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1 Introduction

Algebraic cycles are linear combinations of closed integral subschemes in algebraic
varieties over a field. Two algebraic cycles A and B on a variety X are said to be
rationally equivalent if there exists an algebraic cycle Z on X x P!, such that, for
two fundamental points 0 and co on P!, the cycle-theoretic fibres Z(0) and Z(00)
coincide with A and B respectively. Rational equivalence is a fundamental notion
in algebraic geometry, which substantially depends on the intersection multiplicities
tacitly involved into the definition above. Intersection multiplicities are well controlled
in cycles which are cascade intersections of cycles starting from codimension one. This
is not always the case, of course. For example, if X is a K 3-surface, the Chow group
of 0-cycles modulo rational equivalence on X is large, in the sense that it cannot be
parametrized by an abelian variety over the ground field, [20]. On the other hand, its
subgroup generated by divisorial intersections on X is just Z, see [4]. This example
tells us that intersection multiplicities are geometrically manageable only for a small
fraction of all algebraic cycles appearing in nature.

Another difficulty with algebraic cycles is that they are originally given in terms of
groups, i.e. positive and negative multiplicities can appear in a cycle simultaneously.
The use of negative numbers was questionable for mathematicians dealing with alge-
braic equations in sixteenth century. In modern terms, the concern can be expressed
by saying that the completion of a monoid is a too formal construction. The problem
might seem to be not that funny when passing to the completions of Chow monoids,
i.e. gatherings of Chow varieties parametrizing effective cycles on projective varieties
embedded into projective spaces. The Chow monoids themselves are geometrically
given in terms of Cayley forms, whereas their completions are less visible.

These two things taken together have an effect that, in contrast to rational connec-
tivity, rational equivalence is difficult to deform in a smooth projective family over
a base, cf. [15]. As a consequence, the deep conjectures on rational equivalence are
hard to approach, and by now they are solved in a small number of cases (see, for
example, [26]). The state of things would be possibly better if we could recode ratio-
nal equivalence into more effective (i.e. positive) data, appropriate for deformation in
smooth projective families over a nice base. The purpose of the present paper is to
investigate whether the A!'-homotopy type can help in finding such data.

More precisely, let X be a projective variety over a field &, and fix an embedding of
X into the projective space P"”. To avoid the troubles with representability of Chow
sheaves in positive characteristic, we must assume that k is of characteristic zero.
Effective algebraic cycles of dimension r and degree d on X, considered with regard
to the embedding X C IP™, are represented by the Chow scheme C, 4(X) over k. Let
Z be an r-cycle of minimal degree dy on X. For example, if r = 0 then Z( can be a
point, and if » = 1 then Z( can be a line on X. The cycle Z gives rise to a chain of
embeddings C; 4(X) C Cy a+d,(X), whose colimit C°(X) is the connective Chow
monoid of effective r-cycles on X. Let C2°(X)™ be the group completion of C°(X)
in the category of set-valued simplicial sheaves on the smooth Nisnevich site over k.

Let also H§l be the functor of A!'-connected components and 1'[‘1%1 be the functor of
the A!-fundamental group on simplicial Nisnevich sheaves, see [19] or [2].
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Al -connectivity on Chow monoids versus rational equivalence... 171

Now, consider the Chow group CH,(X)g of degree zero r-cycles modulo rational
equivalence on X, where the degree of cycle classes is given with regard to the embed-
ding of X into P over k. Any finitely generated field extension K of the ground field
k is the function field k£ (Y") of an irreducible variety Y over k. For a simplicial sheaf F,
let F(K) be the stalk of F at the generic point Spec(K) of the variety Y. In the paper
we establish a canonical (up to a projective embedding) isomorphism

CH,(Xx)o = T} (C(0)T) (K),

for an arbitrary finitely generated field extension K over k (Theorem 5.1).
Let, furthermore, BC°(X) be the motivic classifying space of the connective Chow
monoid C>°(X). We also prove that

CH, (X)o =~ T} (RQEXBC (X)) (K),

where €2 is right adjoint to the simplicial suspension ¥ in the pointed category of
simplicial Nisnevich sheaves, and Ex is a fibrant replacement functor for simplicial
Nisnevich sheaves (Corollary 5.5). Another reformulation of the main result is in terms
of S' A Al-fundamental groups, where S is the simplicial circle. Namely,

CH, (Xg)o = T "4 (BC (X)) (K),

i.e. the Chow group of r-cycles of degree zero modulo rational equivalence on X is
isomorphic to the stalk at Spec(K) of the S' A Al-fundamental group of the motivic
classifying space of the Chow monoid C°(X) (Corollary 5.7). The smashing by S !
is a sort of stabilization, and not yet fully understood.

The use of the second isomorphism is that it encodes rational equivalence on r-
cycles in terms of A!-path connectedness on the motivic space L, QExBCXX(X).
The localization functor Ly is a transfinite machine, which can be described in terms
of sectionwise fibrant replacement, the Godement resolution, homotopy limit of the
corresponding cosimplicial simplicial sheaves and the Suslin—Voevodsky’s singular-
ization functor. The quadruple operation L, QEx B is a bigger machine recoding
rational equivalence into A'-path connectivity, at some technical cost, of course.

The proof of the main result (Theorem 5.1) is basically a gathering of known facts
in A'-homotopy theory of schemes and Chow sheaves, collected in the right way. The
substantial arguments are Lemma 3.5 and the use of [2, Proposition 6.2.6] by Asok
and Morel. In Sect. 2 we introduce the needed tools from simplicial sheaves on a small
site and the functor ITy. Section 3 is devoted to the Bousfield localization of simplicial
sheaves by an interval and to proving Lemma 3.5 which says that the group completion
commutes with the localized ITy. In Sect. 4 we pass to Nisnevich sheaves on schemes
and recall the theory of Chow sheaves following [25]. The main results appear in
Sect. 5, where we prove the existence of the canonical (up to a projective embedding)
isomorphisms between the Chow groups and the stalks of the corresponding motivic
homotopy groups of C,°(X) " and BC>°(X). In Appendix we collect the needed basics
from homotopical algebra, in order to make the text more self-contained.
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172 V. Guletskit

2 IT1p and monoids in simplicial sheaves

Let A be the simplex category, i.e. the category whose objects are finite sets
[n1={0,1,...,n}, for all n € N, and morphisms [m] — [n] are order-preserving
functions from [m] to [n]. Let 8§ be a Cartesian monoidal category with a terminal
object *. The category A°P 8 of simplicial objects in S is the category of contravariant
functors from A to 8. Since [0] is the terminal object in A, the functor I': A°P§ — §,
sending X to Xy, is the functor of global sections on simplicial objects in 8 considered
as presheaves on A. The functor I' admits left adjoint Const: § — A°PS sending an
object X in S to the constant presheaf on A determined by X.

Assume, moreover, that 8 is cocomplete. For any object X in A°PS, let ITo(X) be
the coequalizer of the morphisms X; = Xy induced by the two morphisms from
A[0] to A[1]. This gives a functor I1y: A°PS — § and the canonical epimorphism
W: T — Tlp. If Y is an object in 8, and f: X — Const(Y) is a morphism in A°PS,
the precompositions of fy: Xy — Y with the two morphisms from X; to Xy coincide.
By universality of the coequalizer, we obtain the morphism f”: T1p(X) — Y. The
correspondence f > f’ is one-to-one and natural in X and Y. In other words, Iy is
left adjoint to Const. Since products in A°P§ are objectwise, the functor I preserves
finite products. Certainly, if C is the terminal category, then Iy is the usual functor of
connected components on simplicial sets.

Let C be an essentially small category and let T be a subcanonical topology on it.
Assume also that C contains all finite products and let * be the terminal object in it.
Let P be the category of presheaves of sets on C and let 8 be the full subcategory of set
valued sheaves on C in the topology 7. Since 7 is subcanonical, the Yoneda embedding
h: € — P, sending an object X to the representable presheaf 1y = Home(—, X),
and a morphism f: X — Y to the morphism of presheaves hy = Home(—, f),
takes its values in the category of sheaves S. If * is the terminal object in C, then
h, = Home(—, *) is the terminal object in P and S. Limits in § are limits in P. In
particular, we have objectwise finite products in & and the category § is Cartesian
monoidal.

For a presheaf X, let X? be the sheaf associated to X in 7. Since P is complete,
the sheafification of colimits in P shows that § is cocomplete too. In order to make a
difference between I in A°P§ and I in A°PP, we shall denote the latter functor by
70, so that, for a simplicial sheaf X, one has TTo(X) = 7p(X)?. As the coequalizer ¢
is sectionwise, I1y(X) is the sheafififcation of the presheaf sending U to 7ro(X(U)).

Let A°PSetsbe the category of simplicial sets. For a natural number n let A[n] be the
representable functor Homa (—, [n]). For any sheaf F on C let A 4[n] be the simplicial
sheaf defined by the formula

(Aglnl), (U) = FU) xHom (Im], [n]),

for any U € Ob(C) and any natural number m. This gives the full and faithful embed-
dings A9[n]: § — A°PSand Ag[?]: A — A°PS.If Fis hy, for some object X in C,
then we write Ax[n] instead of Ag[n], and A[n] instead of A,[n]. To simplify nota-
tion further, we shall identify C with its image in A°P§S under the embedding A»[0].
For example, for any object X in C it is the same as the corresponding simplicial
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Al -connectivity on Chow monoids versus rational equivalence... 173

sheaf X' = Ax[0] = Const(kx), and the same on morphisms in C. The cosimplicial
object A[?]: A — A°PS§ determines the embedding of simplicial sets into A°PS, so
that we may also identify A°PSets with its image in A°P8. This gives the structure of a
simplicial category on A°P§, such that, for any two simplicial sheaves X and Y,

Hom (X, Y) = Hoonpg(f)C x A[?], 8).
The corresponding (right) action of A°PSetson A°PS is given by the formula
Xx K)p(U) = Xp(U) X Ky,

for any simplicial sheaf X and simplicial set K.

Looking at A°P§ as a symmetric monoidal category with regard to the categorical
product in it, one sees that it is closed symmetric monoidal. The internal Hom, bringing
right adjoint to the Cartesian products, is given by the formula

Hom(X, Y), (U) = Hompor 5(X x Ags[n], Y).

Throughout the paper we will be working with monoids in A°’S. All monoids and
groups will be commutative by default. If X is a monoid in A°PS, let X+ be the
group completion of X in A°P§. The terms of X are the sheaves associated with the
sectionwise completions of the terms of X in P. One has a morphism from X x X to
X, which is an epimorphism in A°’§. When no confusion is possible, the termwise
and section-wise completion of X in A°?P will be denoted by the same symbol X .

Monoids form a subcategory in P. The corresponding forgetful functor has left
adjoint sending presheaves to free monoids with concatenation as monoidal operation.
The notion of a cancellation monoid in P is standard and sectionwise. A free monoid
in P is a cancellation monoid. As limits and colimits in A°P§ are termwise, the functors
I" and Const preserve monoids and groups and I'(X ™) is the same as I'(X) ™. Since 1y
commutes with finite products, it follows that ITj also preserves monoids and groups.

The monoid of natural numbers N is a simplicial sheaf on C. A pointed monoid in
A°P§ is a pair (X, ¢), where X is a monoid in A°P§ and ¢ is a morphism of monoids from
N to X. A graded pointed monoid is a triple (X, ¢, o), where (X, ¢) is a pointed monoid
and o is a morphism of monoids from X to N, such that o ot = idy, see [19, p. 126].
Notice that to define a morphism from N to X is equivalent to choose an element in
Xo(*).

Let (X, ¢, o) be a pointed graded monoid in A°P§. Since o ot = idy, it follows that,
for any natural n and any object U in C, we have two maps ty_ ,: N — X,,(U) and
ou.n: Xn(U) — N. Itimplies that X, (U) is the coproduct of the sets ag’ln (d), for all

d > 0. The sets ailn (d) give rise to the simplicial sheaf which we denote by X¢. Then

X is the coproduct of X¢ for all > 0. The addition of ¢(1) in X induces morphisms
of simplicial sheaves X4 — X4+! for all d > 0. Let X be the colimit

xoozcolim(xoe 3 N (N )
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174 V. Guletskit

in A°P§. Equivalently, X*° is the coequalizer of the addition of ¢(1) in X and the
identity automorphism of X.

Since now we shall assume that the topos 8 has enough points, and the category
€ is Noetherian. Since filtered colimits commute with finite products, X*° is the col-
imit taken in the category of simplicial presheaves, i.e. there is no need to take its
sheafification. The commutativity of filtered colimits with finite products also yields
the canonical isomorphism between the colimit of the obvious diagram composed by
the objects X9 x X4, forall d,d’ > 0, and the product X x X°°. Since the colimit
of that diagram is the colimit of its diagonal, this gives the canonical morphism from
X x X to X°°. The latter defines the structure of a monoid on X°°, such that the
canonical morphism

T f)C:Hf)Cd—>f)C°°
d>0

is ahomomorphism of monoids in A°P 8. We call X*° the connective monoid associated
to the pointed graded monoid X.

Notice that the category of simplicial sheaves is exhaustive. In particular, if all the
morphisms X¢ — X*! are monomorphisms, the transfinite compositions X¢ — X
are monomorphisms too. This happens if X is a termwise sectionwise cancellation
monoid, in which case X° is a termwise sectionwise cancellation monoid too.

The above homomorphisms 7 and o give the homomorphism (7, o) from X to
X% x N. Passing to completions we obtain the homomorphism (7, o) from X to
(XY x Z.

Lemma 2.1 Assume X is a sectionwise cancellation monoid. Then
(71+, a+): Xt — (DCOO)+XZ
is an isomorphism.

Proof Since the site 8 has enough points, it suffices to prove the lemma sectionwise and
termwise. Then, without loss of generality, we may assume that X is a set-theoretical
pointed graded cancellation monoid. Clearly, (™ is an injection, 7T is a surjection,
and 77T = 0. Since X is a cancellation monoid, X is the quotient-set of the set
X x X modulo an equivalence relation

(x1,x2) ~ (x], X5) <= x1+x} =x2+x].

For any element (x1, x3) in X x X let [x1, x3] be the corresponding equivalence class.
Since X is a cancellation monoid, so is the monoid X*°. If w T [x], x2] is zero, that
is [ (x1), w(x2)] = [0, 0] in (X*°)T, it is equivalent to say that 7 (x1) = 7 (x). The
latter equality means that there exists a positive integer 7, such that xo = x1 + ne(1),
i.e. [x1,x2] = [0, ne(1)]in XT. The element [0, nt(1)] sits in the image of (™. O
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Al -connectivity on Chow monoids versus rational equivalence... 175

3 Homotopy completion and localization of IT

All the above considerations were categorical. Let us now switch to homotopical
algebra and consider the injective model structures on A°PS. Recall that a point P
of a topos T is an adjoint pair of functors, P*: T — Sets and Py: Sets — T, such
that P* is left adjoint to P, and preserves finite limits in T. If X is an object of T,
then Xp = P*(X) is the stalk of X at the point P. We will assume that the topos 8
has enough points. Recall that it means that there exists a set of points P(8) of the
topos 8, such that a morphism f: X — Y in 8 is an isomorphism in § if and only
if, for any point P € P(S), the morphism fp: Xp — Yp, induced on stalks, is an
isomorphism in the category Sets. Respectively, a morphism f: X — Y in A°PS§ is an
isomorphism in A°P§ if and only if, for each P € P(8), the morphism fp: Xp — Yp
is an isomorphism in AP Sets.

Now, a morphism f: X — Y in the category of simplicial sheaves A°PS is a
weak equivalence in A°PS if and only if, for any point P*: § — Sets of the topos
8, the induced morphism A°° P*( f) on stalks is a weak equivalence of simplicial
sets. Cofibrations are monomorphisms, and fibrations are defined by the right lifting
property in the standard way, see [19, Definition 1.2, p.48]. The pair (S, M) is then a
model category of simplicial sheaves on € in 7. Notice that the model structure M is
left proper, see [19, Remark 1.5, p.49]. One can also show that it is cellular. Let H be
the homotopy category Ho (AP §) of the category A°P§ with regard to M. For any two
simplicial sheaves X and Y the set of morphisms from X to Y in H will be denoted by
[X, 91

The simplicial structure on A°P§ is compatible with the model one, so that § is a
simplicial model category. Since

[, Y] = moHom (X, Y)
and
Hom (Ay[0], X) =~ X(U),
To(X) is the sheafififcation of the presheaf
70(X): U > moHom (Ay[0], X) = [Ay[0], X] = [Const(hy), X]

on C in the topology 7. The multiplication of simplicial sheaves and their morphisms
by a simplicial set admits right adjoint, so that it commutes with colimits. In particular,
Ho(Ax[n]) =~ Ax[O].

A pointed simplicial sheaf (X, x) is a pair consisting of a simplicial sheaf X and a
morphism x from x to X. The definition of a morphism of pointed simplicial sheaves is
obvious. Let A°P8, be the category of pointed simplicial sheaves. The corresponding
forgetful functor has the standard left adjoint sending X to the coproduct X, of X
and *. The model structure M induces the corresponding model structure on A°PS,,
such that the above adjunction is a Quillen adjunction. Having two pointed simplicial
sheaves (X, x) and (Y, y), their wedge product (X, x) v (Y, y) is the coproduct in
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176 V. Guletskii

A°P§,, and the smash product (X, x) A (Y, y) is the contraction of the wedge product
in (XxY,xxy).

Letnow S be the simplical circle A[1]/d A[1] pointed by the image of the boundary
dA[1] in then quotient simplicial set, and let S' be its image in A°PS,. Define the
simplicial suspension endofunctor ¥ on A°PS, sending (X, x) to S IA (X, x). Its left
adjoint is the simplicial loop functor  sending (X, x) to Hom.(S', (X, x)), where
Hom,.(—, —) is the obvious internal Hom in A°P§,.

Let X be a monoid in A°PS. For any object U in € and any positive integer n let
N (X, (U)) be the nerve of X, (U), and let BX be the diagonal of the bisimplicial sheaf
AP x AP — & sending [m] x [n] to the sheaf U +— N (X,,(U)),. Then (BX), is X"
for n > 0 and, by convention, (BX) is the terminal object * in 8, see [19, p. 123]. If
C is a terminal category, then BX is the usual classifying space of a simplicial monoid
X (that is, a monoid in the category of simplicial sets A°PSets). Just as in topology,
there exists a canonical morphism from X to QB(X), which is a weak equivalence if
X is a group, loc.cit.

Following Quillen, [24], we will say that a simplicial monoid X is good if the
morphism BX — BX™, induced by the canonical morphism from X to X, is a
weak equivalence in AP Sets. If X is a set-theoretical monoid, then X is good if the
corresponding constant simplicial monoid X = Const(X) is good as a simplicial
monoid. If X is a free monoid in Sets, then X = Const(X) is good in AP Sets, see [24,
Proposition Q.1].

Recall that, for any point P of the topos 8, the functor P*: 8§ — Sets preserves
finite limits. It follows that, if X is a simplicial sheaf monoid, then the stalk (BX) p
of the classifying space BX at P is canonically isomorphic to the classifying space
B(Xp) of the stalk Xp of the simplicial sheaf X at P. We will say that a simplicial
sheaf monoid X is pointwise good, if the morphism (BX)p — (BX™)p, is a weak
equivalence of simplicial sets for each point P in P(8). This is, of course, equivalent
to saying that the morphism BX — BX™ is a weak equivalence in A°?§, with regard
to the model structure M.

Now, if X is a monoid in S, we will say that X is pointwise free if Xp is a free
monoid in Sets for each point P in P(8). If X is pointwise free, it does not necessarily
mean that X is a free monoid in the category S. It is important, however, that if Xg
is a pointwise free monoid in S, the corresponding constant simplicial sheaf monoid
X = Const(Xp) is pointwise good, which is a straightforward consequence of the first
part of [24, Proposition Q.1].

Similarly, we will say that a monoid X in 8 is a pointwise cancellation monoid if
Xp is a cancellation monoid in Sets for each point P in P(8). If Xy is a pointwise
cancellation monoid, then the simplicial sheaf monoid X = Const(Xy) is pointwise
good by the second part of Quillen’s proposition above.

Let Ex be the fibrant replacement functor Exg, for the model structure M, con-
structed by taking the composition of the sectionwise fibrant replacement of simplicial
sets, the Godement resolution and the homotopy limit of the corresponding cosimpli-
cial simplicial sheaf, asin[19, Section 2.1]. Since Ex preserves finite limits, it preserves
monoids and groups. For the same reason, Ex commutes with taking the classifying
spaces of monoids and groups. The right derived functor of €2 can be computed by pre-
composing it with Ex. We will need the following variation of [19, Lemma 1.2, p. 123].
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Al -connectivity on Chow monoids versus rational equivalence... 177

Lemma 3.1 If X is pointwise good, there is a canonical isomorphism
Xt ~ QExB(X)

in the homotopy category H.

Proof Since X is pointwise good, the morphism from BX to BX™, induced by the
canonical morphism from X to X, is a weak equivalence in A°P§. Applying the right
derived functor RS2 to the weak equivalence BX — BX™ and reverting the corre-
sponding isomorphism in H, we obtain the canonical isomorphism from QEx B(X*)
to QEx B(X), in the homotopy category H. The composition of the canonical mor-
phism X* — BXT with the weak equivalence BXT — ExBX™ corresponds to
the morphism X — QExBX™ under the adjunction between ¥ and . The latter
morphism is the composition of the canonical morphism X+ — QBX™ and the mor-
phism QBXT — QEx BX™. The morphism X* — QBXT is a weak equivalence
because X is a group. Since any simplicial sheaf of groups G can be replaced, up to
a weak equivalence, by a fibrant simplicial sheaf of groups, without loss of generality
we may assume that X is fibrant (see, for example, [19, Lemma 2.32, p.83]). Replac-
ing the functor B by the universal cocycle construction W, we see that B preserves,
up to a weak equivalence, fibrant objects by [13, Theorem 31]. Then the morphism
QBXT — QExBXT is a weak equivalence too. Thus, we obtain an isomorphism
from Xt to QEx BX in H. |

Next, let A be an object of C, and let A be the corresponding constant simplicial sheaf
A4[0] = Const(h4) in A°PS. As in Appendix below, let

S = {DC/\A — X :X edom(/) U codom([)}

be the set of morphisms induced by the morphism from A to *, where dom (/) and
codom (/) are the sets of domains and codomains of the generating cofibrations in
M on 8. As A°PS is left proper simplicial cellular model category, there exists the
left Bousfield localization of M by § in the sense of Hirschhorne, see [11]. Denote
the localized model structure by My, and let L 4 be the corresponding S-localization
functor, which is a fibrant approximation in M4 on A°PS, see [11, Section 4.3], and
the earlier work [8]. Let

l: IdAopg — Ly

be the corresponding natural transformation. For any simplicial sheaf X the morphism
Ix: X — L4(X) is a weak cofibration and L 4 (X) is A-local, i.e. fibrant in M 4. The
basics on localization functors see in [11, Section 4.3] and Appendix below.

Let H4 be the homotopy category of simplicial sheaves converting weak equiv-
alences in M, into isomorphisms. As simplicial sheaves with respect to M form a
simplicial closed Cartesian monoidal model category, so is the category of simplicial
sheaves with respect to M 4. All simplicial sheaves are cofibrant, in M and in M4. It
follows that the canonical functors from simplicial sheaves to H and H4 are monoidal.
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178 V. Guletskii

See Appendix for more details on all such things. For any two simplicial sheaves X
and Y let [X, Y] be the set of morphisms from X to Y in Hy.

Recall that an object I of a category D with a terminal object * is called an interval
if there exists a morphism

wi ANl — 1
and two morphisms ig, i1 : * = I, such that
uo(idyAig) =igop and  po(id;Aiy) =idy,

where p is the unique morphism from 7 to *, and ip[ [i;: * [[* — I is a monomor-
phism in D, see [19]. Certainly, the object A is an interval in C if and only if the object
A is an interval in A°PS.

Since now we shall assume that A is an interval in €. The monoidal multiplication
by A is a natural cylinder functor on A°P8.If f, g: X = Y are two morphisms from X
to Y in A°PS, a left A-homotopy from f to g is a morphism H: X x A — Y, such that
Ho(idyxig) = f and Ho(idyxi1) = g. Since all simplicial sheaves are cofibrant
in both model structures M and M4, A-homotopy is an equivalence relation on the
set Homaor g(X, Y), see [12, Proposition 1.2.5(iii)]. Let Homaop (X, Y) 4 be the set
of equivalence classes modulo this equivalence relation. Whenever Y is A-local, the
set [X, Y]4 is in the natural bijection with the set Hom aop g(X, Y) 4.

A point of a simplicial sheaf X is, by definition, a morphism from the terminal
simplicial sheaf to X. Such morphisms can be identified with the set Xy(x). Two
points on X are said to be A-path connected if and only if they are left homotopic with
respect to A.

Since A is an interval, the A-localizing functor L 4 can be chosen to be more explicit
than the construction given in [11]. Following [19, p. 88], we consider the cosimplicial
sheaf

AA- [0] A— 8
sending [#] to the n-product
(A4101)" = A [0]

and acting on morphisms as follows. For any morphism f: [m] — [n] define a mor-
phism of sets

{1, ny—={0,1,...,m+1)}

setting

F10) = min{l/ € {0,...,m}: f(l) > i} if this set is nonempty,
Cm+1 otherwise.
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If now pr;: A" — A is the k-th projection and p: A" — x the unique morphism to
the terminal object, where A” is the n-fold product of A, then

prf/(k) if f’(k)e{l,,m},
proAa«[01(f) = { ioop if f'(k)y=m+1,
ilop  if f'(k)=0.

For any X let Sing 4 (X) be the Suslin—Voevodsky simplicial sheaf
[n] — Hom(Aan[0], Ax,[0]),

where the internal #Hom is taken in the category of sheaves 8. It is functorial in X and
p: A" — x induces the morphism

s: Idporg — Sing,.

Notice that, although the virtue of A to be an interval is not explicitly used in the Suslin—
Voevodsky’s construction above, it is used in proving the numerous nice properties of
the functor Sing 4, see [19]. In particular, each morphism s+ from X to Sing 4 (X) is an
A-local weak equivalence, i.e. a weak equivalence with regard to the model structure
My, see [19, Corollary 3.8, p.89].

As it is shown in [19], there exists a sufficiently large ordinal w, such that L 4 can
be taken to be the composition

La = (ExoSing,)“oEXx,

where Ex is the functor ExY, ie. the composition of the sectionwise fibrant
replacement, the Godement resolution and the homotopy limit of the correspond-
ing cosimplicial simplicial sheaf (see above). Such constructed localization functor
L 4 is quite explicit, which gives a clearer picture of what are the functors 7164 and 1'[6‘.

The canonical functor from A°P§ to H preserves products. In other words, if X x Y is
the product of two simplicial sheaves, the same object X x Y, with the homotopy classes
of the same projections, is the product of X and Y in H and in H4 (see Appendix). The
advantage of the above explicit L 4 is that it commutes with finite products, see [19,
Theorem 1.66 on pp.69-70 and the remark on p.87]. Most likely, the general
Hirschhorne’s construction (see [11, Section 4.3]) also enjoys this property, but we
could not find the proof in the literature.

Remark 3.2 The left derived to any localization functor L4 from A°PS to A-local
objects in A°PS§ is left adjoint to the right derived of the forgetful functor in the oppo-
site direction on the homotopy level, see [19, Theorem 2.5, p.71]. This implies, in
particular, that any two localizations L4 and L', are weak equivalent to each other.
Therefore, in all considerations up to (pre-A-localized) weak equivalence in A°P§ we
may freely exchange the localization functor L 4 considered in [11] by the concrete
Suslin—Voevodsky’s one, and vice versa.
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Lemma 3.3 For any simplicial sheaf X the canonical map
Hoonp 8(*’ :X:)A — HOonpS(*, LA (:X:))A

is surjective.

Proof We know that the natural transformation /: Id — L 4 induces the epimorphism
Iy — 1'[6‘ by [19, Corollary 3.22]. The morphism W: I' — Il is an epimorphism
too. This gives that the map

Homg(*, Xo) — Homg(x, I1o(X)) — Homg(x, Hé(f)C))

is surjective. By adjunction, Homg(*, Xg) >~ Homaopg(*, X), and since L 4(X) is
A-local, Homg (x, 1'[6‘ (X)) is isomorphic to Hom pep g (3¢, L 4 (X)) 4. O

Now, define the A-localized functor 1'[6‘ from A°PS to S by setting Hé(DC) to be the
sheaf associated to the presheaf

U +— [Const(hy), X]a.

Then H()“ (X) is canonically isomorphic to ITo(L 4 (X)), and the morphism / induces
the epimorphism ITy — I14, see [19, Corollary 3.22, p.94]. As L 4 is monoidal,

MHCxY) = Mo(La(X xY)) = Mo(La(X)x La(¥))
= To(L (X)) x Mo (La(Y)) = T1§ (X) x [T (Y).

This gives that 1'[6‘ preserves monoids and groups.

Lemma 3.4 For any monoid X in A°PS8, one has a canonical isomorphism
Mo(X)* >~ Mp(X™H)
in 8.

Proof Since I'(X") = I'(X)™ and ITp(X)™ are completions, one has the universal
morphisms y from I'(X") to [To(X)™ and 8§ from ITo(X) " to ITp(X ™). Since I'(X) =
Xo, T(XT) = DC(‘)F and y o' (vy) = vpyx) oW, where v stays for the corresponding
canonical morphisms from the monoids to their completions, the two compositions
DCT = DCS' LA ITo(X)™ coincide, which gives the universal morphism & from ITo(X™)
to ITp(X) ™. Since W is an epimorphism, and using the uniqueness of the appropriate
universal morphisms, we show that § and ¢ are mutually inverse isomorphisms of
groups in 8. O

Let CMon (A°PS§) be the category of commutative monoids in A°PS. Suppose that
all cofibrations in A°P§ are symmetrizable, see [9]. Then the simplicial model struc-
ture on A°P§ gives rise to a simplicial model structure on CMon (A°PS§), compatible
with Bousfield localizations, see [21-23,28,29]. A morphism in CMon (A°PS) is a
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weak equivalence (respectively, fibration) if and only if it is a weak equivalence
(respectively, fibration) in A°PS, loc.cit. The classifying space functor B is then a
functor from the model category CMon(A°PS) to the model category A°PS. [19,
Lemma 2.35, p.85], and the universality of a left localization of a model structure
(see [11, Definition 3.1.1(b), pp.47—48]), being applied to the functor B, yield a
(simplicial) weak equivalence

(BoLa)(X) = (Lgips0B)(X),

for any commutative monoid X in A°PS.

Lemma 3.5 Forany pointwise good commutative monoid X in A°P 8, one has a canon-
ical isomorphism

Af\ T~ A
Mg (%) " ~ g (XT).
in8.
Proof Since X is pointwise good, one has the isomorphism
XT ~ (QoExoB)(X)
in H by Lemma 3.1, where Q is the simplicial loop functor and Ex is the (pre-
A-localized) fibrant replacement for simplicial sheaves. Applying L4 we get the
isomorphism
LA(X") >~ Ls((QoExoB)(X)).
By [19, Theorem 2.34, p. 84],
L4((Q0Ex0B)(X)) = (Q0ExoLgi, ) (B(X)).
Since BoL 4 >~ Lgi, 40 B, we obtain the isomorphism
LA(XT) ~ (Q0ExoB)(LA(X))
in H. Let ® = ®yo, be the functor constructed in [19, Lemma 1.1, p. 123], i.e. the
cofibrant replacement functor in CMon (A°PS§). Since the morphism ® (L4 (X)) —
L 4(X) is a weak equivalence in A°PS, we get the isomorphism
L4(XT) =~ (QoExoB)(®(LA(X)))

in H. The monoid ® (L 4 (X)) is termwise free. Therefore,

(20Ex 0 B)((LA(X))) = (P(LAX))"
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by [19, Lemma 1.2, p. 123]. Applying [T and using Lemma 3.4, we obtain the iso-
morphisms

3 (XF) = Mo(La(XT)) = Mo ((@(La(0O))T)
= Mo (P(LAX)))" = Mo(La(X0))" =4 0T

in the category of sheaves 8. O

4 Chow monoids in Nisnevich sheaves

Now we turn from homotopical algebra to algebraic geometry, and specialize the
abstract material of the previous sections to the case when C is the category of smooth
schemes of finite type over a field k, the topology t is the Nisnevich topology on C,
and A is the affine line A! over k. Throughout all schemes will be separated by default.

The standard Yoneda construction can be extended to a functor / from the category
of Noetherian schemes over k to presheaves on C, sending any Noetherian scheme to
the corresponding representable presheaf, and the same on morphisms. Then 4 is a
functor to the category of sheaves in étale topology, and so in the Nisnevich one, see [1,
p.347], i.e. the Nisnevich topology is subcanonical. Composing /# with the constant
functor Const = A»[0] from 8§ to A°P§ we obtain the embedding of the category of
Noetherian schemes over k into A°PS.

The scheme Spec (k) is the terminal object in C. The affine line A! over k is an
interval in A°P§ with two obvious morphisms ig and i| from Spec (k) to Al. As above,
the interval A gives the natural cylinder and the corresponding notion of left homo-
topy on morphisms in A°PS. The set of points on a simplicial sheaf X is the set
Hom pop g (Spec (k), X) of k-points on X, and it coincides with the set X (k). The set of
Al-path connected components on k-points is the set Hom por g (Spec (k), X) o1. If X is
fibrant in M1, then Hom aor g(Spec(k), X) 41 can be identified with [Spec(k), X]a1.

Let X be a monoid in the category A8 Its completion X7 is a group object, so
that Hom pop g(Spec(k), XT) is a group in A°P8. The morphism X — X induces
a map from Hom pop g(Spec(k), X) to Homporg(Spec(k), X+). By the universality
of group completion, there exists a unique map from Hom aop g(Spec(k), X)™ to
Hom pop g(Spec (k), XT) with the obvious commutativity.

Lemma 4.1 For a simplicial Nisnevich sheaf monoid X, the canonical map from
Hom pop (Spec (k), X) ™ to Hom aor g(Spec (k), XT) is bijective, and, repspectively, the
map from (Hom por g(Spec (k), X) 41) ™ to Hom por g(Spec(k), X 1) o1 is a surjection.

Proof Since Spec (k) is Henselian, the set Hom aop 5(Spec(k), X) is the quotient of
the Cartesian square Hom xop g(Spec (k), X)2. The set Hom pop 5 (Spec (k), X)* is also
the quotient of the same Cartesian square. The maps from Hom-sets to the sets of
Al-path connected components are surjective. O

Next, let K be a field extension of the ground field &, and let S be the category of set-
valued Nisnevich sheaves on the category Cx of smooth schemes over K. Let Mg be
the injective model structure on the category A°P§ g, obtained in the same way as the
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model structure M for the category A°PS over Spec (k). Let f: Spec(K) — Spec (k)
be the morphism induced by the extension k C K, and let f*: A°P§ — A°PSk be the
scalar extension functor induced by sending schemes over k to their fibred products
with Spec(K) over Spec(k), and then using the fact that any sheaf is a colimit of
representable ones. As the morphism f is smooth, there are two standard adjunctions

Je A AL

for the functor f*, see, for example, [18].

Lemma 4.2 For any field extension K of the ground field k, one can choose the
localization functors L 1 and L Al in A°P§ and A°P S i respectively, to have a canonical
isomorphism

* ~ *
N _LAle.

Proof Let Exg be the fibrant replacement in A°’$ ¢ obtained in the same way as Ex
was constructed for AP, see [19, p.70]. Let also Singx be the Suslin—Voevodsky
endofunctor on A°P Sk . Straightforward verifications show that f *ExY ~ Exg f*and
f*oSing >~ Singg o f*. Choose Ly (respectively, L Al ) to be the transfinite composi-

tions of the functors Ex9 and Sing (respectively, Ex 1% and Sing ) in A°P§ (respectively,
in A°P§ K)- O

We now need to refresh some things from [25]. For a scheme X let C(X) be the free
commutative monoid generated by points of X, and let Z(X) be the group completion
of C(X). An algebraic cycle ¢ is an element in Z(X). As such, ¢ is a finite linear
combination »_m;¢; of points ¢; on X with integral coefficients m;. The cycle ¢ is
said to be effective if and only if m; > O for all i. This is equivalent to say that ¢ is an
element of C(X).

The support Supp(¢) of ¢ is the union of the Zariski closures of the points {; with
the induced reduced structures on them. The correspondence between points on X and
the reduced irreducible closed subschemes of X allows to consider algebraic cycles as
linear combinations Z = > m; Z;, where Z; is the Zariski closure of the point ¢;, for
each i. Then Supp(Z) is the same thing as Supp(¢). The points ;, or the corresponding
reduced closed subschemes Z;, are prime cycles on X. The dimension of a point in X
is the dimension of its Zariski closure in X. Let then G, (X) be the submonoid in C(X)
generated by points of dimension r, and, respectively, let Z,(X) be the subgroup in
the abelian group Z(X) generated by points of dimension r in X.

Let S be a Noetherian scheme, let k be a field, and let P : Spec(k) — S be a k-point
of S. Recall that a fat point of S over P is an ordered pair (P, P;) of two morphisms
of schemes

Py: Spec(k) — Spec(R) and  P;: Spec(R) — S,
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where R is a discrete valuation ring with the residue field k, such that
PioPy= P,

the image of Py is the closed point of Spec(R), and P; sends the generic point
Spec(R(p)) into the generic point of .

Let X — S be ascheme of finite type over S, and let Z — X be a closed subscheme
in X. Let R be a discrete valuation ring, D = Spec(R), and let f: D — S be an
arbitrary morphism of schemes from D to S. Let also = Spec(R o)) be the generic
point of D,

Xp = XxgD, Zp=2ZxsD and Z,=Zxgn.

Then there exists a unique closed embedding Z), — Zp, such that its pull-back
Z;z — Z,, with respect to the morphism Z,, — Zp, is an isomorphism, and the
composition

Zy—>Zp—D

is a flat morphism of schemes, see [10, Proposition 2.8.5].

In particular, we have such a “platification” if (P, Pp) is a fat point over the k-point
P and f = Pj. Let then X p be the fibre of the morphism Xp — D over the point
Po,

ZPZZDXXDXP and Z/PZZ/DXZDZP.

Since the closed subscheme Z’D of Xp is flat over D, one can define the pull-back
(Py, P1)*(Z) of the closed subscheme Z to the fibre X p of the morphism X — S, with
regard to the fat point P, as the cycle associated to the closed embedding Z, — Xp
in the standard way (consult [7, 1.5] for what “the standard way” means).

In particular, if Z is a prime cycle on X, then we have the pull-back cycle
(Py, P1)*(¢) on X p. Extending by linearity we obtain a pull-back homomorphism

(Po, P1)*: Z(X) — Z(Xp).

Following [25], we say that an algebraic cycle £ = > m;¢; on X is a relative cycle
on X over S if the images of the points ¢; under the morphism X — § are the
generic points of the scheme §, and, for any k-point P on S, and for any two fat points
extending P, the pull-backs of the cycle Z = ¢ to X p, with regard to these two fat
points, coincide, see [25, Definition 3.1.3].

Notice that any cycle, which is flat over S, is a relative cycle for free. But not any
relative cycle on X/S§ is flat. This is why we need the “platification” above.

Let C,(X/S) be the abelian submonoid in C(X) generated by relative cycles of
relative dimension r over S. It is important that whenever S is a regular Noetherian
scheme and X is of finite type over S, then C,.(X/S) is a free commutative monoid
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generated by closed integral subschemes in X which are equidimensional of dimension
r over S, see [25, Corollary 3.4.6, p.40]. Let also

2,(X/S) = €,(X/$)*

be the group completion of the monoid C,(X/S).

Now, fix a Noetherian reduced scheme 7', and let )1 be the category of Noetherian
schemes over 7. Let X — T be a scheme of finite type over 7. For any object S — T
in N let

Zr(X/T)(S) = Z (X x7S§/S).

If f: §" — Sisaflat morphism of Noetherian schemes over 7', the induced morphism
idyx7pf: XxrS — XxrS is also flat, and one has the standard flat pull-back
homomorphism

(dx x7)*: Z,(Xx78/S) — Z,(Xx78'/S).

If f is not flat, then the situation is more difficult.

However, if T is a regular scheme, due to the Suslin—Voevodsky definition of
relative cycles given above, the correct pull-back exists for any morphism f, see [25,
Proposition 3.3.15].

This all aggregates, when T is a regular scheme, into the presheaf Z, (X /T, which
is nothing else but the sectionwise completion of the presheaf C.(X/T) of relative
effective cycles on the category 1.

Since now we will assume that 7T is regular of characteristic 0. Let X — T be a
projective scheme over T, and fix a closed embedding

X - P7

over T. If Z is a relative equidimensional cycle on X x7.5/S, its pullback Zp to the
fibre X p of the morphism X x75 — § over a point P on S has its degree deg(Zp),
computed with regard to the induce embedding of X x 7.5 into IPg over S. Since Z is a
relative cycle, the degree deg(Z p) is locally constant on S, see [25, Proposition 4.4.8].
It follows that, if S is connected, then deg(Z p) does not depend on P, see [25, Corol-
lary 4.4.9] Therefore, the degree of Z over S is correctly defined, and we may consider
a subpresheaf

Cra(X/T) C C(X/T),

whose sections on S are relative cycles of degree d on X x75/S.

The integer d is non-negative, and there is only one cycle in the set C,o(X/T)(S),
namely the cycle O whose coefficients are all zeros. The grading by degrees gives the
obvious structure of a graded monoid on the presheaf C, (X/T) whose neutral element
is the cycle O sitting in C, o(X/T)(S).
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It follows from the results in [25] (see also [14]) that the presheaves C, 4(X/T)
are representable by a scheme C, 4(X/T), the so-called Chow scheme of effective
relative cycles of relative dimension r and degree d over T. This Chow scheme is
projective over T, i.e. there exist a structural morphism from C, 4(X/T) to T, and
a closed embedding of C, 4(X/T) into IPJ}’ over T, arising from the representability
above.

Notice that the Chow sheaves are representable because 7 is a regular scheme of
characteristic zero. If T would be of positive characteristic, then only /-representability
takes place, see [25]. If T is the spectrum of an algebraically closed field of charac-
teristic zero, then C, 4(X/T) is the classical Chow scheme of effective r-cycles of
degree d on X.

Since now we will assume that 7 = Spec(k), where k is a field of character-
istic zero, and systematically drop the symbol /T from the notation. According to
our convention to identify schemes and the corresponding representable sheaves, we
will write Cr 4(X) instead of hc, ,(x). Certainly, the latter sheaf C; 4(X) should be
identified with the sheaf C, 4(X).

Let

(X)) =[] Crax),

d>0

where the coproduct is taken in the category 8, not in 1. Such defined C, (X) is also a
coproduct in P. If we would consider the coproduct of all Chow schemes C; 4(X) in
I first, and then embed it into 8§ by the Yoneda embedding, that would be a priori a
different sheaf, as Yoneda embedding in general does not commute with coproducts.
However, the canonical morphism from the above sheafification to this second sheaf
is an isomorphism on the Henselizations of the local rings at points of varieties over
k. Therefore, the two constructions are actually isomorphic in 8. This also gives that
the coproduct of C, 4(X), for all d > 0, in 0 represents C, (X).

Identifying 8 with its image in A°P§ under the functor Const, we consider C,(X) as
the graded Chow monoid in the category of simplicial sheaves on the smooth Nisnevich
site over Spec (k). The completion C,(X)* of C,(X) in § is the sheafification of the
completion of C,(X) as a presheaf. The latter is sectionwise.

Let Of{,! y be the Henselization of the local ring O p y of a smooth algebraic scheme
Y over k ata point P € Y. Since Op y is a regular Noetherian ring, the ring Of;,’y is
regular and Noetherian too. As we mentioned above, the set

Cr (X X spec() Spec(Op ) /Spec (0} 1))

is a free commutative monoid generated by closed integral subschemes in the scheme
X Xspec (k) Spec (O}I’,’Y), which are equidimensional of dimension r over Spec (O}I’,’Y),
by [25, Corollary 3.4.6]. Then we see that the monoid C, (X) is pointwise free, and
hence it is a pointwise cancellation monoid in the category 8. It follows also that
the Chow monoid C,(X) is pointwise good in the category A°PS, and the canonical
morphism from C,(X) to C,(X)™ is a monomorphism.
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Let K be a finitely generated field extension of k. Since Spec(K) is Henselian,
C,(X)T(K) is the same as the group completion (C,(X)(K))*. On the other hand,
the same group C,(X) " (K) can be also identified with the group of morphisms from
Spec(K) to C,(X)™, in the category of simplicial Nisnevich sheaves A°PS.

Let dp be the minimal degree of positive r-cycles on X, where the degree is com-
puted with regard to the fixed embedding of X into P™. Choose and fix a positive
r-cycle Zy with deg(Zy) = dp. For any natural number d the d-multiple d Z is an
effective dimension r degree ddy cycle on X. This gives a morphism « from N to
C,(X) sending 1 to Zy. Since C,(X) is the coproduct of C; 44,(X), for alld > 0, we
also have the obvious morphism f from C,(X) to N, such that foo = idy. In other
words, Zg gives the structure of a pointed graded monoid on C,(X). Automatically,
we obtain the connective Chow monoid C°(X) associated to C(X). By Lemma 2.1,
we also have the canonical isomorphism of group objects

CX)tT=CcXX)txZ

in A°P§. The sheaf C>°(X) can be also understood as the ind-scheme arising from the
chain of Chow schemes

Cro(X) C Crgy(X) C Crogy(X) C -+ C Cryag(X) C---

induced by the cycle Z of degree dj on X.

As the category C is Noetherian, the category 8 is exhaustive. Since C,(X) is a
pointwise cancellation monoid in 8, and the latter category is exhaustive, C°(X) is
a pointwise cancellation monoid in § too. Then both monoids, C,(X) and C°(X)
are pointwise good monoids in the category A°PS. Moreover, the canonical morphism
from C°(X) to C°(X)™ is a monomorphism in 8 and in A°PS.

5 Rational equivalence as Al-path connectivity

For any algebraic scheme X over k let CH, (X) be the Chow group of r-dimensional
algebraic cycles modulo rational equivalence on X. In this section we prove our main
theorem and deduce three corollaries, which give something close to the desired effec-
tive interpretation of Chow groups in terms of A!-path connectivity on loop spaces of
classifying spaces of the Chow monoid C,>°(X). We leave it for the reader to decide
which of the obtained three isomorphisms is more useful for understanding of Chow
groups.

Theorem 5.1 Let X be a projective algebraic variety with a fixed embedding into a
projective space over k. For any finitely generated field extension K of the ground field
k, there is a canonical isomorphism

CH,(Xk) ~ I (C(X) ") (K).
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Proof Without loss of generality, we may assume that dy = 1. Consider the obvious
commutative diagram

1),
Hom o 5(Spec (), C, (X)) 51 ——> Hom yong (Spec(k), Lyi Cr(X)¥) .

1)t
Hom g s(Spec(k), C (X)) a1~ Hom o (Spec(k), Ly Cr (X)) .1+

where I = I, (x). Since Ly Cr(X)T is Al-local, the group in the top right corner is
canonically isomorphic to the group H‘§1 (C,(X)™) (k). By the same reason, the group
in the bottom right corner is canonically isomorphic to the group Hgl(Cr X)),
Since Spec (k) is Henselian, the latter group is nothing but the group H‘gl (C (X)) 7T (k).
Then Lemma 3.5 gives that 8 is an isomorphism.

Let go: Spec(k) — C,(X) and g1 : Spec(k) — C,(X) be two k-points on C,(X),
and suppose g is connected to g1 by an Al -path H : Al — L1 Cr(X) on L1 Cr(X).
For any d let (C,(X))q4 be the coproduct ]_[;jzo C,.i(X). Then (C, (X)) is canonically
embedded into the coproduct (C,(X))g+1. Consider the chain of the embeddings

(G (X)) C--C(Cr(X), C(Cr(X)) g T

Applying [11, Proposition 4.4.4, p.77] (see also Remark 3.2 in Sect. 3) we see that
L1 Cr(X) is canonically isomorphic to the colimit of the chain of the embeddings

Lyt ((CH(X))0) € -+ C Lyt ((Cr(X))a) € Lt ((Cr(X))ag1) C -+

Since A! is a compact object in the category A°PS, it follows that the homotopy H
factorizes through L1 ((C,(X))q), for some degree d. If Z is a degree 1 algebraic
cycle of dimension r on X, then Zj induces the corresponding embeddings

Cro(X) C -+ C Cry(C).
This gives the epimorphism from the coproduct (C,(X))s onto C,4(X). Com-
posing the homotopy H: Al — L, ((C,(X))4) with the induced morphism from
L1 ((Cr(X))a) to Ly (Crq(X)), we obtain the homotopy

H: A" = Ly (Cra(X)).
Since X is proper and of finite type over k, [2, Proposition 6.2.6] gives that the points
qo and g1 are Al-chain connected, and so A! -path connected on C, 4(X). It means that

the map

Ly : Hompaer g(Spec(k), Cr (X)) a1 — Hoonpg(Spec(k), L C,(X))Al
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is injective. Since I, is surjective by Lemma 3.3, it is bijective. Then (I™) is an
isomorphism as well.

Since B and (IT), are isomorphisms, and « is an epimorphism by Lemma 4.1, we
see that « is an isomorphism, and then all the maps in the commutative square above
are isomorphisms.

Let now A and A’ be two r-dimensional algebraic cycles on X. If A is ratio-
nally equivalent to A" on X, there exists an effective relative cycle Z on the scheme
X X Spec (k) Al / Al of relative dimension r, and an effective dimension r algebraic cycle
B on X, such that

Z0)=A+B and Z(1)=A+B

on X.Lethz and h g, 41 be two regular morphisms from A! to the Chow scheme C, (X)
over Spec (k) corresponding to the relative cycles Z and B x Al on X xgpec() Al /A!
respectively. Let

h: Al > C (X)) x Cr(X)
be the product of 1z and h gz, 41 in the category A°PS. Let
H: A' 5 C,(X)xCr-(X) > C(X)T,

be the composition of /2 and the morphism from C,(X) x C,(X) to the completion
C,(X)*,in A°P§. Then Hy = A and H, = A’, where Hy and H, are the precompo-
sitions of H with ig and i1 respectively. It means that the cycles A and A’ are A!-path
connected on C,(X)T.

Vice versa, suppose we have a morphism

H: A - c.(0"

in 8, and let Hy and H; be the compositions of H with i and i; respectively. Since
Spec (k) is Henselian, Hy is represented by two morphisms Hp, 1 and Hp 2 from Spec (k)
to Cr(X). Similarly, Hj is represented by two morphisms H; | and H; > from Spec (k)
to C,(X). Since « is an isomorphism and Hj is Al -path connected to Hj, it follows
that there exist two morphisms f and G from Spec (k) to C,(X), such that Hy | + F
is Al -path connected to Hy 2> + G and Hy 1 + F is Al -path connected to H; 2> + G on
C,(X). Interms of algebraic cycles on X, it means that the effective r-cycle Hy 1+ F is
rationally equivalent to the effective r-cycle Hy 2+ G, and, similarly, the cycle Hy 1+ F
is rationally equivalent to H; 2 + G on C,(X). Then the cycle Hy = Hy,1 — Hop2 is
rationally equivalent to the cycle Hy = H{,1 — Hj 2 on C,(X).

Thus, the Chow group CH,(X) is isomorphic to Hom xor g(Spec (k), C, (X)) a1,
i.e. the group in the top left corner of the diagram above. Since, moreover, (I7), is
an isomorphism, and the group in the top right corner is canonically isomorphic to
1'10Al (C,(X)T)(k), we obtain the required isomorphism in case when L is the ground
field k.
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To prove the theorem for an arbitrary finitely generated field extension K of the
ground field k, we observe that f*C, (X) is C,(X ), whence

SLpCr X" =Ly f*C(X)" =Ly G (X"
by Lemma 4.2. Therefore,

M3 (€00 %) (K) = Mo (L G (X)) (K) = fTlo(L € (X)) (K)
= Mo (f "Ly Cr(X)*)(K) = To(Ly Cr(Xk) ) (K)

= Ty (G, (X)) (K) = CH, (X ho. .

Remark 5.2 Lemma 3.5 provides that the monoidal completion in Theorem 5.1 can
be taken before or after computing the A!-connected component functor. Since the
monoidal completion is sectionwise on stalks, we obtain the canonical isomorphisms

1 1 1
CH,(X) = TI§ (C, (X)) (k) ~ 1§ (€, (X)) T (k) =~ T (C (X)) ()™
The embedding X < P gives the degree homomorphism from CH, (X) to Z. Let

CH, (X)g be its kernel, i.e. the Chow group of degree 0 cycles of dimension » modulo
rational equivalence on X. Then,

CH,(X) ~ CH,(X) X Z.
Let Zj be a positive r-cycle of minimal degree on X. As we have seen above, this

gives the structure of a pointed graded cancellation monoid on C,(X), and C°(X) is
a cancellation monoid too.

Corollary 5.3 In terms above, CH,(X ) = HOAI(CrOO(X)Jr)(K).

Proof By Lemma 2.1, C,(X)" >~ C2°(X)* x Z. Since the functor I'I(‘)%1 is monoidal
and H(‘?I (Z) = Z, we get the formula

1 1
My (G (X)) = Ty (€ (X)) X Z.
Then apply Theorem 5.1 and the isomorphism CH, (X) ~ CH,(X)o X Z. O
Warning 5.4 If CH,(X)o ~ TIA'(C(X))(k)t = 0, it does not imply that the
monoid I"IOA](C,oo (X)) (k) vanishes, as this monoid is by no means a pointwise can-
cellation monoid. One of the reasons for that is that the Chow schemes C;. 4(X) can

have many components over k.

Corollary 5.5 In terms above, CH, (X g)o =~ Hél(QEXBC?O (X)) (K).
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Proof The Chow monoid C,>°(X) is pointwise good. Lemma 3.1 gives an isomorphism
CX(X)" ~ QExBC(X) in H, whence

M (C2 (X)) ~ M (REXBCX(X)). 0

Corollary 5.3 completes the proof.

Recall that, for a pointed simplicial Nisnevich sheaf (X, x), its motivic, i.e. Al
fundamental group 1'1‘1*1 (X, x) is, by definition, the Nisnevich sheaf associated to the
presheaf sending a smooth scheme U to the set [ S LN Us, (X, x)] a1, where the symbol
[—, —]41 stays now for the sets of morphisms in the pointed homotopy category H i,
see [19] or [2]. Similarly, one can define, for a pointed simplicial Nisnevich sheaf

(X, x), the fundamental group l'I‘f Al (X, x), where Al is pointed at any k-rational
point on it. This is the Nisnevich sheaf associated to the presheaf sending a smooth
scheme U to the set

[S'AUL 60 g

where the symbol [—, —]g1, o1 stays for the sets of morphisms in the pointed homotopy
category Hgi, a1

Lemma 5.6 Let X be a pointwise good simplicial sheaf monoid. Then, for a scheme
U,

e (X @) ~ IS (BX)(U).

Proof Since X is pointwise good, there is an isomorphism between X+ and QEx BX
in the homotopy category H, by Lemma 3.1. Since the classifying space BX is pointed
connected, the canonical morphism

Ly QExBX — QExLgi, 41 BX
is a simplicial (i.e. pre-A!-localized) weak equivalence and
QEXL SIAAL BX

is Al-local by [19, Theorem 2.34, p.84]. This allows us to make the following iden-
tifications:
1
My (XT)(U) =~ [U, XF],, ~ [U, QExBX]
~ [U. Ly QExBX ], ~ [U, QExLgi,q BX]
~ [U, QExLgi, 41 BX] >~ [S'AU4, Lgi 01 BX]
~ [S'AUL, BX] 1, = T A (BX)(U).

A straightforward consequence of Corollary 5.3 and Lemma 5.6 is
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Corollary 5.7 In terms above, CH, (X g)o = HflAAl (BCX(X))(K).

Example 5.8 Let X be anonsingular projective surface over k, where k is algebraically
closed of characteristic zero. Assume that X is of general type and has no transcen-
dental second cohomology group, i.e. the cycle class map from CH' (X) to the second
Weil cohomology group H2(X) is surjective. In that case the irregularity of X is zero.
Bloch’s conjecture predicts that CHy(X) = Z. In other words, any two closed points on
X are rationally equivalent to each other. Fixing a point on X gives the Chow monoid
C°(X), which is nothing else but the the infinite symmetric power Sym® (X) of the
smooth projective surface X. By Corollary 5.5, Bloch’s conjecture holds for X if and
only if all k-points on the motivic space L1 QEx BSym™ (X) are A!-path connected.
Bloch’s conjecture holds, for example, for the classical Godeaux surfaces, [26], and
for the Catanese and Barlow surfaces, see [3,27].

The above vision of Chow groups should be compared with the results of Friedlander,
Lawson, Lima-Filho, Mazur and others, who considered topological (i.e. not motivic)
homotopy completions of Chow monoids working over C, see [6,17]. A nice survey
of this topic, containing many useful references, is the article [16]. The topological
homotopy completions of Chow monoids are helpful to understand algebraic cycles
modulo algebraic equivalence relation, i.e. the groups A, (X) of algebraically trivial
r-cycles cannot be catched by the topological methods. In contrast, the motivic, i.e. Al -
homotopy completions of Chow monoids, considered above, can give the description
of A, (X), working over an arbitrary ground field of characteristic zero, as the previous
examples show. Theorem 5.1 also suggests that the motivic Lawson homology groups
can be defined by the formula

LHM(X) = T4, (C. () ) (k).

n—2r

6 Appendix: homotopical algebra

For the convenience of the reader, we collect here the needed extractions from homo-
topical algebra. Let first C be a symmetric monoidal category with product ® and unit
1. The monoidal product ® is called to be closed, and the category C is called closed
symmetric monoidal, if the product ® : € x € — C is the so-called adjunction of two
variables, i.e. there is bifunctor Hom and two functorial in X, Y, Z bijections

Home(X, #Hom(Y, Z)) ~ Home(XQ®Y, Z) ~ Home(Y, Hom(X, Z)).

If € has a model structure M in it, an adjunction of two variables on C is called the
Quillen adjunction of two variables, or Quillen bifunctor, if, for any two cofibrations
f: X —Yand f': X’ — Y’ in M the push-out product
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FOf': (X®Y/)]_[(Y®x’) — YAY
XX’

is also a cofibration in M, which is trivial if either f and f’ is. The model cat-
egory (C, M) is called the closed symmetric monoidal model category if ® is a
Quillen bifunctor and the following extra axiom holds. If g: Q1 — 1 is a cofibrant
replacement for the unit object 1, then the morphisms g Aid: QIAX — 1A X and
idAg: XA QT — X AT are weak equivalences for all cofibrant objects X. If we con-
sider the Cartesian product M x M of the model structure M as a model structure on
the Cartesian product € x €, then ® and Hom induce left derived functor ®L from
Ho (€ x €) to Ho(C), and right derived functor R#Hom from Ho(C x €) to Ho(C). It is
well known that passing to localization commutes with products of categories, so that
we have the equivalence between Ho(C x €) and Ho(C) x Ho(C). This gives the left
derived functor

®": Ho(C) x Ho(€) — Ho(€)
and the right derived functor
RHom: Ho(C) x Ho(C) — Ho(C).

As it was shown in [12], the left derived ®* and the right derived RHom give the
structure of a closed symmetric monoidal category on the homotopy category Ho(C).
Since we assume that all objects in € are cofibrant in M, it is easy to see that the
canonical functor from € to Ho(C) is monoidal.

An important particular case is when the symmetric monoidal product ® is given
by the categorical product in C, i.e. when C is the Cartesian symmetric monoidal
category. Since Ho(C) admits products, and products in € are preserved in Ho(C), for
any three objects X, Y and Z in C one has the canonical isomorphism

[X,YIx[X,Z]=[X,YxZ].

Let now C be a left proper cellular simplicial model category with the model structure
M= (W,C, F)init, let I and J be the sets of, respectively, generating cofibrations
and generating trivial cofibrations in €, and let S be a set of morphisms in C. For
simplicity we will also be assuming that all objects in C are cofibrant, which will
always be the case in applications. An object Z in C is called S-local if it is fibrant,
in the sense of the model structure M, and for any morphism g: A — B between
cofibrant objects in S the induced morphism from Hom (B, Z) to Hom(A, Z) is a
weak equivalence in A°PSets. A morphism f: X — Y in Cis an S-local equivalence
if the induced morphism from Hom (Y, Z) to Hom (X, Z) is a weak equivalence in
A°PSets for any S-local object Z in C. Then there exists a new left proper cellular
model structure Mg = (Wg, Cs, Fg) on the same category C, such that Cg = C, Wy
consists of S-local equivalences in C, so contains W, and FJ is standardly defined by
the right lifting property and so is contained in F. The model structure Mg is again
left proper and cellular with the same set of generating cofibrations / and the new set
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of generating trivial cofibrations Js. The model category (C, My) is called the (left)
Bousfield localization of (C, M) with respect to S. This all can be found in [11].

Notice that the identity adjunction on C is a Quillen adjunction and induces the
derived adjunction LId:Ho(C)4Ho(Cgs):RId, where Ho(Cy) is the homotopy cate-
gory of C with respect to the model structure M. Since cofibrations remain the same
and, according to our assumption, all objects are cofibrant, the functor LId is the iden-
tity on objects and surjective on Hom-sets. To describe RId we observe the following.
Since Fs is smaller than F, the fibre replacement functor in (€, M) is different from
the fibre replacement functor in (€, Ms). Taking into account that € is left proper and
cellular, one can show that there exists a fibrant replacement Ide — Lg in Mg, such
that, if X is already fibrant in M, then Lg(X) can be more or less visibly constructed
from X and S, see [11, Section 4.3] (or less abstract presentation in [5]). The right
derived functor RId, being the composition of Ho(L g) and the functor induced by the
embedding of S-local, i.e. cofibrant in Mg, objects into C, identifies Ho(Cg) with the
full subcategory in Ho(C) generated by S-local objects of C.

Since (€, M) is a simplicial model category, then so is (C, M), see [11, Theo-
rem 4.1.1(4)]. Suppose that C is, moreover, closed symmetric monoidal with product
®, and that the monoidal structure is compatible with the model one in the standard
sense, i.e. C is a symmetric monoidal model category (see above). The new model
category (C, M) is monoidal model, i.e. the model structure My is compatible with
the existing monoidal product ®, if and only if for each f in S and any object X in the
union of the domains dom (/) and codomains codom (/) of generating cofibrations /
in € the product idy ® f is in Wg.

This is exactly the case when the set § is generated by a morphism p: A — 1,
where A is an object in € and 1 is the unit object for the monoidal product ®, i.e.

S={xrA 2% XX e dom(l)Ucodom(l)}.

In that case the model structure Mg is compatible with the monoidal one, so that
(C, M) is a simplicial closed symmetric monoidal model category, which is left
proper cellular.

We write M4 and L 4 instead of, respectively, Ms and Ls when S is generated by
A in the above sense. One of the fundamental properties of the localization functor L 4
is that, for any two objects X and Y in C, the object L4 (X x Y) is weak equivalent to
the object L 4(X) x L4 (Y), in the sense of the model structure M 4. The proof of this
fact in topology is given on p. 36 of the book [5], and it can be verbally transported to
abstract setting. All we need is the Quillen adjunction in two variables in C, and the
fact saying that if Y is S-local, then Hom(X, Y) is S-local for any X in C, which is
also the consequence of adjunction.
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