proof Clearly, no two of the polynomials can be dependent, as they involve different
variables. So assume all three are defined, that is n is even and

∏
i∈OCi = 1 =∏

i∈ECi . The Jacobi matrix J ( f, gO, gE) truncated after the first three columns is

⎛

⎜
⎝

1 C1 C1C2

θ1x−1
1 gO 0 θ3x−1

3 gO

0 θ2x−1
2 gE 0

⎞

⎟
⎠ .

Its rows are independent as x−1
1 gO and x−1

3 gO are not constant multiples of each other.
In the irregular case for n = 4, only at most one of gO and gE might be defined so
this case does not need more attention. This finishes the proof of the lemma and of
Theorems 1.1 and 1.2. ��
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