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1 Introduction

Letn > 2 be an integer, R = K[xy, x2, ..., X,] the n-variable polynomial ring over
the field K of characteristic 0. A derivation of R is a K-linear map §: R — R that
satisfies the Leibniz rule §(fg) = fé(g) + gd8(f) for every pair of polynomials. By
this identity, the values at the generators (x;) = g; € R,i = 1, ..., n, determine 8.
Another way of expressing this is
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The constants of Lotka—Volterra derivations 545

The polynomial f € R is a constant of the derivation § if §(f) = 0. The set of
constants of R is a subalgebra of R due to the Leibniz rule, we shall denote it R®. A
central problem concerning derivations is to describe their rings of constants. There
is no general procedure for determining R® and it may be neither a polynomial ring
nor a finitely generated ring (see [5] for more details).

Given parameters C; € K,i = 1, ..., n, the Lotka—Volterra derivation d is defined
on the generators as

d(x;) = x;i(xi—1 — Cixjz1),

where (and further on) the indexing is circular, that is n + e and e are identified for
every integer e. The special case of the Volterra derivation, where all C; = 1, was
considered in [2]. In the present paper we shall observe a confirmation why the Volterra
case is remarkable. The case n = 3 for arbitrary parameters C; was considered in the
paper [4]. Here we assume n > 3.

The Lotka—Volterra derivations are a type of factorizable derivations, that is, deriva-
tions defined by d(x;) = x; f;, where f; are polynomials of degree 1 fori =1, ..., n.
We may associate the factorizable derivation with any given derivation of a polynomial
ring, this helps to determine constants of arbitrary derivations (see, for example, [3]).
Moreover, Lotka—Volterra systems play a significant role in population biology, laser
physics and plasma physics (see for instance [1] and references therein).

Before stating the main theorem, we define the generating polynomials. Let f =
> (H’j;ll Cj) x; = x1+C1x2+C1Cox3+- - -. Take any nonempty subset A C Z,
of integers mod n closed underi +— i +2. If nis odd then A = Z,,; for n even we have
two additional proper subsets € = {2i : i < n/2}and O = {2i —1:i < n/2}. Given
A,let C;,i € A, be positive rational numbers such that Hie 4 Ci = 1. Then there exist
unique coprime positive integers ;, i € A, such that6; 1, = C;6;. (Indeed, the rational
vectors (7;);c.4 form a 1-dimensional subspace because of fixed positive ratios. Hence
if we take the given positive rational vectors, then multiplying by the smallest common
denominator and dividing by the greatest common divisor of the numerators we obtain
(0)ica.) Let us define g4 = HieAxiei. Let A ={i+1:iecA}.

Our main results are the following two theorems.

Theorem 1.1 Let d be the Lotka—Volterra derivation with parameters Cq, ..., Cy,.
Then the ring of constants R is a polynomial algebra. Assume that not all parameters
are equal to 1 and n > 4. Then the number of generators is equal to

0 [1Ci # 1 and no g 4 is defined;

3 if n is even and both g¢ and g9 are defined;

2ifnis odd and gz, is defined, or n is even and [ | C; = 1 but only one of g¢ and
go is defined;

Lif[[ Ci = 1 but no g 4 is defined, or n is even and [ | C; # 1 but only one of g¢
and g is defined.

Suppose now that n = 4. In this case there is a further quadratic invariant if
C1C2C3C4 = —1 and there are two consecutive indices such that both corresponding
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546 P. Hegedds, J. Zieliniski

parameters are equal to 1. Assume C; = C, = | and C4 = —1/C3 (for the other
possibilities one has to rotate the indices appropriately), then

fa = x12 + x% + x32 + C32x£ + 2x1x0 — 2x1x3
—2C3x1x4 + 2x3x3 — 2C3x2x4 + 2C3x3x4.

If C; = C, = C3 = 1 and C4 = — 1 then this procedure would give two possibilities
for f4, they differ by 4x1x3. As 4x1x3 = 4g¢9, which is defined in this case, one of the
two possibilities for f4 is sufficient.

Theorem 1.2 Assume n = 4 and let d be the Lotka—Volterra derivation with para-
meters C1, ..., Cy. Then the ring of constants R? is a polynomial algebra. If not all
parameters are equal to 1 then the number of generators is equal to

0 [1Ci # 1 and none of go, ge, fa is defined;

3 ifboth ge and gy are defined;

2if[] Ci = 1 but only one of ge and g is defined or one of parameters is equal
to — 1 and the other three are equal to 1;

LifT1Ci = 1 but g, ge are not defined, or [ | C; = — 1 and only two consecutive
parameters are equal to 1, or [ C; # £1 but one of go, ge is defined.

It is not stated explicitly in the theorems but the generators are always those polyno-
mials g 4 that are defined together with f if [ C; = 1 (or together with f4 if n = 4,
C1C2C3C4 = —1 and two consecutive parameters are equal to 1). Denote by H this
set of generators. (If 7 is even and both g¢ and g are defined, then of course gz, is
also defined. But it is superfluous in the generating set because g7, = gego.)

It is routine to check, see Lemma 2.1, that f is a constant if and only if [ C; = 1,
each g 4 is constant if defined and f; is a constant if n = 4, C; = C, = 1, and
Cs=—1/C3.

The statements of theorems are similar to [2, Theorem 1.1] where all parameters
are equal to 1 and there are [n/2] 4 1 free generators of the ring of constants. As
it was noted there, the surprising feature is that the generators are independent. This
phenomenon might deserve further study.

The outline of proofs of theorems is also similar to the proof of [2, Theorem 1.1]
subject to new complications related to arithmetic properties of parameters C; which
require different arguments in different cases.

The case n = 4 was also investigated in [6]. The problem is solved there for
parameters such that C1 C>C3Cy4 iseither 1 or not aroot of unity. The last sentence of the
statement in [6, Lemma 3.2] is not correct. The assumption should be (Cy - - - C,)™ #
1 instead of Cy---C,, # 1. In this paper we treat the more difficult case, when
C1C,C3C4 # 11is aroot of unity. See Propositions 2.10 and 2.11.

2 Proofs

We prove Theorems 1.1 and 1.2 simultaneously, indicating the differences along the
way. The proof splits into three parts. First, we show that the polynomials are indeed
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in the kernel of d. Second, that any polynomial in R can be expressed as a polyno-
mial of elements of J{. And finally, that they are algebraically independent. As the
case n = 4 requires a special attention, Proposition 2.10 will be partly replaced by
Proposition 2.11.

Before embarking on the proof we make a short observation. The polynomial ring
has a grading R = @2, R4, where R, is the K -vectorspace of homogeneous poly-
nomials of degree a. The derivation d admits this grading of R, more precisely,
d(Ry) € Ry 1. So the ring of constants has a grading R? = Do, Rg. In partic-
ular, if a polynomial is a constant of d, then so are all its homogeneous components.
For a polynomial g € R let M(g) denote the set of monomials occurring in g with a
nonzero coefficient.

Letm = [[_, x;" be a monomial, then

n n
d(m) =" ai(xi1 = Cixiy)m = ) (i1 — Cioiai 1) xim.
i=1 i=1
That is, the coefficient of mx; in d(m) is aj4+1 — Ci—_1aj—1. So
mx; € M(d(m)) <= o1 #Ci—104_1. (1)
Looking at it from the back end, consider the monomial m’ = []7_, xlﬁ *. Then
m' € M(d(m'/x;))) <= i >0 and Bit1 # Ci—1Bi-1. @)
Now let us proceed with the first part of the proof.
Lemma 2.1 The elements of K are in R?.
Proof If [[C; = 1 then
n il noi—1

d(if)y=>Y [l ciden =D _T] Cjxitxio1 = Cixiz)

i=1 j=1 i=1 j=1
n—1 i i n
= Z(H C;— HCJ')X[’XH_[ + (l — HCj)xlxn =0.
i=1 “j=1 j=1 j=1
If [T;c4 Ci = 1 and each factor is positive and rational then g 4 is defined and

dga) =[x D 6itxiy = Cixig)

ieA ieA
9,
= Hxi“ Z(9i+1 —Ci—16;-1)x; = 0.
ieA ieA
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548 P. Hegedyis, J. Zieliniski

Ifn=4,C; =Cy=1,C4 =—1/Cz, then f4 is defined and

d(fa) = 2x7 (x4 — x2) + 223 (x1 — x3) + 2x3 (x2 — C3x4)

X
+ 2C32x‘% ()C3 + C_l) 4+ 2x1x2(x4 — X2 + X1 — X3)
3

x
—2x1x3(x4 — x2 + x2 — C3x4) — 2C3x1x4(x4 —x2 4+ x3+ C—l)
3

X
4+ 2x0x3(x1 —x3 + x3 — C3x4) — 2C3x2)C4(x1 — X3+ X3+ C—l)
3

+2C3x3x4 (X2 — C3x4 +x3 + 2—13) =0. ]
The following proposition is technical in nature. Its function is to provide a tool for
showing that if one monomial is in M (h), h € R“, then many others are there as
well. This to work we have to assume that for indices i (outside the examined area)
either B; = O or Bi_; = Bi+1 = 0 so that by (2) the exponent of x; might not
decrease. It is not powerful enough in every case, so partial extensions are necessary
in Propositions 2.10 and 2.11.

Proposition 2.2 Let m = fos " be a monomial in M(h) for some h € R? and let
1 < j <nbeanindex suchthat C; > 0. Assume that ;1 = 0 = B3 and for every
i < j—lori> j+2oneofB; and iy is zero. Furtherputr = Bj2+Bj+1—C;p;.
Then there exists an integer ty > r such that so = (r —t9)/C; is also an integer and

s f0=s=Bjy1 Bir1—10
mxj‘x_m X1, e M(h), so < s < 1.

Conversely, if

1—s—pB; Bir1—t
s j+1  Fj+1
mMX; X, X1, € M(h)

thenso <5 <t <to. If Cjy1 #0, then
ma?x; o  € Mh),
too. If Cj11 =0thenr < Bji1.

. t—=s—p; Bjy1-1 .
Proof Denote by e; ; the coefficient of mx;} x; 7x 73" inh. We have €.y 70

and would like to conclude that e; ; # 0 for some ¢ > r.

. 1+1—s—B; Bir1—t . .
We observe that the coefficient of m.x} x;, ’“xjfj' in d(h) is equal to

0=00+1—s)(es—1,t — Cjtr1€5:+1)
+esi(Bjta+ Bj+1 —t —Cj(Bj+5)) 3)
=0 +1—5)(es—1,r — Cjt1es:41) + e (r —1t —Cjs).
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. . . I+t—s—p; Bjy1—1
Note that no other monomial might contribute to mx; x; INEAR ’ Sl by our assump-

tion on the exponents and by (2). See the comment preceding the proposition.

Pick the minimal so such that there exists some ¢ for which ez, ; 7# 0. (We have
so < 0, since €08, # 0.) Consider the set T = {t € Z : ey, 7# 0}. Of course,
max T < Bji2 + Bj4+1 and minT > so. From (3) it follows that if + € T then
t+1 € T unless possibly for r = 79 = r — C;so. If 1 is not an integer or if it happens
that max T > 1o then T is not bounded from above, a contradiction. So max T = 1y
must be an integer.

Pick the maximal #; such that there exists some s for which e;; # 0. (By the
above, 11 > to > r and, by assumption, t; > Bjy1.) Let S = {s € Z : e5,, # 0}.
Againmin § > —g; and max § < #1. From (3) it follows thatif s — 1 € S thens € §
unless possibly for s = s; = (r —11)/Cj or s = t; + 1. If 51 is not an integer or
if it happens that min § < s; then S is not bounded from below, a contradiction. So
s1 = min S must be an integer and S = [s1; f1] N Z.

By minimality, we have so < sy sor —fg = Cjso < Cjsy =r—1t; <r—to. Hence
s1 = so and #; = t9. Thus e;; # 0 implies so < s < ¢ < to. The previous paragraph
also implies that e; 4, # 0 for 5o < s < o, as claimed.

If Cjy1 = 0 then by (3) we get 0 # €s—1,8;11 < 0 # 5.1 unless possibly for
s = —Bj+1)/Cj. As eop;,, # 0 wemusthave s = (r — B;4+1)/Cj < Ois an
integer, as claimed.

If Cj41 # 0 then by (3) we also have that 7 + 1 € T implies ¢ € T unless possibly
fort =s0—1.S0T = [s0; 1] N Z, 30 0 # ey 5,- ]

In the following proposition the coefficients are determined. The monomial can be

10—s0—Bj+1 _Pj+1-10 . ...
chosen to be m.x;"x; I xX; 731% from the previous proposition.

Proposition 2.3 Let h € R and m = Hx’gi be a monomial in M (h) with the coef-
ficient equal to A. Let 1 < jo < n be an index such that mxo ]0+1 )c0+2 € M(h)
implies p,q > 0. Assume that for every i < jo ori > jo+ 2 one of B; and By is
zero and that Bj, 12 — B, Cj, = 0.

() IfCj, # 0 then mx?

X ]O“ has the coefficient equal to

(ﬁjo+1 - Cjo—lﬁjo—l) CPA
P Jo

(i) IfCjy41 =0 = Bjy+3thenmx /o+lxzo+2 has the coefficient equal t0 0. If Cjy 41 # 0

then mx; ‘x| ., has the coefficient equal to

(ﬂjo+1 - .3jo+3/cjo+l) c
1
q Jot+

(iii) Assume Cj, # 0 and Bj,—1 = 0 = Bjy+3. Suppose Cj, is not positive rational
or CJO = a/b with (a,b) = 1 and p < a or q < b. Then the coefficient of

mx; xJOJrl ‘X! o+2 IS equal to
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550 P. Hegedyis, J. Zieliniski

Bjo+1\ (P + 4\ ~q -p
(p+q q Cj0+1Cj0 A.

Proof Let fp 4 denote the coefficient of mx} x, 7 "x; ., in M(h). By asslumption,
P —rP—9q .49

fp.g =0if p <0org < 0.Asin the previous proof the coefficient of mx; x; 'y “x; .,
in d(h) is equal to

0= (g +Bjps2— (P+Bi)Cio) frq
+ Bjor1 +1—=p—q—Bjp-1Cjo—1) fr-14 4)
+ (Bjo+3 — Bjo+1 + 1 = p = @) Cjos1) fr.g—1-

Let us first show (i). Putg =0 and t = 8,41 — Cj,—18j,—1. Then

Bjor1 — Cjo—1Bjo—1 +1—p _ r+1-p

fpo= fp-10
! g —Bjo+2+ BjsCjy + rCj

By induction it implies f, o = (;) C; VA Similarly, if Cj11 = 0 = Bjj43 then
qfo.q = Bjo+3f0.g—1 = 0.1f Cjy+1 # O then put 1 = B, 11 — Bjy+3/Cjy+1 and

(Bjo+1 — Bjo+3/Cjo+1 + 1 —q) Cjpt1
g+ Bjo+2 = BjsCio

(t+1—9)Cj+1

—

So.qg = fo.q—1

= fO,q—]

So fo,q = (;) C?O 41 A as claimed in (ii). To obtain (iii), let 7 = Bjy+1. Equality (4)
simplifies to

0=(q — pCjo)fp,q +@+1—-p-— Q)fp—l,q —(t+1-p _Q)C,/o+1fp,q—l-

By (i) and (ii), the claim is true for p = 0 or ¢ = 0 and we may apply induction on
p+qaslongas0 < p,gbut p < aorqg < b. These conditions imply 0 # g — pCj,
so from the above and by the inductive assumption, we obtain

t+1—p— t -1 _
fp’qzw p+q Cq,Hc,P
q —pCj pt+q—1 qg—1 o

t ptq-—1 q —p+1
_(p+61 — 1)( q )CjOHCjO

_t+l—p—gq t! q —p
T TG pCy G- pog+Dipig oG TP

_ ! Pta\ —p
_(p+q)( q )C"‘)“C"O' .

The second and most difficult part of the proof of Theorems 1.1 and 1.2 is the following.
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Lemma 2.4 Ifh € R is such that d(h) = 0 then it is a polynomial in the elements of
H.

Proof As the indexing of variables in the definition of the derivation is circular, we
have freedom to choose the starting index. Not all of parameters are equal to 1 so
without loss of generality we can assume that C;,, # 1. We would also choose C,, # 0
if possible. That is impossible only if all parameters take values in the set {0, 1}. In this
case either all parameters are equal to O or there is one parameter equal to 1 following
another parameter equal to 0, then we let C,, = 0 and C; = 1.

Clearly, it is enough to prove the lemma for homogeneous polynomials, so let
h € R,. We use the standard lexicographic ordering on monomials of R,. That is,
Mx <T] xlp "if a; < B; at the first index that they are not equal. For a homogenous
polynomial k € R, the leading monomial is the lexicographically largest monomial
in M (k).

Assume by induction that 4 has lexicographically the smallest leading monomial
among all homogenous polynomials that are counterexamples to the lemma. We prove
that there is a polynomial expression F of the elements of J{ that has the same leading
monomial (of course, it can have also the same coefficient, we may assume that the
coefficient is equal to 1). So 4 — F has only lexicographically smaller monomials and
hence can be expressed by induction. This will finish the proof of the lemma.

Letm; =[]/, x;" be the leading monomial of 4. The following two propositions
describe the exponents of the leading monomial in detail. The first one implies that
the even-indexed exponents of m are determined by o, = «p, namely, for every
n/2 > i > 1 wehave ap; = Cpi_pa0;—2. Indeed, if it fails for some even indices then
for the smallest such index 27 > 2 all assumptions of the proposition would hold. But
the conclusion m ¢ M (h) would contradict the original choice of my € M(h). O

Proposition 2.5 Suppose m = []7_, x/" is a monomial and r is a positive integer
with the following properties:

() Yn = op;
(i) y2i—1 =21 for 1 <i<r;
(iil) y2;i = Coiaypiafor 1 <i <r—1;
(iv) y2r # Cor—2v2r—2.
Thenm ¢ M (h).

Proof Assume by contradiction that m € M (h). The proof is by induction on r. Let
r = 1. The coefficient of mx; in d(m) is y» — Cpa,, # 0, see the line before (1).
In turn, by (2), it may occur only in M(d(mx;/x;)) for any index i. However, by
the assumption, y; = o1 so we have mx;/x;>mj for i > 1. By maximality of m1,
these are not in M (h) so mx; cannot be canceled. This contradiction establishes the
proposition for » = 1 for every monomial.

Assume now r > 1 and that for r’ < r the proposition holds for every monomial.
Suppose the set 8 = {r' < r : ap # Cy/_rap/_»} is nonempty. Let r’ be its
smallest element. As assumptions of the proposition hold for m = m; and r = r’ but
the conclusion m| ¢ M (h) does not, we must have 8 = &. In other words,

ar = Cojpapi—n, 1 <i<r—1. )
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552 P. Hegedds, J. Zieliniski

As in the first paragraph, mx», 1 has the nonzero coefficient equal to y2, — Cor—2y2r—2
in d(m). Again, by (2), this may occur only in M (d (mx3,—1/x;)) for some index i. If
i > 2r — 1 then, by virtue of (5), mx2,_1/x;>m1 soitcannotbein M (h).Ifi < 2r—1
is odd then, by assumption (iii), the coefficient of mxs,_1 is yj+1 — Ci—1yi—1 = 0
in d(mxp,—1/x;) so it cannot help in canceling the coefficient y», — Cor_2y2,—2 of
mxoy_1 ind(m).

If however i = 2r’ < 2r — 1 is even then mxy,_ /x; satisfies assumptions of the
proposition with r’. So, by induction, mxy,—1/x; ¢ M(h). This proves that if m €
M (h) then d(h) # 0. This contradiction establishes the proposition. |

Remark 2.6 In fact, in the proof we used (i’) C,y,, = C, oy, SO the lemma holds if we
assume C,, = 0 instead of (i). It implies ap; = 0 for all i < n/2.

Proposition 2.7 Suppose m = [['_, x/" € M(h) is a monomial and r < n/2 is a
positive integer with the following properties:

(1) yn = ay (or C, = 0);
(i) y2i—1 = ai1 for 1 <i <r;
(iii) y2;i = api for 1 <i <.

Then there exists a nonnegative integer Bar—1 such that Car—1 (Yor—1—Par—1) = Var+1
and m’' = m(xp, /x2— DPr=1 e M(h). In particular, there exist nonnegative integers
By;_ such that Cy; (i1 — B ) = aziq1 for 1 <i <n/2.

Proof The proof is by contradiction. Assume that there exists the smallest positive
integer r for which there is no such nonnegative integer f2,—1. Let mo € M(h).
Suppose that

forr > 1 : the exponent of x is 0 in my/m fork < 2r — 1
(and for k = n if C,, # 0); (6)
for » = 1 : the exponent of x,, is at most y;, in m>.

Denote by s the exponent of x»,_; and by ¢ the exponent of x7, in m,/m. We claim
that s 4+ ¢ < 0, which we prove by (decreasing) induction on s.

As mq is the leading monomial, s < 0. If s = 0, then ¢t < 0, indeed. So let
s < 0.If t < 0, then we are done, so assume ¢ > 0. Hence, by (1), the monomial
moxz,—1 € M(d(my)) has the coefficient equal to t + y2, — Cor—2y2,—2 =t # 0 if
r > 1, by Proposition 2.5, assumption (iii) and equation (6). If » = 1 and C,, > 0 then
the coefficient of mox; in d(my) is atleast t + y» — Cpyy =t > 0, SO max2,—1 €
M(d(mp)). If r = 1 and C,, # O then y» = ap = Cpa, = Cpyy, = 0 and the
coefficient of mox in d(my) ist > 0. So myxo,-_1 € M(d(m»)) also in this case.

This monomial may also occur only in M (d(m>x2,—1/x;)) for some indices i.
If i < 2r — 1 is even then, by Proposition 2.5, it does not occur in M (h). (Note
that here » > 1, so the exponent of x,, is y, in maxa,—1/x;, so all assumptions of
Proposition 2.5 are satisfied. If C,, = 0 then see Remark 2.6.) If i < 2r — 1 is odd
then y;41 — Ci—1yi—1 = 01is the coefficient of moxy,_1 in d(max2r—1/x;). Otherwise
i > 2r —1. Now we apply induction for mox7,_1/x, which still satisfies the conditions
of (6), unless r > 1,i = n and C, # 0. If induction applies then the exponent of
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The constants of Lotka—Volterra derivations 553

x2-—1 is equal to s + 1 and the exponent of xj, is equal to t or t — 1, their sum is at
least s 4 ¢. But, by induction, their sum is at most 0, hence s + ¢ < 0.

If, however, induction does not apply then m3 = myxy,—1/x, € M(h). Hence
m3x); € M(d(m3)) has the coefficient equal to y» — C,(y,, — 1) = C,, # 0. Now, for a
monomial m4 = m3x1/x; € M (h) to cancel this the exponentof x;is 1 +1 = o1 + 1
in my, SO m1<my, a contradiction. So in fact, induction must apply and we conclude
s+t <0, as claimed.

We claim next that for every 0 < [/ the monomial m 1 (x7, /x2r_1)l € M(h). This
is proved by induction on /. The case [ = 0 is given, so let/ > 0 and put m =
my (X2 /X2 — DIt em (h). By the assumption on exponents, mx>, € M(d(m)), the
coefficient is apr+1 — Cor—1(a2r—1 — I 4+ 1) # 0 as we argue by contradiction.

To cancel this from d(h) there must exist a monomial my = mxo,/x; € M(h). If
2 <2r <i <nor2 =2r < ithen we contradict the above claim on s + ¢. (In our
situation s = 1 — [, t = [ and the conditions of (6) are satisfied.) If, however, r > 1
andi = n then mxy, /x, € M (h) somxa,-x1/x, € M(d(mx2,/xy,)) has the coefficient
¥2 — Cp(yn — 1) = C,, # 0. The exponent of xy in any mx;,x1/(x,X;) is larger than
y1 = a1, so my<mx2,Xx1/(x,x;) which means that mx,,x;/x, cannot be canceled,
also a contradiction.

If i < 2r then, by Proposition 2.5, i cannot be even. So i must be odd, but if
i < 2r—1then (1) shows that the coefficient of mxy, ind (m3) is yj4+1 —Ci—1vi—1 = 0.
These imply that only my = mxo, /x2,—1 = m(x2,/x2r— D! can cancel it, so it must
be in M (h). This proves our claim for every [ > 0.

However, m(xy, /xzrq)l € R only if I < ap,—1 so the claim cannot be true for
every [. This contradiction shows that indeed there must exist B2,—1 > 0 satisfying
the proposition. |

Proposition 2.8 Suppose C,, # 0 and m = [|x/" € M(h) is such that v, = ay,

y1 = oy and y) = ap = Chay,. Ifmx,]f/mg € M(h), where x,fmy, then mp = x'l‘.

Proof The proof is by induction on the exponent i of xj in my. Let m’ = mx,’i /my =
Hj xfj. Of course, B; < y; for j < n. We have y» = Cpyy, so if y, > 0 then
Cn = y2/yn > 0. If, on the other hand, y, = 0 then y» = 8> = 0.

Now x;m’ € M(d(m')) has the coefficient B — Cy, By = v2 — Cuyn — (2 — B2) —
Chk =0 —--- 3 0. It could be canceled only by some x;m’/x;, where 1 < j. All
these are lexicographically larger than m if i = 0, a contradiction.

If i > 0, then the exponent of xy is i — 1 in mox;/x;. If j < n then
xym'/x; = mxfl /(max;/x1) satisfies the assumption of the proposition, so by induc-

tion max;/x1 = x{‘, a contradiction. So we must have x; = x, and xym'/x, =
mx,"j_l /(ma/x1) satisfies the assumption of the proposition. Here induction gives
my/x; = x]f_l andmy = xll‘,asrequired. [ |

Corollary 2.9 Suppose C, # 0 and m = [[x]'" € M(h) is such that y, = oy,
y1 = oy and y» = oy = Cpay. Thenl = y) — Cy—1yYn—1 is a nonnegative integer and
m = m(xn/xl)l € M (h). In particular, 1 — Cy—1,,—1 IS a nonnegative integer.

Proof We show that otherwise m (x, /x1)l € M (h) for every [ > 0, an obvious con-
tradiction.
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For I = 0 this holds vacuously. Let [ > 0 and suppose it holds for /, that is m’ =
mx! /x! € M(h). The coefficient of m'x, € M(d(m")) is y1 —1 — Cy—1yn—1. If itis O
then y; —C,,—1y,—1 = [ anonnegative integer as we claimed. Otherwise, it must be can-
celed by some m’x, /x; = mxfl+1/)q/x{ € M (h). By Proposition 2.8, j = 1 and we get
the required monomial for [ + 1, too. |

Proposition 2.10 Let h, g € R, where g is a monomial. If the leading monomial of
hism; = xlfg with k > 0 then C1Cy - - - C,, is a k-th root of unity, in particular, all
C; #0. If further n > 4 then C1Co---C,, = 1.

Proof 1f 1 # g =[], x/" (with y; = o; fori # 1) is the monomial constant then
0=d(@) =[]x"- D vitxiii = Cixiz) = ¢ D (viy1 — Cimrvi1)xi.
i i i

Hence y;+2 = C;y; forevery i. If n is odd then C1C; - - - C, = 1 so the proposition is
proved. Exactly the same works if  is even and y; # 0 # y».

So we have to consider two cases. Either g = 1 or g = glA with [ > 0 and
A e {€,0}. If ]l > 0 then we will use C; # 0 fori € A to prove that in certain
monomials the exponent of x; is not smaller than in g. For [ = 0 this is obvious. The
rest of the proof works equally for arbitrary /.

The proof is almost the same for € and for O. First we assume A = QO and/ > 0, so
Cri—1 > Oforevery 1 <i < n/2.Weapply Proposition2.2forj =n—1,n—-3,...,1
consecutively. In the first step r = k and m = m;. By Proposition 2.2, we obtain
Mmy—1 = ml(x,,_l/)cl)k"*l € M(h) with k,_; > k. If C;, = 0 then we get k < 0,
contrary to our assumption. So C, # 0 and we also get m1(xl/x,,_l)(k"”_k)/cnfl €
M (h). As m is the leading monomial k = k,,_1.

By induction, we obtain monomials mj;_1 = m2i+1(x2i_1/x2i+1)k2i—' e M(h)
with ko; 1 > kp;j+1. Finally we reach i = 1 and obtain a monomial m = m3(x /xg)k1
in M (h) such that the exponent of x1 is a1 — k,—1 + k1 > «1. As m is the leading
monomial we must have k; = k3 = - - - = k,,—1 = k. So in each of the applications of
Proposition 2.2 we have r = t9 = k,—; = k, hence if ngsx;.jrixj”k” € M(h) then
0<s<r <k,

Letnow A = € and ! > 0, s0 Cy; > 0 for every 1 < i < n/2. First we apply
Proposition 2.2 for j = n,m = m.Thenr = k and we getfors = 0, k,, = t9 > k that
m, = mlxlf" X, kx§ ke M (h). Now we proceed as in the odd case and consecutively
we obtain monomials mp; = mo;42(x2; /xz,-+2)k2i € M (h) with ky; > koj42. Thus we
find that in m, the exponent of x,, is o, + k, — kn—2 < @, and the exponent of x; is
a2 +k — ky, + ko > ap + k. Now apply Proposition 2.2 for j = n, m = ms3. Then
r > k,s0tg > kands = sg < 0 gives mngxio_soxz_to € M (h). By m| being the
leading term, at every application of Proposition 2.2 we have r = fo = k and so = 0
and all kp; = k.

From now on there is no loss of generality in assuming A = O or g = 1, that is,
an; = 0 forevery i.

We now determine the coefficients in question. We will apply Proposition 2.3 repeat-
edly, but first we have to establish that all C; are nonzero. Without loss of generality
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we assume that m has a coefficient equal to 1. We prove by induction on i that the
coefficient of gxf is]] j<i C f . We would like to apply Proposition 2.3 for jo =i — 1.
If i is even then the coefficient of gxlk +1 is H / < +1 C k by considering g = k in Propo-
sition 2.3 (ii). (By Proposition 2.2, mx JO X +1 +2 € M(h) implies p,q > 0.) If
i is odd, then 8,43 > 0 implies Cjj+1 > 0 and k = Bjo+1 — ,BJO+3/CJ0+1 So we
can apply Proposition 2.3 (ii) again. Finally, fori = n + 1 we get | = C C,’; SO
7z = C1Cy---Cy is a k-th root of unity, in particular, all C; # 0. Let us abbreviate
di =11 j<i C/? We see from our applications of Proposition 2.3 that for every i, s the

coefficient of gxk ‘xf, s d; &y
Now let n > 4. If z # 1 then there must be an index j such that C; is not positive
rational. For otherwise every 0 < C; and hence 0 < [[ C; = z implies z = 1 as the

only such root of unity. Fix this index j.
Case (x): j is odd. We use Proposition 2.3 with jo = jand m = k All
assumptions are satisfied, so the coefficient of gx] 2 is equal to kd 11 C C

kd; Ck lCl/‘Jr% Also, the coefficient of ng ~x j+2 is equal to kd; C; C]H.

Case (**). C; is positive rational for every odd index i, so j is even. Proposition 2.2
is not sufficient in this case, we have to treat five consecutive indices. This is the
point where it is crucial that n # 4, son > 6. Let e, 5 .4 denote the coefficient of

/+1 =

gx7 1x;’ i+ Jd+2 lk+§l b=c=d Here we rely on the following equation expressing the
coefficient ofg xbx¢ x4 xkmambme=d+ i g(h) = 0:

j j+1 j+2 j+3

0=bes1pca+(c—Cj1a)egp-1,ca+d—Cjiblegpe—1,d o
+k—-—a—-b—-—c—d+1-Cjric)eapeca-1—Cjradegp.cd.
As j is even, we have € 0,00 = dj13 # 0. We claim thatif a < O orc < 0
ork—a—b—c—d < Othene;p.q = 0. Its proof is similar to the proof of
Proposition 2.2.

Letap < 0be the smallest possible such that there exist by, co, do With eqy pg,co.dy 7
0. Without loss of generality also assume that ¢ is as small as possible for this ag. Sup-
pose here cg # C;_jag. Thenby (7) forag, bo+1, co, dy we have ey py+1,c9,dg—1 0
OF gy bo+1,c,dy 7 0. In either case we can increase b again. But clearly b is bounded,
so we conclude that co = C;_ap. Mutatis mutandis we get that if ¢; < co is the
smallest possible and a; is the smallest possible for such ¢y then ¢y = Cj_ja;. As
Cj_1 > Owehave c; = c¢g and a; = ag. The same proof shows thatk —a —b—c—d
is the smallest fork —a —b —c —d = Cj11cp.

Consider now e py,co,dy 7 0 Where co = Cj_1ap and k —ag — by — co — do =
Cj+1c0. By assumption, C; is not positive rational (and nonzero), in particular, for
nonnegative integers b, d the expressiond — Cjb = O only if b = d = 0. Hence in (7)
for ap, bo, co + 1, do we have eqy by, co+1,dg—1 7Z 0 0T €ay by—1,c9+1.dy 7 0. We repeat
this step b + do times to obtain ey 0,¢o+bg+dy,0 7 0. Suppose ap < 0 and hence
k—ay—byp—co—dy=Cj1Cj_1ap < 0. We now apply Proposition 2.2 for the
first three indices, thatis for j — 1, j, j +1. We getto > r = co +bo +do — Cj—1a9
resultinginag+1ty > k+ao+bo+co+do—k—Cj_1a0 > k—C;_1ap > k. Thatis
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i bo+do—to _k—ag—bo—co—d .
mj_ = gx “°+°xcﬂ odo= Ox; 307007 € M (h) the exponent of x;_ is at least

aj1+k+1 By induction fori = j — 3, j — 5, ..., 3 we obtain that the exponent
of x; inm; € M(h) is at least o; + k + 1. Thus we reach i = 1 and a monomial in
M (h) where the exponent of x is at least o + 1, contradicting that m is the leading
monomial. Soag =co =k — by —dy = 0.

Now determine eq 5 x—1—s,1 using Proposition 2.3 for jo = j and m = gx

The
j+1°
above discussion confirms that the assumptions are satisfied. So

okl
kdj1Cjy1 kdj1Cji
—=—  and  eo10k-1=——(~——.

€0,k—1,0,1 = — ,1,0,
Cf ! Cj

As j is even, the assumptions of Proposition 2.3 (i) are satisfied for jo = j — 1, m =
gx]].‘_lxj_,_z andr = ,3j0+1 _Cjo—l.Bjo—l =k—1. Soek_l’o,()’l = kdj_l Cj—l CjCj+1~
We can now apply it again to jo = j+ 1, m = g)c]].‘:l1 Xjt2 and t = Bj11 —
Cj—1Bjy—1 = 1togeter_1,0,1,0 = kd;—1Cj_C;. Exactly the same way we obtain
e1,0,k—1,0 = kdj—lcf:}cf_l~

So in both cases (x) and (xx) we find an odd index j such that the coefficient of
gx;xt ) iskd; 5~ CY 1, while the coefficient of gx! ™ xj 2 is kd; C; Cjy1. We shift
the 1ndlces by 2 in the second monomial using Proposition 2.3 again first for jo = j42
and then for jo = j. The coefficient of gx]].‘_lxj+4 iskd;jC;jCj;1Cj2Cjy3. Then
the coefficient of ng]:zl Xjyaiskdj2Cj12Cjq3.

Ifn = 5then we cannot do this as j+4 and j are adjacent. Butn = Sisodd,sog = 1
and there is no worry that the exponent of x; becomes smaller than in g (see the remark
at the beginning of the proof). So we use Proposition 2.3 to compute the coefficients in
a different way, we increase the indices one-by-one. Now the coefficient of xj]? _lxj+3
is kd;jC;jCj11Cjy2 and using Proposition 2.3 for jo = j — 1 the coefficient of
xj’.‘;ll Xj43 is kdj11Cj4+1Cj42. Doing this again, the coefficient of x}’,:ll Xj4+4 is equal
tokdj;1Cjy1Cj12C ;13 and the coefficient oij].:zl xjraisequaltokd;2Cj12Cjq3,
the same as above.

By a final induction we prove that the coefficient of gx;:ZI Xjis is equal to

kdjio Hf;; Cj+i. The details are omitted. The case s = n — 2 implies that the coeffi-
cient of gx;x ij:zl iskdj2Cj12Cji3---Cj_1. However, we have already determined

k—1 ~k—1
that to be kd; C CjJrl So

0=kdj42Cj42Cjy3-+ Cjoy —kd; CY~'Ch i =kd; N~ Ch iz — D).
Hence z = 1 as required. u

Proposition 2.11 Let n = 4 and h, g € R?, where g is a monomial. Assume either
every C; is positive rational, or Cy is not. If the leading monomial of h is m| = xll‘ g
with k > 0 then C1CyC3C4 = £1. I[f C1C2C3C4 = —1 then C, = 1 and at least
one of C1 = 1 and C3 = 1 also holds.

Proof By Proposition 2.10, we have z = C1 C>C3C4 is a k-th root of 1. If all parame-
ters are positive rational numbers then the product must be 1. From now on assume C4
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is not positive rational. First we prove that if z # 1 then z = — (5. In the next step we
verify that z = — 1 so k is even. Then we suppose by contradiction that C; # 1 # C3
from which we derive C1C3 = 1 and subsequently we reach a contradiction.

As C4 is not positive rational, ge is not defined, so g = glo org = 1.Let fyp.

denote the coefficient of gxk a=b= ~“x§xbx§ in h. By assumption, without loss of

generality fp.0,0 = 1. We observe that the coefficient of g)ck'H —a=b=c

is equal to

x2 x3 x4 ind(h)

0=(a—C40) fape+ b —-Cilk+1—a—b—c))fa1bec

+(c—Ca) fap—1,c+k+1—a—b—c—C3b)fupc—1- ®
We have to prove again that exponents cannot become negative, so a, b, c, k — (a +
b+c) > 0if f, 5. # 0. Of course, this holds if g = 1.

Suppose by is the smallest such that there exist ag, co such that fu py.co 7 0. If
ap, co are not both 0 then by (8) one of them might be decreased by 1. (Using here that
ag — C4bo # 0). Repeating this until both ag, ¢y become 0 we conclude fo .0 7 0.
This is the coefficient of gxk b°x3 , so by m1 being the leading monomial, by > 0. By
a similar argument, if a1 + b1 + ¢y is the maximal possible such that f,, ., 7 O, then
we conclude that fo 4 4b,+¢;,0 7 0. If a1 + b1 + ¢1 > k then apply Proposition 2.2
forj =1.Wehavet >r >a;+by+c1 —Ci(k—a; —by —c1) > a1 +b1 +c1
(as C1 = 1if g # 1). By Proposition 2.2, fo 4,+b,+c,—,0 7 0 contradicting by > 0.
Thus indeed k — (a +b+c¢) > 0, if fu 5. #O0.

We have from the proof of Proposition 2.10 that

k k
fs.00 = (s) 1 Si—s.5,0 = (S) ckes,

)
k k ~k s k k ~k o~k s
for—ss = JCTC2C5 foou-s = | ) C1C2C5C

N

We apply Proposition 2.3 for jo = 1, m = m to obtain

k s+t _
Jros = (s+t)( ; )CiC4 ’, (10)

as Cy is not positive rational.
Next we claim that

Si—1=s.1,

(( —1)2 | ( .)+(";1)c2).

The proof is by induction on s, for s = 0 we know it from (9). By (8) for (k — s, 1, )
we get

0= frc1-s1,5s (s — (k= 5)C2) fies,0,s — C3 fr—s,1,5-1
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k Ck—S
= fk*lfs,l,s + (= (k—=5)C) (S) Cl,i
kCh— ey - )Z o k-1 k — 1\ kC2C3CF T
Ci‘ C2 s—2—1i s—1 Cj"*]

k—1 C’” k—1\ kCk=*

= fi1_ k lL__¢ 1
fk 1 s,l,s+ (S—l) Ci 2( s ) Ci
c’” 2 il k—1 k— 1\ kCk=
(Z_l)zct+1 —1—G+n) \s-1) ¢

proving the claim for s.
We compare it for s = k — 1 to (9):

kckckck! = f _ ko (z—l)gz—i k-1 +C (11)
1 2 3 - O,I,k—l - C§71 pr Cé k—2—l 217

The sum is equal to ((z/C2+1)*"1—1)/(z/ C») so in the parentheses above we have

S eonf(@ o)) )= S el )

Dividing both sides of (11) by kC;C; and multiplying by zC5 ™" we get

z k—1
=(z—1)(c—2+1) + 1.

If z # 1 then z = — (3, as claimed. From now on we assume z = —C # 1. In
particular, C> = 1 implies z = —1 and k > 2 is even. Otherwise, C» is not rational.
If C; is not rational then, using Proposition 2.3 (ii) for jo = 2, we get

k s+t _
Ss—t—st = (S + l)( t ) Cllcclzccécz 5,

Comparing the case s =k —1,r = 1to (10) fort =k — 1, s = 1, we have

Ci' kCECyCs

kC¥CyC3 = fri101 =k = ,
16203 = fr—1,0,1 Ca -

implying z = 1, as claimed.
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From now on we assume that k is even, C» = 1,z = C;C3C4 = —1 and we also
suppose C1 # 1 # C3 to derive contradiction. Next we claim

kK \(s+1\ 4 k412t —2i
= = C{(—C3)* _—. 12
fe-t=s.1.s (Ht)( . ) [ (=C3) ]j[1 Py (12)

It is true for s = 0 and for ¢+ = 0 so we use induction for 7 + s assuming s, ¢ > O.
From (8) for (k +1 —t — s, t, 5) we obtain

k+1—1t—2s
Je—t—s,t.5s = — Ji—@-D—s,i—1,s = (= C3) fi—t—s-1),1,5-1.  (13)

We use the inductive assumPtion on the right hand side. We find identical factors
F = C’l‘(— C3)S(S+I;_1) Hf;l (k+1—2t—2i)/(k+ 1 —2i) at both terms. Now we
have

1 (k+1—1t—2s
F (f Je—=D)=s.1—1,s — (_CS)fk—t—(s—l),t,s—l)

_k+1—t—2s s+t—1\ k+1-—-2¢ s+1—1
- t t—1 Jk+1=2s ¢

s+t k+1—1t—2s k+1-—2¢ s k+1-—2s

=( t )( s+t k+1—2s_s+tk+1—2s)
s+1\ (k4 D? — (k+ 1)(3t + 3s) + 2t (2s + 1) + 252
( t ) (s+0)k+1—2s)

_k+1—s—t(s+t)k+1—2t—2s

s+t t k+1—2s

If we multiply by F', using (sf-z) =k+1—5s—1)/(s+1)- ( , then we get that
(13) implies (12).

Now we go on to prove that C;1C3 = 1. We use (8) for (k —s — 1, 1, 5):

s+]t(—1)

0=(01—-C1) fi—s—2,1,s + (1 = C3) fims—1,1,5—1
+ (2S —k+ 1)fk—s—l,(),s + (k B SC4)fk—s—l,1,s

Let us multiply this equation by (1 — C3)™*(1 — C1)*(—1)® and sum them up through
s =0,...,k — 1. In the resulting sum

k-1 k-1

(1-cp! a-cy
Z fk—s—2,1,sm (=D + Z Jr—s—1,1,5—1 A= Ca T (=D)*=0
s=0 s=0
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because each term appears with opposite signs. For the rest we apply (10) and (12) to
get

(14)

(25 — (k — 1))(1 —Ci+ w)

k—1

We divide by the nonzero kC ]f_l. We first split

Cis(C 1
(%—(k—l))(l—Cw%)=A0+sA1+s2A2,
where
2(14+Cy)C
A= (k= D(@ — D, A=2-3C-CC, A= A

Now we determine sums of the three distinct series. For this we abbreviate y =
CG(I1-Cp/(0=C3),50y+1=(1-C1C3)/(1 = C3),C1C3(1+Cy) =C1C3—1
and yC1(1 + C4) = (y + 1)(C1 — 1). We have

k—1 —
ny( )Ao =(k—1D(Cr =Dy + D,

N
s=0

k—1
2 y‘( )sAl =@=3C = QG k= Dy + D2y,
s=1

k—1
Z%yS( )zAz—Zy( . )(s+1)2(y—|—1)(C1—1)

=20+ D(C1 = D(k =2+ Dy + (v + DF2)
=2(C1 — D+ DF2((k — Dy + 1).

(Note that the third conclusion is correct even for k = 2.)
Summing them up we get

0=(y+DE2(C) — 1) [(k— 1)|:(y+ 1)+ (2_3511__1C'C4) y+2y:| +2]

i +C4)y] +2]

— k=2 _ — —
=0+ DG 1)[(k 1)[y+1 ci 1

=20y + D21 - 1).

Hence y + 1 =0, thatis C1C3 = 1 = —C4.
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Now we derive the final contradiction. Use (8) for (1, k — 1, 0) and for (0, kK —1, 1)
to get

0=(k—=1-=Cy for-1,0— f1,k=2,0 + fLk-1,0,
0=(1—(k—-=1C3) fok-1,0~+ for-21—Cafor-11.

The last terms in each of these equations can be obtained from (9)
fik—1.0=kCY,  fox—11 =kCiCs =/<le71.

We multiply the first equation by C3 and add to the second, thus canceling the coeffi-
cient of fO,k—l,O

0= fok—2.1— C3fik—20+2kCi™".
On the other hand, using (8) for (1, k — 2, 1), we get

0=((k—=-2-Cpfok—21+U—=k—=2)C3) fix—20+ 1 —=Cs) fri—2,1

3—k
= (k=2 = C)(for-21 = C3fii20) +2k(k = (=D CICy—

=(k—2—C)(=2kCF™ —2k@B — k) CF' = =2kt (1 — ).

This implies C; = 1 contradicting our assumptions. This finishes the proof of the
proposition. |

We are now ready to finish the proof of Lemma 2.4. We have i € R? of positive degree
and m; € M (h), the leading monomial of /& with respect to the lexicographic ordering
of monomials. Recall that we assumed C,, # 1. We also assumed that if C;, = 0 then
every C; € {0, 1} and either all C; = 0 or C; = 1. Of course, by Proposition 2.5,
every exponent with even index ap; = 0 in this case.

If all C; = 0 then, by Propositions 2.5 and 2.7, all ¢; = 0 save possibly o1 > 0. But
then Proposition 2.10 implies that all C; # 0. This contradiction shows that oy = 0
and R? = K in this case.

IfC, =0but C; = 1thena; > a3 > ---, by Proposition 2.7. If all «; are equal
and n is even then all coefficients with odd indices Cp;4; = 1 and m = go(f)] as we
wanted. Otherwise, o,,—1 < « (this clearly holds if 7 is odd, because then «;,—1 = 0)
so x,m1 € M(d(m)). But this can be canceled only by x,m/x,—1 and this can be
repeated «,,—1 steps until no division by x,_1 is possible. (No other decrease is ever
possible.) This contradiction shows that R? = K also in this case.

So from now on we assume C,, # 0. If C; = O then all «p;+; = 0 fori > 0.
If n is odd then it implies «;, = 0 and hence all o; = 0 save possibly «; > 0. But
then Proposition 2.10 is a contradiction and R? = K again. If n is even then gg is
defined and m; = géx‘f”. If «; > O then Proposition 2.10 implies that C; # 0, a
contradiction. Soo; = 0andm; = gig is a constant and the proof is done by induction
forh — m;y.
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From now on we assume C1 # 0. For n = 4 also assume that either every parameter
is positive rational, or that Cy is not.

We are going to derive a contradiction, so R = K unless the following two
conditions hold:

(A) In Proposition 2.7 we have Co;—1a0i—1 = anj41 forevery 1 <i < n/2.

(B) InProposition 2.7 and Corollary 2.9 the two integers coincide: C1 (a1 —f1) = o3
and (xg = a1 — B1 = Cy—1a,—1. In other words, C,_1,—1 is a nonnegative
integer and C1C,_j0,—1 = 3.

Claim 2.12 If (A) and (B) hold then h is a polynomial in the elements of H.

Proof Let o = «; for i > 1. The equalities in (A) and (B) together with Proposi-

tion 2.5 imply that g = [/, x," is a constant of d. Ifa) #Othena)_,C; 2 # 0soby
backward induction we get that all C;_5; are positive rational. Take A C 7Z,, minimal
closed under j > j + 2 such thati € A. Then by the above, & = & [[;c4C;
s0 []jeaCj = 1, hence g4 is defined and o, = e0; for every j € A with
e = gcd(a})jeﬂ. So g can be expressed using the defined ones of gz, , g¢, go. If
o) = o then g is the leading monomial of & so i — g is lexicographically smaller so
the proof is done by induction.

Suppose that o] < ay and first assume n > 4. Then Proposition 2.10 applies and
it follows that f is defined. Hence f*1~*ig has the same lexicographically largest
monomial as ., we may cancel it and the proof is done by induction.

Finally, if n = 4 then Proposition 2.11 applies and it follows that f is defined or vy —
o) is even and fy is defined. So either f is defined and f*! o g has the same lexico-

graphically largest monomial as &, or fz is defined and ffl w0 g has the same lexico-
graphically largest monomial as /. In both cases we may cancel it and the proof is done
by induction. |

For the rest we assume that at least one of (A) and (B) does not hold. We first construct
a monomial m = [ x/* € M(h) such that

Ya=0,, vi=0o1, yYr=0a2, CiCp_1Va-1# V3. (15)

If (B) does not hold, then m = m suffices. If (B) holds and C,,_; = O ora,_1 =0
then (A) also holds with ;41 = 0 fori > 0.

Suppose (B) holds but (A) does not, and let i be the smallest index such that
Coi—joi—1 # azi+1. We apply Proposition 2.7 for decreasing indices r = i,i —
1,...,2. Suppose we have reached the step r, that is, given m = [[ x/" € M (h) with
yi = «a; if i < 2r 4+ 1 and for i = n. By Proposition 2.7, there exists a nonnegative
integer Ba,—1 such that Ca,—1 (y2r—1 —Bar—1) = yar41 andm’ = m(xa, /x2,—1)P>-1 €
M (h). We replace m for this m’. In the step r the exponent of y»,_1 decreases, so finally
y3 < a3 = C1Cy_10—1. In every step y,,—1 is constant, only in stepr = (n — 1)/2
may it grow. As C1Cy—1 # 0and 0 < ay—1 < V-1 80 3 = C1Cy—1yn—1 implies
that C1C,,—1 > Oisrational. Butfor C1C,,—1 > Owehave y3 < a3 = C1Cy—10p—1 <
C1Cp—1¥n—1.Soin any case C1C,_1¥»—1 # y3. And we have constructed m € M (h)
with properties (15).
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Claim 2.13 There is a monomial mp = [, x;" i e M(h) such that

Bu+ 1+ B2 > 0. (16)
We may choose to further assume one of o < 1 and B, < 1.

Proof We use Corollary 2.9 to obtain m = ml(x,,/xl)l so B, =1 = —pB; and
Cootyn1 =1+ 1 =a1 —1.By(15),Ci(y1 — 1) # y3 somxy € M(d(m)), hence
it should be canceled by some mx>/x; € M (h). By the previous equality, i # n so
either i > 2 and we have the desired 8, + 81 + o =1 —[+1 > 0 with B, =1, or
i=11fi =1then Cp_1yy—1 # y1 — 1 — 1 somxyx, /x1 € M(d(mxy/x1)). Again,
it has to be canceled by mx>x, /)cl2 or mx, /x1, for otherwise we would get the desired
B, B1, B2 with B < 1. This is repeated a number of times, each time increasing , by
1 and decreasing one of 81 and 8, by 1. We cannot go on infinitely because 81 > —y;
and B > — 2.

Similarly, if we desire 8, < 1, we use Proposition 2.7 to obtain m = m(x2/x1 )l SO
Br=1=—prand Ci(y1 —1) = y3.By (15), Chm1¥n—1 # y1 —Isomx, € M(d(m)),
hence it should be canceled by some mx, /x; € M (h). By the previous equality, i # 2
so either i > 2 and we have the desired 8, + 81 + B2 = 1 — 1 4+ 1 > 0 with
Bn=1l,ori =1.1Ifi =1thenCi(y1 —1 —1) = y3 — C1 # y3 sOo mx,x2/x] €
M (d(mx,/x1)). Again, it has to be canceled by mxnxz/xl2 or mx»/x1, for otherwise
we would get the desired B,, B1, B2 with 8, < 1. This is repeated a number of
times but at most until we reach 81 = —y1, Bn = — ¥4, it cannot be continued
further. |

We use this claim in the following way: If

Cnfn # P2. a7

then Cp, (o0, + Bn) # a2 + B2 so max1 € M(d(m3)) and it must be canceled by d (m3)

for some m3 = Hx,-aﬁﬂ" € M(h). For this m3/ma = x1/x; so f; = B + 1 and
By, + B+ B, = Bn+ P14+ B2 > 0. We may replace my by this m3 and (16) still holds
with larger 1. We can continue as long as (17) holds. Reaching some m, for which
B1 > 0or 1 =0 < B2 would imply that m is lexicographically larger than m1. This
is our aim.

If |C,| > 1 then we use m, from Claim 2.13 such that 8, + 81 + B> > 0 and
B2 < 1, consequently, B, is not negative. Now 8, = B; = 0 and 8> = 1 mean that
my is larger than m1, a contradiction. If 8, > |B2| then |C,, 8, | > B, = |B2| implying
CnBn — B2 # 0. So (17) is satisfied and we obtain a monomial that is larger than
mo. If, however, 8, < |B2], then o = 1 and B, = 0 and still C,8, — B2 # 0 and
we obtain a monomial that is larger than m,. We can continue and finally we get a
monomial that is larger than m, a contradiction.

If 0 < |C,| < 1 then we use my from Claim 2.13 such that 8, + 81 + B2 > 0
and B, < 1. Proceeding exactly as in the previous case (but using B> > |B,]| or
B> =0, B, = 1), we obtain a contradiction.
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If C,, is not real then we use my from Claim 2.13 such that 8, + 81 + 8> > 0. We
can proceed the same way as C,, 8, = B2 would imply S, = B2 = 0so B1 > 0, which
is a contradiction.

Finally, if C,, = — 1 then we use mj from Claim 2.13 such that 8, + 81 + B2 > 0.
We can proceed the same way as C, 8, = B> would imply 8, + B2 = 0so 1 > 0
which is a contradiction.

This finishes the proof of Lemma 2.4. O

For the third part we use the following Jacobi criterion for the algebraic indepen-
dence of polynomials: Let F1, ..., Fy be polynomialsin R. Let J(Fy, ..., Fy) denote
the k x n matrix, whose (i, j)-entry is 0F;/0x;. Then Fu, ..., Fy are algebraically
independent if and only if J(F1, ..., Fy) has rank k.

Lemma 2.14 The polynomials in H are algebraically independent.

Proof Clearly, no two of the polynomials can be dependent, as they involve different
variables. So assume all three are defined, that is n is even and Hieo Ci=1=
[1;ce Ci. The Jacobi matrix J(f, go, g¢) truncated after the first three columns is

1 Ci CiCy
91xl_lgo 0 03x; g0
0 0rx; 'ge 0

Its rows are independent as xl_lg@ and x5 ! g are not constant multiples of each other.
In the irregular case for n = 4, only at most one of g¢ and ge might be defined so
this case does not need more attention. This finishes the proof of the lemma and of
Theorems 1.1 and 1.2. O
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