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Abstract Let k be a field of characteristic zero, and let X be a projective variety
embedded into a projective space over k. For two natural numbers r and d let Cr,d(X)

be the Chow scheme parametrizing effective cycles of dimension r and degree d on the
variety X . Choosing an r -cycle of minimal degree gives rise to a chain of embeddings
of Chow schemes, whose colimit is the connective Chow monoid C∞

r (X) of r -cycles
on X . Let BC∞

r (X) be the classifying motivic space of this monoid. In the paper we
establish an isomorphism between the Chow group CHr (X)0 of degree 0 dimension
r algebraic cycles modulo rational equivalence on X , and the group of sections of the
Nisnevich sheaf of A1-path connected components of the loop space of BC∞

r (X) at
Spec(k). Equivalently,CHr (X)0 is isomorphic to the group of sections of the stabilized
motivic fundamental group �S1∧A1

1 (BC∞
r (X)) at Spec(k).
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170 V. Guletskiı̆

1 Introduction

Algebraic cycles are linear combinations of closed integral subschemes in algebraic
varieties over a field. Two algebraic cycles A and B on a variety X are said to be
rationally equivalent if there exists an algebraic cycle Z on X×P

1, such that, for
two fundamental points 0 and ∞ on P

1, the cycle-theoretic fibres Z(0) and Z(∞)

coincide with A and B respectively. Rational equivalence is a fundamental notion
in algebraic geometry, which substantially depends on the intersection multiplicities
tacitly involved into the definition above. Intersectionmultiplicities are well controlled
in cycleswhich are cascade intersections of cycles starting from codimension one. This
is not always the case, of course. For example, if X is a K3-surface, the Chow group
of 0-cycles modulo rational equivalence on X is large, in the sense that it cannot be
parametrized by an abelian variety over the ground field, [20]. On the other hand, its
subgroup generated by divisorial intersections on X is just Z, see [4]. This example
tells us that intersection multiplicities are geometrically manageable only for a small
fraction of all algebraic cycles appearing in nature.

Another difficulty with algebraic cycles is that they are originally given in terms of
groups, i.e. positive and negative multiplicities can appear in a cycle simultaneously.
The use of negative numbers was questionable for mathematicians dealing with alge-
braic equations in sixteenth century. In modern terms, the concern can be expressed
by saying that the completion of a monoid is a too formal construction. The problem
might seem to be not that funny when passing to the completions of Chow monoids,
i.e. gatherings of Chow varieties parametrizing effective cycles on projective varieties
embedded into projective spaces. The Chow monoids themselves are geometrically
given in terms of Cayley forms, whereas their completions are less visible.

These two things taken together have an effect that, in contrast to rational connec-
tivity, rational equivalence is difficult to deform in a smooth projective family over
a base, cf. [15]. As a consequence, the deep conjectures on rational equivalence are
hard to approach, and by now they are solved in a small number of cases (see, for
example, [26]). The state of things would be possibly better if we could recode ratio-
nal equivalence into more effective (i.e. positive) data, appropriate for deformation in
smooth projective families over a nice base. The purpose of the present paper is to
investigate whether the A1-homotopy type can help in finding such data.

More precisely, let X be a projective variety over a field k, and fix an embedding of
X into the projective space Pm . To avoid the troubles with representability of Chow
sheaves in positive characteristic, we must assume that k is of characteristic zero.
Effective algebraic cycles of dimension r and degree d on X , considered with regard
to the embedding X ⊂ P

m , are represented by the Chow scheme Cr,d(X) over k. Let
Z0 be an r -cycle of minimal degree d0 on X . For example, if r = 0 then Z0 can be a
point, and if r = 1 then Z0 can be a line on X . The cycle Z0 gives rise to a chain of
embeddings Cr,d(X) ⊂ Cr,d+d0(X), whose colimit C∞

r (X) is the connective Chow
monoid of effective r -cycles on X . Let C∞

r (X)+ be the group completion of C∞
r (X)

in the category of set-valued simplicial sheaves on the smooth Nisnevich site over k.
Let also �A1

0 be the functor of A1-connected components and �A1

1 be the functor of
the A1-fundamental group on simplicial Nisnevich sheaves, see [19] or [2].
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Now, consider the Chow group CHr (X)0 of degree zero r -cycles modulo rational
equivalence on X , where the degree of cycle classes is given with regard to the embed-
ding of X into Pm over k. Any finitely generated field extension K of the ground field
k is the function field k(Y ) of an irreducible variety Y over k. For a simplicial sheaf F,
let F(K ) be the stalk of F at the generic point Spec(K ) of the variety Y . In the paper
we establish a canonical (up to a projective embedding) isomorphism

CHr (XK )0 � �A1

0

(
C∞
r (X)+

)
(K ),

for an arbitrary finitely generated field extension K over k (Theorem 5.1).
Let, furthermore,BC∞

r (X) be themotivic classifying space of the connective Chow
monoid C∞

r (X). We also prove that

CHr (XK )0 � �A1

0

(
�ExBC∞

r (X)
)
(K ),

where � is right adjoint to the simplicial suspension � in the pointed category of
simplicial Nisnevich sheaves, and Ex is a fibrant replacement functor for simplicial
Nisnevich sheaves (Corollary 5.5). Another reformulation of themain result is in terms
of S1∧A

1-fundamental groups, where S1 is the simplicial circle. Namely,

CHr (XK )0 � �S1∧A1

1

(
BC∞

r (X)
)
(K ),

i.e. the Chow group of r -cycles of degree zero modulo rational equivalence on X is
isomorphic to the stalk at Spec(K ) of the S1∧A

1-fundamental group of the motivic
classifying space of the Chow monoid C∞

r (X) (Corollary 5.7). The smashing by S1

is a sort of stabilization, and not yet fully understood.
The use of the second isomorphism is that it encodes rational equivalence on r -

cycles in terms of A1-path connectedness on the motivic space LA1�ExBC∞
r (X).

The localization functor LA1 is a transfinite machine, which can be described in terms
of sectionwise fibrant replacement, the Godement resolution, homotopy limit of the
corresponding cosimplicial simplicial sheaves and the Suslin–Voevodsky’s singular-
ization functor. The quadruple operation LA1�ExB is a bigger machine recoding
rational equivalence into A1-path connectivity, at some technical cost, of course.

The proof of the main result (Theorem 5.1) is basically a gathering of known facts
inA1-homotopy theory of schemes and Chow sheaves, collected in the right way. The
substantial arguments are Lemma 3.5 and the use of [2, Proposition 6.2.6] by Asok
andMorel. In Sect. 2 we introduce the needed tools from simplicial sheaves on a small
site and the functor�0. Section 3 is devoted to the Bousfield localization of simplicial
sheaves by an interval and to proving Lemma 3.5 which says that the group completion
commutes with the localized �0. In Sect. 4 we pass to Nisnevich sheaves on schemes
and recall the theory of Chow sheaves following [25]. The main results appear in
Sect. 5, where we prove the existence of the canonical (up to a projective embedding)
isomorphisms between the Chow groups and the stalks of the corresponding motivic
homotopy groups ofC∞

r (X)+ andBC∞
r (X). InAppendixwe collect the needed basics

from homotopical algebra, in order to make the text more self-contained.
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172 V. Guletskiı̆

2 �0 and monoids in simplicial sheaves

Let � be the simplex category, i.e. the category whose objects are finite sets
[n] = {0, 1, . . . , n}, for all n ∈ N, and morphisms [m] → [n] are order-preserving
functions from [m] to [n]. Let S be a Cartesian monoidal category with a terminal
object ∗. The category �opS of simplicial objects in S is the category of contravariant
functors from � to S. Since [0] is the terminal object in �, the functor � : �opS → S,
sendingX toX0, is the functor of global sections on simplicial objects in S considered
as presheaves on �. The functor � admits left adjoint Const : S → �opS sending an
object X in S to the constant presheaf on � determined by X.

Assume, moreover, that S is cocomplete. For any object X in �opS, let �0(X) be
the coequalizer of the morphisms X1 ⇒ X0 induced by the two morphisms from
�[0] to �[1]. This gives a functor �0 : �opS → S and the canonical epimorphism
� : � → �0. If Y is an object in S, and f : X → Const(Y) is a morphism in �opS,
the precompositions of f0 : X0 → Ywith the two morphisms fromX1 toX0 coincide.
By universality of the coequalizer, we obtain the morphism f ′ : �0(X) → Y. The
correspondence f 
→ f ′ is one-to-one and natural in X and Y. In other words, �0 is
left adjoint to Const. Since products in �opS are objectwise, the functor �0 preserves
finite products. Certainly, if C is the terminal category, then �0 is the usual functor of
connected components on simplicial sets.

Let C be an essentially small category and let τ be a subcanonical topology on it.
Assume also that C contains all finite products and let ∗ be the terminal object in it.
Let P be the category of presheaves of sets on C and let S be the full subcategory of set
valued sheaves on C in the topology τ . Since τ is subcanonical, the Yoneda embedding
h : C → P, sending an object X to the representable presheaf hX = HomC(−, X),
and a morphism f : X → Y to the morphism of presheaves h f = HomC(−, f ),
takes its values in the category of sheaves S. If ∗ is the terminal object in C, then
h∗ = HomC(−, ∗) is the terminal object in P and S. Limits in S are limits in P. In
particular, we have objectwise finite products in S and the category S is Cartesian
monoidal.

For a presheaf X, let Xa be the sheaf associated to X in τ . Since P is complete,
the sheafification of colimits in P shows that S is cocomplete too. In order to make a
difference between �0 in �opS and �0 in �opP, we shall denote the latter functor by
π0, so that, for a simplicial sheaf X, one has �0(X) = π0(X)a. As the coequalizer π0
is sectionwise, �0(X) is the sheafififcation of the presheaf sending U to π0(X(U )).

Let�opSets be the category of simplicial sets. For a natural number n let�[n] be the
representable functor Hom�(−, [n]). For any sheafF on C let�F[n] be the simplicial
sheaf defined by the formula

(
�F[n])m(U ) = F(U )×Hom�

([m], [n]),

for anyU ∈ Ob(C) and any natural number m. This gives the full and faithful embed-
dings �?[n] : S → �opS and �F[?] : � → �opS. If F is hX , for some object X in C,
then we write �X [n] instead of �F[n], and �[n] instead of �∗[n]. To simplify nota-
tion further, we shall identify C with its image in �opS under the embedding �?[0].
For example, for any object X in C it is the same as the corresponding simplicial
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sheaf X = �X [0] = Const(hX ), and the same on morphisms in C. The cosimplicial
object �[?] : � → �opS determines the embedding of simplicial sets into �opS, so
that we may also identify �opSets with its image in �opS. This gives the structure of a
simplicial category on �opS, such that, for any two simplicial sheaves X and Y,

Hom(X,Y) = Hom�opS
(
X×�[?],Y)

.

The corresponding (right) action of �opSets on �opS is given by the formula

(X×K )n(U ) = Xn(U )×Kn,

for any simplicial sheaf X and simplicial set K .
Looking at �opS as a symmetric monoidal category with regard to the categorical

product in it, one sees that it is closed symmetricmonoidal. The internal Hom, bringing
right adjoint to the Cartesian products, is given by the formula

Hom(X,Y)n(U ) = Hom�opS
(
X×�U [n],Y)

.

Throughout the paper we will be working with monoids in �opS. All monoids and
groups will be commutative by default. If X is a monoid in �opS, let X+ be the
group completion of X in �opS. The terms of X+ are the sheaves associated with the
sectionwise completions of the terms of X in P. One has a morphism from X×X to
X+, which is an epimorphism in �opS. When no confusion is possible, the termwise
and section-wise completion of X in �opP will be denoted by the same symbol X+.

Monoids form a subcategory in P. The corresponding forgetful functor has left
adjoint sending presheaves to free monoids with concatenation as monoidal operation.
The notion of a cancellation monoid in P is standard and sectionwise. A free monoid
inP is a cancellationmonoid. As limits and colimits in�opS are termwise, the functors
� and Const preserve monoids and groups and�(X+) is the same as�(X)+. Since�0
commutes with finite products, it follows that �0 also preserves monoids and groups.

The monoid of natural numbers N is a simplicial sheaf on C. A pointed monoid in
�opS is a pair (X, ι), whereX is a monoid in�opS and ι is a morphism ofmonoids from
N toX. A graded pointed monoid is a triple (X, ι, σ ), where (X, ι) is a pointed monoid
and σ is a morphism of monoids from X to N, such that σ ◦ ι = idN, see [19, p. 126].
Notice that to define a morphism from N to X is equivalent to choose an element in
X0(∗).

Let (X, ι, σ ) be a pointed graded monoid in�opS. Since σ ◦ ι = idN, it follows that,
for any natural n and any object U in C, we have two maps ιU, n : N → Xn(U ) and
σU, n : Xn(U ) → N. It implies that Xn(U ) is the coproduct of the sets σ−1

U, n(d), for all

d ≥ 0. The sets σ−1
U, n(d) give rise to the simplicial sheaf which we denote byXd . Then

X is the coproduct of Xd for all d ≥ 0. The addition of ι(1) in X induces morphisms
of simplicial sheaves Xd → Xd+1 for all d ≥ 0. Let X∞ be the colimit

X∞ = colim
(
X0 → X1 → X2 → · · · )
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174 V. Guletskiı̆

in �opS. Equivalently, X∞ is the coequalizer of the addition of ι(1) in X and the
identity automorphism of X.

Since now we shall assume that the topos S has enough points, and the category
C is Noetherian. Since filtered colimits commute with finite products, X∞ is the col-
imit taken in the category of simplicial presheaves, i.e. there is no need to take its
sheafification. The commutativity of filtered colimits with finite products also yields
the canonical isomorphism between the colimit of the obvious diagram composed by
the objects Xd×Xd ′

, for all d, d ′ ≥ 0, and the product X∞×X∞. Since the colimit
of that diagram is the colimit of its diagonal, this gives the canonical morphism from
X∞×X∞ to X∞. The latter defines the structure of a monoid on X∞, such that the
canonical morphism

π : X =
∐

d≥0

Xd → X∞

is a homomorphism ofmonoids in�opS.We callX∞ the connectivemonoid associated
to the pointed graded monoid X.

Notice that the category of simplicial sheaves is exhaustive. In particular, if all the
morphismsXd → Xd+1 aremonomorphisms, the transfinite compositionsXd → X∞
are monomorphisms too. This happens if X is a termwise sectionwise cancellation
monoid, in which case X∞ is a termwise sectionwise cancellation monoid too.

The above homomorphisms π and σ give the homomorphism (π, σ ) from X to
X∞×N. Passing to completions we obtain the homomorphism (π+, σ+) from X+ to
(X∞)+×Z.

Lemma 2.1 Assume X is a sectionwise cancellation monoid. Then

(
π+, σ+) : X+ → (

X∞)+×Z

is an isomorphism.

Proof Since the siteS has enough points, it suffices to prove the lemma sectionwise and
termwise. Then, without loss of generality, we may assume that X is a set-theoretical
pointed graded cancellation monoid. Clearly, ι+ is an injection, π+ is a surjection,
and π+ι+ = 0. Since X is a cancellation monoid, X+ is the quotient-set of the set
X×X modulo an equivalence relation

(
x1, x2

) ∼ (
x ′
1, x

′
2

) ⇐⇒ x1 + x ′
2 = x2 + x ′

1.

For any element (x1, x2) in X×X let [x1, x2] be the corresponding equivalence class.
Since X is a cancellation monoid, so is the monoid X∞. If π+[x1, x2] is zero, that
is [π(x1), π(x2)] = [0, 0] in (X∞)+, it is equivalent to say that π(x1) = π(x2). The
latter equality means that there exists a positive integer n, such that x2 = x1 + nι(1),
i.e. [x1, x2] = [0, nι(1)] in X+. The element [0, nι(1)] sits in the image of ι+. ��
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3 Homotopy completion and localization of �0

All the above considerations were categorical. Let us now switch to homotopical
algebra and consider the injective model structures on �opS. Recall that a point P
of a topos T is an adjoint pair of functors, P∗ : T → Sets and P∗ : Sets → T, such
that P∗ is left adjoint to P∗ and preserves finite limits in T. If X is an object of T,
then XP = P∗(X) is the stalk of X at the point P . We will assume that the topos S
has enough points. Recall that it means that there exists a set of points P(S) of the
topos S, such that a morphism f : X → Y in S is an isomorphism in S if and only
if, for any point P ∈ P(S), the morphism fP : XP → YP , induced on stalks, is an
isomorphism in the category Sets. Respectively, a morphism f : X → Y in �opS is an
isomorphism in�opS if and only if, for each P ∈ P(S), the morphism fP : XP → YP

is an isomorphism in �opSets.
Now, a morphism f : X → Y in the category of simplicial sheaves �opS is a

weak equivalence in �opS if and only if, for any point P∗ : S → Sets of the topos
S, the induced morphism �opP∗( f ) on stalks is a weak equivalence of simplicial
sets. Cofibrations are monomorphisms, and fibrations are defined by the right lifting
property in the standard way, see [19, Definition 1.2, p. 48]. The pair (S,M) is then a
model category of simplicial sheaves on C in τ . Notice that the model structure M is
left proper, see [19, Remark 1.5, p. 49]. One can also show that it is cellular. Let H be
the homotopy category Ho(�opS) of the category �opSwith regard toM. For any two
simplicial sheaves X and Y the set of morphisms from X to Y in H will be denoted by
[X,Y].

The simplicial structure on �opS is compatible with the model one, so that S is a
simplicial model category. Since

[
X,Y

] � π0Hom
(
X,Y

)

and

Hom
(
�U [0],X) � X(U ),

�0(X) is the sheafififcation of the presheaf

π0(X) : U 
→ π0Hom
(
�U [0],X) = [

�U [0],X] = [
Const(hU ),X

]

on C in the topology τ . The multiplication of simplicial sheaves and their morphisms
by a simplicial set admits right adjoint, so that it commutes with colimits. In particular,
�0(�X [n]) � �X [0].

A pointed simplicial sheaf (X, x) is a pair consisting of a simplicial sheaf X and a
morphism x from ∗ toX. The definition of a morphism of pointed simplicial sheaves is
obvious. Let �opS∗ be the category of pointed simplicial sheaves. The corresponding
forgetful functor has the standard left adjoint sending X to the coproduct X+ of X
and ∗. The model structure M induces the corresponding model structure on �opS∗,
such that the above adjunction is a Quillen adjunction. Having two pointed simplicial
sheaves (X, x) and (Y, y), their wedge product (X, x)∨(Y, y) is the coproduct in
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176 V. Guletskiı̆

�opS∗, and the smash product (X, x)∧(Y, y) is the contraction of the wedge product
in (X×Y, x× y).

Let now S1 be the simplical circle�[1]/∂�[1] pointed by the image of the boundary
∂�[1] in then quotient simplicial set, and let S1 be its image in �opS∗. Define the
simplicial suspension endofunctor � on �opS∗ sending (X, x) to S1∧(X, x). Its left
adjoint is the simplicial loop functor � sending (X, x) to Hom∗(S1, (X, x)), where
Hom∗(−,−) is the obvious internal Hom in �opS∗.

Let X be a monoid in �opS. For any object U in C and any positive integer n let
N (Xn(U )) be the nerve ofXn(U ), and let BX be the diagonal of the bisimplicial sheaf
�op ×�op → S sending [m]×[n] to the sheafU 
→ N (Xn(U ))m . Then (BX)n isX×n

n
for n > 0 and, by convention, (BX)0 is the terminal object ∗ in S, see [19, p. 123]. If
C is a terminal category, then BX is the usual classifying space of a simplicial monoid
X (that is, a monoid in the category of simplicial sets �opSets). Just as in topology,
there exists a canonical morphism from X to �B(X), which is a weak equivalence if
X is a group, loc.cit.

Following Quillen, [24], we will say that a simplicial monoid X is good if the
morphism BX → BX+, induced by the canonical morphism from X to X+, is a
weak equivalence in �opSets. If X is a set-theoretical monoid, then X is good if the
corresponding constant simplicial monoid X = Const(X) is good as a simplicial
monoid. If X is a free monoid in Sets, then X = Const(X) is good in �opSets, see [24,
Proposition Q.1].

Recall that, for any point P of the topos S, the functor P∗ : S → Sets preserves
finite limits. It follows that, if X is a simplicial sheaf monoid, then the stalk (BX)P
of the classifying space BX at P is canonically isomorphic to the classifying space
B(XP ) of the stalk XP of the simplicial sheaf X at P . We will say that a simplicial
sheaf monoid X is pointwise good, if the morphism (BX)P → (BX+)P , is a weak
equivalence of simplicial sets for each point P in P(S). This is, of course, equivalent
to saying that the morphism BX → BX+ is a weak equivalence in �opS, with regard
to the model structure M.

Now, if X is a monoid in S, we will say that X is pointwise free if XP is a free
monoid in Sets for each point P in P(S). If X is pointwise free, it does not necessarily
mean that X is a free monoid in the category S. It is important, however, that if X0
is a pointwise free monoid in S, the corresponding constant simplicial sheaf monoid
X = Const(X0) is pointwise good, which is a straightforward consequence of the first
part of [24, Proposition Q.1].

Similarly, we will say that a monoid X in S is a pointwise cancellation monoid if
XP is a cancellation monoid in Sets for each point P in P(S). If X0 is a pointwise
cancellation monoid, then the simplicial sheaf monoid X = Const(X0) is pointwise
good by the second part of Quillen’s proposition above.

Let Ex be the fibrant replacement functor ExG, for the model structure M, con-
structed by taking the composition of the sectionwise fibrant replacement of simplicial
sets, the Godement resolution and the homotopy limit of the corresponding cosimpli-
cial simplicial sheaf, as in [19, Section 2.1]. SinceEx preserves finite limits, it preserves
monoids and groups. For the same reason, Ex commutes with taking the classifying
spaces of monoids and groups. The right derived functor of� can be computed by pre-
composing it with Ex.Wewill need the following variation of [19, Lemma 1.2, p. 123].
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Lemma 3.1 If X is pointwise good, there is a canonical isomorphism

X+ � �ExB(X)

in the homotopy category H.

Proof Since X is pointwise good, the morphism from BX to BX+, induced by the
canonical morphism fromX to X+, is a weak equivalence in �opS. Applying the right
derived functor R� to the weak equivalence BX → BX+ and reverting the corre-
sponding isomorphism in H, we obtain the canonical isomorphism from �ExB(X+)

to �ExB(X), in the homotopy category H. The composition of the canonical mor-
phism �X+ → BX+ with the weak equivalence BX+ → ExBX+ corresponds to
the morphism X+ → �ExBX+ under the adjunction between � and �. The latter
morphism is the composition of the canonical morphism X+ → �BX+ and the mor-
phism �BX+ → �ExBX+. The morphism X+ → �BX+ is a weak equivalence
because X+ is a group. Since any simplicial sheaf of groups G can be replaced, up to
a weak equivalence, by a fibrant simplicial sheaf of groups, without loss of generality
wemay assume thatX+ is fibrant (see, for example, [19, Lemma 2.32, p. 83]). Replac-
ing the functor B by the universal cocycle construction W , we see that B preserves,
up to a weak equivalence, fibrant objects by [13, Theorem 31]. Then the morphism
�BX+ → �ExBX+ is a weak equivalence too. Thus, we obtain an isomorphism
from X+ to �ExBX+ in H. ��
Next, let A be an object of C, and letA be the corresponding constant simplicial sheaf
�A[0] = Const(hA) in �opS. As in Appendix below, let

S = {
X∧A → X : X ∈ dom(I ) ∪ codom(I )

}

be the set of morphisms induced by the morphism from A to ∗, where dom(I ) and
codom(I ) are the sets of domains and codomains of the generating cofibrations in
M on S. As �opS is left proper simplicial cellular model category, there exists the
left Bousfield localization of M by S in the sense of Hirschhorne, see [11]. Denote
the localized model structure byMA, and let L A be the corresponding S-localization
functor, which is a fibrant approximation in MA on �opS, see [11, Section 4.3], and
the earlier work [8]. Let

l : Id�opS → L A

be the corresponding natural transformation. For any simplicial sheafX the morphism
lX : X → L A(X) is a weak cofibration and LA(X) is A-local, i.e. fibrant in MA. The
basics on localization functors see in [11, Section 4.3] and Appendix below.

Let HA be the homotopy category of simplicial sheaves converting weak equiv-
alences in MA into isomorphisms. As simplicial sheaves with respect to M form a
simplicial closed Cartesian monoidal model category, so is the category of simplicial
sheaves with respect to MA. All simplicial sheaves are cofibrant, in M and in MA. It
follows that the canonical functors from simplicial sheaves toH andHA are monoidal.
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178 V. Guletskiı̆

See Appendix for more details on all such things. For any two simplicial sheaves X
and Y let [X,Y]A be the set of morphisms from X to Y in HA.

Recall that an object I of a categoryDwith a terminal object ∗ is called an interval
if there exists a morphism

μ : I ∧ I → I

and two morphisms i0, i1 : ∗ ⇒ I , such that

μ◦(idI ∧ i0) = i0◦ p and μ◦(idI ∧ i1) = idI ,

where p is the unique morphism from I to ∗, and i0∐ i1 : ∗ ∐∗ → I is a monomor-
phism inD, see [19]. Certainly, the object A is an interval in C if and only if the object
A is an interval in �opS.

Since now we shall assume that A is an interval in C. The monoidal multiplication
byA is a natural cylinder functor on�opS. If f, g : X ⇒ Y are two morphisms fromX

to Y in �opS, a left A-homotopy from f to g is a morphism H : X×A → Y, such that
H ◦(idX× i0) = f and H ◦(idX× i1) = g. Since all simplicial sheaves are cofibrant
in both model structures M and MA, A-homotopy is an equivalence relation on the
set Hom�opS(X,Y), see [12, Proposition 1.2.5 (iii)]. Let Hom�opS(X,Y)A be the set
of equivalence classes modulo this equivalence relation. Whenever Y is A-local, the
set [X,Y]A is in the natural bijection with the set Hom�opS(X,Y)A.

A point of a simplicial sheaf X is, by definition, a morphism from the terminal
simplicial sheaf to X. Such morphisms can be identified with the set X0(∗). Two
points onX are said to be A-path connected if and only if they are left homotopic with
respect to A.

Since A is an interval, the A-localizing functor LA can be chosen to bemore explicit
than the construction given in [11]. Following [19, p. 88], we consider the cosimplicial
sheaf

�A• [0] : � → S

sending [n] to the n-product
(
�A[0])n = �An [0]

and acting on morphisms as follows. For any morphism f : [m] → [n] define a mor-
phism of sets

f ′ : {1, . . . , n} → {0, 1, . . . ,m + 1}

setting

f ′(i) =
{
min{l ∈ {0, . . . ,m} : f (l) ≥ i } if this set is nonempty,

m + 1 otherwise.
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If now prk : An → A is the k-th projection and p : An → ∗ the unique morphism to
the terminal object, where An is the n-fold product of A, then

prk◦�A• [0]( f ) =

⎧
⎪⎨

⎪⎩

pr f ′(k) if f ′(k) ∈ {1, . . . ,m},
i0◦ p if f ′(k) = m + 1,

i1◦ p if f ′(k) = 0.

For any X let SingA(X) be the Suslin–Voevodsky simplicial sheaf

[n] 
→ Hom
(
�An [0],�Xn [0]),

where the internal Hom is taken in the category of sheaves S. It is functorial in X and
p : An → ∗ induces the morphism

s : Id�opS → SingA.

Notice that, although the virtue of A to be an interval is not explicitly used in the Suslin–
Voevodsky’s construction above, it is used in proving the numerous nice properties of
the functor SingA, see [19]. In particular, each morphism sX fromX to SingA(X) is an
A-local weak equivalence, i.e. a weak equivalence with regard to the model structure
MA, see [19, Corollary 3.8, p. 89].

As it is shown in [19], there exists a sufficiently large ordinal ω, such that LA can
be taken to be the composition

L A = (Ex◦SingA)ω◦Ex,

where Ex is the functor ExG, i.e. the composition of the sectionwise fibrant
replacement, the Godement resolution and the homotopy limit of the correspond-
ing cosimplicial simplicial sheaf (see above). Such constructed localization functor
L A is quite explicit, which gives a clearer picture of what are the functors π A

0 and�A
0 .

The canonical functor from�opS toH preserves products. In other words, ifX×Y is
the product of two simplicial sheaves, the sameobjectX×Y, with the homotopy classes
of the same projections, is the product ofX and Y inH and inHA (see Appendix). The
advantage of the above explicit LA is that it commutes with finite products, see [19,
Theorem 1.66 on pp.69–70 and the remark on p.87]. Most likely, the general
Hirschhorne’s construction (see [11, Section 4.3]) also enjoys this property, but we
could not find the proof in the literature.

Remark 3.2 The left derived to any localization functor L A from �opS to A-local
objects in �opS is left adjoint to the right derived of the forgetful functor in the oppo-
site direction on the homotopy level, see [19, Theorem 2.5, p. 71]. This implies, in
particular, that any two localizations L A and L ′

A are weak equivalent to each other.
Therefore, in all considerations up to (pre-A-localized) weak equivalence in �opS we
may freely exchange the localization functor LA considered in [11] by the concrete
Suslin–Voevodsky’s one, and vice versa.
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Lemma 3.3 For any simplicial sheaf X the canonical map

Hom�opS(∗,X)A → Hom�opS

(∗, L A(X)
)
A

is surjective.

Proof We know that the natural transformation l : Id → LA induces the epimorphism
�0 → �A

0 by [19, Corollary 3.22]. The morphism � : � → �0 is an epimorphism
too. This gives that the map

HomS(∗,X0) → HomS(∗,�0(X)) → HomS(∗,�A
0 (X))

is surjective. By adjunction, HomS(∗,X0) � Hom�opS(∗,X), and since LA(X) is
A-local, HomS(∗,�A

0 (X)) is isomorphic to Hom�opS(∗, L A(X))A. ��
Now, define the A-localized functor �A

0 from �opS to S by setting �A
0 (X) to be the

sheaf associated to the presheaf

U 
→ [Const(hU ),X]A.

Then �A
0 (X) is canonically isomorphic to �0(L A(X)), and the morphism l induces

the epimorphism �0 → �A
0 , see [19, Corollary 3.22, p. 94]. As L A is monoidal,

�A
0 (X×Y) = �0

(
L A(X×Y)

) = �0
(
L A(X)×L A(Y)

)

= �0
(
L A(X)

)×�0
(
L A(Y)

) = �A
0 (X)×�A

0 (Y).

This gives that �A
0 preserves monoids and groups.

Lemma 3.4 For any monoid X in �opS, one has a canonical isomorphism

�0(X)+ � �0(X
+)

in S.

Proof Since �(X+) = �(X)+ and �0(X)+ are completions, one has the universal
morphisms γ from �(X+) to �0(X)+ and δ from �0(X)+ to �0(X

+). Since �(X) =
X0, �(X+) = X+

0 and γ ◦�(νX) = ν�0(X)◦�, where ν stays for the corresponding
canonical morphisms from the monoids to their completions, the two compositions

X+
1 ⇒ X+

0
γ−→ �0(X)+ coincide, which gives the universal morphism ε from�0(X

+)

to �0(X)+. Since � is an epimorphism, and using the uniqueness of the appropriate
universal morphisms, we show that δ and ε are mutually inverse isomorphisms of
groups in S. ��
Let CMon(�opS) be the category of commutative monoids in �opS. Suppose that
all cofibrations in �opS are symmetrizable, see [9]. Then the simplicial model struc-
ture on �opS gives rise to a simplicial model structure on CMon(�opS), compatible
with Bousfield localizations, see [21–23,28,29]. A morphism in CMon(�opS) is a
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weak equivalence (respectively, fibration) if and only if it is a weak equivalence
(respectively, fibration) in �opS, loc.cit. The classifying space functor B is then a
functor from the model category CMon(�opS) to the model category �opS. [19,
Lemma 2.35, p. 85], and the universality of a left localization of a model structure
(see [11, Definition 3.1.1 (b), pp. 47–48]), being applied to the functor B, yield a
(simplicial) weak equivalence

(B ◦L A)(X) � (LS1∧A ◦B)(X),

for any commutative monoid X in �opS.

Lemma 3.5 For any pointwise good commutativemonoidX in�opS, one has a canon-
ical isomorphism

�A
0

(
X

)+ � �A
0

(
X+)

.

in S.

Proof Since X is pointwise good, one has the isomorphism

X+ � (�◦Ex◦B)(X)

in H by Lemma 3.1, where � is the simplicial loop functor and Ex is the (pre-
A-localized) fibrant replacement for simplicial sheaves. Applying LA we get the
isomorphism

LA(X+) � L A
(
(�◦Ex◦B)(X)

)
.

By [19, Theorem 2.34, p. 84],

L A
(
(�◦Ex◦B)(X)

) � (
�◦Ex◦LS1∧A

)(
B(X)

)
.

Since B ◦L A � LS1∧A ◦B, we obtain the isomorphism

L A(X+) � (�◦Ex◦B)(L A(X))

in H. Let � = �Mon be the functor constructed in [19, Lemma 1.1, p. 123], i.e. the
cofibrant replacement functor in CMon(�opS). Since the morphism �(L A(X)) →
LA(X) is a weak equivalence in �opS, we get the isomorphism

L A
(
X+) � (

�◦Ex◦B)(
�(L A(X))

)

in H. The monoid �(LA(X)) is termwise free. Therefore,

(
�◦Ex◦B)(�(L A(X))

) � (
�(L A(X))

)+
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by [19, Lemma 1.2, p. 123]. Applying �0 and using Lemma 3.4, we obtain the iso-
morphisms

�A
0

(
X+) = �0

(
L A(X+)

) = �0
(
(�(L A(X)))+

)

= �0
(
�(L A(X))

)+ = �0
(
L A(X)

)+ = �A
0 (X)+

in the category of sheaves S. ��

4 Chow monoids in Nisnevich sheaves

Now we turn from homotopical algebra to algebraic geometry, and specialize the
abstract material of the previous sections to the case when C is the category of smooth
schemes of finite type over a field k, the topology τ is the Nisnevich topology on C,
and A is the affine lineA1 over k. Throughout all schemes will be separated by default.

The standard Yoneda construction can be extended to a functor h from the category
of Noetherian schemes over k to presheaves on C, sending any Noetherian scheme to
the corresponding representable presheaf, and the same on morphisms. Then h is a
functor to the category of sheaves in étale topology, and so in the Nisnevich one, see [1,
p. 347], i.e. the Nisnevich topology is subcanonical. Composing h with the constant
functor Const = �?[0] from S to �opS we obtain the embedding of the category of
Noetherian schemes over k into �opS.

The scheme Spec(k) is the terminal object in C. The affine line A
1 over k is an

interval in �opSwith two obvious morphisms i0 and i1 from Spec(k) toA1. As above,
the interval A1 gives the natural cylinder and the corresponding notion of left homo-
topy on morphisms in �opS. The set of points on a simplicial sheaf X is the set
Hom�opS(Spec(k),X) of k-points onX, and it coincides with the setX0(k). The set of
A
1-path connected components on k-points is the set Hom�opS(Spec(k),X)A1 . If X is

fibrant inMA1 , then Hom�opS(Spec(k),X)A1 can be identified with [Spec(k),X]A1 .
Let X be a monoid in the category �opS. Its completion X+ is a group object, so

that Hom�opS(Spec(k),X+) is a group in �opS. The morphism X → X+ induces
a map from Hom�opS(Spec(k),X) to Hom�opS(Spec(k),X+). By the universality
of group completion, there exists a unique map from Hom�opS(Spec(k),X)+ to
Hom�opS(Spec(k),X+) with the obvious commutativity.

Lemma 4.1 For a simplicial Nisnevich sheaf monoid X, the canonical map from
Hom�opS(Spec(k),X)+ toHom�opS(Spec(k),X+) is bijective, and, repspectively, the
map from (Hom�opS(Spec(k),X)A1)+ to Hom�opS(Spec(k),X+)A1 is a surjection.

Proof Since Spec(k) is Henselian, the set Hom�opS(Spec(k),X+) is the quotient of
the Cartesian square Hom�opS(Spec(k),X)2. The set Hom�opS(Spec(k),X)+ is also
the quotient of the same Cartesian square. The maps from Hom-sets to the sets of
A
1-path connected components are surjective. ��

Next, let K be a field extension of the ground field k, and let SK be the category of set-
valued Nisnevich sheaves on the category CK of smooth schemes over K . LetMK be
the injective model structure on the category �opSK , obtained in the same way as the
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model structure M for the category �opS over Spec(k). Let f : Spec(K ) → Spec(k)
be the morphism induced by the extension k ⊂ K , and let f ∗ : �opS → �opSK be the
scalar extension functor induced by sending schemes over k to their fibred products
with Spec(K ) over Spec(k), and then using the fact that any sheaf is a colimit of
representable ones. As the morphism f is smooth, there are two standard adjunctions

f#� f ∗� f∗

for the functor f ∗, see, for example, [18].

Lemma 4.2 For any field extension K of the ground field k, one can choose the
localization functors LA1 and LA1

K
in�opSand�opSK respectively, to have a canonical

isomorphism

f ∗LA1 � L
A1

K
f ∗.

Proof Let ExGK be the fibrant replacement in �opSK obtained in the same way as ExG

was constructed for �opS, see [19, p. 70]. Let also SingK be the Suslin–Voevodsky
endofunctor on �opSK . Straightforward verifications show that f ∗ExG � ExGK f ∗ and
f ∗◦Sing � SingK ◦ f ∗. Choose LA1 (respectively, LA1

K
) to be the transfinite composi-

tions of the functors ExG and Sing (respectively, ExGK and SingK ) in�opS (respectively,
in �opSK ). ��

We now need to refresh some things from [25]. For a scheme X let C(X) be the free
commutative monoid generated by points of X , and let Z(X) be the group completion
of C(X). An algebraic cycle ζ is an element in Z(X). As such, ζ is a finite linear
combination

∑
miζi of points ζi on X with integral coefficients mi . The cycle ζ is

said to be effective if and only if mi ≥ 0 for all i . This is equivalent to say that ζ is an
element of C(X).

The support Supp(ζ ) of ζ is the union of the Zariski closures of the points ζi with
the induced reduced structures on them. The correspondence between points on X and
the reduced irreducible closed subschemes of X allows to consider algebraic cycles as
linear combinations Z = ∑

mi Zi , where Zi is the Zariski closure of the point ζi , for
each i . Then Supp(Z) is the same thing as Supp(ζ ). The points ζi , or the corresponding
reduced closed subschemes Zi , are prime cycles on X . The dimension of a point in X
is the dimension of its Zariski closure in X . Let then Cr (X) be the submonoid in C(X)

generated by points of dimension r , and, respectively, let Zr (X) be the subgroup in
the abelian group Z(X) generated by points of dimension r in X .

Let S be a Noetherian scheme, let k be a field, and let P : Spec(k) → S be a k-point
of S. Recall that a fat point of S over P is an ordered pair (P0, P1) of two morphisms
of schemes

P0 : Spec(k) → Spec(R) and P1 : Spec(R) → S,
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where R is a discrete valuation ring with the residue field k, such that

P1◦P0 = P,

the image of P0 is the closed point of Spec(R), and P1 sends the generic point
Spec(R(0)) into the generic point of S.

Let X → S be a scheme of finite type over S, and let Z → X be a closed subscheme
in X . Let R be a discrete valuation ring, D = Spec(R), and let f : D → S be an
arbitrary morphism of schemes from D to S. Let also η = Spec(R(0)) be the generic
point of D,

XD = X×SD, ZD = Z×SD and Zη = Z×Sη.

Then there exists a unique closed embedding Z ′
D → ZD , such that its pull-back

Z ′
η → Zη, with respect to the morphism Zη → ZD , is an isomorphism, and the

composition

Z ′
D → ZD → D

is a flat morphism of schemes, see [10, Proposition 2.8.5].
In particular, we have such a “platification” if (P0, P1) is a fat point over the k-point

P and f = P1. Let then XP be the fibre of the morphism XD → D over the point
P0,

ZP = ZD×XD XP and Z ′
P = Z ′

D×ZD ZP .

Since the closed subscheme Z ′
D of XD is flat over D, one can define the pull-back

(P0, P1)∗(Z) of the closed subscheme Z to the fibre XP of themorphism X → S, with
regard to the fat point P , as the cycle associated to the closed embedding Z ′

P → XP

in the standard way (consult [7, 1.5] for what “the standard way” means).
In particular, if Z is a prime cycle on X , then we have the pull-back cycle

(P0, P1)∗(ζ ) on XP . Extending by linearity we obtain a pull-back homomorphism

(P0, P1)
∗ : Z(X) → Z(XP ).

Following [25], we say that an algebraic cycle ζ = ∑
miζi on X is a relative cycle

on X over S if the images of the points ζi under the morphism X → S are the
generic points of the scheme S, and, for any k-point P on S, and for any two fat points
extending P , the pull-backs of the cycle Z = ζ to XP , with regard to these two fat
points, coincide, see [25, Definition 3.1.3].

Notice that any cycle, which is flat over S, is a relative cycle for free. But not any
relative cycle on X/S is flat. This is why we need the “platification” above.

Let Cr (X/S) be the abelian submonoid in C(X) generated by relative cycles of
relative dimension r over S. It is important that whenever S is a regular Noetherian
scheme and X is of finite type over S, then Cr (X/S) is a free commutative monoid
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generated by closed integral subschemes in X which are equidimensional of dimension
r over S, see [25, Corollary 3.4.6, p. 40]. Let also

Zr (X/S) = Cr (X/S)+

be the group completion of the monoid Cr (X/S).
Now, fix a Noetherian reduced scheme T , and letN be the category of Noetherian

schemes over T . Let X → T be a scheme of finite type over T . For any object S → T
in N let

Zr (X/T )(S) = Zr (X×T S/S).

If f : S′ → S is a flat morphism of Noetherian schemes over T , the inducedmorphism
idX×T f : X×T S′ → X×T S is also flat, and one has the standard flat pull-back
homomorphism

(idX×T f )∗ : Zr (X×T S/S) → Zr (X×T S
′/S′).

If f is not flat, then the situation is more difficult.
However, if T is a regular scheme, due to the Suslin–Voevodsky definition of

relative cycles given above, the correct pull-back exists for any morphism f , see [25,
Proposition 3.3.15].

This all aggregates, when T is a regular scheme, into the presheaf Zr (X/T ), which
is nothing else but the sectionwise completion of the presheaf Cr (X/T ) of relative
effective cycles on the category N.

Since now we will assume that T is regular of characteristic 0. Let X → T be a
projective scheme over T , and fix a closed embedding

X → P
m
T

over T . If Z is a relative equidimensional cycle on X×T S/S, its pullback ZP to the
fibre XP of the morphism X×T S → S over a point P on S has its degree deg(ZP ),
computed with regard to the induce embedding of X×T S into Pm

S over S. Since Z is a
relative cycle, the degree deg(ZP ) is locally constant on S, see [25, Proposition 4.4.8].
It follows that, if S is connected, then deg(ZP ) does not depend on P , see [25, Corol-
lary 4.4.9] Therefore, the degree of Z over S is correctly defined, and wemay consider
a subpresheaf

Cr,d(X/T ) ⊂ Cr (X/T ),

whose sections on S are relative cycles of degree d on X×T S/S.
The integer d is non-negative, and there is only one cycle in the set Cr,0(X/T )(S),

namely the cycle 0 whose coefficients are all zeros. The grading by degrees gives the
obvious structure of a graded monoid on the presheaf Cr (X/T )whose neutral element
is the cycle 0 sitting in Cr,0(X/T )(S).
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It follows from the results in [25] (see also [14]) that the presheaves Cr,d(X/T )

are representable by a scheme Cr,d(X/T ), the so-called Chow scheme of effective
relative cycles of relative dimension r and degree d over T . This Chow scheme is
projective over T , i.e. there exist a structural morphism from Cr,d(X/T ) to T , and
a closed embedding of Cr,d(X/T ) into P

N
T over T , arising from the representability

above.
Notice that the Chow sheaves are representable because T is a regular scheme of

characteristic zero. IfT wouldbeof positive characteristic, thenonlyh-representability
takes place, see [25]. If T is the spectrum of an algebraically closed field of charac-
teristic zero, then Cr,d(X/T ) is the classical Chow scheme of effective r -cycles of
degree d on X .

Since now we will assume that T = Spec(k), where k is a field of character-
istic zero, and systematically drop the symbol /T from the notation. According to
our convention to identify schemes and the corresponding representable sheaves, we
will write Cr,d(X) instead of hCr,d (X). Certainly, the latter sheaf Cr,d(X) should be
identified with the sheaf Cr,d(X).

Let

Cr (X) =
∐

d≥0

Cr,d(X),

where the coproduct is taken in the category S, not inN. Such defined Cr (X) is also a
coproduct in P. If we would consider the coproduct of all Chow schemes Cr,d(X) in
N first, and then embed it into S by the Yoneda embedding, that would be a priori a
different sheaf, as Yoneda embedding in general does not commute with coproducts.
However, the canonical morphism from the above sheafification to this second sheaf
is an isomorphism on the Henselizations of the local rings at points of varieties over
k. Therefore, the two constructions are actually isomorphic in S. This also gives that
the coproduct of Cr,d(X), for all d ≥ 0, in N represents Cr (X).

Identifying Swith its image in�opS under the functor Const, we considerCr (X) as
the gradedChowmonoid in the category of simplicial sheaves on the smoothNisnevich
site over Spec(k). The completion Cr (X)+ of Cr (X) in S is the sheafification of the
completion of Cr (X) as a presheaf. The latter is sectionwise.

Let Oh
P,Y be the Henselization of the local ring OP,Y of a smooth algebraic scheme

Y over k at a point P ∈ Y . Since OP,Y is a regular Noetherian ring, the ring Oh
P,Y is

regular and Noetherian too. As we mentioned above, the set

Cr
(
X×Spec(k)Spec(O

h
P,Y )/Spec(Oh

P,Y )
)

is a free commutative monoid generated by closed integral subschemes in the scheme
X×Spec(k)Spec(Oh

P,Y ), which are equidimensional of dimension r over Spec(Oh
P,Y ),

by [25, Corollary 3.4.6]. Then we see that the monoid Cr (X) is pointwise free, and
hence it is a pointwise cancellation monoid in the category S. It follows also that
the Chow monoid Cr (X) is pointwise good in the category �opS, and the canonical
morphism from Cr (X) to Cr (X)+ is a monomorphism.

123



A
1-connectivity on Chow monoids versus rational equivalence... 187

Let K be a finitely generated field extension of k. Since Spec(K ) is Henselian,
Cr (X)+(K ) is the same as the group completion (Cr (X)(K ))+. On the other hand,
the same group Cr (X)+(K ) can be also identified with the group of morphisms from
Spec(K ) to Cr (X)+, in the category of simplicial Nisnevich sheaves �opS.

Let d0 be the minimal degree of positive r -cycles on X , where the degree is com-
puted with regard to the fixed embedding of X into P

m . Choose and fix a positive
r -cycle Z0 with deg(Z0) = d0. For any natural number d the d-multiple dZ0 is an
effective dimension r degree dd0 cycle on X . This gives a morphism α from N to
Cr (X) sending 1 to Z0. Since Cr (X) is the coproduct of Cr,dd0(X), for all d ≥ 0, we
also have the obvious morphism f from Cr (X) to N, such that f ◦α = idN. In other
words, Z0 gives the structure of a pointed graded monoid on Cr (X). Automatically,
we obtain the connective Chow monoid C∞

r (X) associated to Cr (X). By Lemma 2.1,
we also have the canonical isomorphism of group objects

Cr (X)+ � C∞
r (X)+×Z

in �opS. The sheaf C∞
r (X) can be also understood as the ind-scheme arising from the

chain of Chow schemes

Cr,0(X) ⊂ Cr,d0(X) ⊂ Cr,2d0(X) ⊂ · · · ⊂ Cr,dd0(X) ⊂ · · ·

induced by the cycle Z0 of degree d0 on X .
As the category C is Noetherian, the category S is exhaustive. Since Cr (X) is a

pointwise cancellation monoid in S, and the latter category is exhaustive, C∞
r (X) is

a pointwise cancellation monoid in S too. Then both monoids, Cr (X) and C∞
r (X)

are pointwise good monoids in the category �opS. Moreover, the canonical morphism
from C∞

r (X) to C∞
r (X)+ is a monomorphism in S and in �opS.

5 Rational equivalence as A1-path connectivity

For any algebraic scheme X over k let CHr (X) be the Chow group of r -dimensional
algebraic cycles modulo rational equivalence on X . In this section we prove our main
theorem and deduce three corollaries, which give something close to the desired effec-
tive interpretation of Chow groups in terms of A1-path connectivity on loop spaces of
classifying spaces of the Chow monoid C∞

r (X). We leave it for the reader to decide
which of the obtained three isomorphisms is more useful for understanding of Chow
groups.

Theorem 5.1 Let X be a projective algebraic variety with a fixed embedding into a
projective space over k. For any finitely generated field extension K of the ground field
k, there is a canonical isomorphism

CHr (XK ) � �A1

0

(
Cr (X)+

)
(K ).
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Proof Without loss of generality, we may assume that d0 = 1. Consider the obvious
commutative diagram

Hom�opS(Spec(k),Cr (X)+)A1
(l+)∗ �� Hom�opS

(
Spec(k), LA1Cr (X)+

)
A1

Hom�opS(Spec(k),Cr (X))A1
+

α

��

(l∗)+ �� Hom�opS
(
Spec(k), LA1Cr (X)

)
A1

+

β

��

where l = lCr (X). Since LA1Cr (X)+ is A1-local, the group in the top right corner is

canonically isomorphic to the group �A1

0 (Cr (X)+)(k). By the same reason, the group

in the bottom right corner is canonically isomorphic to the group �A1

0 (Cr (X))(k)+.
Since Spec(k) is Henselian, the latter group is nothing but the group�A1

0 (Cr (X))+(k).
Then Lemma 3.5 gives that β is an isomorphism.

Let q0 : Spec(k) → Cr (X) and q1 : Spec(k) → Cr (X) be two k-points on Cr (X),
and suppose q0 is connected to q1 by an A1-path H : A1 → LA1Cr (X) on LA1Cr (X).
For any d let (Cr (X))d be the coproduct

∐d
i=0 Cr,i (X). Then (Cr (X))d is canonically

embedded into the coproduct (Cr (X))d+1. Consider the chain of the embeddings

(
Cr (X)

)
0 ⊂ · · · ⊂ (

Cr (X)
)
d ⊂ (

Cr (X)
)
d+1 ⊂ · · ·

Applying [11, Proposition 4.4.4, p. 77] (see also Remark 3.2 in Sect. 3) we see that
LA1Cr (X) is canonically isomorphic to the colimit of the chain of the embeddings

LA1
(
(Cr (X))0

) ⊂ · · · ⊂ LA1
(
(Cr (X))d

) ⊂ LA1
(
(Cr (X))d+1

) ⊂ · · ·

Since A
1 is a compact object in the category �opS, it follows that the homotopy H

factorizes through LA1((Cr (X))d), for some degree d. If Z0 is a degree 1 algebraic
cycle of dimension r on X , then Z0 induces the corresponding embeddings

Cr,0(X) ⊂ · · · ⊂ Cr,d(C).

This gives the epimorphism from the coproduct (Cr (X))d onto Cr,d(X). Com-
posing the homotopy H : A1 → LA1((Cr (X))d) with the induced morphism from
LA1((Cr (X))d) to LA1(Cr,d(X)), we obtain the homotopy

H : A1 → LA1
(
Cr,d(X)

)
.

Since X is proper and of finite type over k, [2, Proposition 6.2.6] gives that the points
q0 and q1 areA1-chain connected, and soA1-path connected onCr,d(X). It means that
the map

l∗ : Hom�opS(Spec(k),Cr (X))A1 → Hom�opS
(
Spec(k), LA1Cr (X)

)
A1
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is injective. Since l∗ is surjective by Lemma 3.3, it is bijective. Then (l+)∗ is an
isomorphism as well.

Since β and (l+)∗ are isomorphisms, and α is an epimorphism by Lemma 4.1, we
see that α is an isomorphism, and then all the maps in the commutative square above
are isomorphisms.

Let now A and A′ be two r -dimensional algebraic cycles on X . If A is ratio-
nally equivalent to A′ on X , there exists an effective relative cycle Z on the scheme
X×Spec(k)A

1/A1 of relative dimension r , and an effective dimension r algebraic cycle
B on X , such that

Z(0) = A + B and Z(1) = A′ + B

on X . Let hZ and hB×A1 be two regularmorphisms fromA
1 to theChow schemeCr (X)

over Spec(k) corresponding to the relative cycles Z and B×A
1 on X×Spec(k)A

1/A1

respectively. Let

h : A1 → Cr (X)×Cr (X)

be the product of hZ and hB×A1 in the category �opS. Let

H : A
1 → Cr (X)×Cr (X) → Cr (X)+,

be the composition of h and the morphism from Cr (X)×Cr (X) to the completion
Cr (X)+, in �opS. Then H0 = A and H1 = A′, where H0 and H1 are the precompo-
sitions of H with i0 and i1 respectively. It means that the cycles A and A′ are A1-path
connected on Cr (X)+.

Vice versa, suppose we have a morphism

H : A1 → Cr (X)+

in S, and let H0 and H1 be the compositions of H with i0 and i1 respectively. Since
Spec(k) isHenselian, H0 is represented by twomorphisms H0,1 and H0,2 fromSpec(k)
toCr (X). Similarly, H1 is represented by two morphisms H1,1 and H1,2 from Spec(k)
to Cr (X). Since α is an isomorphism and H0 is A1-path connected to H1, it follows
that there exist two morphisms f and G from Spec(k) to Cr (X), such that H0,1 + F
is A1-path connected to H0,2 +G and H1,1 + F is A1-path connected to H1,2 +G on
Cr (X). In terms of algebraic cycles on X , it means that the effective r -cycle H0,1+F is
rationally equivalent to the effective r -cycle H0,2+G, and, similarly, the cycle H1,1+F
is rationally equivalent to H1,2 + G on Cr (X). Then the cycle H0 = H0,1 − H0,2 is
rationally equivalent to the cycle H1 = H1,1 − H1,2 on Cr (X).

Thus, the Chow group CHr (X) is isomorphic to Hom�opS(Spec(k),Cr (X)+)A1 ,
i.e. the group in the top left corner of the diagram above. Since, moreover, (l+)∗ is
an isomorphism, and the group in the top right corner is canonically isomorphic to
�A1

0 (Cr (X)+)(k), we obtain the required isomorphism in case when L is the ground
field k.
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190 V. Guletskiı̆

To prove the theorem for an arbitrary finitely generated field extension K of the
ground field k, we observe that f ∗Cr (X) is Cr (XK ), whence

f ∗LA1Cr (X)+ = L
A1

K
f ∗Cr (X)+ = L

A1
K
Cr (XK )+

by Lemma 4.2. Therefore,

�A1

0

(
Cr (X)+

)
(K ) = �0

(
LA1Cr (X)+

)
(K ) = f ∗�0

(
LA1Cr (X)+

)
(K )

= �0
(
f ∗LA1Cr (X)+

)
(K ) = �0

(
L
A1

K
Cr (XK )+

)
(K )

= �
A1

K
0

(
Cr (XK )+

)
(K ) � CHr (XK )0. ��

Remark 5.2 Lemma 3.5 provides that the monoidal completion in Theorem 5.1 can
be taken before or after computing the A

1-connected component functor. Since the
monoidal completion is sectionwise on stalks, we obtain the canonical isomorphisms

CHr (X) � �A1

0

(
Cr (X)+

)
(k) � �A1

0

(
Cr (X)

)+
(k) � �A1

0

(
Cr (X)

)
(k)+.

The embedding X ↪→ P
m gives the degree homomorphism from CHr (X) to Z. Let

CHr (X)0 be its kernel, i.e. the Chow group of degree 0 cycles of dimension r modulo
rational equivalence on X . Then,

CHr (X) � CHr (X)0×Z.

Let Z0 be a positive r -cycle of minimal degree on X . As we have seen above, this
gives the structure of a pointed graded cancellation monoid on Cr (X), and C∞

r (X) is
a cancellation monoid too.

Corollary 5.3 In terms above, CHr (XK )0 � �A1

0 (C∞
r (X)+)(K ).

Proof By Lemma 2.1, Cr (X)+ � C∞
r (X)+×Z. Since the functor �A1

0 is monoidal

and �A1

0 (Z) = Z, we get the formula

�A1

0

(
Cr (X)+

) � �A1

0

(
C∞
r (X)+

)×Z.

Then apply Theorem 5.1 and the isomorphism CHr (X) � CHr (X)0×Z. ��

Warning 5.4 If CHr (X)0 � �A1

0 (C∞
r (X))(k)+ = 0, it does not imply that the

monoid �A1

0 (C∞
r (X))(k) vanishes, as this monoid is by no means a pointwise can-

cellation monoid. One of the reasons for that is that the Chow schemes Cr,d(X) can
have many components over k.

Corollary 5.5 In terms above, CHr (XK )0 � �A1

0 (�ExBC∞
r (X))(K ).
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Proof TheChowmonoidC∞
r (X) is pointwise good.Lemma3.1 gives an isomorphism

C∞
r (X)+ � �ExBC∞

r (X) in H, whence

�A1

0 (C∞
r (X)+) � �A1

0

(
�ExBC∞

r (X)
)
. ��

Corollary 5.3 completes the proof.

Recall that, for a pointed simplicial Nisnevich sheaf (X, x), its motivic, i.e. A1-
fundamental group �A1

1 (X, x) is, by definition, the Nisnevich sheaf associated to the
presheaf sending a smooth schemeU to the set [S1∧U+, (X, x)]A1 , where the symbol
[−,−]A1 stays now for the sets of morphisms in the pointed homotopy category HA1 ,
see [19] or [2]. Similarly, one can define, for a pointed simplicial Nisnevich sheaf
(X, x), the fundamental group �S1∧A1

1 (X, x), where A
1 is pointed at any k-rational

point on it. This is the Nisnevich sheaf associated to the presheaf sending a smooth
scheme U to the set

[
S1∧U+, (X, x)

]
S1∧A1,

where the symbol [−,−]S1∧A1 stays for the sets ofmorphisms in the pointed homotopy
category HS1∧A1 .

Lemma 5.6 Let X be a pointwise good simplicial sheaf monoid. Then, for a scheme
U,

�A1

0 (X+)(U ) � �S1∧A1

1 (BX)(U ).

Proof Since X is pointwise good, there is an isomorphism between X+ and �ExBX
in the homotopy categoryH, by Lemma 3.1. Since the classifying space BX is pointed
connected, the canonical morphism

LA1�ExBX → �ExLS1∧A1BX

is a simplicial (i.e. pre-A1-localized) weak equivalence and

�ExLS1∧A1BX

is A1-local by [19, Theorem 2.34, p. 84]. This allows us to make the following iden-
tifications:

�A1

0 (X+)(U ) � [
U,X+]

A1 � [
U,�ExBX

]
A1

� [
U, LA1�ExBX

]
A1 � [

U,�ExLS1∧A1BX
]
A1

� [
U,�ExLS1∧A1BX

] � [
S1∧U+, LS1∧A1BX

]

� [
S1∧U+, BX

]
S1∧A1 � �S1∧A1

1 (BX)(U ). ��
A straightforward consequence of Corollary 5.3 and Lemma 5.6 is
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192 V. Guletskiı̆

Corollary 5.7 In terms above, CHr (XK )0 � �S1∧A1

1 (BC∞
r (X))(K ).

Example 5.8 Let X be a nonsingular projective surface over k, where k is algebraically
closed of characteristic zero. Assume that X is of general type and has no transcen-
dental second cohomology group, i.e. the cycle class map from CH1(X) to the second
Weil cohomology group H2(X) is surjective. In that case the irregularity of X is zero.
Bloch’s conjecture predicts thatCH0(X) = Z. In otherwords, any two closed points on
X are rationally equivalent to each other. Fixing a point on X gives the Chow monoid
C∞
0 (X), which is nothing else but the the infinite symmetric power Sym∞(X) of the

smooth projective surface X . By Corollary 5.5, Bloch’s conjecture holds for X if and
only if all k-points on the motivic space LA1�ExBSym∞(X) are A1-path connected.
Bloch’s conjecture holds, for example, for the classical Godeaux surfaces, [26], and
for the Catanese and Barlow surfaces, see [3,27].

The above vision of Chow groups should be compared with the results of Friedlander,
Lawson, Lima-Filho, Mazur and others, who considered topological (i.e. not motivic)
homotopy completions of Chow monoids working over C, see [6,17]. A nice survey
of this topic, containing many useful references, is the article [16]. The topological
homotopy completions of Chow monoids are helpful to understand algebraic cycles
modulo algebraic equivalence relation, i.e. the groups Ar (X) of algebraically trivial
r -cycles cannot be catched by the topologicalmethods. In contrast, themotivic, i.e.A1-
homotopy completions of Chow monoids, considered above, can give the description
of Ar (X), working over an arbitrary ground field of characteristic zero, as the previous
examples show. Theorem 5.1 also suggests that the motivic Lawson homology groups
can be defined by the formula

LrH
M
n (X) = �A1

n−2r (Cr (X)+)(k).

6 Appendix: homotopical algebra

For the convenience of the reader, we collect here the needed extractions from homo-
topical algebra. Let first C be a symmetric monoidal category with product ⊗ and unit
1. The monoidal product ⊗ is called to be closed, and the category C is called closed
symmetric monoidal, if the product ⊗ : C×C → C is the so-called adjunction of two
variables, i.e. there is bifunctor Hom and two functorial in X,Y, Z bijections

HomC
(
X,Hom(Y, Z)

) � HomC(X⊗Y, Z) � HomC
(
Y,Hom(X, Z)

)
.

If C has a model structure M in it, an adjunction of two variables on C is called the
Quillen adjunction of two variables, or Quillen bifunctor, if, for any two cofibrations
f : X → Y and f ′ : X ′ → Y ′ inM the push-out product
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f � f ′ : (X⊗Y ′)
∐

X⊗X ′
(Y⊗X ′) → Y∧Y ′

is also a cofibration in M, which is trivial if either f and f ′ is. The model cat-
egory (C,M) is called the closed symmetric monoidal model category if ⊗ is a
Quillen bifunctor and the following extra axiom holds. If q : Q1 → 1 is a cofibrant
replacement for the unit object 1, then the morphisms q∧ id : Q1∧X → 1∧X and
id∧q : X∧Q1 → X∧1 are weak equivalences for all cofibrant objects X . If we con-
sider the Cartesian product M×M of the model structure M as a model structure on
the Cartesian product C×C, then ⊗ and Hom induce left derived functor ⊗L from
Ho(C×C) to Ho(C), and right derived functor RHom from Ho(C×C) to Ho(C). It is
well known that passing to localization commutes with products of categories, so that
we have the equivalence between Ho(C×C) and Ho(C)×Ho(C). This gives the left
derived functor

⊗L : Ho(C)×Ho(C) → Ho(C)

and the right derived functor

RHom : Ho(C)×Ho(C) → Ho(C).

As it was shown in [12], the left derived ⊗L and the right derived RHom give the
structure of a closed symmetric monoidal category on the homotopy category Ho(C).
Since we assume that all objects in C are cofibrant in M, it is easy to see that the
canonical functor from C to Ho(C) is monoidal.

An important particular case is when the symmetric monoidal product ⊗ is given
by the categorical product in C, i.e. when C is the Cartesian symmetric monoidal
category. Since Ho(C) admits products, and products in C are preserved in Ho(C), for
any three objects X,Y and Z in C one has the canonical isomorphism

[X,Y ]×[X, Z ] � [X,Y×Z ].

Let now C be a left proper cellular simplicial model category with the model structure
M = (W,C, F) in it, let I and J be the sets of, respectively, generating cofibrations
and generating trivial cofibrations in C, and let S be a set of morphisms in C. For
simplicity we will also be assuming that all objects in C are cofibrant, which will
always be the case in applications. An object Z in C is called S-local if it is fibrant,
in the sense of the model structure M, and for any morphism g : A → B between
cofibrant objects in S the induced morphism from Hom(B, Z) to Hom(A, Z) is a
weak equivalence in �opSets. A morphism f : X → Y in C is an S-local equivalence
if the induced morphism from Hom(Y, Z) to Hom(X, Z) is a weak equivalence in
�opSets for any S-local object Z in C. Then there exists a new left proper cellular
model structure MS = (WS,CS, FS) on the same category C, such that CS = C , WS

consists of S-local equivalences in C, so contains W , and FS is standardly defined by
the right lifting property and so is contained in F . The model structure MS is again
left proper and cellular with the same set of generating cofibrations I and the new set
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194 V. Guletskiı̆

of generating trivial cofibrations JS . The model category (C,MS) is called the (left)
Bousfield localization of (C,MS) with respect to S. This all can be found in [11].

Notice that the identity adjunction on C is a Quillen adjunction and induces the
derived adjunction LId :Ho(C)�Ho(CS):RId, where Ho(CS) is the homotopy cate-
gory of C with respect to the model structureMS . Since cofibrations remain the same
and, according to our assumption, all objects are cofibrant, the functor LId is the iden-
tity on objects and surjective on Hom-sets. To describe RId we observe the following.
Since FS is smaller than F , the fibre replacement functor in (C,M) is different from
the fibre replacement functor in (C,MS). Taking into account that C is left proper and
cellular, one can show that there exists a fibrant replacement IdC → LS in MS , such
that, if X is already fibrant inM, then LS(X) can be more or less visibly constructed
from X and S, see [11, Section 4.3] (or less abstract presentation in [5]). The right
derived functor RId, being the composition of Ho(LS) and the functor induced by the
embedding of S-local, i.e. cofibrant inMS , objects into C, identifies Ho(CS) with the
full subcategory in Ho(C) generated by S-local objects of C.

Since (C,M) is a simplicial model category, then so is (C,MS), see [11, Theo-
rem 4.1.1 (4)]. Suppose that C is, moreover, closed symmetric monoidal with product
⊗ , and that the monoidal structure is compatible with the model one in the standard
sense, i.e. C is a symmetric monoidal model category (see above). The new model
category (C,MS) is monoidal model, i.e. the model structure MS is compatible with
the existing monoidal product ⊗ , if and only if for each f in S and any object X in the
union of the domains dom(I ) and codomains codom(I ) of generating cofibrations I
in C the product idX⊗ f is in WS .

This is exactly the case when the set S is generated by a morphism p : A → 1,
where A is an object in C and 1 is the unit object for the monoidal product ⊗ , i.e.

S = {
X∧ A

idX∧p−−−→ X : X ∈ dom(I ) ∪ codom(I )
}
.

In that case the model structure MS is compatible with the monoidal one, so that
(C,MS) is a simplicial closed symmetric monoidal model category, which is left
proper cellular.

We writeMA and L A instead of, respectively,MS and LS when S is generated by
A in the above sense. One of the fundamental properties of the localization functor LA

is that, for any two objects X and Y in C, the object LA(X×Y ) is weak equivalent to
the object L A(X)×L A(Y ), in the sense of the model structureMA. The proof of this
fact in topology is given on p.36 of the book [5], and it can be verbally transported to
abstract setting. All we need is the Quillen adjunction in two variables in C, and the
fact saying that if Y is S-local, then Hom(X,Y ) is S-local for any X in C, which is
also the consequence of adjunction.
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